A clustering Bayesian approach for radiotherapy x-ray beam bouquets

Christophe Abraham, Nicolas Molinari, Rémi Servien

To cite this version:

Christophe Abraham, Nicolas Molinari, Rémi Servien. A clustering Bayesian approach for radiotherapy x-ray beam bouquets. 2016. hal-01326166v3

HAL Id: hal-01326166
 https://hal.science/hal-01326166v3

Preprint submitted on 8 Nov 2016 (v3), last revised 19 Jun 2018 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A clustering Bayesian approach for radiotherapy x-ray beam bouquets

Christophe Abraham * Nicolas Molinari ${ }^{\dagger}$ Rémi Servien ${ }^{\ddagger}$

Abstract

This paper presents a new Bayesian framework for the clustering of multivariate directional or circular data. We introduce a hierarchical model that combines Projected Normal distributions and a Dirichlet Process. The parameters of the model are then inferred using a MetropolisHastings within Gibbs algorithm. Simulated datasets are analyzed to study the influence of the parameters of the model. Then, the benefits of our approach are illustrated by clustering real data from the positions of five separate radiotherapy x-ray beams on a circle.

Keywords : Circular data; Dirichlet process; Non-ordered multivariate data; Projected Normal Distribution; Radiotherapy machine data; Unsupervised clustering.

[^0]
1 Introduction

Circular and directional data arise in a number of different fields such as oceanography (wave direction), meteorology (wind direction), biology (animal movement direction). The present paper is motivated by circular data in medicine. Nowadays, chemotherapy and intensity-modulated radiation therapy (IMRT) have demonstrated their effectiveness for cancer treatment. New molecules and new generation of radiotherapy machines are developed by pharmaceutical firms. Latest generation of radiotherapy machines projects multiple rays. Multiplying beams allows concentrating radiation on the tumor while avoiding the massive irradiation of healthy areas. However, the selection of the incident angles of the treatment beams may be a crucial component of IMRT planning. Due to variations in tumor locations, size and patient anatomy, repositioning for the multiple beams machines takes long time based on the planner's experience to find an optimal set of beams. So, establishing a small set of standardized beam bouquets for planning could be of valuable help. The set of beam bouquets could be determined by learning the beam configuration features from previous IMRT datasets. The multiple beams are fixed on a circle in the transverse plane around the patient. By consequence, an observation is composed of the k beams of a patient, that is k circular measurements. The multivariate trait is due to the number of points k on the unit circle of \mathbb{R}^{2}. One actual observation consists of a (non-ordered) set of k angles rather than of a (ordered) vector of length k. In Figure 1, a real data set from post-operative treatment of liver cancer at the Institute of Sainte Catherine in Avignon, France, is represented.

Abraham et al. (2013) proposed a first tool to assist the selection of beam orientations in addition to the therapist's experience. A suitable distance on the circle was defined and, for a fixed number of clusters, an algorithm based on simulated annealing was proposed. Yuan et al. (2015) generalized the precedent

Figure 1: Real data set of 14 patients with $k=5$ angles. A point on the circle represents the location of a treatment beam.
approach using k-medoids to cluster beam configuration features with different numbers of beams. These methods suffer from some major flaws. First, the number of clusters has to be supplied by the user. A procedure using a criterion of model choice (AIC, BIC, RIC, silhouette index, ...) can be used to choose between two models but an appropriate methodology that automatically finds the optimal number of clusters would be very useful. Second, the final result is only a unique clustering whereas there are probably other clusterings that could be acceptable. A final result with all possible clusterings and a probability of appearance for each could be of great help for the practitioner. These problems can naturally be solved with a Bayesian clustering method based on Dirichlet Process as it does not require a preselected number of clusters and provides different clusterings (possibly with different numbers of clusters) with their posterior probabilities. To our knowledge, such a clustering Bayesian model has never been applied for multivariate circular data in the literature.

Circular data have first been studied using classical non-Bayesian approaches. Three main models for circular data can be found in the litterature : the vonMises distributions, the wrapped distributions and the projected normal distributions. The von-Mises distributions, first introduced by Von Mises (1918) and extended by Singh et al. (2002) and Mardia et al. (2008), are the natural analogues on the sphere of the normal distribution. The wrapped distributions (Mardia and Jupp, 2009) are based on a simple fact that a probability distribution on a circle can be obtained by wrapping a probability distribution defined on the real line. Projected normal distributions are obtained by projecting multivariate normal random variables radially onto the sphere (Presnell et al., 1998). These latter distributions allow for asymmetric and possible bimodal models. We refer the reader to Mardia and Jupp (2009) for a complete review on probability distributions of circular data.

Bayesian litterature on circular data is more recent. Von Mises distributions are used in the univariate case in Damien and Walker (1999) and are applied to a change-point problem in SenGupta and Laha (2008). Wrapped distributions appear in Ravidran and Ghosh (2011), with a data augmentation algorithm to overcome some computational difficulties, and in Jona-Lasinio et al. (2012), to handle structured dependences between spatial measurements. Nuñez-Antonio and Gutiérrez-Peña (2005) and Wang and Gelfand (2013) adapted the projected normal distributions in a Bayesian framework. A more sophisticated model was considered in Wang and Gelfand (2014) to capture structured spatial dependence for modeling directional data at different spatial locations. This model was then upgraded to capture joint structured spatial and temporal dependence (Wang et al., 2015).

Note that, for all the models cited above, each observation is simply a point on a circle or on a sphere while in our case, a single observation is made up of $k(k \geq 2)$ non-ordered points on the circle. For this reason these models cannot straightforwardly be adapted to our dataset. We propose an extension to multivariate data of the projected normal distribution (which is different from a simple projection of a multivariate normal distribution). We also provide a particular prior on the variance-covariance matrix of the projected normal distribution. Inference on this matrix is of particular interest in a clustering framework. The projected normal distribution is then associated with a Dirichlet process to perform clustering. Our proposed method includes an automated selection for the number of clusters.

In the present paper, the Bayesian model is described in the next section. Section 3 is devoted to the inference of the parameters of the model. Section 4 provides empirical results first on simulated data and then on the real data set that motivated the present work.

2 Model

A simple way of generating distributions on the p-dimensional unit sphere \mathcal{S}^{p} is to radially projecting probability distributions originally defined on the p dimensional space \mathbb{R}^{p} (Presnell et al., 1998). Let x be a random p-dimensional vector, then $x /\|x\|$ is a random point on \mathcal{S}^{p}. If x has a p-variate Normal distribution $N_{p}(\mu, \Sigma)$ then $x /\|x\|$ is said to have a projected normal distribution, denoted by $P N_{p}(\mu, \Sigma)$. The literature has been first confined to the special case where $p=2$ and $\Sigma=\mathbf{I}$ (Presnell et al., 1998; Nuñez-Antonio and Gutiérrez-Peña, 2005; Nuñez-Antonio et al., 2011). Then, Wang and Gelfand (2013) studied the projected normal family with a general covariance matrix Σ and refer to this richer class $P N_{p}(\mu, \Sigma)$ as the general projected normal distribution. This general version allows asymmetry and bimodality (see Figure 2. in Wang and Gelfand, 2014). The general projected normal distribution is not identifiable because $x /\|x\|$ is invariant to scale transformation. To overcome this problem Wang and Gelfand (2013) fixed some variance parameters in Σ to provide identifiability.

In the present paper, we first assume that the i th of the n observations is given by a vector of k angles $\theta_{i}=\left(\theta_{i 1}, \ldots, \theta_{i k}\right)^{\prime} \in\left[0,2 \pi\left[^{k}\right.\right.$ instead of a nonordered set $\left\{\theta_{i 1}, \ldots, \theta_{i k}\right\}$; the latter case will be adressed later in the paper. Using a projected normal distribution, we denote by $x_{i}=\left(x_{i 1}, \ldots, x_{i k}\right)^{\prime} \in\left(\mathbb{R}^{2}\right)^{k}$ a random vector with distribution $N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right)$ where τ_{i} will be defined later and $\theta_{i j}$ is defined as the projection of $x_{i j}$ on the unit circle of \mathbb{R}^{2}. In other words, we have $x_{i j}=\left(x_{i j 1}, x_{i j 2}\right)^{\prime}=\left(r_{i j} \cos \theta_{i j}, r_{i j} \sin \theta_{i j}\right)^{\prime}$ for all $i \in\{1, \ldots, n\}$ and all $j \in\{1, \ldots, k\}$ where $r_{i j}$ denotes the Euclidean norm of $x_{i j}$. Note that θ_{i} is observed while $r_{i}=\left(r_{i 1}, \ldots, r_{i k}\right)^{\prime}$ is not and is treated as an unknown parameter. We will denote by $P N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right)$ the joint distribution of $\left(\theta_{i}, r_{i}\right)$. Clustering analysis will be based on a Dirichlet process mixture (DPM) model
described as follows :

$$
\begin{align*}
\theta_{i}, r_{i} \mid \mu_{i}, \tau_{i} & \sim P N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right) \\
\mu_{i} \mid P & \sim P \tag{1}\\
P & \sim D P\left(n_{0} P_{0}\right)
\end{align*}
$$

where $D P\left(n_{0} P_{0}\right)$ denotes the Dirichlet process (DP) introduced by Ferguson (1973) with center $P_{0}=N_{2 k}\left(0, \Sigma_{0}\right)$ and precision parameter n_{0}. The clustering properties of the DP are well known and date back to Blackwell and MacQueen (1973). It is shown that the parameter $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ follows the Pólya urn scheme :

$$
\begin{align*}
\mu_{1} & \sim P_{0} \\
\mu_{i+1} \mid \mu_{1}, \ldots, \mu_{i} & \sim \frac{1}{n_{0}+1} \sum_{j=1}^{i} \delta_{\mu_{i}}+\frac{n_{0}}{n_{0}+1} P_{0}, \text { for } i \geq 2 \tag{2}
\end{align*}
$$

with $\delta_{\mu_{i}}$ indicating the point measure on μ_{i}. So, μ_{i+1} may be equal to one of the previous μ_{i} 's or may be drawn from P_{0}. This results in a positive probability of sharing the parameter value with previous observations; hence the clusters. In the sequel, we will denote by Pólya $\left(n_{0} P_{0}\right)$ the distribution of μ given by (2). Although the DPM is very popular for bayesian clustering, other modelbased cluster methods exist. For a review of these methods, we refer the reader to Quintana (2006); Lau and Green (2007); Fritsch and Ickstadt (2009) and references therein. Note that the DPM model does not require to choose the number of clusters. On the other hand, it is well known that the number of clusters can be controlled by n_{0}. Learning about n_{0} from the data may be addressed by assuming a Gamma prior distribution $n_{0} \sim G\left(a_{n_{0}}, b_{n_{0}}\right)$ (Escobar and West, 1995).

At this point, it is important to recall that the actual i th observation consists of a (not ordered) set of the form $\left\{\theta_{i 1}, \ldots, \theta_{i k}\right\}$ rather than of a (ordered) vector
$\theta_{i}=\left(\theta_{i 1}, \ldots, \theta_{i k}\right)^{\prime}$. We treat the observations as vectors for convenience but this can have important consequences on the clustering due to the possible permutation between the vector components. To be concrete, consider two observations $\theta_{1}=(0, \pi / 5,2 \pi / 5,3 \pi / 5,4 \pi / 5)^{\prime}+\varepsilon_{1}$ and $\theta_{2}=(4 \pi / 5,0,3 \pi / 5, \pi / 5,2 \pi / 5)^{\prime}+\varepsilon_{2}$ where ε_{1} and ε_{2} are composed with small values of $[0,2 \pi[$. From a practical point of view, θ_{1} and θ_{2} should be put together in a same cluster since $\left\{\theta_{11}, \ldots, \theta_{15}\right\}$ and $\left\{\theta_{21}, \ldots, \theta_{25}\right\}$ are very similar. In this case, the parameters μ_{1} and μ_{2} are likely to have the same coordinates but in a different order. In other words, if we denote by $\mu_{i 1}, \ldots, \mu_{i k} \in \mathbb{R}^{2}$ the components of μ_{i}, it is likely that $\left\{\mu_{11}, \ldots, \mu_{1 k}\right\}=\left\{\mu_{21}, \ldots, \mu_{2 k}\right\}$ and $\left(\mu_{11}, \ldots, \mu_{1 k}\right) \neq\left(\mu_{21}, \ldots, \mu_{2 k}\right)$. If it was simply assumed that θ_{i} had a projected normal distribution $P N_{2 k}\left(\mu_{i}, I_{2 k}\right)$ then, θ_{1} and θ_{2} would belong to the same cluster only when $\mu_{1}=\mu_{2}$; and this is a posteriori unlikely. To cope with this problem, we introduce the permutation parameter τ_{i}. Denote by $\mathcal{U}_{\mathcal{P}}$ the uniform distribution on the set of permutations of $\{1, \ldots, k\}$. Assume that the parameters τ_{i} are a priori independent with distribution $\mathcal{U}_{\mathcal{P}}$ and, for all $\mu_{i}=\left(\mu_{i 1}^{\prime}, \ldots, \mu_{i k}^{\prime}\right)^{\prime} \in\left(\mathbb{R}^{2}\right)^{k}$, set $\mu_{i}^{\tau_{i}}=\left(\mu_{i \tau_{i}(1)}, \ldots, \mu_{i \tau_{i}(k)}\right)^{\prime} ; \mu_{i}^{\tau_{i}}$ can be viewed as a random permutation of the coordinates of μ_{i}. Clearly, the introduction of τ_{i} in (1) enables our model to put θ_{1} and θ_{2} in a same cluster although $\mu_{1} \neq \mu_{2}$ since there exist some values of τ_{1} and τ_{2} for which $\mu_{1}^{\tau_{1}}=\mu_{2}^{\tau_{2}}$.

It is natural to assume that the k angles $\theta_{i 1}, \ldots, \theta_{i k}$ are a priori roughly equally spaced on the unit circle. This prior information can be incorporated into the covariance matrix Σ_{0} of P_{0} as follows. From (1), it is well known that the marginal distribution of μ_{i} is $P_{0}=N_{2 k}\left(0, \Sigma_{0}\right)$. Denote by R the 2×2-matrix of the rotation in \mathbb{R}^{2} with angle $2 \pi / k$ and center 0 . Set $\mu_{i 1} \sim N_{2}\left(0, \rho I_{2}\right)$ where ρ is a positive number and $\mu_{i j} \mid \mu_{i, j-1} \sim N_{2}\left(R \mu_{i, j-1}, I_{2}\right)$ for $j \in\{2, \ldots, k\}$. Then, roughly, $\mu_{i 1}, \ldots, \mu_{i k}$ are approximately equally spaced on the circle with center

0 and radius $\sqrt{\rho}$. Note that the variance parameter ρ has an important impact on the prior : a large value of ρ enables to generate $\mu_{i 1}, \ldots, \mu_{i k}$ approximately situated on circle with a large radius. For such a large radius, the angles $\theta_{i j}$ of the projections on the unit circle have small variances. Hence, ρ can also be viewed as a precision parameter for θ_{i} (see Subsection 4.1 and Figure 2). It is shown in the Appendix that the derived matrix Σ_{0}, also denoted by $\Sigma_{0}(\rho)$ in the sequel to highlight the dependence on ρ, can be expressed as a closed-form expression as well as the inverse Σ_{0}^{-1} and the determinant $\left|\Sigma_{0}\right|$. Inference on ρ can then be performed using an inverse gamma prior $\rho \sim I G\left(a_{\rho}, b_{\rho}\right)$ for which the full posterior conditionnal distribution will be calculated in the following section.

Finally, the complete bayesian model can be expressed as follows:

$$
\begin{align*}
\theta_{i}, r_{i} \mid \mu, \tau & \sim P N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right) \\
\mu \mid n_{0}, \rho & \sim \operatorname{Pólya}\left(n_{0} P_{0}(\rho)\right), \\
\tau_{i} & \sim \mathcal{U}_{\mathcal{P}} \tag{3}\\
\rho & \sim I G\left(a_{\rho}, b_{\rho}\right), \\
n_{0} & \sim G\left(a_{n_{0}}, b_{n_{0}}\right) .
\end{align*}
$$

where $P_{0}(\rho)=N_{2 k}\left(0, \Sigma_{0}(\rho)\right)$ and $\mu=\left(\mu_{1}^{\prime}, \ldots, \mu_{n}^{\prime}\right)^{\prime}$. By a usual convention, it is assumed that the random variables at a stage of the hierarchy are independent.

3 Inference

We set $\theta=\left(\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}\right)^{\prime}, r=\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right)^{\prime}, \tau=\left(\tau_{1}, \ldots, \tau_{n}\right)^{\prime}$ and $\xi=\left(r^{\prime}, \mu^{\prime}, \tau^{\prime}, \rho, n_{0}\right)^{\prime}$. Thus, the parameter is ξ and the observation is θ. We sample from the posterior distribution of ξ with a Metropolis-Hastings-Within-Gibbs algorithm.

Simulations of μ We can restrict our attention to model (1) instead of the full model (3) for the simulations of μ as every component of ξ except μ remains fixed. An alternative reparametrization of μ, θ and ρ will prove useful. Denote $x=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)^{\prime}$ where $x_{i}=\left(x_{i 1}, \ldots, x_{i k}\right)^{\prime}$. First, note that the full conditional distribution of μ reduces to the conditional distribution of μ given $\left(x, n_{0}, \rho, \tau\right)$ as there exists a natural bijection between $x_{i j}$ and $\left(\theta_{i j}, r_{i j}\right)$. Second, if we denote by $N_{2 k}\left(x_{i} ; \mu_{i}, I_{2 k}\right)$ the value of the density of $N_{2 k}\left(\mu_{i}, I_{2 k}\right)$ at x_{i}, it is easy to check that

$$
N_{2 k}\left(x_{i} ; \mu_{i}^{\tau_{i}}, I_{2 k}\right)=N_{2 k}\left(x_{i}^{\tau_{i}^{-1}} ; \mu_{i}, I_{2 k}\right)
$$

Consequently, if we set $y_{i}=x_{i}^{\tau_{i}^{-1}}$, sampling from the posterior distribution of μ in the DPM model (1) reduces to sampling from the posterior distribution of μ in the following conjugate DPM model:

$$
\begin{align*}
y_{i} \mid \mu_{i} & \sim N_{2 k}\left(\mu_{i}, I_{2 k}\right) \\
\mu_{i} \mid P & \sim P \tag{4}\\
P & \sim D P\left(n_{0} P_{0}\right) .
\end{align*}
$$

There exist several samplers for conjugate DPM models; for a review, we refer the reader to MacEachern (1998); Neal (2000); Griffin and Holmes (2010). Following the notations of Dahl (2003), we use a parametrization of μ in terms of:

- a set partition $\eta=\left\{S_{1}, \ldots, S_{q}\right\}$ for $\{1, \ldots, n\}$ where each S_{j} represents a cluster, i.e., $\mu_{i}=\mu_{j}$ if there exists $j_{1} \in\{1, \ldots, q\}$ such that $i, j \in S_{j_{1}}$ and $\mu_{i} \neq \mu_{j}$ if there exist $j_{1}, i_{1} \in\{1, \ldots, q\}, i_{1} \neq j_{1}$ such that $i \in S_{i_{1}}, j \in S_{j_{1}}$,
- a vector $\phi=\left(\phi_{1}, \ldots, \phi_{q}\right)$ composed of the distinct values of μ, i.e., $\phi_{j}=\mu_{i}$ for all $i \in S_{j}$.

Then, the conjugate DPM model (4) may be expressed as:

$$
\begin{align*}
y_{i} \mid \eta, \phi & \sim N_{2 k}\left(\sum_{j=1}^{q} \phi_{j} \mathbf{1}_{\left\{i \in S_{j}\right\}}, I_{2 k}\right) \\
\phi_{j} \mid \eta & \sim P_{0} \tag{5}\\
\eta & \sim p(\eta) \propto \prod_{i=1}^{q} n_{0} \Gamma\left(\left|S_{j}\right|\right)
\end{align*}
$$

where $\left|S_{j}\right|$ is the cardinal of $S_{j}, \mathbf{1}_{A}$ is the indicator function for the event A, Γ denotes the gamma function and p stands for the generic notation for any density. We can integrate over the clusters locations parameter ϕ analytically in (5) as P_{0} is conjugate to the normal distribution of y_{i} given η and ϕ. Then, we run the SAMS sampler of Dahl (2003) for simulating η. This sampler may improve the merge-split sampler initially proposed by Jain and Neal (2004). Once a simulation of η is obtained, it is easy to simulate the clusters locations parameter ϕ from its full conditional which reduces to sample independently each ϕ_{j} from a $N_{2 k}\left(\Sigma_{j} \sum_{i \in S_{j}} y_{i} /\left|S_{j}\right|, \Sigma_{j}\right)$ distribution with $\Sigma_{j}^{-1}=\left|S_{j}\right|^{-1} I_{2 k}+\Sigma_{0}^{-1}(\rho)$. As recommended by the previous authors, we combine three runs of the MetropolisHastings update of the SAMS sampler with a full scan of Gibbs sampling for μ (see MacEachern, 1994, for a presentation of this particular Gibbs sampler). Some details of the SAMS and the Gibbs samplers used in this article are given in the Appendix.

Simulations of r It is shown in the Appendix that the $r_{i j}$ are independent given $\left(\theta, \tau, \mu, \rho, n_{0}\right)$ with density :

$$
\begin{equation*}
p\left(r_{i j} \mid \theta, \tau, \mu, \rho, n_{0}\right) \propto r_{i j} e^{-\frac{1}{2}\left(r_{i j}-u_{i j}^{\prime} \mu_{i \tau_{i}(j)}\right)^{2}} \tag{6}
\end{equation*}
$$

with $u_{i j}^{\prime}=\left(\cos \theta_{i j}, \sin \theta_{i j}\right)$. If we denote by $N_{1}^{+}(m, v)$ the univariate normal distribution truncated to $[0, \infty)$, we remark that (6) is close to the value of the
density of $N_{1}^{+}\left(u_{i j}^{\prime} \mu_{i \tau_{i}(j)}, 1\right)$ at $r_{i j}$. It is then natural to simulate from (6) by a Metropolis-Hastings step with a $N_{1}^{+}\left(u_{i j}^{\prime} \mu_{i \tau_{i}(j)}, 1\right)$ as the proposal distribution. Clearly, the probability of acceptance reduces to the ratio $\min \left\{r_{i j}^{\text {new }} / r_{i j}^{o l d}, 1\right\}$ where $r_{i j}^{o l d}$ and $r_{i j}^{\text {new }}$ are, respectively, the current and the proposed values of $r_{i j}$ in the algorithm.

Simulations of τ As the prior distribution of τ is uniform, we have that:

$$
\begin{aligned}
p\left(\tau \mid \theta, r, \mu, \rho, n_{0}\right) & =p(\tau \mid x, \mu) \\
& \propto p(x \mid \tau, \mu) \\
& \propto \prod_{i=1}^{n} N_{2 k}\left(x_{i} ; \mu_{i}^{\tau_{i}}, I_{2 k}\right) .
\end{aligned}
$$

Thus, given $\left(\theta, r, \mu, \rho, n_{0}\right)$, the τ_{i} are independent with density (with respect to the counting measure on the set T of permutations of $\{1, \ldots, k\}$):

$$
\begin{equation*}
p\left(\tau_{i} \mid x, \mu\right)=\frac{N_{2 k}\left(x_{i} ; \mu_{i}^{\tau_{i}}, I_{2 k}\right)}{\sum_{t \in T} N_{2 k}\left(x_{i} ; \mu_{i}^{t}, I_{2 k}\right)} . \tag{7}
\end{equation*}
$$

Simulations of ρ From (3), it is clear that the full conditional distribution of ρ reduces to the conditional distribution of ρ given μ. Then, using the parametrization of μ in terms of (η, ϕ) and (5), we note that η and ρ are independent and that:

$$
\begin{align*}
p\left(\rho \mid \theta, r, \mu, \tau, n_{0}\right) & =p(\rho \mid \eta, \phi) \\
& \propto p(\phi \mid \eta, \rho) p(\rho \mid \eta) \\
& \propto\left(\prod_{j=1}^{q} p\left(\phi_{j} \mid \rho\right)\right) p(\rho) . \tag{8}
\end{align*}
$$

We show in the Appendix that $\left|\Sigma_{0}^{-1}(\rho)\right|=\rho^{-2}$ and that the components of the matrix $\Sigma_{0}^{-1}(\rho)$ are independant (constant) of ρ except the components of the
first 2 by 2 diagonal submatrix (lines and columns 1 and 2). As this submatrix is equal to $\left(\rho^{-1}+(k-1)\right) I_{2}$, it is easily seen that

$$
\begin{aligned}
\phi_{i}^{\prime} \Sigma_{0}^{-1}(\rho) \phi_{i}^{\prime} & =\left(\rho^{-1}+(k-1)\right) \phi_{i 1}^{\prime} \phi_{i 1}+\text { constant } \\
& =\rho^{-1} \phi_{i 1}^{\prime} \phi_{i 1}+\text { constant } .
\end{aligned}
$$

where constant stands for a generic notation for an expression independent of ρ. Since $\phi_{j} \mid \rho \sim P_{0}(\rho)=N_{2 k}\left(0, \Sigma_{0}(\rho)\right)$ and $\rho \sim I G\left(a_{\rho}, b \rho\right)$, we have that:

$$
\prod_{j=1}^{q} p\left(\phi_{j} \mid \rho\right) \propto \rho^{-q} e^{-\frac{1}{2} \rho^{-1} \sum_{j=1}^{q} \phi_{i 1}^{\prime} \phi_{i 1}}
$$

and it is easy to conclude from (8) that the full conditional of ρ is

$$
\begin{equation*}
I G\left(a_{\rho}+q, b_{\rho}+\frac{1}{2} \sum_{i=1}^{q} \phi_{i 1}^{\prime} \phi_{i 1}\right) . \tag{9}
\end{equation*}
$$

Simulations of n_{0} Using the arguments of Escobar and West (1995), under the $G\left(a_{n_{0}}, b_{n_{0}}\right)$ prior, n_{0} is updated at each Gibbs iteration by sampling first an additional variable ζ from a Beta distribution and then a new value of n_{0} from a mixture of Gamma distributions as follows:

$$
\begin{align*}
\zeta \mid n_{0} & \sim B\left(n_{0}+1, n\right) \tag{10}\\
n_{0} \mid \zeta, q & \sim \pi_{n} G\left(a_{n_{0}}+q, b_{n_{0}}-\log \zeta\right)+\left(1-\pi_{n}\right) G\left(a_{n_{0}}+q-1, b_{n_{0}}-\log \zeta\right)
\end{align*}
$$

with weights π_{n} defined by $\pi_{n} /\left(1-\pi_{n}\right)=\left(a_{n_{0}}+q-1\right) /\left[n\left(b_{n_{0}}-\log \zeta\right)\right]$.

The whole procedure is summarized in the Algorithm 1.

```
Algorithm 1
Require: Data set \(\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)\).
Require: Hyperparamaters \(a_{\rho}, b_{\rho}, a_{n_{0}}, b_{n_{0}}\).
    Repeat :
```

1. Simulate η.
(a) Run three times the SAMS sampler.
(b) Run the Gibbs sampler.
2. Simulate $\phi_{j} \sim N_{2 k}\left(\Sigma_{j} \sum_{i \in S_{j}} y_{i} /\left|\Sigma_{j}\right|, \Sigma_{j}\right)$ for each cluster j.
3. Propose $r_{i j}^{\text {new }} \sim N_{1}^{+}\left(u_{i j}^{\prime} \mu_{i \tau_{i}(j)}, 1\right)$, accept with probability $\min \left(r_{i j}^{\text {new }} / r_{i j}^{\text {old }}, 1\right)$.
4. Simulate new τ_{i} from 7 .
5. Simulate new ρ from 9 .
6. Simulate n_{0} from 10 .

4 Simulations

Before using our algorithm on real data, we test it on two simulation studies. The performances of our method are investigated using the Adjusted Rand Index (ARI), proposed by Hubert and Arabie (1985), to compare our obtained partition to the actual one. The Rand Index (Rand, 1971) is a well known measure of the similarity between two partitions. If we denote by N_{00} the numbers of pairs that are in the same cluster in both partitions and by N_{11} the number of pairs that are in different clusters in both partitions, then the Rand Index is defined by the ratio $\left(N_{00}+N_{11}\right) /\binom{n}{2}$. The ARI is a corrected-for-chance version of the Rand index. Its expected value (under the generalized hypergeometric model) is equal to 0 and its maximum is 1 while the expected value of the Rand Index depends on the number of clusters. For a presentation of the different criteria for clusterings comparison and for a study on the usefulness of the adjusted measures, we refer the reader to Fritsch and Ickstadt (2009) and

Nguyen et al. (2009).

4.1 Influence of the precision parameter ρ

First we choose to simulate data using a procedure which is close to our model in order to investigate the influence of the precision parameter ρ. We set $q=3$ clusters of 10 data. We simulate the coordinates $\mu_{i j}$ of each center μ_{i} on the circle with fixed radius ρ. The first coordinate $\mu_{i 1}$ is simulated according to a uniform distribution on the circle with radius ρ. The other coordinates $\mu_{i j}, j=$ $2, \ldots, 5$ (so $k=5$) are generated according to a noisy rotation with angle $2 \pi j / 5$ of $\mu_{i 1}$. For each cluster i, we generate 10 data according to $P N_{10}\left(\mu_{i}, \mathbf{I}_{10}\right)$. A comparison of the generated data is provided in Figure 2 with different values for ρ; for the clarity of the picture we choose to represent only $q=2$ clusters of 5 observations. It is clear from Figure 2 that large values of ρ provide small variability for the projected observations. According to this remark we choose a noninformative prior for ρ by setting $a_{\rho}=b_{\rho}=0.01$.

4.2 Robustness to the hyperparameters $a_{n_{0}}$ and $b_{n_{0}}$

It is well-known that the number of clusters does depend on n_{0} whose prior distribution is fixed by the hyperparameters $a_{n_{0}}$ and $b_{n_{0}}$. In this subsection we investigate the sensitivity of the ARI with respect to these hyperparameters. We apply the same simulation strategy as in the previous subsection with a fixed $\rho=20$. Note that the parameters $a_{n_{0}}$ and $b_{n_{0}}$ are not at all involved in the simulation of the dataset. The mean values for the ARI over 100 simulated data sets are given in Table 1.

Table 1 suggests that a choice of $a_{n_{0}} / b_{n_{0}}$ approximatively between 1 to 10 provides good and similar results.

Figure 2: Two data sets are generated with two different values for the parameter ρ to highlight the influence of this parameter. Two clusters of five data are represented on each plot. Each data is composed of $k=5$ angles on the circle. One cluster is represented by the black cross, the other by the red square.

Table 1: Adjusted Rand Index (Proportion of clustering with the actual number of clusters) according to $a_{n_{0}}$ and $b_{n_{0}}$.

	$b_{n_{0}}=0.1$	$b_{n_{0}}=1$	$b_{n_{0}}=10$	$b_{n_{0}}=100$	$b_{n_{0}}=1000$
$a_{n_{0}}=0.1$	$0.73(0.80)$	$0.71(0.79)$	$0.62(0.72)$	$0.63(0.75)$	$0.59(0.67)$
$a_{n_{0}}=1$	$0.76(0.91)$	$0.72(0.84)$	$0.65(0.79)$	$0.67(0.76)$	$0.64(0.71)$
$a_{n_{0}}=10$	$0.72(0.76)$	$0.78(0.96)$	$0.69(0.84)$	$0.67(0.80)$	$0.65(0.74)$
$a_{n_{0}}=100$	$0.70(0.70)$	$0.68(0.79)$	$0.79(0.92)$	$0.72(0.82)$	$0.62(0.75)$
$a_{n_{0}}=1000$	$0.66(0.69)$	$0.62(0.72)$	$0.68(0.79)$	$0.75(0.88)$	$0.65(0.76)$

5 Real data

We then apply the methodology to a real data set from post-operative treatment of liver cancer at the Institute of Sainte Catherine in Avignon, France (see Figure 1 and Table 2). Let us recall that no other competing methods exist for these kind of multivariate circular data except the method described in Abraham et al. (2013) with a fixed number of clusters. By consequence, our results are compared to those of Abraham et al. (2013) in which the number of clusters was preselected to $q=2$.

Let us remind that the a priori distribution of n_{0} is a gamma distribution with parameter $a_{n_{0}}$ and $b_{n_{0}}$ with expected value equal to $a_{n_{0}} / b_{n_{0}}$ (if $a_{n_{0}}>1$) and variance equal to $a_{n_{0}} / b_{n_{0}}^{2}$ (if $a_{n_{0}}>2$). Recall that the expected number of clusters given n_{0} is approximately equal to $n_{0} \log \left(1+n / n_{0}\right)$ (Teh, 2010). According to the results of Section 4, the results are rather robust with respect to the choice of the hyperparameters $a_{n_{0}}$ and $b_{n_{0}}$ with $1 \leq a_{n_{0}} / b_{n_{0}} \leq 10$. We choose a rather non-informative prior by setting $a_{n_{0}}=3$ and $b_{n_{0}}=0.3$ which leads to a distribution of n_{0} centered around 3 with a large variance. Other values for $a_{n_{0}}$ and $b_{n_{0}}$ have been tested and give nearly the same results. As in Section 4, we choose a non-informative prior by setting $a_{\rho}=b_{\rho}=0.01$.

The majority clustering (mode of the posterior distribution of the cluster-
ings) is the same as in Abraham et al. (2013) (two clusters: one containing data $1,2,6,9$ and 12 , the second containing data $3,4,5,7,8,10,11,13$ and 14$)$ with a posterior probability equal to 30.5%. This result was awaited and is coherent with the choice of 2 clusters in the previous method. But the real gain from our Bayesian approach is to look beyond this majority clustering. Here there are 3 more clusterings that are significant and that could give some information on this real dataset. The second majority clustering is nearly the same as the previous one : the clusters are the same but data 6 is alone in a third cluster. Indeed, this data is very atypical because it is the only one that contains an angle near 1.69π. The posterior probability for this clustering is 14.9%. The third majority clustering gives nearly the same information with a posterior probability of 13.5%. There are two clusters : one with data 6 and a second with all the others. Finally, another clustering with a posterior probability of 12.0% is made up of only one cluster. Even with other choices for the hyperparameters $a_{n_{0}}$ and $b_{n_{0}}$, the posterior probability of this clustering remains high. It enlights the fact that all the data share some common traits and the main difference in the two clusters of the majority clustering only stands for one angle. All the clusterings are included in Figure 3 sorted by their posterior probabilities. Remark that a credible region with a posterior probability of 71% is composed of the 4 previous clusterings.

We give in Figure 4 the posterior distribution of the number of clusters. The posterior probabilities of 1,2 or 3 clusters are respectively $65 \%, 21 \%$ and 12%. Consequently, the number of clusters is certainly (with probability 98%) less than or equal to 3 .

As expected, these results are in line with the clusterings obtained in Abra-

Clusterings

Figure 3: Barplot of the proportion of the different clusterings.

Clustering of real data

Figure 4: Posterior distribution of the number of clusters.
ham et al. (2013) but also add some information. Indeed, the choice of 2 clusters is not made a priori. We have different clusterings associated with different probabilities that help us understanding this data set : all data have similarities and data 6 is the most dissimilar.

MCMC convergence diagnostics was investigated with the clustering entropy

$$
-\sum_{i=1}^{q} \frac{\left|S_{i}\right|}{n} \log \left(\frac{\left|S_{i}\right|}{n}\right)
$$

Traceplots for this quantity and for other parameters of the model suggest a good mixing and the convergence of our chain.

Table 2: Real data set (radians).

Patient	$1^{\text {st }}$ angle	$2^{\text {nd }}$ angle	$3^{\text {rd }}$ angle	$4^{\text {th }}$ angle	$5^{\text {th }}$ angle
1	1.81π	0	$\pi / 4$	$\pi / 2$	π
2	1.78π	0	$\pi / 4$	$\pi / 2$	π
3	1.89π	$\pi / 4$	$\pi / 2$	$3 / 4 \pi$	π
4	1.94π	0.28π	0.56π	$3 / 4 \pi$	0.97π
5	-0.17π	$\pi / 2$	$\pi / 4$	$3 / 4 \pi$	π
6	1.69π	-0.06π	$\pi / 4$	$\pi / 2$	π
7	$3 \pi / 4$	0.28π	0.53π	$3 / 4 \pi$	π
8	1.86π	0.06π	$\pi / 2$	$3 / 4 \pi$	π
9	$\pi / 2$	π	1.81π	0	$\pi / 4$
10	0.31π	0.56π	$3 / 4 \pi$	$1 \pi / 2$	-0.19π
11	1.81π	0.1π	$\pi / 2$	$3 / 4 \pi$	π
12	$\pi / 4$	$\pi / 2$	π	1.81π	0
13	0.72π	π	-0.08π	$\pi / 4$	$\pi / 2$
14	0.22π	0.56π	$3 / 4 \pi$	π	1.89π

6 Conclusion

We present a full Bayesian framework for the clustering of multivariate directional or circular data. It is based on a hierarchical model that combines Projected Normal distributions and a Dirichlet Process. The parameters of the
model are then inferred using a Metropolis-Hastings within Gibbs algorithm. The simulation study and the real data example show the benefits of this approach. Indeed, the number of clusters is chosen automatically by the method and the final result is much more complete than the majority clustering which is usually provided by classical clustering algorithms. However some improvements could be contemplated as, for example, incorporating covariates (shape or size of the tumor, stage of the cancer, sex, age, ...) to preselect the beam positions.

7 Appendix

7.1 Specification of the prior of P_{0}

Let us recall the notations of Section 2 . We denote by R the 2×2-matrix of the rotation in \mathbb{R}^{2} with angle $2 \pi / k$ and center 0 and set $\mu_{i 1} \sim N_{2}\left(0, \rho I_{2}\right)$ and $\mu_{i j} \mid \mu_{i, j-1} \sim N_{2}\left(R \mu_{i, j-1}, I_{2}\right)$ for $j \in\{2, \ldots, k\}$. We denote by P_{0} the distribution of $\mu_{i}=\left(\mu_{i 1}^{\prime}, \ldots, \mu_{i k}^{\prime}\right)^{\prime}$. Then, there exist independent random variables $\epsilon_{j} \sim N_{2}\left(0, I_{2}\right)$, independent of $\mu_{i 1}$ such that $\mu_{i j}=R^{j-1} \mu_{i 1}+\epsilon_{j}$ for $j \in\{2, \ldots, k\}$. It is then clear that P_{0} is centered, gaussian with covariance matrix

$$
\Sigma_{0}(\rho)=\left(\begin{array}{ccccc}
\rho I_{2} & \rho R^{\prime} & \rho R^{2^{\prime}} & \ldots & \rho R^{(k-1)^{\prime}} \\
\rho R & (\rho+1) I_{2} & \rho R^{\prime} & \ldots & \rho R^{(k-2)^{\prime}} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\rho R^{k-2} & \rho R^{k-3} & \ldots & (\rho+1) I_{2} & \rho R^{\prime} \\
\rho R^{k-1} & \rho R^{k-2} & \ldots & \rho R & (\rho+1) I_{2}
\end{array}\right)
$$

where R^{\prime} is the transposed matrix of R and that

$$
\Sigma_{0}^{-1}(\rho)=\left(\begin{array}{cccccc}
\left(\rho^{-1}+(k-1)\right) I_{2} & -R^{\prime} & -R^{2^{\prime}} & \ldots & -R^{(k-2)^{\prime}} & -R^{(k-1)^{\prime}} \\
-R & I_{2} & 0 & \ldots & \ldots & 0 \\
-R^{2} & 0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-R^{k-2} & \vdots & \ddots & \ddots & I_{2} & 0 \\
-R^{k-1} & 0 & \cdots & \ldots & 0 & I_{2}
\end{array}\right) .
$$

Furthermore, Theorem 13.3 .8 of Harville (1997) lead us to $\left|\Sigma_{0}^{-1}(\rho)\right|=\rho^{-2}$.

7.2 SAMS and Gibbs sampler

7.2.1 SAMS Sampler

The SAMS sampler is given in details in Dahl (2003). Formula (12) of Dahl (2003) reduces to

$$
\begin{aligned}
& P\left(l \in S_{i} \mid S_{i}, S_{j}\right)= \\
& \frac{\left|S_{i}\right| N_{2 k}\left(y_{l} ; \Sigma_{i} \sum_{h \in S_{i}} y_{h} /\left|S_{i}\right|, I_{2 k}+\Sigma_{i}\right)}{\left|S_{i}\right| N_{2 k}\left(y_{l} ; \Sigma_{i} \sum_{h \in S_{i}} y_{h} /\left|S_{i}\right|, I_{2 k}+\Sigma_{i}\right)+\left|S_{j}\right| N_{2 k}\left(y_{l} ; \Sigma_{j} \sum_{h \in S_{j}} y_{h} /\left|S_{j}\right|, I_{2 k}+\Sigma_{j}\right)}
\end{aligned}
$$

and formula (14) for the Metropolis-Hastings ratio is obtained with

$$
p\left(y_{S_{j}}\right)=\prod_{h=1}^{\left|S_{j}\right|} N_{2 k}\left(y_{i_{h}} ; \Sigma_{-j} \sum_{h \in S_{-j}} y_{h} /\left|S_{-j}\right|, I_{2 k}+\Sigma_{-j}\right)
$$

where $S_{j}=\left\{i_{1}, \ldots, i_{\left|S_{j}\right|}\right\}, \quad S_{-j}=\left\{i_{1}, \ldots, i_{j-1}\right\}$ and $\Sigma_{-j}=$ $\left(\left|S_{-j}\right|^{-1} I_{2 k}+\Sigma_{0}^{-1}(\rho)\right)^{-1}$.

7.2.2 Gibbs sampler

Let us denote by $\eta=\left\{S_{1}, \ldots, S_{q}\right\}$ the current partition of the algorithm. For $i=1, \ldots, n$, the observation i is assigned to cluster $S_{j}, j \in\{1, \ldots, q\}$ with probability proportional to

$$
\left|S_{j}^{-}\right| \times N_{2 k}\left(y_{i} ; \Sigma_{j} \sum_{i \in S_{j}} y_{i} /\left|S_{j}^{-}\right|, I_{2 k}+\Sigma_{j}\right)
$$

where $\left|S_{j}^{-}\right|$is the cardinal of $S_{j} \backslash\{i\}$, or to (a new) cluster S_{q+1} with probability proportional to

$$
n_{0} \times N_{2 k}\left(y_{i} ; 0, I_{2 k}+\Sigma_{0}(\rho)\right) .
$$

7.3 Full conditional distributions

Full conditional of $r \quad$ Recall that $x_{i}=\left(x_{i 1}^{\prime}, \ldots, x_{i k}^{\prime}\right)^{\prime} \in\left(\mathbb{R}^{2}\right)^{k}, i \in\{1, \ldots, n\}$, are independant with distribution $N_{2 k}\left(\mu_{i}^{\tau_{i}}, I_{2 k}\right)$ with $\mu_{i}^{\tau_{i}}=\left(\mu_{i \tau_{i}(1)}^{\prime}, \ldots, \mu_{i \tau_{i}(k)}^{\prime}\right)^{\prime} \in$ $\left(\mathbb{R}^{2}\right)^{k}$ and that $x_{i j}=\left(x_{i j 1}, x_{i j 2}\right)^{\prime}=\left(r_{i j} \cos \theta_{i j}, r_{i j} \sin \theta_{i j}\right)^{\prime}$. Then, it is easy to see that $\left(\theta_{i j}, r_{i j}\right)$ are independant given τ, μ, ρ and n_{0}, with density :

$$
p\left(\theta_{i j}, r_{i j} \mid \tau, \mu, \rho, n_{0}\right)=(2 \pi)^{-1} e^{-\frac{1}{2} \mu_{i \tau_{i}(j)}^{\prime} \mu_{i \tau_{i}(j)}} r_{i j} e^{-\frac{1}{2}\left(r_{i j}^{2}-2 r_{i j} u_{i j}^{\prime} \mu_{i \tau_{i}(j)}\right)}
$$

with $u_{i j}^{\prime}=\left(\cos \theta_{i j}, \sin \theta_{i j}\right)$. Then,

$$
\begin{aligned}
p\left(r \mid \theta, \tau, \mu, \rho, n_{0}\right) & \propto p\left(\theta, r \mid \tau, \mu, \rho, n_{0}\right) \\
& \propto \prod_{i=1}^{n} \prod_{j=1}^{k} p\left(\theta_{i j}, r_{i j} \mid \tau, \mu, \rho, n_{0}\right) \\
& \propto \prod_{i=1}^{n} \prod_{j=1}^{k} r_{i j} e^{-\frac{1}{2}\left(r_{i j}-u_{i j}^{\prime} \mu_{i \tau_{i}(j)}\right)^{2}} .
\end{aligned}
$$

References

1. Abraham, C., Molinari, N., and Servien, R. (2013). Unsupervised clustering of multivariate circular data. Statistics in Medicine 32, 1376-1382.
2. Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via polya urn schemes. The Annals of Statistics 1, 353-355.
3. Dahl, D. B. (2003). An improved merge-split sampler for conjugate dirichlet process mixture models. Technical Report, Univ. of Wisconsin - Madison 1086, 1-32.
4. Damien, P. and Walker, S. (1999). A full bayesian analysis of circular data using the von mises distribution. The Canadian Journal of Statistics 27, 291-298.
5. Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90, 577-588.
6. Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The Annals of Statistics 1, 209-230.
7. Fritsch, A. and Ickstadt, K. (2009). Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis 4, 367-392.
8. Griffin, J. and Holmes, C. (2010). Computational issues arising in bayesian nonparametric hierarchical models. In Hjort, N., Holmes, C., Mller, P., and Walker, S. G., editors, Bayesian Nonparametrics, pages 208-222, Cambridge University Press.
9. Harville, D. A. (1997). Matrix algebra from a statistician's perspective. Springer, New York.
10. Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification 2, 193-218.
11. Jain, S. and Neal, R. M. (2004). A split-merge markov chain monte carlo procedure for the dirichlet process mixture model. Journal of Computational and Graphical Statistics 13, 158-182.
12. Jona-Lasinio, G., Gelfand, A., and Jona-Lasinio, M. (2012). Spatial analysis of wave direction data using wrapped gaussian processes. Ann. Appl. Stat. 6, 1478-1498.
13. Lau, J. W. and Green, P. J. (2007). Bayesian model-based clustering procedures. Journal of Computational and Graphical Statistics 16, 526-558.
14. MacEachern, S. N. (1994). Estimating normal means with a conjugate style dirichlet process prior. Communications in Statistics: Simulation and Computation 23, 727-741.
15. MacEachern, S. N. (1998). Computational methods for mixture of dirichlet process models. In Dey, D., Mller, P., and Sinha, D., editors, Practical Nonparametric and Semiparametric Bayesian Statistics, pages 23-44, New-York: London. Lecture Notes in Statistics 133.
16. Mardia, K. and Jupp, P. (2009). Directional Statistics. John Wiley \& Sons, New-York.
17. Mardia, K. V., Hugues, G., Taylor, C. C., and Singh, H. (2008). A multivariate von mises distribution with applications to bioinformatics. The Canadian Journal of Statistics 36, 99-109.
18. Neal, R. M. (2000). Markov chain sampling method for dirichlet process mixture models. Journal of Computational and Graphical Statistics 9, 249-265.
19. Nguyen, X., Epps, J., and Bailey, J. (2009). Information theoretic measures for clustering comparison: Is a correction for chance necessary ? ICML'09: Pro-
ceedings of the 26th Annual International Conference on Machine Learning pages 1073-1080.
20. Nuñez-Antonio, G. and Gutiérrez-Peña, E. (2005). A bayesian analysis of directional data using the projected normal distribution. Journal of Applied Statistics 32, 995-1001.
21. Nuñez-Antonio, G., Gutiérrez-Peña, E., and Escarela, G. (2011). A bayeisan regression model for circular data based on the projected normal distribution. Statistical Modeling 11, 185-201.
22. Presnell, B., Morrison, S. P., and Littell, R. C. (1998). Projected multivariate linear models for directional data. Journal of the American Statistical Association 93, 1068-1077.
23. Quintana, F. A. (2006). A predictive view of bayesian clustering. Journal of Statistical Planning and Inference 136, 2407-2429.
24. Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846-850.
25. Ravidran, P. and Ghosh, S. K. (2011). Bayesian analysis of circular data using wrapped distributions. Journal of Statistical Theory and Practice 5, 547-560.
26. SenGupta, A. and Laha, A. K. (2008). A bayesian analysis of the change-point problem for directional data. Journal of Applied Statistics 35, 693-700.
27. Singh, H., Hnizdo, V., and Demchuk, E. (2002). Probabilistic model for two dependant circular variables. Biometrika 89, 719-723.
28. Teh, Y. W. (2010). Dirichlet processes. In Encyclopedia of Machine Learning. Springer.
29. Von Mises, R. (1918). Über die ganzzahligkeit der atomgewicht und verwandte fragen. Physikalische Zeitschrift 19, 490-500.
30. Wang, F. and Gelfand, A. E. (2013). Directional data analysis under the general projected normal distribution. Statistical Methodology 10, 113-127.
31. Wang, F. and Gelfand, A. E. (2014). Modeling space and space-time directional data using projected gaussian processes. Journal of the American Statistical Association 109, 1565-1580.
32. Wang, F., Gelfand, A. E., and Jona-Lasinio, G. (2015). Joint spatio-temporal analysis of a linear and a directional variable: space-time modeling of wave heights and wave directions in the adriatic sea. Statistica Sinica 25, 25-29.
33. Yuan, L., Wu, Q. J., Yin, F., Li, Y., Sheng, Y., Kelsey, C. R., and Ge, Y. (2015). Standardized beam bouquets for lung IMRT planning. Physics in Medicine \& Biology 60, 1821-1843.

[^0]: *Montpellier SupAgro-INRA, UMR MISTEA 729, Bâtiment 29, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France.
 ${ }^{\dagger}$ Université de Montpellier, IMAG, place Eugène Bataillon, 34095 Montpellier cedex 5, France.
 ${ }^{\ddagger}$ Toxalim, Université de Toulouse, INRA, Toulouse, France; remi.servien@inra.fr

