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A Clustering Bayesian Approach for Multivariate
Non-Ordered Circular Data

Christophe Abraham ∗ Rémi Servien † Nicolas Molinari ‡

Abstract

This paper presents a Bayesian model for the clustering of non-ordered multivariate
directional or circular data. The particular trait of our data is that each single observation
is made up of k ≥ 2 non-ordered points on the circle. We introduce a hierarchical model
that combines a symmetrization technique, Projected Normal distributions and a Dirichlet
Process. One parameter is introduced to model the non-ordered trait and another one
to control the variability of the angles on the circle. An informative prior on the relative
locations of the k angles is also provided. The gain of the symmetrization is highlighted
by a theoretical study. The parameters of the model are then inferred using a Metropolis-
Hastings within Gibbs algorithm. Simulated datasets are analyzed to study the sensitivity
to hyperparameters. Then, the benefits of our approach are illustrated by clustering real
data made up of the positions of five separate radiotherapy x-ray beams on a circle.

Keywords :Circular data; Dirichlet process; Non-ordered multivariate data; Projected Normal
Distribution; Radiotherapy machine data; Unsupervised clustering.

1 Introduction

Circular and directional data arise in a number of different fields such as oceanography (wave
direction), meteorology (wind direction), biology (animal movement direction). The present
paper is motivated by circular data in medicine. Nowadays, intensity-modulated radiation
therapy (IMRT) has demonstrated its effectiveness for cancer treatment. The latest generation
of radiotherapy machines projects multiple rays. Multiplying beams allows to concentrate
radiation on the tumor while avoiding the massive irradiation of healthy areas. However, the
selection of the incident angles of the treatment beams may be a crucial component of IMRT
planning. Due to variations in tumor locations, size and patient anatomy, repositioning for the
multiple beams takes a long time and is based on the planner’s experience to find an optimal
set of beams. So, establishing a small set of standardized beam bouquets for planning could
be of valuable help. The set of beam bouquets could be determined by learning the beam
configuration features from previous IMRT datasets. The multiple beams are fixed on a circle
in the transverse plane around the patient. Consequently, an observation is composed of the
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Figure 1: Real data set of 14 patients with k = 5 angles. A point on the circle represents the
location of a treatment beam.

k beams of a patient, that is k circular measurements. A real data set from post-operative
treatment of liver cancer at the Institute of Sainte Catherine in Avignon, France, is represented
in Figure 1. One actual observation consists of a (non-ordered) set of k angles rather than
of a vector (ordered) of length k but to cope with the technical difficulty of dealing with
sets, it is convenient to store the angles of each patient in a vector in increasing order (or in
any other given order). Of course, the derived vectors may be very different even for similar
sets of angles. This is easily seen by considering a simple case of two patients with angles
{1◦, 60◦, 100◦, 150◦, 180◦} and {60◦, 100◦, 150◦, 180◦, 359◦}: the two patients should share the
same cluster as the sets of angles are very similar (modulo 360) although the derived vectors
are very different and, if any classical clustering method was applied, are not likely to share
the same cluster.

Abraham et al. [2013] proposed a first tool to assist the selection of beam orientations to
enhance the therapist’s experience. A suitable distance on the circle was defined and, for a
fixed number of clusters, an algorithm based on simulated annealing was proposed. Yuan et al.
[2015] generalized the precedent approach using k-medoids to cluster beam configuration fea-
tures with different numbers of beams. These methods suffer from some major flaws. First, the
number of clusters has to be supplied by the user. An additional procedure of model selection
(AIC, BIC, RIC, silhouette index, ...) can be used to select the number of clusters but an
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appropriate methodology that automatically finds this number would be very useful. Second,
the final result is only one unique clustering whereas there are probably other clusterings that
could be acceptable. A final result with all possible clusterings and a probability of appearance
for each could be of great help for the practitioner. These problems can naturally be solved
with a Bayesian clustering method based on Dirichlet Process as it does not require a pres-
elected number of clusters and provides different clusterings (possibly with different numbers
of clusters) with their posterior probabilities. Also note that the Bayesian framework is well
adapted to our application as the sample size is low and can be compensated to some extent
by prior information.

Circular data have first been studied using classical non-Bayesian approaches. Three main
models for circular data can be found in the litterature: the von-Mises distributions, the
wrapped distributions and the projected normal distributions. The von-Mises distributions,
first introduced by Von Mises [1918] and extended by Singh et al. [2002] and Mardia et al.
[2008], are the natural analogues of the normal distribution on the sphere. The wrapped distri-
butions [Mardia and Jupp, 2009] are based on a simple fact that a probability distribution on a
circle can be obtained by wrapping a probability distribution defined on the real line. Projected
normal distributions are obtained by projecting multivariate normal random variables radially
onto the sphere [Presnell et al., 1998]. These latter distributions allow for asymmetric and
possible bimodal models. We refer the reader to Mardia and Jupp [2009] for a complete review
on probability distributions of circular data.

Bayesian litterature on circular data is more recent. Von Mises distributions are used in
the univariate case in Damien and Walker [1999] and are applied to a change-point problem
in SenGupta and Laha [2008]. Wrapped distributions appear in Ravidran and Ghosh [2011],
with a data augmentation algorithm to overcome some computational difficulties, and in Jona-
Lasinio et al. [2012], to handle structured dependences between spatial measurements. Nuñez-
Antonio and Gutiérrez-Peña [2005], Wang and Gelfand [2013] adapted the projected normal
distributions in a Bayesian framework. A more sophisticated model was considered in Wang
and Gelfand [2014] to capture structured spatial dependence for modeling directional data at
different spatial locations. This model was then upgraded to capture joint structured spatial
and temporal dependence [Wang et al., 2015]. Then, it was extented to the important spher-
ical case and to any dimension [Hernandez-Stumpfhauser et al., 2017]. Also, it was adapted
to a multidimensional time series forecasting framework coupled with a Dirichlet process by
Mastrantonio et al. [2017].

Note that, for all the models cited above, each observation is simply a point on a circle or
on a sphere while in our case, a single observation is made up of k (k ≥ 2) non-ordered points
on the circle. For this reason these models cannot straightforwardly be adapted to our dataset.
We propose an extension of the projected normal distribution to our data. This extension does
not reduce to a simple projection of a multivariate normal distribution but enables us to model
the multivariate and the non-ordered features of our data. We also provide an informative
prior distribution on the relative locations of the k angles on the circle. This prior distribution
expresses that the k angles are a priori regularly spaced on the circle. A new parameter is also
introduced to control the variability of the angles on the circle. Inference on the variabiliy of the
angles is of particular interest for a clustering purpose as an inadequate value of this parameter
can alter the final results. The projected normal distribution is then associated with a Dirichlet
process to perform clustering. Therefore, the proposed method includes an automated selection
for the number of clusters.

In the present paper, the Bayesian model is described in the next section. Section 3 is
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devoted to the inference of the parameters of the model. Section 4 provides a theoretical study
to highlight the adaptability of our model to the multivariate and the non-ordered features of
the data. Section 5 and 6 provide empirical results first on simulated data and then on the real
data set that motivated the present work. A short conclusion is given in Section 7.

2 Model

A simple way of generating distributions on the p-dimensional unit sphere Sp is to radially
project probability distributions originally defined on the p-dimensional space Rp [Presnell
et al., 1998]. Let x be a random p-dimensional vector, then x/||x|| is a random point on Sp. If
x has a p-variate Normal distribution Np(µ,Σ) then x/||x|| is said to have a projected normal
distribution, denoted by PNp(µ,Σ). The literature has been first confined to the special case
where p = 2 and Σ = I [Presnell et al., 1998, Nuñez-Antonio and Gutiérrez-Peña, 2005, Nuñez-
Antonio et al., 2011]. Then, Wang and Gelfand [2013] studied the projected normal family with
a general covariance matrix Σ and refer to this richer class PNp(µ,Σ) as the general projected
normal distribution. This general version allows asymmetry and bimodality [see Figure 2. in
Wang and Gelfand, 2014]. The general projected normal distribution is not identifiable because
x/||x|| is invariant to scale transformation. To overcome this problem Wang and Gelfand [2013]
fixed some variance parameters in Σ to provide identifiability.

In a first step of simplification, we assume that the ith of the n observations is given by a
vector of k angles θi = (θi1, . . . , θik)

′ ∈ [0, 2π[k instead of a non-ordered set {θi1, . . . , θik}. Using
a projected normal distribution, we denote by xi = (xi1, . . . , xik)

′ ∈ (R2)k a random vector with
distribution N2k(µi, I2k) where θij is defined as the radial projection of xij on the unit circle of
R2. In other words, we have xij = (xij1, xij2)

′ = (rij cos θij, rij sin θij)
′ for all i ∈ {1, . . . , n} and

all j ∈ {1, . . . , k} where rij denotes the Euclidean norm of xij. Note that θi is observed while
ri = (ri1, . . . , rik)

′ is not and is treated as an unknown parameter. We denote by PN2k(µi, I2k)
the joint distribution of (θi, ri). Clustering analysis will be based on a Dirichlet process mixture
(DPM) model described as follows:

θi, ri|µ ∼ PN2k(µi, I2k)
µi|P ∼ P
P ∼ DP (n0P0),

(1)

where µ = (µ1, . . . , µn) and where DP (n0P0) denotes the Dirichlet process (DP) introduced
by Ferguson [1973] with center P0 = N2k(0,Σ0) and precision parameter n0. The clustering
properties of the DP are well known and date back to Blackwell and MacQueen [1973]. It is
shown that the parameter µ = (µ1, . . . , µn) follows the Pólya urn scheme:

µ1 ∼ P0

µi+1|µ1, . . . , µi ∼ 1
n0+i

∑i
j=1 δµi + n0

n0+i
P0, for i ≥ 2.

(2)

with δµi indicating the point measure on µi. So, µi+1 may be equal to one of the previous µi’s
or may be drawn from P0. This results in a positive probability of sharing the parameter value
with previous observations; hence the clusters. In the sequel, we will denote by Pólya(n0P0)
the distribution of µ given by (2). Although the DPM is very popular for Bayesian clustering,
other model-based cluster methods exist. For a review of these methods, we refer the reader
to Quintana [2006], Lau and Green [2007], Fritsch and Ickstadt [2009] and references therein.
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Note that the DPM model does not require choosing the number of clusters. On the other
hand, it is well known that the number of clusters can be controlled by n0. Learning about
n0 from the data may be addressed by assuming a Gamma prior distribution n0 ∼ G(an0 , bn0)
[Escobar and West, 1995].

Now recall that the actual ith observation consists of a (non ordered) set of the form
{θi1, . . . , θik} rather than of a vector (ordered) θi = (θi1, . . . , θik)

′. The impact of this simplifi-
cation is quite easy to understand. Using model (1), two observations i1 and i2 with the same
angles but in different orders would have a very low posterior probability of sharing the same
cluster, that is µi1 = µi2. We treat the observations as vectors for convenience but we have
to introduce a permutation parameter τi to compensate this simplification. More precisely, for
all µi = (µ′i1, . . . , µ

′
ik)
′ and all permutation τi of {1, . . . , k}, we set µτii = (µ′iτi(1), . . . , µ

′
iτi(k)

)′;
µτii can be viewed as a random permutation of the coordinates of µi. Therefore, the clustering
model becomes:

θi, ri|µ, τ ∼ PN2k(µ
τi
i , I2k)

µi|P ∼ P
P ∼ DP (n0P0),

(3)

where τ = (τ1, . . . , τn) and µ = (µ1, . . . , µn). The permutations τi are assumed to be a priori
independent with a uniform distribution UP on the set P of permutations of {1, . . . , k}. The
posterior probability that two observations i1 and i2 with the same angles but in different orders
would share the same cluster is increased with model (3) as there exist some values of τi1 and
τi2 such that µτi1i1 = µτi2i2 . A theoretical study of the impact of the symmetry introduced by τi
is given in Section 4.

Prior information
It is natural to assume that the k angles θi1, . . . , θik are a priori distributed so that the radial

projections xi1/‖xi1‖, . . . , xik/‖xik‖ are roughly equally spaced on the unit circle. As xij/‖xij‖
can be seen as a random change of µij/‖µij‖, this prior information can be incorporated into
the covariance matrix Σ0 of P0 as follows. From (3), it is well known that the marginal
distribution of µi is P0 = N2k(0,Σ0). Denote by R the 2× 2-matrix of the rotation in R2 with
angle 2π/k and center 0 and by εij, j ∈ {2, . . . , k}, k − 1 random variables with distribution
εij ∼ N2(0, I2). Assume that µi1, εi2,, . . . , εik are independent and set µi1 ∼ N2(0, ρI2) where
ρ is a positive number and µij = Rj−1µi1 + εij for j ∈ {2, . . . , k}. It is important to note the
influence of ρ on the distribution of µi. First, it is shown in the Appendix that the expected
value of ‖µij‖ is

√
ρπ/2 for j = 1 and

√
(ρ+ 1)π/2 for j ≥ 2 and that the components

µij become more correlated and equally spaced as ρ increases. Furthermore, if we denote by
vij = µij/‖µij‖ the radial projection of µij onto the unit circle, it is shown that (vi1, . . . , vik)
tends to (vi1, Rvi1, . . . , R

k−1vi1) almost surely as ρ→∞ and tends to (εi1/‖εi1‖, . . . , εik/‖εik‖)
almost surely as ρ → 0 where εi1, . . . , εik are independent and identically distributed random
variables with distribution N2(0, I2). In other words, the radial projections of the components of
µi are highly correlated and equally spaced for large values of ρ but approximately independent
and uniformly distributed for small ones. The influence of ρ is also studied through some
simulations in the sequel (see Subsection 5.1 and Figure 2).

Inference on ρ can be performed using an inverse gamma prior ρ ∼ IG(aρ, bρ) for which the
full posterior conditional distribution will be calculated in the following section.

It is worth pointing out that the weak dissymmetry introduced in the definition of P0

between µi1 and the other components of µi leads to a convenient closed-form expression of Σ0
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from which closed-form expressions of the inverse Σ−10 and the determinant |Σ0| can be obtained
as well. Such closed-form expressions and the full posterior conditional distribution of ρ could
not have been obtained so easily with a perfect symmetric distribution P0. The calculations of
Σ0, Σ−10 and |Σ0| are given in the Appendix. To highlight the dependence on ρ, Σ0 will be also
denoted by Σ0(ρ) in the sequel.

Finally, the complete Bayesian model can be expressed as follows:

θi, ri|µ, τ ∼ PN2k(µ
τi
i , I2k)

µ|n0, ρ ∼ Pólya(n0P0(ρ))
τi ∼ UP
ρ ∼ IG(aρ, bρ)
n0 ∼ G(an0 , bn0).

(4)

where P0(ρ) = N2k(0,Σ0(ρ)). By convention, it is assumed that the random variables at a stage
of the hierarchy are independent.

3 Inference

We set θ = (θ1, . . . , θn), r = (r1, . . . , rn), µ = (µ1, . . . , µn), τ = (τ1, . . . , τn) and ξ = (r, µ, τ, ρ, n0).
Thus, the parameter is ξ and the observation is θ. We sample from the posterior distribution of
ξ with a Metropolis-Hastings-Within-Gibbs algorithm. In what follows, p stands for a generic
notation for a density distribution.

Simulations of µ We can restrict our attention to model (3) instead of the full model (4) for
the simulations of µ as every component of ξ except µ remains fixed. An alternative parameter
setting of µ, θ and ρ will prove useful. Denote x = (x1, . . . , xn) where xi = (x′i1, . . . , x

′
ik)
′.

Firstly, note that the full conditional distribution of µ reduces to the conditional distribution
of µ given (x, n0, ρ, τ) as there is a natural bijection between xij and (θij, rij). Secondly, if we
denote by N2k(xi;µi, I2k) the value of the density of N2k(µi, I2k) at xi, it is easy to check that:

N2k(xi;µ
τi
i , I2k) = N2k(x

τ−1
i
i ;µi, I2k) (5)

where τ−1i is the permutation such that x
τioτ

−1
i

i = xi. Consequently, if we set yi = x
τ−1
i
i ,

sampling from the posterior distribution of µ in the DPM model (3) reduces to sampling from
the posterior distribution of µ in the following conjugate DPM model:

yi|µ ∼ N2k(µi, I2k)
µi|P ∼ P
P ∼ DP (n0P0).

(6)

There are several samplers for conjugate DPM models; for a review, we refer the reader to
MacEachern [1998], Neal [2000], Griffin and Holmes [2010]. Following the notations of Dahl
[2003], we use a parameter setting of µ in terms of:

• a set partition η = {S1, . . . , Sq} for {1, . . . , n} where each Sj represents a cluster, i.e.,
µi = µj if there exists j1 ∈ {1, . . . , q} such that i, j ∈ Sj1 and µi 6= µj if there exist
j1, i1 ∈ {1, . . . , q}, i1 6= j1 such that i ∈ Si1 , j ∈ Sj1 ,

• a vector φ = (φ1, . . . , φq) composed of the distinct values of µ, i.e., φj = µi for all i ∈ Sj.
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Then, the conjugate DPM model (6) may be expressed as:

yi|η, φ ∼ N2k(
∑q

j=1 φj1{i∈Sj}, I2k)

φj|η ∼ P0

η ∼ p(η) ∝
∏q

i=1 n0Γ(|Sj|),
(7)

where |Sj| is the cardinal of Sj, 1A is the indicator function for the event A, Γ denotes the
gamma function and p stands for the generic notation for any density. We can integrate over
the cluster location parameter φ analytically in (7) as P0 is conjugate to the normal distribution
of yi given η and φ. Then, we run the SAMS sampler of Dahl [2003] for simulating η. This
sampler may improve the merge-split sampler initially proposed by Jain and Neal [2004]. Once
a simulation of η is obtained, it is easy to simulate the cluster location parameter φ from its full
conditional which reduces to sample independently each φj from a N2k(Σj

∑
i∈Sj yi/|Sj|,Σj)

distribution with Σ−1j = |Sj|−1I2k + Σ−10 (ρ). As recommended by the previous authors, we
combine three runs of the Metropolis-Hastings update of the SAMS sampler with a full scan
of Gibbs sampling for µ [see MacEachern, 1994, for a presentation of this particular Gibbs
sampler]. Some details of the SAMS and the Gibbs samplers used in this article are given in
the Appendix.

Simulations of r It is shown in the Appendix that the rij are independent given (θ, τ, µ, ρ, n0)
with density:

p(rij|θ, τ, µ, ρ, n0) ∝ rije
− 1

2(rij−u′ijµiτi(j))
2

, (8)

with u′ij = (cos θij, sin θij). If we denote by N+
1 (m, v) the univariate normal distribution trun-

cated to [0,∞), we remark that (8) is close to the value of the density ofN+
1 (u′ijµiτi(j), 1) at rij. It

is then natural to simulate from (8) by a Metropolis-Hastings step with a N+
1 (u′ijµiτi(j), 1) as the

proposal distribution. Clearly, the probability of acceptance reduces to the ratio min{rnewij /roldij , 1}
where roldij and rnewij are, respectively, the current and the proposed values of rij in the algorithm.
Alternative methods of simulations could have been used at this step such as, for example, the
slice sampler proposed by Hernandez-Stumpfhauser et al. [2017].

Simulations of τ As the prior distribution of τ is uniform, we have:

p(τ |θ, r, µ, ρ, n0) = p(τ |x, µ)

∝ p(x|τ, µ)

∝
n∏
i=1

N2k(xi;µ
τi
i , I2k).

Thus, given (θ, r, µ, ρ, n0), the τi are independent with density (with respect to the counting
measure on the set T of permutations of {1, . . . , k}):

p(τi|x, µ) =
N2k(xi;µ

τi
i , I2k)∑

t∈T N2k(xi;µti, I2k)
. (9)
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Simulations of ρ From (4), it is clear that the full conditional distribution of ρ reduces to
the conditional distribution of ρ given µ. Then, using the parametrization of µ in terms of
(η, φ) and (7), we note that η and ρ are independent and that:

p(ρ|θ, r, µ, τ, n0) = p(ρ|η, φ)

∝ p(φ|η, ρ)p(ρ|η)

∝

(
q∏
j=1

p(φj|ρ)

)
p(ρ). (10)

We show in the Appendix that |Σ−10 (ρ)| = ρ−2 and that the components of the matrix Σ−10 (ρ)
are independent (constant) of ρ except the components of the first 2 by 2 diagonal submatrix
(lines and columns 1 and 2). As this submatrix is equal to (ρ−1 + (k − 1))I2, it is easily seen
that

φ′iΣ
−1
0 (ρ)φi = (ρ−1 + (k − 1))φ′i1φi1 + constant

= ρ−1φ′i1φi1 + constant.

where constant stands for a generic notation for an expression independent of ρ. Since φj|ρ ∼
P0(ρ) = N2k(0,Σ0(ρ)) and ρ ∼ IG(aρ, bρ), we have:

q∏
j=1

p(φj|ρ) ∝ ρ−qe−
1
2
ρ−1

∑q
j=1 φ

′
i1φi1 ,

and it is easy to conclude from (10) that the full conditional of ρ is

IG

(
aρ + q, bρ +

1

2

q∑
i=1

φ′i1φi1

)
. (11)

Simulations of n0 Using the arguments of Escobar and West [1995], under the G(an0 , bn0)
prior, n0 is updated at each Gibbs iteration by sampling first an additional variable ζ from a
Beta distribution and then a new value of n0 from a mixture of Gamma distributions as follows:

ζ|n0 ∼ B (n0 + 1, n)
n0|ζ, q ∼ πnG(an0 + q, bn0 − log ζ) + (1− πn)G(an0 + q − 1, bn0 − log ζ),

(12)

with weights πn defined by πn/(1− πn) = (an0 + q − 1)/[n(bn0 − log ζ)].

The whole procedure is summarized in Algorithm 1.

4 Theoretical study of the symmetrized model

To investigate the impact of the symetrization induced by the variables τi, we consider a simple
model of the following form:

xi|η, φ ∼ N2k(
∑q

j=1 φj1{i∈Sj}, I2k)

φj|η ∼ P0

η ∼ G
(I)
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Algorithm 1

Require: Data set θ = (θ1, . . . , θn).
Require: Hyperparamaters aρ, bρ, an0 , bn0 .

Repeat :

1. Simulate η.

(a) Run the SAMS sampler three times.

(b) Run the Gibbs sampler.

2. Simulate φj ∼ N2k(Σj

∑
i∈Sj yi/|Σj|,Σj) for each cluster j.

3. Propose rnewij ∼ N+
1 (u′ijµiτi(j), 1), accept with probability min(rnewij /roldij , 1).

4. Simulate new τi from 9.

5. Simulate new ρ from 11.

6. Simulate n0 from 12.

and its symmetrized version :

xi|η, φ ∼ N2k(
∑q

j=1 φ
τi
j 1{i∈Sj}, I2k)

φj|η ∼ P0

η ∼ G
τi ∼ UP ,

(II)

where φτij = (φ′jτi(1), . . . , φ
′
jτi(k)

)′ is obtained by random permutation of the coordinates of

φj = (φ′j1, . . . , φ
′
jk)
′ ∈ (R2)k. In both models, P0 = N2k(0,Σ0) and G is any distribu-

tion of the partition η = {S1, . . . , Sq} of {1, . . . , n}. Such distributions include the dis-
tribution derived from the Dirichlet process given by (7). Model (II) can be viewed as a
simplified and reparametrized version of (4). Now consider an idealized sample x1, . . . , xn
for which every observation xi is simply a random permutation of one unique observation
x0 = (x′01, . . . , x

′
0k)
′ ∈ (R2)k; in other words, for every i, there exists a permutation αi such that

xi = (x′0αi(1), . . . , x
′
0αi(k)

)′. As the coordinates xij of all the xi are the same but in a different
order, it is expected that all the observations are put together in one unique cluster. The aim of
this section is to study whether model (II) is more appropriate than model (I) for this purpose.

Let p0 and pI(x|η) denote respectively the density of P0 and the conditional density of
x = (x1, . . . , xn) given η for model (I). We have:

pI(x|η) =

∫ q∏
j=1

∏
i∈Sj

N2k(xi;φj, I2k)p0(φj)dφj

=

q∏
j=1

m(xSj),

9



where xSj = (xi, i ∈ Sj) and

m(xSj) =

∫ ∏
i∈Sj

N2k(xi;φj, I2k)p0(φj)dφj.

Denote by pII(x|η) the conditional density of x given η for model (II). By (5) and noting that
{τ−1i , τi ∈ P} = P , we have:

pII(x|η) =
∑
τ

1

(k!)n

∫ q∏
j=1

∏
i∈Sj

N2k(xi;φ
τi
j , I2k)p0(φj)dφj

=
∑
τ

1

(k!)n

∫ q∏
j=1

∏
i∈Sj

N2k(x
τi
i ;φj, I2k)p0(φj)dφj

=
1

(k!)n

∑
τ

q∏
j=1

m(xτSj),

where the sum above is taken for all the values of τ = (τ1, . . . , τn) in Pn, xτSj = (xτii , i ∈ Sj)
and xτii = (x′iτi(1), . . . , x

′
iτi(k)

)′. Therefore, models (I) and (II) reduce to

x|η ∼
∏q

j=1m(xSj)

η ∼ G,
(I’)

and
x|η ∼ 1

(k!)n

∑
τ

∏q
j=1m(xτSj).

η ∼ G.
(II’)

For all partition η = {S1, . . . , Sq} and all observation x, we set

f(x, η) =
1

(k!)n

∑
τ∈Pn

exp
1

2

q∑
j=1

‖∑
i∈Sj

xτii ‖2Sj − ‖
∑
i∈Sj

xi‖2Sj

 (13)

where ΣS =
(
Σ−10 + |S|I2k

)−1
for all subset S ⊂ {1, . . . , n} and ‖t‖2S = t′ΣSt for all t ∈ (R2)k.

Proposition 1. a) For all partition η = {S1, . . . , Sq} and all observation x = (x1, . . . , xn), we
have:

pII(x|η)

pI(x|η)
= f(x, η).

b) For all distribution G, there exists a positive number BG such that:

pII(η|x)

pI(η|x)
= BG f(x, η),

for all partition η and all observation x.

c) For all distribution G, all partition η and all observation x, we have:

pII(η|x)

pI(η|x)
≥ f(x, η)

1

maxη f(x, η)
(14)

where the maximum is taken over all partitions of {1, . . . , n}.

10



From a) of Proposition 1, we see that f(x, η) is the likelihood ratio of models (II’) and (I’).
From b), we know that the posterior odds ratio is large when f(x, η) is large. It would be of
interest to know whether this ratio is greater than one. Unfortunately, this is not an easy task
except for a few particular cases given below. Indeed, although the factor BG is actually known
(see the proof of Proposition 1 in the Appendix), it is rather intractable. From c), we deduce
that the posterior odds is actually greater or equal to one at least for the partition ηx that
maximizes f(x, η). This partition does exist for any observation x and is independent of G. In
other words, for any x, there exists a partition ηx such that pII(ηx|x) ≥ pI(ηx|x) for all prior
G. Finally, we can remark from the proof of the theorem that the equality in (14) is obtained
when G is a Dirac distribution; a meaningless prior.

Consider the partition η̄ with a single cluster: q = 1 and S1 = {1, . . . , n}. From (13), the
posterior odds ratio when η = η̄ is likely to be large when

∑n
i=1 xi ≈ 0 and small when all

the xi ≈ x0 for all i ∈ {1, . . . , n}. Assume from now that
∑n

i=1 xi = 0 and that Σ0 = I2k.
Remenber that Σ0 models the prior information about the mutual positions of the angles
on the circle. Therefore Σ0 = I2k can be viewed as a non informative prior. In this case,
‖t‖2Sj = (1 + |Sj|)−1t′t = (1 + |Sj|)−1‖t‖ for all t ∈ (R2)k and we have:

f(x, η̄) =
1

(k!)n

∑
τ∈Pn

exp
1

2(n+ 1)

(
‖

n∑
i=1

xτii ‖2
)
. (15)

Example 1 below provides a typical sample x = (x1, . . . , xn) for which the posterior probabilty
of a unique cluster is greater with model (II) than with model (I) independently of the prior
distribution G.

Example 1. First, by noting that:

n∑
l=0

eilθ =
sin θ(n+1)

2

sin θ
2

ei
θ
2
n,

for all θ ∈ R, we deduce that:

k−1∑
l=0

cos

(
2πl

k

)
= 0 and

k−1∑
l=0

sin

(
2πl

k

)
= 0. (16)

Assume n = k and set xij = (cos(i + j − 2)2π/k, sin(i + j − 2)2π/k)′ for i ∈ {1, . . . , k} and
j ∈ {1, . . . , k}. In other words, x1 = (x′11, . . . , x

′
1k)
′ ∈ (R2)k is made up of k consecutive points

on the unit circle separated from an angle of 2π/k, x2 is obtained by a rotation with angle 2π/k
of each point of x1 and so on. Therefore, it is easy to see from (16) that

∑n
i=1 xi = 0. Our

conjecture is that maxη f(x, η) = f(x, η̄) for all integer k which implies, from c) of Proposition
1, that the probability of a unique cluster is greater for model (II) than for model (I) for any
distribution G. For n = k = 2 the conjecture reduces to f(x, η) ≤ f(x, η̄) for a single partition
η = {{x1}, {x2}}. As ‖xi‖Sj = ‖xτii ‖Sj for all i and τi, it is easily seen from (13) that f(x, η) =
1. On the other hand, as ‖x1‖2 = k and x1 = −x2, we see from (15) that

f(x, η̄) =
1

4

(
2 exp

1

6
‖x1 + x2‖2 + 2 exp

1

6
‖2x1‖2

)
=

1

2

(
1 + 2 exp

4

3

)
,
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hence the proof of the conjecture for n = k = 2. We also proved the conjecture for n = k = 3
with a rather large amount of calculations (not given here) to take into account all the partitions
η and all the permutation τ = (τ1, τ2, τ3). We are not in a position to provide general proof of
the conjecture for n = k ≥ 4.

5 Simulations

With small data sets, a misspecification of the prior could have a strong negative impact on the
final results. Therefore, special attention has to be paid to the prior and the hyperparameter
specifications. Consequently, we test our algorithm on two simulation studies to evaluate the
influence of some hyperparameters.

The performances of our method are investigated using the Adjusted Rand Index (ARI),
proposed by Hubert and Arabie [1985], to compare our obtained partition to the actual one.
The Rand Index [Rand, 1971] is a well known measure of the similarity between two partitions.
If we denote by N00 the numbers of pairs that are in the same cluster in both partitions and
by N11 the number of pairs that are in different clusters in both partitions, then the Rand
Index is defined by the ratio (N00 + N11)/(

n
2 ). The ARI is a corrected-for-chance version of

the Rand index. Its expected value (under the generalized hypergeometric model) is equal to
0 and its maximum is 1 while the expected value of the Rand Index depends on the number of
clusters. For a presentation of the different criteria for clustering comparison and for a study
investigating the usefulness of the adjusted measures, we refer the reader to Fritsch and Ickstadt
[2009] and Nguyen et al. [2009].

5.1 Influence of the Precision Parameter ρ

First we choose to simulate data using a procedure which is close to our model in order to
investigate the influence of the precision parameter ρ. We set q = 3 clusters of 10 data. We
simulate the coordinates µij of each center µi approximately on a circle with a fixed radius.

Since it is shown in Section 2 that E‖µi1‖ =
√
ρπ/2 ≈ 1.25

√
ρ, the first coordinate µi1 is

simulated according to a uniform distribution on the circle with radius 1.25
√
ρ. The other

coordinates µij, j = 2, . . . , 5 (k = 5) are generated according to a noisy rotation with angle
2πj/5 of µi1. For each cluster i, we generate 10 data according to PN10(µi, I10). A comparison
of the generated data is provided in Figure 2 with different values for ρ; for the clarity of the
picture we choose to represent only q = 2 clusters of 5 observations. It is clear from Figure 2
that large values of ρ provide small variability for the projected observations. This observation
can be confirmed by a simulation study. We simulate some datasets according to the above
procedure with different values for ρ. For each value of ρ, a hundred datasets are simulated.
Then, our Bayesian methodology is applied using an0 = 10 and bn0 = 1. The mean values for
the ARI are given in Table 1.

Table 1: Adjusted Rand Index according to ρ.

ρ 0.0064 0.1024 0.64 5.76 256
1.25
√
ρ 0.1 0.4 1 3 20

ARI 0.35 0.39 0.45 0.62 0.78
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Figure 2: Two data sets are generated with two different values for the parameter ρ to highlight
the influence of this parameter. Two clusters of five data are represented on each plot. Each
data is composed of k = 5 angles on the circle. One cluster is represented by the black cross,
the other by the red square.

As expected, this parameter has an important influence on the obtained results. We choose
a noninformative prior for ρ by setting aρ = bρ = 0.01. This prior is close to the Jeffreys prior
for the model N2(0, ρI2) whose density reduces to ρ−1.

5.2 Robustness to the Hyperparameters an0
and bn0

It is well-known that the number of clusters does depend on n0 whose prior distribution is fixed
by the hyperparameters an0 and bn0 . In this subsection we investigate the sensitivity of the
ARI with respect to these hyperparameters. We apply the same simulation strategy as in the
previous subsection with a fixed value of ρ such that 1.25

√
ρ = 20. Note that the parameters

an0 and bn0 are not at all involved in the simulation of the dataset. The mean values for the
ARI over 100 simulated data sets are given in Table 2.

Table 2: Adjusted Rand Index (Proportion of clusterings with the actual number of clusters)
according to an0 and bn0 .

bn0 = 0.1 bn0 = 1 bn0 = 10 bn0 = 100 bn0 = 1000

an0 = 0.1 0.73 (0.80) 0.71 (0.79) 0.62 (0.72) 0.63 (0.75) 0.59 (0.67)
an0 = 1 0.76 (0.91) 0.72 (0.84) 0.65 (0.79) 0.67 (0.76) 0.64 (0.71)
an0 = 10 0.72 (0.76) 0.78 (0.96) 0.69 (0.84) 0.67 (0.80) 0.65 (0.74)
an0 = 100 0.70 (0.70) 0.68 (0.79) 0.79 (0.92) 0.72 (0.82) 0.62 (0.75)
an0 = 1000 0.66 (0.69) 0.62 (0.72) 0.68 (0.79) 0.75 (0.88) 0.65 (0.76)

Table 2 suggests that a choice of an0/bn0 approximately between 1 and 10 provides good
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and similar results.

5.3 Influence of the number of clusters

Using the previously fixed hyperparameters a simulation study is provided with different num-
bers of clusters. For each number of clusters, one hundred datasets are simulated according to
the above procedure. Each cluster has a number of points randomly chosen between 10 and
20. The results are gathered in the following Table 3.

Table 3: Adjusted Rand Index according to the number of clusters.

Number of clusters 1 3 5 8 10
ARI 0.97 0.74 0.71 0.66 0.60

The results are rather good even with a high number of clusters.

6 Real Data

We then apply the methodology to a real data set from post-operative treatment of liver cancer
at the Institute of Sainte Catherine in Avignon, France (see Figure 1 and Table 4). Let us
recall that no other competing methods exist for these kind of multivariate circular data except
the method described in Abraham et al. [2013] with a fixed number of clusters. Consequently,
our results are compared to those of Abraham et al. [2013] in which the number of clusters was
preselected to q = 2.

Let us remind you that the a priori distribution of n0 is a gamma distribution with parameter
an0 and bn0 with an expected value equal to an0/bn0 (if an0 > 1) and a variance equal to an0/b

2
n0

(if an0 > 2). Remember that the expected number of clusters given n0 is approximately equal
to n0 log(1+n/n0) [Teh, 2010]. According to the results of Section 5, the results are robust with
respect to the choice of the hyperparameters an0 and bn0 with 1 ≤ an0/bn0 ≤ 10. We choose
a rather non-informative prior by setting an0 = 3 and bn0 = 0.3 which leads to a distribution
of n0 centered around 3 with a large variance. Other values for an0 and bn0 have been tested
and give nearly the same results. As in Section 5, we choose a non-informative prior by setting
aρ = bρ = 0.01.

MCMC convergence diagnostics was investigated with the clustering entropy

−
q∑
i=1

|Si|
n

log

(
|Si|
n

)
.

Traceplots for this quantity and for other parameters of the model suggest a good mixing and
the convergence of our chain. On a classical personal laptop and using a nonoptimized code,
the time of mixing was approximately twelve minutes whereas the whole procedure lasts ninety
minutes.

The majority clustering (mode of the posterior distribution of the clusterings) is the same as
in Abraham et al. [2013] (two clusters: one containing data 1,2,6,9 and 12, the second contain-
ing data 3,4,5,7,8,10,11,13 and 14) with a posterior probability equal to 30.5%. This result was
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Figure 3: Barplot of the proportion of 32 more probable clusterings. For a better apprehension,
the clusterings that have a posterior probability lower than 0.02% have been omitted.

awaited and is coherent with the choice of 2 clusters in the previous method. But the real gain
from our Bayesian approach is to look beyond this majority clustering. Here there are 3 more
clusterings that are significant and that could give some information on this real dataset. The
second majority clustering is nearly the same as the previous one : the clusters are the same
but data 6 is alone in a third cluster. Indeed, this data is very atypical because it is the only
one that contains an angle near 1.69π. The posterior probability for this clustering is 14.9%.
The third majority clustering gives nearly the same information with a posterior probability
of 13.5%. There are two clusters: one with data 6 and a second with all the others. Finally,
another clustering with a posterior probability of 12.0% is made up of only one cluster. Even
with other choices for the hyperparameters an0 and bn0 , the posterior probability of this clus-
tering remains high. It highlights the fact that all the data share some common traits and the
main difference in the two clusters of the majority clustering only concerns one angle. All the
clusterings are included in Figure 3 sorted by their posterior probabilities. It can be noted that
a credible region with a posterior probability of 71% is composed of the 4 previous clusterings.

We give in Figure 4 the posterior distribution of the number of clusters. The posterior prob-
abilities of 1, 2 or 3 clusters are respectively 12%, 65% and 21%. Consequently, the number of
clusters is certainly (with probability 98%) less than or equal to 3.
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Figure 4: Posterior distribution of the number of clusters.
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As expected, these results are in line with the clusterings obtained in Abraham et al. [2013].
The final choice of 2 clusters (that is not made here a priori) could provide, using the centers
of the clusters, preset positions for praticians. As explained above, these two centers share
only one main difference on one unique angle. This is highlighted by the important posterior
probability of the clustering with only one cluster. Thus, using these preset positions should
be fairly easy for praticians, with four fixed values and only two choices for the last one.
Furthermore, the results suggest another preset position that should be added and tested if the
two previous one do not fit: the beam angles of data 6. As explained in Yuan et al. [2015], the
definition of such presets will help to save time (at least 30 minutes for each patient) and will
allow more people to be treated with this technology; it is also shown that the beams generated
with our methodology show dosimetric qualities comparable to their manually generated clinical
counterpart, even if no adjustments were allowed around the fixed presettings.

Table 4: Real data set (radians).

Patient 1stangle 2ndangle 3rdangle 4thangle 5thangle
1 1.81π 0 π/4 π/2 π
2 1.78π 0 π/4 π/2 π
3 1.89π π/4 π/2 3/4π π
4 1.94π 0.28π 0.56π 3/4π 0.97π
5 -0.17π π/2 π/4 3/4π π
6 1.69π -0.06π π/4 π/2 π
7 3π/4 0.28π 0.53π 3/4π π
8 1.86π 0.06π π/2 3/4π π
9 π/2 π 1.81π 0 π/4
10 0.31π 0.56π 3/4π 1π/2 -0.19π
11 1.81π 0.1π π/2 3/4π π
12 π/4 π/2 π 1.81π 0
13 0.72π π -0.08π π/4 π/2
14 0.22π 0.56π 3/4π π 1.89π

7 Conclusion

We present a full Bayesian framework for the clustering of multivariate circular and non-ordered
data. It is based on a hierarchical model that combines Projected Normal distributions and the
Dirichlet Process. Two original parameters are also introduced in this model: the parameter
ρ to infer the variance of the angles and the symmetrization parameter τ to model the non-
ordered feature of the data. The parameters of the model are then inferred using a Metropolis-
Hastings within Gibbs algorithm and a theoretical study of the impact of the symmetrization
parameter is provided. The simulation study and the real data example show the benefits of this
approach. Indeed, the number of clusters is chosen automatically by the method and the final
result is much more complete than the majority clustering which is usually provided by classical
clustering algorithms. However some improvements could be considered, such as, incorporating
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covariates (shape or size of the tumor, stage of the cancer, sex, age, ...) to preselect the beam
positions.

Supplementary Material

Supplementary Material containing the Appendix is attached to this submission.
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G. Nuñez-Antonio and E. Gutiérrez-Peña. A bayesian analysis of directional data using the
projected normal distribution. Journal of Applied Statistics, 32(10):995–1001, 2005.
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