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1 Appendix

1.1 Specification of the prior of F,

Let us recall the notations of Section 2 : R is the 2 X 2-matrix of the rotation
in R? with angle 27 /k and center 0 and ¢;;, j € {2,...,k}, are k — 1 random
variables with distribution €;; ~ No(0, I5). It is assumed that ;1,50 ..., ik
are independent and we set p; ~ Na(0, ply) and p;; = RVpg + e for
j €{2,...,k}. Then, By denotes the distribution of w; = (p}y, ..., i) and
it is easily seen that F, is centered, Gaussian with covariance matrix

ply pR pR? . pRE-L
pR  (p+ 1)1, pR .. pRE=2)
Yo(p) = : :
pRE=2 pR*3 .. (p+ 1),  pR
pRFY pRFZ pR (p+ 1)1,

where R’ is the transposed matrix of R. If we denote by R, the ma-
trix of the rotation with angle «, it is easily seen that the distribution of
((Rapti1)'s -+ (Rapir)') is still Py by using that RR, = R,R. Hence, Py is
rotation invariant. It is worth noting that, thanks to the weak dissymmetry
introduced in the definition of y; between p;; and the other components, the



inverse of ¥y(p) has the following convenient expression:

(pt+(k—-1), —R —-R¥ ... —RG:2" _R&=V
—R Iy 0 0
. _R2 0
20 (p) = N . * . . c . . ’
_Rk—2 ]2 0
— Rk 0 0 I

from which we obtain |X;'(p)| = p~2 by Theorem 13.3.8 of Harville (1997).

Set p; = pfor j =1and p; = p+1for j > 2, so that p;; ~ N2(0, p;I2) for all
j€A{L,....k}. Then, p;'|uslI> ~ x*(2) and E||p;||* = 2p;. Alternatively,
using the polar coordinates, the density of ||u;;]| can be obtained as well as
its expected value IE|| ;|| = \/pjm/2. Correlations between the components
of p can be studied from several definitions (see Mardia and Jupp, 1980,
for a comparison of several correlation coefficients). Correlation coefficients
introduced by Downs (1974); Mardia (1975); Johnson and Wehrly (1977) give
the same following result in our situation:

Corr2<:u’i17:uij> = p/(p+ 1)7 Jz 2,
COIIQ(Mij’uil) = p2/(p+ 1)27 J=2,1221 7£ J-

For all the definitions cited above, the correlation coefficient is always be-
tween 0 and 1. We can see that the correlation coefficients between two
different components of p; are increasing functions of p ranging from 0 to 1;
in other words, the components of y; become more and more correlated as p
increases. Table 1 gives the correlation coefficients for some values of p.

Table 1: Correlation coefficients for several values of p.

p 0.1 02 05 1 2 3 D 10 20 30

p/(p+1) | 009 0.17 0.33 0.50 0.67 0.75 0.83 091 0.95 0.97
p*/(p+1)?0.01 0.03 0.11 0.25 044 056 0.69 0.83 0.91 0.94

The impact of p is highlighted by considering the radial projections of
the components of p;. Denote by v;; = p,;/||1ij]| the radial projection of
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pij. Then, we show below that (vii,...,vi) — (vi, Rv, ..., R¥ ;) al-
most surely as p — oo and (v, ..., vx) — (gi/|leall,- -, cu/|lex|]) almost
surely as p — 0 where €;1, . . ., g5 are independent and identically distributed
random variables with distribution N5(0, I5). Consequently, the radial pro-
jections of the components of p; are highly correlated and equally spaced for
large values of p but approximately independent and uniformly distributed
for small values of p. Indeed, if we set ;1 = 1/ /P, we have

pij = R iy + e = /pR " en + g5,
and
VPR e t ey
VpR T e ey

Then, by the continuous mapping theorem, it is easily seen that v;; —
Ri7te; /||R7~ e almost surely as p — oo. By noting that

Uz'j

-1 i—1

i 16“ e g e R,

[ eall  leall €]
we conclude that (vii,...,v4) — (vi, Rvi, ..., R¥ o) almost surely as
p — oo. We prove similarly that (vi,...,vi) — (ei/lleall,- -,/ llexl)

almost surely as p — 0.

1.2 SAMS and Gibbs Samplers
1.2.1 SAMS Sampler

The SAMS sampler is given in detail in Dahl (2003). Formula (12) of Dahl
(2003) reduces to

P(l - SZ’SZ, Sj) =
|| No (yl; )3 ZheSi yn/|Sil, Lok, + Zi)

|:Si| Nog (Z/l; 2 Zhegi yn/|Sil, Lok + Ei) + 55| Nog (yz; 2 Zhegj yn/|S;|, Tor + Ej)

and formula (14) for the Metropolis-Hastings ratio is obtained with

151
pys,) = [ ] Now | vin: S Yn/15=;| Lok + X
h=1 heS_;
where Sj = {7:1, cee 7i\5j|}7 S_j = {il, e 77:j—1} and E_j =

1

(1951 e + 25 (p))



1.2.2 Gibbs Sampler

Let us denote by n = {S4,...,S,} the current partition of the algorithm. For
i =1,...,n, the observation 7 is assigned to cluster S;, j € {1,...,¢} with
probability proportional to

|51 % Now | 9325 > wi/ 155 | Tow + 2
iESj
where [S; | is the cardinal of S; \ {i}, or to (a new) cluster ;1 with proba-

bility proportional to
no X Nog (45 0, Iox + Xo(p)) -

1.3 Full Conditional Distributions

Full Conditional of r Remember that z; = (2};,...,2},) € (R?)* i €
{1,...,n}, are independent with distribution

Now(pi*, Tox) with pi* = (i 1y M) € (R?)* and that z;; =
(wij1, Tijo) = (145 c08 0,5, 7580 0;5)'.

Then, it is easy to see that (6;;,7;;) are independent given 7, i1, p and ny,
with density:

P(8ig, TiglT, 11, p, o) = (2m)F € F P gy o3 (i)
with u}; = (cos0;;,sin6;;). Then,

p<T|67Talu’7p7 nO) X p(67T’T7M7p7n0)

n k
X H Hp(ewv Tij|7-7 M, P, nO)
i=1 j=1
n k
*l(n'*u’-vu- . )2
o TT[True bt
i=1 j=1

1.4 Proof of Proposition 1

a) If we denote by ¢ the density of the Nox(0, Iox) distribution, it can be
shown after some calculations, that:

m(zg) = (H gbzk(a:i)) 130 72|22 exp (%H inﬂé) :

€S €S
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Then, we have:

q

Hmusj):(m%(xi)) Sol 285, | exp £ 31D w3, |

j=1 i=1 j=1 €S,
and

q n 1 q
H m(l'gj) = <H ¢2k(%n)> ‘20|7q/2|25j ’7q/2 exp 2 Z 1 Z ' H%J
i=1 i=1 j=1 €S,

From (3.1), it can be seen that ¢or(x;) = ¢or(z]*) and we conclude that:

q

am(zg) 1 .. o
4 im(zg,) — P 5 Z I sz ||Sj | szHSj ’

j=1 1€S; 1€S;

hence the result.
b) If we denote by g the density of G with respect to the counting measure,
we have:

pr(nlx) oc g(n) pr(x|n),

and

prr(n]z) o g(n) (lj)n > pi(a|n).

TEP™T
and we deduce that:

pri(n|z) _ T
piCal) ~ Dol

where

_ >, 9(n) pr(x|n)
220 90 Gy 2orepn Pr(@(n)’

c¢) From Lemma 1 below, we have:

Bg

min B = min T pI(IM) ,
¢ "y 2repn D1(2(N)

1
= min
n f(x,m)
1

max;, f(z,n)
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Lemma 1. Let h € R" and f € R™ such that f; > 0 and h; > 0 for all
ie{l,....,n}. Write D={peR",>" p;=1,p; >0 for all i}. We have:

n
inf M = min L
peD Y - phi 12> g,

Proof of Lemma 1 Assume without loss of generality that min; f;/g; =
f1/g1. Then we have:

ﬁzﬁ foralli e {1,...,n} <= fig1— f1g; >0 forallie{l,...,n}
9i g1

!

> pilfign — frgi) 2 0 forall pe D

i=1
— 0 sz'fi > fi sz-gi for all p € D
i=1 i=1

E?:1pifi > ﬁ )

— - > for all p € D.
D i1 Pigi G
We conclude by noting that
2?21 pifi _ ﬁ
Z?zl pigi g1
for p=(1,0,...,0). O
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