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Abstract

The packing chromatic number χρ(G) of an undirected (resp. oriented) graph G is the
smallest integer k such that its set of vertices V (G) can be partitioned into k disjoint subsets
V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance (resp. directed
distance) greater than i in G for every i, 1 ≤ i ≤ k. The generalized theta graph Θℓ1,...,ℓp

consists in two end-vertices joined by p ≥ 2 internally vertex-disjoint paths with respective
lengths 1 ≤ ℓ1 ≤ · · · ≤ ℓp.

We prove that the packing chromatic number of any undirected generalized theta graph lies
between 3 and max{5, n3+2}, where n3 = |{i / 1 ≤ i ≤ p, ℓi = 3}|, and that both these bounds
are tight. We then characterize undirected generalized theta graphs with packing chromatic
number k for every k ≥ 3. We also prove that the packing chromatic number of any oriented
generalized theta graph lies between 2 and 5 and that both these bounds are tight.

Keywords: Packing coloring; Packing chromatic number; Theta graph; Generalized theta
graph.

MSC 2010: 05C15, 05C70.

1 Introduction

All the graphs we considered are simple and loopless. For an undirected graph G, we denote by
V (G) its set of vertices and by E(G) its set of edges. The distance dG(u, v), or simply d(u, v)
when G is clear from the context, between vertices u and v in G is the length (number of edges)
of a shortest path joining u and v. The diameter of G is the maximum distance between two
vertices of G. We denote by Pn, n ≥ 1, the path of order n and by Cn, n ≥ 3, the cycle of
order n.

A packing k-coloring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two
distinct vertices u and v, π(u) = π(v) = i implies d(u, v) > i. The packing chromatic number
χρ(G) of G is then the smallest k such that G admits a packing k-coloring. In other words,
χρ(G) is the smallest integer k such that V (G) can be partitioned into k disjoint subsets V1,
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. . . , Vk, in such a way that every two vertices in Vi are at distance greater than i in G for every
i, 1 ≤ i ≤ k.

This notion extends to digraphs in a natural way [15], by considering the (weak) directed
distance between vertices, defined as the number of arcs in a shortest directed path linking these
vertices, in either direction.

Packing coloring of undirected graphs has been introduced by Goddard, Hedetniemi, Hedet-
niemi, Harris and Rall [12, 13] under the name broadcast coloring and has been studied by
several authors in recent years. Several papers deal with the packing chromatic number of
certain classes of undirected graphs such as trees [3, 4, 13, 16, 17], lattices [4, 5, 9, 10, 14, 18],
Cartesian products [4, 9, 16], distance graphs [6, 7, 19] or hypercubes [13, 20, 21]. Complexity
issues of the packing coloring problem were adressed in [1, 2, 3, 8, 11, 13].

Let H be a subgraph of G. Since dG(u, v) ≤ dH(u, v) for any two vertices u, v ∈ V (H),
the restriction to V (H) of any packing coloring of G is a packing coloring of H. This property
obviously holds for digraphs as well. Hence, having packing chromatic number at most k is a
hereditary property:

Proposition 1 Let G and H be two undirected graphs, or two digraphs. If H is a subgraph of
G, then χρ(H) ≤ χρ(G).

Fiala and Golovach [8] proved that determining the packing chromatic number is an NP-hard
problem for undirected trees. The exact value of the packing chromatic number of undirected
trees with diameter at most 4 was given in [13]. The packing chromatic number of undirected
paths and cycles has been determined by Goddard et al.:

Theorem 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [13])

(1) For every n ≥ 1, χρ(Pn) ≤ 3. Moreover, χρ(Pn) = 1 if and only if n = 1 and χρ(Pn) = 2
if and only if n ∈ {2, 3}.

(2) For every n ≥ 3, 3 ≤ χρ(Cn) ≤ 4. Moreover, χρ(Cn) = 3 if and only if n = 3 or n ≡ 0
(mod 4).

In this paper, we consider undirected graphs and orientations of undirected graphs, obtained
by giving to each edge of such a graph one of its two possible orientations. The so-obtained

oriented graphs are thus digraphs having no pair of opposite arcs. Let
−→
G be any orientation of

an undirected graph G. Since for any two vertices u, v in V (G) we have dG(u, v) ≤ d−→
G
(u, v),

where d−→
G
(u, v) denotes the directed distance between u and v, we get:

Proposition 3 For every orientation
−→
G of an undirected graph G, χρ(

−→
G) ≤ χρ(G).

Let u be a vertex in an oriented graph
−→
G . We say that u is a source if u has no incoming

arc and that u is a sink if u has no outgoing arc. If −−→uvw is a directed path in
−→
G , then

d−→
G
(u,w) ≤ 2. Hence, u and w cannot be both assigned color 2 in any packing coloring of

−→
G .

From this observation, we get an easy characterization of oriented graphs with packing chromatic
number 2:

Proposition 4 (Läıche, Bouchemakh and Sopena [15])

For every orientation
−→
G of an undirected graph G, χρ(

−→
G) = 2 if and only if (i) G is bipartite

and (ii) one part of the bipartition of G contains only sources or sinks in
−→
G .
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In [15], we determined the packing chromatic number of undirected and oriented generalized
coronae of paths and cycles. In particular, the packing chromatic number of oriented paths and
cycles is given as follows:

Theorem 5 (Läıche, Bouchemakh and Sopena [15])

Let
−→
Pn be any orientation of the path Pn. Then, for every n ≥ 2, 2 ≤ χρ(

−→
Pn) ≤ 3. Moreover,

χρ(
−→
Pn) = 2 if and only if one part of the bipartition of Pn contains only sources or sinks in

−→
Pn.

Theorem 6 (Läıche, Bouchemakh and Sopena [15])

Let
−→
Cn be any orientation of the cycle Cn. Then, for every n ≥ 3, 2 ≤ χρ(

−→
Cn) ≤ 4. Moreover,

χρ(
−→
Cn) = 2 if and only if Cn is bipartite and one part of the bipartition contains only sources

or sinks in
−→
Cn, and χρ(

−→
Cn) = 4 if and only if

−→
Cn is a directed cycle (all arcs have the same

direction), n ≥ 5 and n 6≡ 0 (mod 4).

The generalized theta graph Θℓ1,...,ℓp is the graph obtained by identifying the end-vertices of
p ≥ 2 paths with respective lengths 1 ≤ ℓ1 ≤ · · · ≤ ℓp. (Since we only consider simple graphs,
note here that we necessarily have ℓ2 ≥ 2.) Packing colorings of undirected generalized theta
graphs were considered by William and Roy in [22] who gave some necessary condition for such
a graph to have packing chromatic number 4. In this paper, we determine the packing chromatic
number of every undirected generalized theta graph.

Our paper is organized as follows. In Section 2 we provide tight lower and upper bounds
on the packing chromatic number of undirected generalized theta graphs and characterize undi-
rected generalized theta graphs with any given packing chromatic number. In Section 3, we
provide tight lower and upper bounds on the packing chromatic number of oriented generalized
theta graphs.

2 Undirected generalized theta graphs

In this section, we determine the packing chromatic number of undirected generalized theta
graphs Θℓ1,...,ℓp . Since we only consider undirected graphs in this section, we will simply write
generalized theta graph instead of undirected generalized theta graph.

In the rest of this paper, we denote by u and v the end-vertices of the theta graph Θℓ1,...,ℓp

and by Pi = ux1i . . . x
ℓi−1

i v the corresponding paths of length ℓi for every i, 1 ≤ i ≤ p. Moreover,
we denote by nℓ, ℓ ≥ 1, the number of paths of length ℓ, that is

nℓ = |{i / 1 ≤ i ≤ p, ℓi = ℓ}|.

In order to describe k-colorings of paths, we use color patterns, given as words on the
alphabet {1, . . . , k}, using standard notation from Combinatorics on Words, with u+ = u∗u for
every word u. Hence, for instance, the color pattern 12(1312)∗4 describes colorings of the form
124, 1213124, 1213121312 . . . 4.

We first prove the following general upper bound:

Theorem 7 For every generalized theta graph Θ = Θℓ1,...,ℓp, p ≥ 2,

χρ(Θ) ≤ max{5, n3 + 2}.

Moreover, this upper bound is tight whenever n3 ≥ 3.
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Proof. We first prove that χρ(Θ) ≤ 5 whenever n3 ≤ 3. Let ϕ : V (Θ) −→ {1, . . . , 5} be the
mapping defined as follows:

1. ϕ(u) = 4, ϕ(v) = 5,

2. the (at most 3) paths of length 3 are colored using the distinct patterns 4125, 4215 and
4315,

3. if ℓi ≡ 0 (mod 4), ℓi ≥ 4, ϕ(Pi) is defined by the pattern 4121(3121)∗5,

4. if ℓi ≡ 1 (mod 4), ℓi ≥ 5, ϕ(Pi) is defined by the pattern 41231(2131)∗5,

5. if ℓi ≡ 2 (mod 4), ϕ(Pi) is defined by the pattern 41(2131)∗5,

6. if ℓi ≡ 3 (mod 4), ℓi 6= 3, ϕ(Pi) is defined by the pattern 412(3121)∗5.

We claim that ϕ is a packing 5-coloring of Θ. To see that, we will show that for any two
distinct vertices x and y with ϕ(x) = ϕ(y) = c, c ∈ {1, 2, 3}, we have dΘ(x, y) > c (the case
c ∈ {4, 5} does not need to be considered since there is only one vertex with color 4 and one
vertex with color 5). Note first that the restriction of ϕ to any path Pi is a packing coloring of
Pi. Hence, we just need to consider the case when x and y do not belong to the same path. If
c = 1, the property obviously holds since only internal vertices are colored with color 1. Since
at most one vertex with color 2 is adjacent to u and at most one vertex with color 2 is adjacent
to v, the property also holds when c = 2. Since at most one vertex with color 3 is adjacent to
u and no vertex with color 3 is adjacent to v, the property also holds when c = 3. Hence, ϕ is
a packing 5-coloring of Θ.

Finally, when n3 > 3, we color three paths of length 3 as above and the remaining ones
using distinct patterns of the form 4165, 4175, etc. Since each color c > 5 is used only once, we
clearly get a packing (n3 + 2)-coloring of Θ.

The fact that max{5, n3+2} is a tight upper bound whenever n3 ≥ 3 follows from Lemma 8
proven below. �

We will now characterize generalized theta graphs with packing chromatic number k for every
k ≥ 3. Since every cycle is a generalized theta graph, we know by Theorem 2(2) that χρ(Θ) ≥ 3
for every generalized theta graph Θ. Moreover, Theorem 2(2) characterizes generalized theta
graphs Θℓ1,...,ℓp with packing chromatic number 3 and 4 whenever p = 2. Therefore, unless
otherwise specified, we will always consider p ≥ 3 in the rest of this section.

The next lemma determines the packing chromatic number of generalized theta graphs of
the form Θ3,...,3:

Lemma 8 Let Θ = Θℓ1,...,ℓp, p ≥ 3, with n3 = p.We then have χρ(Θ) = p+ 2.

Proof. By Theorem 7, we have χρ(Θ) ≤ p+ 2. Therefore, it is enough to prove that for every
packing k-coloring π of Θ, k ≥ p+ 2.

If π(u) = π(v) = 1 then at most two remaining vertices can be assigned color 2 and all other
remaining vertices must be assigned distinct colors, so that π uses at least 2(p−1)+2 = 2p ≥ p+2
colors.

If π(u) = 1 and π(v) 6= 1, then none of the vertices x1i , 1 ≤ i ≤ p, can be assigned color 1
and, since the p + 1 vertices {v, x11, . . . , x

1
p} are pairwise at distance 2, they must be assigned

distinct colors so that π must use at least p + 2 colors. The case π(v) = 1 and π(u) 6= 1 is
similar.

Finally, if π(u) 6= 1 and π(v) 6= 1, then at most p internal vertices can be assigned color 1
(one per path). Since any two internal vertices are at distance at most 3 from each other and
from u and v, and no three such vertices (including u and v) are pairwise at distance 3 from
each other, color 2 can be used at most twice, so that π must use at least p+ 2 colors. �
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The following lemma characterizes generalized theta graphs with packing chromatic number
k for every k > 5:

Lemma 9 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. Then, for every k > 5,
χρ(Θ) = k if and only if n3 = k − 2.

Proof. If n3 = k − 2, we get χρ(Θ) ≤ k by Theorem 7, and χρ(Θ) ≥ k by Lemma 8 and
Proposition 1.

If χρ(Θ) = k, we get n3 ≥ k − 2 by Theorem 7 and n3 ≤ k − 2 by Lemma 8. �

Generalized theta graphs with packing chromatic number 3 are characterized as follows.

Lemma 10 Let Θ = Θℓ1,...,ℓp, p ≥ 2, be a generalized theta graph. We then have χρ(Θ) = 3 if
and only if one of the following conditions holds:

(i) ℓ1 = 1 and ℓ2 = · · · = ℓp = 2, or

(ii) for every i and j, 1 ≤ i < j ≤ p, ℓi + ℓj ≡ 0 (mod 4).

Proof. By Theorem 2(2), if p = 2 then χρ(Θ) = 3 if and only if ℓ1 = 1 and ℓ2 = 2, or ℓ1+ℓ2 ≡ 0
(mod 4). Therefore, assume p ≥ 3.

We first prove that if ℓ1 = 1, ℓ2 = 2 and ℓp > 2 then χρ(Θ) > 3. Assume to the contrary
that there exists a packing 3-coloring π of Θ. Since P1 and P2 induce a cycle of length 3, we
necessarily have π(x12) = π(x1p) = 1 and, without loss of generality, π(u) = 2 and π(v) = 3, which
implies that no color is available for x2p since dΘ(x

2
p, x

1
p) = 1, dΘ(x

2
p, u) = 2 and dΘ(x

2
p, v) ≤ 3, a

contradiction.
We know by Theorem 2(2) that, for every n ≥ 3, 3 ≤ χρ(Cn) ≤ 4 and χρ(Cn) = 3 if and only

if n = 3 or n ≡ 0 (mod 4). Therefore, if Θ contains a cycle of length ℓ 6≡ 0 (mod 4), ℓ > 3, then
χρ(Θ) > 3. Clearly, this happens whenever there exist i and j, 1 ≤ i < j ≤ p, with ℓi + ℓj = ℓ.

Conversely, assume that for every i and j, 1 ≤ i < j ≤ p, ℓi + ℓj ≡ 0 (mod 4). We have
two cases to consider. If ℓi ≡ 0 (mod 4) for every i, 1 ≤ i ≤ p, a packing 3-coloring π of Θ is
obtained by coloring each path Pi with the color pattern (2131)∗2. If ℓi ≡ 2 (mod 4) for every
i, 1 ≤ i ≤ p, a packing 3-coloring π of Θ is obtained by coloring each path Pi with the color
pattern 21(3121)∗3.

This completes the proof. �

It remains to characterize generalized theta graphs with packing chromatic number 4 and
5. Thanks to Theorem 2(2), we do not need to consider cycles. The following series of lemmas
will allow us to characterize generalized theta graphs (assuming p ≥ 3) with packing chromatic
number at most 4, depending on the colors assigned to the end-vertices u and v.

The first three lemmas characterize generalized theta graphs that admit a packing 4-coloring
π with π(u) = π(v) = 4, 3 or 2.

Lemma 11 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) = π(v) = 4 if and only if n1 = n2 = n3 = n4 = 0.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 4. We then
necessarily have d(u, v) > 4, which implies n1 = n2 = n3 = n4 = 0.

Conversely, suppose that n1 = n2 = n3 = n4 = 0. We can color each path Pi, 1 ≤ i ≤ p, of
length ℓi ≥ 5, using the following patterns, depending on the value of (ℓi mod 4):

• 4(1213)+1214, if ℓi ≡ 0 (mod 4),

• 413(1213)∗214, if ℓi ≡ 1 (mod 4),
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• 4(1213)+14, if ℓi ≡ 2 (mod 4),

• 4(1213)+214, if ℓi ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 12 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing 4-
coloring π of Θ with π(u) = π(v) = 3 if and only if n1 = n2 = n3 = 0, n5 ≤ 2 and n5 + n6 ≤ 4.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 3. We then
necessarily have d(u, v) > 3, which implies n1 = n2 = n3 = 0. Note that we can only use
colors 1, 2 and 4 for coloring the internal vertices of each path Pi with ℓi ≤ 7, 1 ≤ i ≤ p.
Therefore, each coloring of a path of length 5 must use once the color 4, which implies n5 ≤ 2,
since otherwise we would have two vertices with color 4 at distance at most 4 from each other.
Similarly, a path of length 6 can only be colored 3121413, 3141213, 3121423, 3241213, 3124123,
3214213 or 3214123, which implies n6 ≤ 4 (again, due to vertices with colour 4). Moreover, we
necessarily have n6 ≤ 2 whenever n5 = 2 and n6 ≤ 3 whenever n5 = 1, which gives n5 ≤ 2 and
n5 + n6 ≤ 4.

Conversely, suppose that n1 = n2 = n3 = 0, n5 ≤ 2 and n5 + n6 ≤ 4. We color each path
of length 4 with 31213. If n5 = 2, we color the two paths of length 5 with 312413 and 314213
and the (at most two) paths of length 6 with 3124123 and 3214213. If n5 = 1, we color the
path of length 5 with 312413 and the (at most three) paths of length 6 with 3141213, 3124123
and 3214213. If n5 = 0, we color the (at most four) paths of length 6 with 3121413, 3141213,
3124123 and 3214213.

Finally, we color each path Pi, 1 ≤ i ≤ p, of length ℓi ≥ 7, using the following patterns,
depending on the value of (ℓi mod 4):

• 3(1213)+1213, if ℓi ≡ 0 (mod 4),

• 3(1213)+41213, if ℓi ≡ 1 (mod 4),

• 3(1213)+141213, if ℓi ≡ 2 (mod 4),

• 3(1213)∗1241213, if ℓi ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 13 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) = π(v) = 2 if and only if n1 = n2 = 0 and one of the following
conditions holds:

(i) n3 = 1 and n5 + n6 + n7 = 0, or

(ii) n3 = 0 and n5 + n6 + n7 ≤ 2.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = π(v) = 2. We then
necessarily have d(u, v) > 2, which implies n1 = n2 = 0. Note that we can only use colors 1, 3
and 4 for coloring the internal vertices of each path Pi with ℓi ≤ 5, 1 ≤ i ≤ p. Therefore, a path
of length 3 can only be colored either 2132 (or 2312) or 2142 (or 2412), which implies n3 ≤ 2.

If n3 = 2 then, without loss of generality, the two paths of length 3 are colored either 2132
and 2142, or 2132 and 2412. In both cases, no path of length ℓ ≥ 4 can be colored since only the
color 1 is available for the vertices at distance 1 and 2 from v. This implies p = 2, contradicting
the assumption p ≥ 3.

If n3 = 1, as observed above, the corresponding path of length 3 is either colored 2132 (or
2312) or 2142 (or 2412). In the former case (assume, without loss of generality, that the path is
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colored 2132), every other vertex at distance at most 2 from v must be assigned colored 1 or 4,
which implies

∑
ℓ≥4

nℓ ≤ 1, so that p = 2, contrary to the assumption p ≥ 3. The corresponding
path of length 3 is thus colored 2142 (or 2412), so that every other vertex at distance at most 2
from u or v must then be colored 1 or 3. There is no such coloring for a path of length 5, only
one such coloring for a path of length 6, namely 2314132, and two such colorings for a path of
length 7, up to symmetry, namely 23124132 and 21324132. Since each of these colorings uses
color 3 on a neighbor of u or v we necessarily have n5 + n6 + n7 ≤ 1. If n5 + n6 + n7 = 1 then,
again, no other path can be colored since only the color 1 is available for the vertices at distance
1 and 2 from v (or u), which implies p = 2, contradicting the assumption p ≥ 3. Therefore,
n5 + n6 + n7 = 0 and condition (i) is satisfied.

If n3 = 0 then, as observed above, every path of length 5, 6 or 7 must contain a vertex with
color 4 at distance at most 2 from u or v since p ≥ 3. Therefore, at most two such paths can
occur, that is n5 + n6 + n7 ≤ 2, and thus condition (ii) is satisfied.

Conversely, suppose that n1 = n2 = 0. If n3 = 1 and n5 + n6 + n7 = 0, we color the path
of length 3 with 2142 and every path of length 4 with 21312. We then color each path Pi,
1 ≤ i ≤ p, of length ℓi ≥ 8, using the following patterns, depending on the value of (ℓi mod 4):

• 2(1312)+1312, if ℓi ≡ 0 (mod 4),

• 2(1312)+41312, if ℓi ≡ 1 (mod 4),

• 2(1312)+121312, if ℓi ≡ 2 (mod 4),

• 2(1312)+4121312, if ℓi ≡ 3 (mod 4).

If n3 = 0 and n5+n6+n7 ≤ 2 we first color each path Pi, 1 ≤ i ≤ p, of length ℓi, 4 ≤ ℓi ≤ 7,
as follows:

• 21312, if ℓi = 4,

• 213412 or 214312, if ℓi = 5,

• 2131412 or 2141321, if ℓi = 6,

• 21321412 or 21412312, if ℓi = 7.

Note that if n5 + n6 + n7 = 2 the two corresponding paths must use the patterns 214 . . . 2 and
2 . . . 412 so that the distance between the two vertices with color 4 is at least 5. We then color
each path Pi, 1 ≤ i ≤ p, of length ℓi ≥ 8, depending on the value of (ℓi mod 4) as in the
previous case.

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

The next three lemmas characterize generalized theta graphs that admit a packing 4-coloring
π with π(u), π(v) ∈ {2, 3, 4}, π(u) 6= π(v).

Lemma 14 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) = 3 and π(v) = 4 if and only if one of the following conditions
holds:

(i) n1 ≤ 1, n3 ≤ 2 and n5 = n6 = 0, or

(ii) n1 = 0, n3 ≤ 2 and (n5 = 0 or n5 + n6 ≤ 1).

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 3 and π(v) = 4.
There are only two possible colorings of a path of length 3, namely 3124 and 3214, which

implies that we can have at most two such paths (otherwise, we would have two vertices with
color 2 at distance 2 from each other).
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Suppose first that n1 = 1. In that case, since every internal vertex of a path of length 5 or
6 is at distance at most 3 from u and v, the only available colors for these vertices are 1 and 2,
so that n5 + n6 = 0 and condition (i) is satisfied.

Suppose now that n1 = 0. Since the only possible coloring of a path of length 5 is 312134,
we necessarily have n5 ≤ 1. Consider the possible colorings of a path of length 6. Since color 4
can only be used on the neighbor of u, the four other internal vertices must use color 3 and thus
color 3 has to be used on a vertex at distance at most 2 from v. This implies n6 = 0 whenever
n5 = 1 and thus condition (ii) is satisfied.

We finally prove that for every generalized theta graph satisfying any of these conditions,
there exists a packing 4-coloring π with π(u) = 3 and π(v) = 4. Every path of length 2 can be
colored 314 and every path of length 4 can be colored 31214. If n3 = 1 the path of length 3 can
be colored 3124, and if n3 = 2 the paths of length 3 can be colored 3124 and 3214. If n1 = 0
and n5 = 1, the path of length 5 can be colored 312134. If n1 = 0 and n5 = 0, all the paths of
length 6 can be colored 3121314.

It remains to prove that every path Pi, 1 ≤ i ≤ p, of length ℓi ≥ 7 can be colored. This can
be done using the following patterns, depending on the value of (ℓi mod 4):

• 3(1213)+1214 if ℓi ≡ 0 (mod 4),

• 31214312(1312)∗14 if ℓi ≡ 1 (mod 4),

• 31214(1312)+14 if ℓi ≡ 2 (mod 4),

• 3(1213)+214 if ℓi ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 15 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) = 2 and π(v) = 4 if and only if one of the following conditions
holds:

(i) n1 ≤ 1 and n3 = n7 = 0, or

(ii) n1 ≤ 1 n3 = 0, n7 ≤ 1 and n8 = 0, or

(iii) n1 = n3 ≤ 1 and n4 = n7 = n8 = 0, or

(iv) n1 = n2 = n3 = 0 and n7 ≤ 1, or

(v) n1 = n2 = n3 = n4 = 0, n7 = 2 and n8 = 0, or

(vi) n1 = n2 = 0, n3 ≤ 1, n4 = 0 and n7 + n8 ≤ 1, or

(vii) n1 = n3 = n7 = 0, or

(viii) n1 = n3 = n4 = 0, n7 ≤ 1 and n8 = 0, or

(ix) n1 = 0, n3 ≤ 1 and n4 = n7 = n8 = 0.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 2 and π(v) = 4.
Since every path of length 3 can be colored either 2134 or 2314, we necessarily have n3 ≤ 1

(otherwise, we would have two vertices with color 3 at distance 3 from each other). Moreover,
since every path of length 4 can be colored either 21314 or 21324, therefore using color 3 at
distance 2 from u and v, we necessarily have n4 = 0 whenever a path uses color 3 on a neighbor
of u or v (thus, in particular if n3 = 1).

Suppose that n1 = 1 and consider the possible colorings of a path of length 7. On its internal
vertices, color 4 cannot be used, color 3 can be used only twice, color 2 can be used only once
and color 1 can be used three times. Therefore, the only possible colorings of a path of length
7 are 21312134 and 23121314. We thus necessarily have n7 ≤ 1, and n7 = 0 whenever n3 = 1,
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otherwise we would have two vertices with color 3 at distance 2 or 3 from each other. Similarly,
for the internal vertices of a path of length 8, color 4 cannot be used, color 3 and 2 can both be
used at most twice, and color 1 can be used at most four times. Therefore, the only colorings
of a path of length 8 are 213121314 and 231213214. We thus necessarily have n8 = 0 whenever
n3 = 1 or n7 = 1, again because of vertices with color 3.

Therefore, one of the conditions (i), (ii) or (iii) is satisfied.
Suppose now that n1 = 0. We already know that n3 ≤ 1, and that n4 = 0 whenever n3 = 1.

Now, the possible colorings of a path of length 7 are 21312134 and 21431214 (using the color 3
or 4 on the neighbour of u cannot give a better coloring than these two colorings). This implies
n7 ≤ 2 (because of vertices with color 3 or 4) and both these colorings must be used when
n7 = 2. Moreover, if n3 = 1 then the coloring 21312134 cannot be used and thus n7 ≤ 1 in that
case. On the other hand, the coloring 21431214 cannot be used whenever n2 ≥ 1. Similarly, the
possible colorings of a path of length 8 are 213121314 and 214131214 (again, using the color 3
or 4 on the neighbour of u cannot give a better coloring than these two colorings). If n2 ≥ 1,
the coloring 214131214 cannot be used. On the other hand, the coloring 213121314 cannot be
used whenever n3 = 1, or n2 ≥ 1 and n7 = 1, or n2 = 0 and n7 = 2, because of vertices with
color 3.

Therefore, one of the conditions (iv) to (ix) must hold.
We finally prove that for every generalized theta graph satisfying any of these conditions,

there exists a packing 4-coloring π with π(u) = 2 and π(v) = 4. We first color all the paths Pi,
1 ≤ i ≤ p, of length ℓi /∈ {3, 7, 8}, if any, as follows:

• ℓi = 2: 214,

• ℓi = 4: 21314,

• ℓi = 5: 213214,

• ℓi = 6: 2131214,

• ℓi ≥ 9: for these paths, we use the following patterns, depending on the value of (ℓi
mod 4):

– 2(1312)+14131214 if ℓi ≡ 0 (mod 4),

– 2(1312)+13214 if ℓi ≡ 1 (mod 4),

– 2(1312)+14 if ℓi ≡ 2 (mod 4),

– 2(1312)+1431214 if ℓi ≡ 3 (mod 4).

It remains to colors the paths of length 3, 7 or 8. This can be done according to the condition
of the Lemma that is satisfied:

(i) All the paths are already colored.

(ii) The path of length 7 is colored 21312134 (recall that we have no path of length 3 in that
case).

(iii) The path of length 3 is colored 2134 (recall that we have no path of length 4 in that case).

(iv) The path of length 7, if any is colored 21431214 and all the paths of length 8 are colored
213121314 (recall that we have no path of length 1, 2 or 3 in that case).

(v) The two paths of length 7 are colored 21312134 and 21431214 (recall that we have no path
of length less than 5 in that case).

(vi) The path of length 3 is colored 2134, the path of length 7, if any, is colored 21431214 and
the path of length 8, if any, is colored 214131214 (recall that we have no path of length 1,
2 or 4 and at most one path of length either 7 or 8 in that case).

(vii) All the paths are already colored.
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(viii) The path of length 7 is colored 21312134 (recall that we have no path of length 1, 3, 4 or
8 in that case).

(ix) The path of length 3 is colored 2134 (recall that we have no path of length 1, 4, 7 or 8 in
that case).

In all cases, the so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Lemma 16 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) = 2 and π(v) = 3 if and only if one of the following conditions
holds:

(i) n1 ≤ 1, and
∑

i≥3
ni ≤ 1, or

(ii) n1 = 0 and n3 + n4 + n5 ≤ 1.

Proof. Suppose first that π is a packing 4-coloring of Θ with π(u) = 2 and π(v) = 3.
If n1 = 1 then all the neighbors of u and v must be colored 1 or 4. In every path of length

ℓ ≥ 3, the vertex at distance 2 from u is then necessarily colored 4 if the neighbor of u is colored
1, or 1 if the neighbor of u is colored 4. Hence, we can have at most one such path (otherwise, we
would have two vertices with color 4 at distance at most 4 from each other), that is

∑
i≥3

ni ≤ 1
and condition (i) is satisfied.

If n1 = 0 then, since every path of length 3 or 4 must use the color 4 on a vertex at distance
at most 2 from u and v, and every path of length 5 must use the color 4 on a vertex at distance
at most 2 from v, we necessarily have n3 + n4 + n5 ≤ 1 and condition (ii) is satisfied.

We finally prove that for every generalized theta graph satisfying any of these conditions,
there exists a packing 4-coloring π with π(u) = 2 and π(v) = 3. Every path of length 2 can
be colored 213. If there is a path of length 3 (which implies either n1 = 1 and

∑
i≥4

ni = 0, or
n1 = n4 = n5 = 0), then we color this path with 2143. If there is a path of length 4 (which
implies either n1 = 1, n3 = 0 and

∑
i≥5

ni = 0, or n1 = n3 = n5 = 0), then we color this
path with 21413. If there is a path of length 5 (which implies either n1 = 1, n3 = n4 = 0 and∑

i≥6
ni = 0, or n1 = n3 = n4 = 0), then we color this path with 214213.

It remains to prove that every path Pi of length ℓi ≥ 6 can be colored. If n1 = 1 then
n3 = n4 = n5 = 0 and we have only one such path. We then color this path using one of the
following patterns, depending on the value of (ℓi mod 4):

• 214(1312)+13 if ℓi ≡ 0 (mod 4),

• 2142(1312)+13 if ℓi ≡ 1 (mod 4),

• 21412(1312)∗13 if ℓi ≡ 2 (mod 4),

• 214312(1312)∗13 if ℓi ≡ 3 (mod 4).

If n1 = 0, we color any such path using the following patterns, depending on the value of (ℓi
mod 4):

• 2(1312)∗14131213 if ℓi ≡ 0 (mod 4),

• 2(1312)+14213 if ℓi ≡ 1 (mod 4),

• 2(1312)+13 if ℓi ≡ 2 (mod 4),

• 2(1312)∗1341213 if ℓi ≡ 3 (mod 4).

The so-obtained 4-coloring is clearly a packing 4-coloring of Θ. �

Using Lemmas 11 to 16 we get a complete characterization of generalized theta graphs
admitting a packing 4-coloring that does not use color 1 on vertex u nor on vertex v:

10



Theorem 17 Let Θ = Θℓ1,...,ℓp, p ≥ 3, be a generalized theta graph. There exists a packing
4-coloring π of Θ with π(u) 6= 1 and π(v) 6= 1 if and only if one of the following conditions
holds:

(A) n1 = n2 = n3 = n4 = 0,

(B) n1 = n2 = n3 = 0, n5 ≤ 2 and n5 + n6 ≤ 4,

(C) n1 = n2 = n3 = 0 and n7 ≤ 1,

(D) n1 = n2 = n3 = 0 and n5 + n6 + n7 ≤ 2,

(E) n1 = n2 = 0, n3 ≤ 1 and n5 = n6 = n7 = 0,

(F) n1 = n2 = 0, n3 ≤ 1, n4 = 0 and n7 + n8 ≤ 1,

(G) n1 = n3 = n4 = 0, n7 ≤ 1 and n8 = 0,

(H) n1 = 0, n3 ≤ 2 and (n5 = 0 or n5 + n6 ≤ 1),

(I) n1 = 0 and n3 + n4 + n5 ≤ 1,

(J) n1 ≤ 1, n3 ≤ 2 and n5 = n6 = 0,

(K) n1 ≤ 1, and n3 = n7 = 0,

(L) n1 ≤ 1, n3 = 0, n7 ≤ 1 and n8 = 0,

(M) n1 ≤ 1, n3 ≤ 1 and n4 = n7 = n8 = 0,

(N) n1 ≤ 1, and
∑

i≥3 ni ≤ 1.

Proof. This theorem simply summarizes the results of Lemmas 11 to 16:

• Item (A) follows from Lemma 11 and contains case (v) of Lemma 15.

• Item (B) follows from Lemma 12.

• Item (C) follows from case (iv) of Lemma 15.

• Item (D) follows from case (ii) of Lemma 13.

• Item (E) follows from case (i) of Lemma 13.

• Item (F) follows from case (vi) of Lemma 15.

• Item (G) follows from case (viii) of Lemma 15.

• Item (H) follows from case (ii) of Lemma 14.

• Item (I) follows from case (ii) of Lemma 16.

• Item (J) follows from case (i) of Lemma 14.

• Item (K) follows from case (i) of Lemma 15 and contains (vii) of Lemma 15.

• Item (L) follows from case (ii) of Lemma 15.

• Item (M) follows from case (iii) Lemma 15 and contains case (ix) of Lemma 15.

• Item (N) follows from case (i) of Lemma 16.

Hence, all the cases have been considered, this concludes the proof. �

If a generalized theta graph Θ satisfies none of the conditions (A) to (N) of Theorem 17,
then every packing 4-coloring of Θ must use color 1 on u or v. The following observation will
be useful:

Observation 18 If a generalized theta graph Θ = Θℓ1,...,ℓp, p ≥ 3, admits a packing 4-coloring
π with π(u) = 1 then we necessarily have p = 3.
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To see that, it suffices to note that no two neighbors of u can be assigned the same color
and that none of them can be colored 1.

The next lemma will show that, with one exception, no generalized theta graph satisfying
none of the conditions (A) to (N) admits a packing 4-coloring. By Observation 18, it suffices
to consider generalized theta graphs of the form Θℓ1,ℓ2,ℓ3 . Moreover, by symmetry, it suffices to
consider packing 4-colorings that assign the color 1 to u.

Lemma 19 If Θ = Θℓ1,ℓ2,ℓ3 is a generalized theta graph and π a packing 4-coloring of Θ with
π(u) = 1, then Θ satisfies at least one of the conditions (A) to (N), except if Θ = Θ1,7,8.

Proof. We consider two cases, according to the value of n1.

1. n1 = 0.
If n2 = n3 = n4 = 0 then Θ satisfies condition (A).

Observe that we cannot have n3 = 3 since, by Lemma 8, we would have χρ(Θ) = 5, a
contradiction.

If n3 = 2 then we necessarily have n5 + n6 ≤ 1 and therefore Θ satisfies condition (H).

If n3 = 1 and n5 = 0 then Θ satisfies condition (H). If n3 = 1, n5 = 1 and n6 = 0 then,
again, Θ satisfies condition (H). If n3 = 1, n5 = 1 and n6 = 1 then, since we necessarily
have n2 = n4 = n7 = n8 = 0, Θ satisfies condition (F). If n3 = 1 and n5 = 2 then Θ also
satisfies condition (F).

Suppose that n3 = 0. If n4 ≥ 1 and n2 = 0 then we necessarily have n5 ≤ 2 and n5+n6 ≤ 4
and Θ satisfies condition (B). If n4 ≥ 1 and n2 ≥ 1 then we necessarily have n5 + n6 ≤ 1
and Θ satisfies condition (H). If n4 = 0 and n5 ≤ 1 then Θ satisfies condition (I). If n4 = 0
and n5 ≥ 2 then Θ satisfies condition (F) if n7 = 0 or condition (G) if n7 = 1 (since we
then have n7 + n8 ≤ 1).

2. n1 = 1.
In that case, we necessarily have n3 ≤ 2. If n3 = 2 then we necessarily have n5 = n6 = 0
and Θ satisfies condition (J).

If n3 = 1 and n5 = n6 = 0 then Θ satisfies condition (J). If n3 = 1 and n5 + n6 = 1 then
we necessarily have n4 = n7 = n8 = 0 and Θ satisfies condition (M).

Suppose that n3 = 0. If n7 = 0 then Θ satisfies condition (K). If n7 = 1 and n8 = 0 then
Θ satisfies condition (L). If n7 = 2 then we necessarily have n5 = n6 = 0 and Θ satisfies
condition (J).

There is now only one remaining case, namely n1 = n7 = n8 = 1. In that case, the three
paths of the generalized theta graph Θ1,7,8 can be colored 12, 14121312 and 132141312,
respectively.

This completes the proof. �

We are now able to characterize generalized theta graphs with packing chromatic number 4:

Theorem 20 Let Θ = Θℓ1,...,ℓp, p ≥ 2, be a generalized theta graph. We then have χρ(Θ) = 4
if and only if either

(1) p = 2, ℓ1 + ℓ2 6= 3 and ℓ1 + ℓ2 6≡ 0 (mod 4), or

(2) p ≥ 3, n2 6= p, there exist i1, i2, 1 ≤ i1 < i2 ≤ p, such that ℓi1 + ℓi2 6≡ 0 (mod 4), and Θ
satisfies one of the conditions (A) to (N),

(3) Θ = Θ1,7,8.
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4 −→ 1 −→ 2 −→ 5 4 ←− 1 −→ 2 −→ 5
4 −→ 3 −→ 1 ←− 5 4 ←− 2 −→ 1 ←− 5
4 −→ 1 ←− 2 −→ 5 4 ←− 1 ←− 2 −→ 5
4 −→ 3 ←− 1 ←− 5 4 ←− 2 ←− 1 ←− 5

Figure 1: Coloring of oriented paths of length 3 (proof of Theorem 21)

Proof. If p = 2 the result follows from Theorem 2(2). If p ≥ 3, the result follows from
Theorem 17 (case 2) or from Lemma 19 (case 3). �

Using Lemma 9, Lemma 10 and Theorem 20, we get that the packing chromatic number of
any generalized theta graph Θ = Θℓ1,...,ℓp can be computed in time O(p).

3 Oriented generalized theta graphs

In this section, we study the packing chromatic number of oriented generalized theta graphs
−→
Θ ℓ1,...,ℓp . Recall that we denote by nℓ, ℓ ≥ 1, the number of paths of length ℓ, that is

nℓ = |{i / 1 ≤ i ≤ p, ℓi = ℓ}|.

We prove the following:

Theorem 21 For every oriented generalized theta graph
−→
Θ =

−→
Θ ℓ1,...,ℓp, p ≥ 2, 2 ≤ χρ(

−→
Θ) ≤ 5

and these two bounds are tight.

Proof. It follows from Proposition 4 that 2 is a tight lower bound for χρ(
−→
Θ). By Proposition 3

and Theorem 7, we know that χρ(
−→
Θ) ≤ 5 whenever n3 ≤ 3.

Assume thus that n3 > 3. Let us denote by
−→
Pi the orientation of the path Pi for every

i, 1 ≤ i ≤ p, and let ϕ : V (
−→
Θ) −→ {1, . . . , 5} be the mapping defined as in the proof of

Theorem 7, except for the internal vertices of the paths
−→
Pi with ℓi = 3, which are colored as

shown in Figure 1, according to their orientation.

We claim that ϕ is a packing 5-coloring of
−→
Θ. Again, the restriction of ϕ to any path

−→
Pi is

a packing coloring of
−→
Pi. Moreover, from the proof of Theorem 7, we know that the restriction

of ϕ to
⋃
{
−→
Pi : ℓi 6= 3} is a packing 5-coloring. Hence, we just need to prove that for any two

distinct vertices x and y with x ∈
−→
Pi, ℓi = 3, ϕ(x) = ϕ(y) = c, c ∈ {2, 3} and {x, y}∩{u, v} = ∅,

we have d−→
Θ
(x, y) > c.

Suppose first that c = 2. Since every vertex y in
−→
Pj , ℓj 6= 3, with ϕ(y) = 2 is at weak

directed distance at least 2 from u and v, no conflict can occur between x and y. If y belongs

to some
−→
Pj with ℓj = 3 then the possible arcs are only −→xu, −→yu, −→xv and −→yv (see Figure 1), and

no conflict can occur between x and y.
Suppose now that c = 3. In that case, x = x1i and −→ux is an arc (see Figure 1). Since every

vertex y in
−→
Pj , ℓj 6= 3, with ϕ(y) = 3 is at weak directed distance at least 3 from u and at least

2 from v, no conflict can occur between x and such a y. If y belongs to some
−→
Pj with ℓj = 3

then y = y1i and −→uy is an arc, so that there is no conflict between x and y.

We thus get χρ(
−→
Θ) ≤ 5.

Let us now prove that this bound is tight. For that, consider the oriented generalized theta

graph
−→
Θ0 obtained by identifying (according to their name, either u or v) the end-vertices of
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the six following directed paths:

ux1x2x3x4v, uy1y2v, uz1v, vx′1x
′
2x

′
3x

′
4u, vy′1y

′
2u, vz′1u.

We claim that χρ(
−→
Θ0) = 5. To see that, suppose that there exists a packing 4-coloring π of

−→
Θ0.

We consider five cases, according to the values of π(u) and π(v) (up to symmetry). Note that
since d−→

Θ0

(u, v) = 2, we necessarily have π(u) = π(v) = 1 whenever π(u) = π(v).

1. π(u) = π(v) = 1.
In that case, no vertex in {y1, y2, y

′
1, y

′
2, z1, z

′
1} can be colored 1. Moreover, since any

two vertices in {y1, y2, y
′
1, y

′
2} are linked by a directed path (in either direction) of length

at most 3, we necessarily have either π(y1) = π(y′1) = 2 and {π(y2), π(y
′
2)} = {3, 4} or

π(y2) = π(y′2) = 2 and {π(y1), π(y
′
1)} = {3, 4}. In both cases, one vertex in {z1, z

′
1} cannot

be colored.

2. π(u) = 1, π(v) ∈ {2, 3}.
If π(v) = 2 (resp. π(v) = 3), we necessarily have {π(z1), π(z

′
1)} = {3, 4} (resp. {π(z1), π(z

′
1)} =

{2, 4}). If π(z1) = 4 (resp. π(z′1) = 4), then {π(y′1), π(y
′
2)} = {3} (resp. {π(y1), π(y2)} =

{3}), a contradiction.

3. π(u) = 1, π(v) = 4.
In that case, we necessarily have {π(z1), π(z

′
1)} = {2, 3}, which implies {π(y1), π(y

′
2)} =

{2, 3} and π(y2) = π(y′1) = 1. If π(z1) = 2 then π(x1) = 2 and π(x2) = 1, so that x3
cannot be colored. If π(z′1) = 2 then π(x′1) = 2 and π(x′2) = 1, so that x′3 cannot be
colored.

4. π(u) = 2, π(v) ∈ {3, 4}.
If π(v) = 3 (resp. π(v) = 4), we necessarily have {π(y1), π(y2), π(y

′
1), π(y

′
2)} = {1, 4}

(resp. {π(y1), π(y2), π(y
′
1), π(y

′
2)} = {1, 3}), a contradiction since any two vertices in

{y1, y2, y
′
1, y

′
2} are linked by a directed path (in either direction) of length at most 3.

5. π(u) = 3, π(v) = 4.
Since each vertex xi, 1 ≤ i ≤ 4, is linked by a directed path (in either direction) of length
at most 3 to u and by a directed path (in either direction) of length at most 4 to v, we
necessarily have {π(x1), π(x2), π(x3), π(x4)} = {1, 2}, a contradiction.

Therefore, every packing coloring of an oriented generalized theta graph containing
−→
Θ0 as a

subgraph must use 5 colors. �

By Proposition 4, we know that for every oriented generalized theta graph
−→
Θ, χρ(

−→
Θ) = 2

if and only if
−→
Θ is bipartite and one part of the bipartition contains only sources or sinks.

However, characterizing oriented generalized theta graphs with packing chromatic number 3, 4
or 5 seems to be not so easy and we leave it as an open question.

From Lemma 11, we get that χρ(
−→
Θ) ≤ 4 whenever Θ does not contain any path of length

less than 5. However, this value of 5 cannot be decreased to 4 since we can construct oriented
generalized theta graphs with no path of length less than 4 with packing chromatic number 5.
We have for instance such an example with 17 paths of length 4, 5, 6 or 7.
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