A Clustering Bayesian Approach for Multivariate Non-Ordered Circular Data

Christophe Abraham Rémi Servien Nicolas Molinari

1 Appendix

1.1 Specification of the prior of P_{0}

Let us recall the notations of Section $2: R$ is the 2×2-matrix of the rotation in \mathbb{R}^{2} with angle $2 \pi / k$ and center 0 and $\varepsilon_{i j}, j \in\{2, \ldots, k\}$, are $k-1$ random variables with distribution $\varepsilon_{i j} \sim N_{2}\left(0, I_{2}\right)$. It is assumed that $\mu_{i 1}, \varepsilon_{i 2}, \ldots, \varepsilon_{i k}$ are independent and we set $\mu_{i 1} \sim N_{2}\left(0, \rho I_{2}\right)$ and $\mu_{i j}=R^{j-1} \mu_{i 1}+\varepsilon_{i j}$ for $j \in\{2, \ldots, k\}$. Then, P_{0} denotes the distribution of $\mu_{i}=\left(\mu_{i 1}^{\prime}, \ldots, \mu_{i k}^{\prime}\right)^{\prime}$ and it is easily seen that P_{0} is centered, Gaussian with covariance matrix

$$
\Sigma_{0}(\rho)=\left(\begin{array}{ccccc}
\rho I_{2} & \rho R^{\prime} & \rho R^{2^{\prime}} & \ldots & \rho R^{(k-1)^{\prime}} \\
\rho R & (\rho+1) I_{2} & \rho R^{\prime} & \ldots & \rho R^{(k-2)^{\prime}} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\rho R^{k-2} & \rho R^{k-3} & \ldots & (\rho+1) I_{2} & \rho R^{\prime} \\
\rho R^{k-1} & \rho R^{k-2} & \ldots & \rho R & (\rho+1) I_{2}
\end{array}\right)
$$

where R^{\prime} is the transposed matrix of R. If we denote by R_{α} the matrix of the rotation with angle α, it is easily seen that the distribution of $\left(\left(R_{\alpha} \mu_{i 1}\right)^{\prime}, \ldots,\left(R_{\alpha} \mu_{i k}\right)^{\prime}\right)^{\prime}$ is still P_{0} by using that $R R_{\alpha}=R_{\alpha} R$. Hence, P_{0} is rotation invariant. It is worth noting that, thanks to the weak dissymmetry introduced in the definition of μ_{i} between $\mu_{i 1}$ and the other components, the
inverse of $\Sigma_{0}(\rho)$ has the following convenient expression:

$$
\Sigma_{0}^{-1}(\rho)=\left(\begin{array}{cccccc}
\left(\rho^{-1}+(k-1)\right) I_{2} & -R^{\prime} & -R^{2^{\prime}} & \ldots & -R^{(k-2)^{\prime}} & -R^{(k-1)^{\prime}} \\
-R & I_{2} & 0 & \ldots & \ldots & 0 \\
-R^{2} & 0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-R^{k-2} & \vdots & \ddots & \ddots & I_{2} & 0 \\
-R^{k-1} & 0 & \cdots & \ldots & 0 & I_{2}
\end{array}\right)
$$

from which we obtain $\left|\Sigma_{0}^{-1}(\rho)\right|=\rho^{-2}$ by Theorem 13.3.8 of Harville (1997).
Set $\rho_{j}=\rho$ for $j=1$ and $\rho_{j}=\rho+1$ for $j \geq 2$, so that $\mu_{i j} \sim N_{2}\left(0, \rho_{j} I_{2}\right)$ for all $j \in\{1, \ldots, k\}$. Then, $\rho_{j}^{-1}\left\|\mu_{i j}\right\|^{2} \sim \chi^{2}(2)$ and $\mathbb{E}\left\|\mu_{i j}\right\|^{2}=2 \rho_{j}$. Alternatively, using the polar coordinates, the density of $\left\|\mu_{i j}\right\|$ can be obtained as well as its expected value $\mathbb{E}\left\|\mu_{i j}\right\|=\sqrt{\rho_{j} \pi / 2}$. Correlations between the components of μ can be studied from several definitions (see Mardia and Jupp, 1980, for a comparison of several correlation coefficients). Correlation coefficients introduced by Downs (1974); Mardia (1975); Johnson and Wehrly (1977) give the same following result in our situation:

$$
\begin{aligned}
\operatorname{corr}^{2}\left(\mu_{i 1}, \mu_{i j}\right) & =\rho /(\rho+1), j \geq 2 \\
\operatorname{corr}^{2}\left(\mu_{i j}, \mu_{i l}\right) & =\rho^{2} /(\rho+1)^{2}, j \geq 2, l \geq 2, l \neq j
\end{aligned}
$$

For all the definitions cited above, the correlation coefficient is always between 0 and 1 . We can see that the correlation coefficients between two different components of μ_{i} are increasing functions of ρ ranging from 0 to 1 ; in other words, the components of μ_{i} become more and more correlated as ρ increases. Table 1 gives the correlation coefficients for some values of ρ.

Table 1: Correlation coefficients for several values of ρ.

ρ	0.1	0.2	0.5	1	2	3	5	10	20	30
$\rho /(\rho+1)$	0.09	0.17	0.33	0.50	0.67	0.75	0.83	0.91	0.95	0.97
$\rho^{2} /(\rho+1)^{2}$	0.01	0.03	0.11	0.25	0.44	0.56	0.69	0.83	0.91	0.94

The impact of ρ is highlighted by considering the radial projections of the components of μ_{i}. Denote by $v_{i j}=\mu_{i j} /\left\|\mu_{i j}\right\|$ the radial projection of
$\mu_{i j}$. Then, we show below that $\left(v_{i 1}, \ldots, v_{i k}\right) \rightarrow\left(v_{i 1}, R v_{i 1}, \ldots, R^{k-1} v_{i 1}\right)$ almost surely as $\rho \rightarrow \infty$ and $\left(v_{i 1}, \ldots, v_{i k}\right) \rightarrow\left(\varepsilon_{i 1} /\left\|\varepsilon_{i 1}\right\|, \ldots, \varepsilon_{i k} /\left\|\varepsilon_{i k}\right\|\right)$ almost surely as $\rho \rightarrow 0$ where $\varepsilon_{i 1}, \ldots, \varepsilon_{i k}$ are independent and identically distributed random variables with distribution $N_{2}\left(0, I_{2}\right)$. Consequently, the radial projections of the components of μ_{i} are highly correlated and equally spaced for large values of ρ but approximately independent and uniformly distributed for small values of ρ. Indeed, if we set $\varepsilon_{i 1}=\mu_{i 1} / \sqrt{\rho}$, we have

$$
\mu_{i j}=R^{j-1} \mu_{i 1}+\varepsilon_{i j}=\sqrt{\rho} R^{j-1} \varepsilon_{i 1}+\varepsilon_{i j}
$$

and

$$
v_{i j}=\frac{\sqrt{\rho} R^{j-1} \varepsilon_{i 1}+\varepsilon_{i j}}{\left\|\sqrt{\rho} R^{j-1} \varepsilon_{i 1}+\varepsilon_{i j}\right\|} .
$$

Then, by the continuous mapping theorem, it is easily seen that $v_{i j} \rightarrow$ $R^{j-1} \varepsilon_{i 1} /\left\|R^{j-1} \varepsilon_{i 1}\right\|$ almost surely as $\rho \rightarrow \infty$. By noting that

$$
\frac{R^{j-1} \varepsilon_{i 1}}{\left\|R^{j-1} \varepsilon_{i 1}\right\|}=\frac{R^{j-1} \varepsilon_{i 1}}{\left\|\varepsilon_{i 1}\right\|}=R^{j-1} \frac{\varepsilon_{i 1}}{\left\|\varepsilon_{i 1}\right\|}=R^{j-1} v_{i 1}
$$

we conclude that $\left(v_{i 1}, \ldots, v_{i k}\right) \rightarrow\left(v_{i 1}, R v_{i 1}, \ldots, R^{k-1} v_{i 1}\right)$ almost surely as $\rho \rightarrow \infty$. We prove similarly that $\left(v_{i 1}, \ldots, v_{i k}\right) \rightarrow\left(\varepsilon_{i 1} /\left\|\varepsilon_{i 1}\right\|, \ldots, \varepsilon_{i k} /\left\|\varepsilon_{i k}\right\|\right)$ almost surely as $\rho \rightarrow 0$.

1.2 SAMS and Gibbs Samplers

1.2.1 SAMS Sampler

The SAMS sampler is given in detail in Dahl (2003). Formula (12) of Dahl (2003) reduces to

$$
\begin{aligned}
& P\left(l \in S_{i} \mid S_{i}, S_{j}\right)= \\
& \left|S_{i}\right| N_{2 k}\left(y_{l} ; \Sigma_{i} \sum_{h \in S_{i}} y_{h} /\left|S_{i k}\right|, y_{2 k}+y_{i} ; \Sigma_{i} \sum_{h \in S_{i}} y_{h} /\left|S_{i}\right|, I_{2 k}+\Sigma_{i} \mid N_{2 k}\left(y_{l} ; \Sigma_{j} \sum_{h \in S_{j}} y_{h} /\left|S_{j}\right|, I_{2 k}+\Sigma_{j}\right)\right.
\end{aligned}
$$

and formula (14) for the Metropolis-Hastings ratio is obtained with

$$
p\left(y_{S_{j}}\right)=\prod_{h=1}^{\left|S_{j}\right|} N_{2 k}\left(y_{i_{h}} ; \Sigma_{-j} \sum_{h \in S_{-j}} y_{h} /\left|S_{-j}\right|, I_{2 k}+\Sigma_{-j}\right)
$$

where $S_{j}=\left\{i_{1}, \ldots, i_{\left|S_{j}\right|}\right\}, \quad S_{-j}=\left\{i_{1}, \ldots, i_{j-1}\right\}$ and $\Sigma_{-j}=$ $\left(\left|S_{-j}\right|^{-1} I_{2 k}+\Sigma_{0}^{-1}(\rho)\right)^{-1}$.

1.2.2 Gibbs Sampler

Let us denote by $\eta=\left\{S_{1}, \ldots, S_{q}\right\}$ the current partition of the algorithm. For $i=1, \ldots, n$, the observation i is assigned to cluster $S_{j}, j \in\{1, \ldots, q\}$ with probability proportional to

$$
\left|S_{j}^{-}\right| \times N_{2 k}\left(y_{i} ; \Sigma_{j} \sum_{i \in S_{j}} y_{i} /\left|S_{j}^{-}\right|, I_{2 k}+\Sigma_{j}\right)
$$

where $\left|S_{j}^{-}\right|$is the cardinal of $S_{j} \backslash\{i\}$, or to (a new) cluster S_{q+1} with probability proportional to

$$
n_{0} \times N_{2 k}\left(y_{i} ; 0, I_{2 k}+\Sigma_{0}(\rho)\right) .
$$

1.3 Full Conditional Distributions

Full Conditional of r Remember that $x_{i}=\left(x_{i 1}^{\prime}, \ldots, x_{i k}^{\prime}\right)^{\prime} \in\left(\mathbb{R}^{2}\right)^{k}, i \in$ $\{1, \ldots, n\}$, are independent with distribution
$N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right)$ with $\mu_{i}^{\tau_{i}}=\left(\mu_{i \tau_{i}(1)}^{\prime}, \ldots, \mu_{i \tau_{i}(k)}^{\prime}\right)^{\prime} \in\left(\mathbb{R}^{2}\right)^{k}$ and that $x_{i j}=$ $\left(x_{i j 1}, x_{i j 2}\right)^{\prime}=\left(r_{i j} \cos \theta_{i j}, r_{i j} \sin \theta_{i j}\right)^{\prime}$.

Then, it is easy to see that $\left(\theta_{i j}, r_{i j}\right)$ are independent given τ, μ, ρ and n_{0}, with density:

$$
p\left(\theta_{i j}, r_{i j} \mid \tau, \mu, \rho, n_{0}\right)=(2 \pi)^{-1} e^{-\frac{1}{2} \mu_{i \tau_{i}(j)}^{\prime} \mu_{i \tau_{i}(j)}} r_{i j} e^{-\frac{1}{2}\left(r_{i j}^{2}-2 r_{i j} u_{i j}^{\prime} \mu_{i \tau_{i}(j)}\right)}
$$

with $u_{i j}^{\prime}=\left(\cos \theta_{i j}, \sin \theta_{i j}\right)$. Then,

$$
\begin{aligned}
p\left(r \mid \theta, \tau, \mu, \rho, n_{0}\right) & \propto p\left(\theta, r \mid \tau, \mu, \rho, n_{0}\right) \\
& \propto \prod_{i=1}^{n} \prod_{j=1}^{k} p\left(\theta_{i j}, r_{i j} \mid \tau, \mu, \rho, n_{0}\right) \\
& \propto \prod_{i=1}^{n} \prod_{j=1}^{k} r_{i j} e^{-\frac{1}{2}\left(r_{i j}-u_{i j}^{\prime} \mu_{i \tau_{i}(j)}\right)^{2}} .
\end{aligned}
$$

1.4 Proof of Proposition 1

a) If we denote by $\phi_{2 k}$ the density of the $N_{2 k}\left(0, I_{2 k}\right)$ distribution, it can be shown after some calculations, that:

$$
m\left(x_{S}\right)=\left(\prod_{i \in S} \phi_{2 k}\left(x_{i}\right)\right)\left|\Sigma_{0}\right|^{-1 / 2}\left|\Sigma_{S}\right|^{-1 / 2} \exp \left(\frac{1}{2}\left\|\sum_{i \in S} x_{i}\right\|_{S}^{2}\right) .
$$

Then, we have:

$$
\prod_{j=1}^{q} m\left(x_{S_{j}}\right)=\left(\prod_{i=1}^{n} \phi_{2 k}\left(x_{i}\right)\right)\left|\Sigma_{0}\right|^{-q / 2}\left|\Sigma_{S_{j}}\right|^{-q / 2} \exp \left(\frac{1}{2} \sum_{j=1}^{q}\left\|\sum_{i \in S_{j}} x_{i}\right\|_{S_{j}}^{2}\right)
$$

and

$$
\prod_{j=1}^{q} m\left(x_{S_{j}}^{\tau}\right)=\left(\prod_{i=1}^{n} \phi_{2 k}\left(x_{i}^{\tau_{i}}\right)\right)\left|\Sigma_{0}\right|^{-q / 2}\left|\Sigma_{S_{j}}\right|^{-q / 2} \exp \left(\frac{1}{2} \sum_{j=1}^{q}\left\|\sum_{i \in S_{j}} x_{i}^{\tau_{i}}\right\|_{S_{j}}^{2}\right)
$$

From (3.1), it can be seen that $\phi_{2 k}\left(x_{i}\right)=\phi_{2 k}\left(x_{i}^{\tau_{i}}\right)$ and we conclude that:

$$
\frac{\prod_{j=1}^{q} m\left(x_{S_{j}}^{\tau}\right)}{\prod_{j=1}^{q} m\left(x_{S_{j}}\right)}=\exp \left(\frac{1}{2} \sum_{j=1}^{q}\left(\left\|\sum_{i \in S_{j}} x_{i}^{\tau_{i}}\right\|_{S_{j}}^{2}-\left\|\sum_{i \in S_{j}} x_{i}\right\|_{S_{j}}^{2}\right)\right)
$$

hence the result.
b) If we denote by g the density of G with respect to the counting measure, we have:

$$
p_{I}(\eta \mid x) \propto g(\eta) p_{I}(x \mid \eta)
$$

and

$$
p_{I I}(\eta \mid x) \propto g(\eta) \frac{1}{(k!)^{n}} \sum_{\tau \in \mathcal{P}^{n}} p_{I}\left(x^{\tau} \mid \eta\right)
$$

and we deduce that:

$$
\frac{p_{I I}(\eta \mid x)}{p_{I}(\eta \mid x)}=B_{G} f(x, \eta)
$$

where

$$
B_{G}=\frac{\sum_{\eta} g(\eta) p_{I}(x \mid \eta)}{\sum_{\eta} g(\eta) \frac{1}{(k!)^{n}} \sum_{\tau \in \mathcal{P}^{n}} p_{I}(x \mid \eta)}
$$

c) From Lemma 1 below, we have:

$$
\begin{aligned}
\min _{G} B_{G} & =\min _{\eta} \frac{p_{I}(x \mid \eta)}{\frac{1}{(k!)^{n}} \sum_{\tau \in \mathcal{P}^{n}} p_{I}(x \mid \eta)} \\
& =\min _{\eta} \frac{1}{f(x, \eta)} \\
& =\frac{1}{\max _{\eta} f(x, \eta)}
\end{aligned}
$$

Lemma 1. Let $h \in \mathbb{R}^{n}$ and $f \in \mathbb{R}^{n}$ such that $f_{i}>0$ and $h_{i}>0$ for all $i \in\{1, \ldots, n\}$. Write $\mathcal{D}=\left\{p \in \mathbb{R}^{n}, \sum_{i=1}^{n} p_{i}=1, p_{i} \geq 0\right.$ for all $\left.i\right\}$. We have:

$$
\inf _{p \in \mathcal{D}} \frac{\sum_{i=1}^{n} p_{i} f_{i}}{\sum_{i=1}^{n} p_{i} h_{i}}=\min _{1 \geq i \geq n} \frac{f_{i}}{g_{i}} .
$$

Proof of Lemma 1 Assume without loss of generality that $\min _{i} f_{i} / g_{i}=$ f_{1} / g_{1}. Then we have:

$$
\begin{aligned}
\frac{f_{i}}{g_{i}} \geq \frac{f_{1}}{g_{1}} \text { for all } i \in\{1, \ldots, n\} & \Longleftrightarrow f_{i} g_{1}-f_{1} g_{i} \geq 0 \text { for all } i \in\{1, \ldots, n\} \\
& \Longleftrightarrow \sum_{i=1}^{n} p_{i}\left(f_{i} g_{1}-f_{1} g_{i}\right) \geq 0 \text { for all } p \in \mathcal{D} \\
& \Longleftrightarrow g_{1} \sum_{i=1}^{n} p_{i} f_{i} \geq f_{1} \sum_{i=1}^{n} p_{i} g_{i} \text { for all } p \in \mathcal{D} \\
& \Longleftrightarrow \frac{\sum_{i=1}^{n} p_{i} f_{i}}{\sum_{i=1}^{n} p_{i} g_{i}} \geq \frac{f_{1}}{g_{1}} \text { for all } p \in \mathcal{D} .
\end{aligned}
$$

We conclude by noting that

$$
\frac{\sum_{i=1}^{n} p_{i} f_{i}}{\sum_{i=1}^{n} p_{i} g_{i}}=\frac{f_{1}}{g_{1}}
$$

for $p=(1,0, \ldots, 0)$.

References

Dahl, D. B. (2003). An improved merge-split sampler for conjugate Dirichlet process mixture models. Technical Report, Univ. of Wisconsin - Madison, 1086, 1-32.

Downs, T. D. (1974). Rotational angular correlations. In Ferin, M., Halberg, F., Richart, M., and van der Wiele, L., editors, Biorhythms and Human Reproduction, pages 97-104, New York: Wiley, 1974.

Harville, D. A. (1997). Matrix algebra from a statistician's perspective. Springer, New York.

Johnson, R. A. and Wehrly, T. (1977). Measures and models for angular correlation and angular-linear correlation. Journal of the Royal Statistical Society: Series B, 39, 222-229.

Mardia, K. V. (1975). Statistics of directinal data (with discussion). Journal of Royal Statistical Society: Series B, 37(1), 349-393.

Mardia, K. V. and Jupp, P. E. (1980). A general correlation coefficient for directional data and related regerssion problems. Biometrika, 67(1), 163173.

