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1 Appendix

1.1 Specification of the prior of P0

Let us recall the notations of Section 2 : R is the 2×2-matrix of the rotation
in R2 with angle 2π/k and center 0 and εij, j ∈ {2, . . . , k}, are k− 1 random
variables with distribution εij ∼ N2(0, I2). It is assumed that µi1, εi2,, . . . , εik
are independent and we set µi1 ∼ N2(0, ρI2) and µij = Rj−1µi1 + εij for
j ∈ {2, . . . , k}. Then, P0 denotes the distribution of µi = (µ′i1, . . . , µ

′
ik)
′ and

it is easily seen that P0 is centered, Gaussian with covariance matrix

Σ0(ρ) =


ρI2 ρR′ ρR2′ . . . ρR(k−1)′

ρR (ρ+ 1)I2 ρR′ . . . ρR(k−2)′

...
. . . . . . . . .

...
ρRk−2 ρRk−3 . . . (ρ+ 1)I2 ρR′

ρRk−1 ρRk−2 . . . ρR (ρ+ 1)I2

 .

where R′ is the transposed matrix of R. If we denote by Rα the ma-
trix of the rotation with angle α, it is easily seen that the distribution of
((Rαµi1)

′, . . . , (Rαµik)
′)′ is still P0 by using that RRα = RαR. Hence, P0 is

rotation invariant. It is worth noting that, thanks to the weak dissymmetry
introduced in the definition of µi between µi1 and the other components, the
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inverse of Σ0(ρ) has the following convenient expression:

Σ−10 (ρ) =



(ρ−1 + (k − 1))I2 −R′ −R2′ . . . −R(k−2)′ −R(k−1)′

−R I2 0 . . . . . . 0

−R2 0
. . . . . . . . .

...
...

...
. . . . . . . . .

...

−Rk−2 ...
. . . . . . I2 0

−Rk−1 0 . . . . . . 0 I2


,

from which we obtain |Σ−10 (ρ)| = ρ−2 by Theorem 13.3.8 of Harville (1997).

Set ρj = ρ for j = 1 and ρj = ρ+ 1 for j ≥ 2, so that µij ∼ N2(0, ρjI2) for all
j ∈ {1, . . . , k}. Then, ρ−1j ‖µij‖2 ∼ χ2(2) and IE‖µij‖2 = 2ρj. Alternatively,
using the polar coordinates, the density of ‖µij‖ can be obtained as well as
its expected value IE‖µij‖ =

√
ρjπ/2. Correlations between the components

of µ can be studied from several definitions (see Mardia and Jupp, 1980,
for a comparison of several correlation coefficients). Correlation coefficients
introduced by Downs (1974); Mardia (1975); Johnson and Wehrly (1977) give
the same following result in our situation:

corr2(µi1, µij) = ρ/(ρ+ 1), j ≥ 2,

corr2(µij, µil) = ρ2/(ρ+ 1)2, j ≥ 2, l ≥ 2, l 6= j.

For all the definitions cited above, the correlation coefficient is always be-
tween 0 and 1. We can see that the correlation coefficients between two
different components of µi are increasing functions of ρ ranging from 0 to 1;
in other words, the components of µi become more and more correlated as ρ
increases. Table 1 gives the correlation coefficients for some values of ρ.

Table 1: Correlation coefficients for several values of ρ.

ρ 0.1 0.2 0.5 1 2 3 5 10 20 30
ρ/(ρ+ 1) 0.09 0.17 0.33 0.50 0.67 0.75 0.83 0.91 0.95 0.97
ρ2/(ρ+ 1)2 0.01 0.03 0.11 0.25 0.44 0.56 0.69 0.83 0.91 0.94

The impact of ρ is highlighted by considering the radial projections of
the components of µi. Denote by vij = µij/‖µij‖ the radial projection of
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µij. Then, we show below that (vi1, . . . , vik) → (vi1, Rvi1, . . . , R
k−1vi1) al-

most surely as ρ → ∞ and (vi1, . . . , vik) → (εi1/‖εi1‖, . . . , εik/‖εik‖) almost
surely as ρ→ 0 where εi1, . . . , εik are independent and identically distributed
random variables with distribution N2(0, I2). Consequently, the radial pro-
jections of the components of µi are highly correlated and equally spaced for
large values of ρ but approximately independent and uniformly distributed
for small values of ρ. Indeed, if we set εi1 = µi1/

√
ρ, we have

µij = Rj−1µi1 + εij =
√
ρRj−1εi1 + εij,

and

vij =

√
ρRj−1εi1 + εij

‖√ρRj−1εi1 + εij‖
.

Then, by the continuous mapping theorem, it is easily seen that vij →
Rj−1εi1/‖Rj−1εi1‖ almost surely as ρ→∞. By noting that

Rj−1εi1
‖Rj−1εi1‖

=
Rj−1εi1
‖εi1‖

= Rj−1 εi1
‖εi1‖

= Rj−1vi1,

we conclude that (vi1, . . . , vik) → (vi1, Rvi1, . . . , R
k−1vi1) almost surely as

ρ → ∞. We prove similarly that (vi1, . . . , vik) → (εi1/‖εi1‖, . . . , εik/‖εik‖)
almost surely as ρ→ 0.

1.2 SAMS and Gibbs Samplers

1.2.1 SAMS Sampler

The SAMS sampler is given in detail in Dahl (2003). Formula (12) of Dahl
(2003) reduces to

P (l ∈ Si|Si, Sj) =

|Si|N2k

(
yl; Σi

∑
h∈Si yh/|Si|, I2k + Σi

)
|Si|N2k

(
yl; Σi

∑
h∈Si yh/|Si|, I2k + Σi

)
+ |Sj|N2k

(
yl; Σj

∑
h∈Sj yh/|Sj|, I2k + Σj

)
and formula (14) for the Metropolis-Hastings ratio is obtained with

p(ySj) =

|Sj |∏
h=1

N2k

yih ; Σ−j
∑
h∈S−j

yh/|S−j|, I2k + Σ−j


where Sj = {i1, . . . , i|Sj |}, S−j = {i1, . . . , ij−1} and Σ−j =(
|S−j|−1I2k + Σ−10 (ρ)

)−1
.
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1.2.2 Gibbs Sampler

Let us denote by η = {S1, . . . , Sq} the current partition of the algorithm. For
i = 1, . . . , n, the observation i is assigned to cluster Sj, j ∈ {1, . . . , q} with
probability proportional to

|S−j | ×N2k

yi; Σj

∑
i∈Sj

yi/|S−j |, I2k + Σj


where |S−j | is the cardinal of Sj \ {i}, or to (a new) cluster Sq+1 with proba-
bility proportional to

n0 ×N2k (yi; 0, I2k + Σ0(ρ)) .

1.3 Full Conditional Distributions

Full Conditional of r Remember that xi = (x′i1, . . . , x
′
ik)
′ ∈ (R2)k, i ∈

{1, . . . , n}, are independent with distribution
N2k(µ

τi
i , I2k) with µτii = (µ′iτi(1), . . . , µ

′
iτi(k)

)′ ∈ (R2)k and that xij =

(xij1, xij2)
′ = (rij cos θij, rij sin θij)

′.
Then, it is easy to see that (θij, rij) are independent given τ, µ, ρ and n0,

with density:

p(θij, rij|τ, µ, ρ, n0) = (2π)−1 e
− 1

2
µ′
iτi(j)

µiτi(j) rij e
− 1

2(r2ij−2riju′ijµiτi(j)),

with u′ij = (cos θij, sin θij). Then,

p(r|θ, τ, µ, ρ, n0) ∝ p(θ, r|τ, µ, ρ, n0)

∝
n∏
i=1

k∏
j=1

p(θij, rij|τ, µ, ρ, n0)

∝
n∏
i=1

k∏
j=1

rije
− 1

2(rij−u′ijµiτi(j))
2

.

1.4 Proof of Proposition 1

a) If we denote by φ2k the density of the N2k(0, I2k) distribution, it can be
shown after some calculations, that:

m(xS) =

(∏
i∈S

φ2k(xi)

)
|Σ0|−1/2|ΣS|−1/2 exp

(
1

2
‖
∑
i∈S

xi‖2S

)
.
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Then, we have:

q∏
j=1

m(xSj) =

(
n∏
i=1

φ2k(xi)

)
|Σ0|−q/2|ΣSj |−q/2 exp

1

2

q∑
j=1

‖
∑
i∈Sj

xi‖2Sj

 ,

and

q∏
j=1

m(xτSj) =

(
n∏
i=1

φ2k(x
τi
i )

)
|Σ0|−q/2|ΣSj |−q/2 exp

1

2

q∑
j=1

‖
∑
i∈Sj

xτii ‖2Sj

 .

From (3.1), it can be seen that φ2k(xi) = φ2k(x
τi
i ) and we conclude that:∏q

j=1m(xτSj)∏q
j=1m(xSj)

= exp

1

2

q∑
j=1

‖∑
i∈Sj

xτii ‖2Sj − ‖
∑
i∈Sj

xi‖2Sj

 ,

hence the result.
b) If we denote by g the density of G with respect to the counting measure,
we have:

pI(η|x) ∝ g(η) pI(x|η),

and

pII(η|x) ∝ g(η)
1

(k!)n

∑
τ∈Pn

pI(x
τ |η).

and we deduce that:

pII(η|x)

pI(η|x)
= BGf(x, η),

where

BG =

∑
η g(η) pI(x|η)∑

η g(η) 1
(k!)n

∑
τ∈Pn pI(x|η)

.

c) From Lemma 1 below, we have:

min
G
BG = min

η

pI(x|η)
1

(k!)n

∑
τ∈Pn pI(x|η)

,

= min
η

1

f(x, η)

=
1

maxη f(x, η)
.
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Lemma 1. Let h ∈ Rn and f ∈ Rn such that fi > 0 and hi > 0 for all
i ∈ {1, . . . , n}. Write D = {p ∈ Rn,

∑n
i=1 pi = 1, pi ≥ 0 for all i}. We have:

inf
p∈D

∑n
i=1 pifi∑n
i=1 pihi

= min
1≥i≥n

fi
gi
.

Proof of Lemma 1 Assume without loss of generality that mini fi/gi =
f1/g1. Then we have:

fi
gi
≥ f1
g1

for all i ∈ {1, . . . , n} ⇐⇒ fig1 − f1gi ≥ 0 for all i ∈ {1, . . . , n}

⇐⇒
n∑
i=1

pi(fig1 − f1gi) ≥ 0 for all p ∈ D

⇐⇒ g1

n∑
i=1

pifi ≥ f1

n∑
i=1

pigi for all p ∈ D

⇐⇒
∑n

i=1 pifi∑n
i=1 pigi

≥ f1
g1

for all p ∈ D.

We conclude by noting that ∑n
i=1 pifi∑n
i=1 pigi

=
f1
g1

for p = (1, 0, . . . , 0). �
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