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Abstract

This paper presents a new Bayesian framework for the clustering of

multivariate directional or circular data. We introduce a hierarchical

model that combines Projected Normal distributions and a Dirichlet Pro-

cess. The parameters of the model are then inferred using a Metropolis-

Hastings within Gibbs algorithm. Simulated datasets are analyzed to

study the influence of the parameters of the model. Then, the benefits of

our approach are illustrated by clustering real data from the positions of

five separate radiotherapy x-ray beams on a circle.
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1 Introduction

Circular and directional data arise in a number of different fields such as oceanog-

raphy (wave direction), meteorology (wind direction), biology (animal move-

ment direction). The present paper is motivated by circular data in medicine.

Nowadays, chemotherapy and intensity-modulated radiation therapy (IMRT)

have demonstrated their effectiveness for cancer treatment. New molecules and

new generation of radiotherapy machines are developed by pharmaceutical firms.

Latest generation of radiotherapy machines projects multiple rays. Multiplying

beams allows concentrating radiation on the tumor while avoiding the massive

irradiation of healthy areas. However, the selection of the incident angles of

the treatment beams may be a crucial component of IMRT planning. Due to

variations in tumor locations, size and patient anatomy, repositioning for the

multiple beams machines takes long time based on the planner’s experience to

find an optimal set of beams. So, establishing a small set of standardized beam

bouquets for planning could be of valuable help. The set of beam bouquets

could be determined by learning the beam configuration features from previous

IMRT datasets. The multiple beams are fixed on a circle in the transverse plane

around the patient. By consequence, an observation is composed of the k beams

of a patient, that is k circular measurements. The multivariate trait is due to

the number of points k on the unit circle of R2. One actual observation consists

of a (non-ordered) set of k angles rather than of a (ordered) vector of length k.

In Figure 1, a real data set from post-operative treatment of liver cancer at the

Institute of Sainte Catherine in Avignon, France, is represented.

Abraham et al. (2013) proposed a first tool to assist the selection of beam

orientations in addition to the therapist’s experience. A suitable distance on

the circle was defined and, for a fixed number of clusters, an algorithm based on

simulated annealing was proposed. Yuan et al. (2015) generalized the precedent
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Figure 1: Real data set of 14 patients with k = 5 angles. A point on the circle
represents the location of a treatment beam.
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approach using k-medoids to cluster beam configuration features with different

numbers of beams. These methods suffer from some major flaws. First, the

number of clusters has to be supplied by the user. A procedure using a criterion

of model choice (AIC, BIC, RIC, silhouette index, ...) can be used to choose

between two models but an appropriate methodology that automatically finds

the optimal number of clusters would be very useful. Second, the final result is

only a unique clustering whereas there are probably other clusterings that could

be acceptable. A final result with all possible clusterings and a probability of

appearance for each could be of great help for the practitioner. These problems

can naturally be solved with a Bayesian clustering method based on Dirichlet

Process as it does not require a preselected number of clusters and provides

different clusterings (possibly with different numbers of clusters) with their pos-

terior probabilities. To our knowledge, such a clustering Bayesian model has

never been applied for multivariate circular data in the literature.

Circular data have first been studied using classical non-Bayesian approaches.

Three main models for circular data can be found in the litterature : the von-

Mises distributions, the wrapped distributions and the projected normal dis-

tributions. The von-Mises distributions, first introduced by Von Mises (1918)

and extended by Singh et al. (2002) and Mardia et al. (2008), are the natural

analogues on the sphere of the normal distribution. The wrapped distributions

(Mardia and Jupp, 2009) are based on a simple fact that a probability distribu-

tion on a circle can be obtained by wrapping a probability distribution defined

on the real line. Projected normal distributions are obtained by projecting

multivariate normal random variables radially onto the sphere (Presnell et al.,

1998). These latter distributions allow for asymmetric and possible bimodal

models. We refer the reader to Mardia and Jupp (2009) for a complete review

on probability distributions of circular data.
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Bayesian litterature on circular data is more recent. Von Mises distributions

are used in the univariate case in Damien and Walker (1999) and are applied to

a change-point problem in SenGupta and Laha (2008). Wrapped distributions

appear in Ravidran and Ghosh (2011), with a data augmentation algorithm to

overcome some computational difficulties, and in Jona-Lasinio et al. (2012), to

handle structured dependences between spatial measurements. Nuñez-Antonio

and Gutiérrez-Peña (2005) and Wang and Gelfand (2013) adapted the projected

normal distributions in a Bayesian framework. A more sophisticated model was

considered in Wang and Gelfand (2014) to capture structured spatial depen-

dence for modeling directional data at different spatial locations. This model

was then upgraded to capture joint structured spatial and temporal dependence

(Wang et al., 2015).

Note that, for all the models cited above, each observation is simply a point

on a circle or on a sphere while in our case, a single observation is made up of

k (k ≥ 2) non-ordered points on the circle. For this reason these models can-

not straightforwardly be adapted to our dataset. We propose an extension to

multivariate data of the projected normal distribution (which is different from

a simple projection of a multivariate normal distribution). We also provide

a particular prior on the variance-covariance matrix of the projected normal

distribution. Inference on this matrix is of particular interest in a clustering

framework. The projected normal distribution is then associated with a Dirich-

let process to perform clustering. Our proposed method includes an automated

selection for the number of clusters.

In the present paper, the Bayesian model is described in the next section.

Section 3 is devoted to the inference of the parameters of the model. Section 4

provides empirical results first on simulated data and then on the real data set

that motivated the present work.
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2 Model

A simple way of generating distributions on the p-dimensional unit sphere Sp

is to radially projecting probability distributions originally defined on the p-

dimensional space Rp (Presnell et al., 1998). Let x be a random p-dimensional

vector, then x/||x|| is a random point on Sp. If x has a p-variate Normal

distribution Np(µ,Σ) then x/||x|| is said to have a projected normal distri-

bution, denoted by PNp(µ,Σ). The literature has been first confined to the

special case where p = 2 and Σ = I (Presnell et al., 1998; Nuñez-Antonio and

Gutiérrez-Peña, 2005; Nuñez-Antonio et al., 2011). Then, Wang and Gelfand

(2013) studied the projected normal family with a general covariance matrix Σ

and refer to this richer class PNp(µ,Σ) as the general projected normal distri-

bution. This general version allows asymmetry and bimodality (see Figure 2.

in Wang and Gelfand, 2014). The general projected normal distribution is not

identifiable because x/||x|| is invariant to scale transformation. To overcome

this problem Wang and Gelfand (2013) fixed some variance parameters in Σ to

provide identifiability.

In the present paper, we first assume that the ith of the n observations is

given by a vector of k angles θi = (θi1, . . . , θik)′ ∈ [0, 2π[k instead of a non-

ordered set {θi1, . . . , θik}; the latter case will be adressed later in the paper.

Using a projected normal distribution, we denote by xi = (xi1, . . . , xik)′ ∈ (R2)k

a random vector with distribution N2k(µτii , I2k) where τi will be defined later

and θij is defined as the projection of xij on the unit circle of R2. In other

words, we have xij = (xij1, xij2)′ = (rij cos θij , rij sin θij)
′ for all i ∈ {1, . . . , n}

and all j ∈ {1, . . . , k} where rij denotes the Euclidean norm of xij . Note that

θi is observed while ri = (ri1, . . . , rik)′ is not and is treated as an unknown

parameter. We will denote by PN2k(µτii , I2k) the joint distribution of (θi, ri).

Clustering analysis will be based on a Dirichlet process mixture (DPM) model
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described as follows :

θi, ri|µi, τi ∼ PN2k(µτii , I2k),

µi|P ∼ P,

P ∼ DP (n0P0),

(1)

where DP (n0P0) denotes the Dirichlet process (DP) introduced by Ferguson

(1973) with center P0 = N2k(0,Σ0) and precision parameter n0. The clustering

properties of the DP are well known and date back to Blackwell and MacQueen

(1973). It is shown that the parameter µ = (µ1, . . . , µn) follows the Pólya urn

scheme :

µ1 ∼ P0,

µi+1|µ1, . . . , µi ∼ 1
n0+1

∑i
j=1 δµi + n0

n0+1P0, for i ≥ 2.
(2)

with δµi indicating the point measure on µi. So, µi+1 may be equal to one of the

previous µi’s or may be drawn from P0. This results in a positive probability

of sharing the parameter value with previous observations; hence the clusters.

In the sequel, we will denote by Pólya(n0P0) the distribution of µ given by

(2). Although the DPM is very popular for bayesian clustering, other model-

based cluster methods exist. For a review of these methods, we refer the reader

to Quintana (2006); Lau and Green (2007); Fritsch and Ickstadt (2009) and

references therein. Note that the DPM model does not require to choose the

number of clusters. On the other hand, it is well known that the number of

clusters can be controlled by n0. Learning about n0 from the data may be

addressed by assuming a Gamma prior distribution n0 ∼ G(an0
, bn0

) (Escobar

and West, 1995).

At this point, it is important to recall that the actual ith observation consists

of a (not ordered) set of the form {θi1, . . . , θik} rather than of a (ordered) vector
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θi = (θi1, . . . , θik)′. We treat the observations as vectors for convenience but this

can have important consequences on the clustering due to the possible permuta-

tion between the vector components. To be concrete, consider two observations

θ1 = (0, π/5, 2π/5, 3π/5, 4π/5)′ + ε1 and θ2 = (4π/5, 0, 3π/5, π/5, 2π/5)′ + ε2

where ε1 and ε2 are composed with small values of [0, 2π[. From a practi-

cal point of view, θ1 and θ2 should be put together in a same cluster since

{θ11, . . . , θ15} and {θ21, . . . , θ25} are very similar. In this case, the parameters

µ1 and µ2 are likely to have the same coordinates but in a different order. In

other words, if we denote by µi1, . . . , µik ∈ R2 the components of µi, it is likely

that {µ11, . . . , µ1k} = {µ21, . . . , µ2k} and (µ11, . . . , µ1k) 6= (µ21, . . . , µ2k). If it

was simply assumed that θi had a projected normal distribution PN2k(µi, I2k)

then, θ1 and θ2 would belong to the same cluster only when µ1 = µ2; and

this is a posteriori unlikely. To cope with this problem, we introduce the per-

mutation parameter τi. Denote by UP the uniform distribution on the set of

permutations of {1, . . . , k}. Assume that the parameters τi are a priori in-

dependent with distribution UP and, for all µi = (µ′i1, . . . , µ
′
ik)′ ∈ (R2)k, set

µτii = (µiτi(1), . . . , µiτi(k))
′; µτii can be viewed as a random permutation of the

coordinates of µi. Clearly, the introduction of τi in (1) enables our model to

put θ1 and θ2 in a same cluster although µ1 6= µ2 since there exist some values

of τ1 and τ2 for which µτ11 = µτ22 .

It is natural to assume that the k angles θi1, . . . , θik are a priori roughly

equally spaced on the unit circle. This prior information can be incorporated

into the covariance matrix Σ0 of P0 as follows. From (1), it is well known that

the marginal distribution of µi is P0 = N2k(0,Σ0). Denote by R the 2×2-matrix

of the rotation in R2 with angle 2π/k and center 0. Set µi1 ∼ N2(0, ρI2) where ρ

is a positive number and µij |µi,j−1 ∼ N2(Rµi,j−1, I2) for j ∈ {2, . . . , k}. Then,

roughly, µi1, . . . , µik are approximately equally spaced on the circle with center
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0 and radius
√
ρ. Note that the variance parameter ρ has an important impact

on the prior : a large value of ρ enables to generate µi1, . . . , µik approximately

situated on circle with a large radius. For such a large radius, the angles θij

of the projections on the unit circle have small variances. Hence, ρ can also be

viewed as a precision parameter for θi (see Subsection 4.1 and Figure 2). It is

shown in the Appendix that the derived matrix Σ0, also denoted by Σ0(ρ) in

the sequel to highlight the dependence on ρ, can be expressed as a closed-form

expression as well as the inverse Σ−10 and the determinant |Σ0|. Inference on ρ

can then be performed using an inverse gamma prior ρ ∼ IG(aρ, bρ) for which

the full posterior conditionnal distribution will be calculated in the following

section.

Finally, the complete bayesian model can be expressed as follows:

θi, ri|µ, τ ∼ PN2k(µτii , I2k),

µ|n0, ρ ∼ Pólya(n0P0(ρ)),

τi ∼ UP ,

ρ ∼ IG(aρ, bρ),

n0 ∼ G(an0 , bn0).

(3)

where P0(ρ) = N2k(0,Σ0(ρ)) and µ = (µ′1, . . . , µ
′
n)′. By a usual convention, it is

assumed that the random variables at a stage of the hierarchy are independent.

3 Inference

We set θ = (θ′1, . . . , θ
′
n)′, r = (r′1, . . . , r

′
n)′, τ = (τ1, . . . , τn)′ and ξ = (r′, µ′, τ ′, ρ, n0)′.

Thus, the parameter is ξ and the observation is θ. We sample from the posterior

distribution of ξ with a Metropolis-Hastings-Within-Gibbs algorithm.
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Simulations of µ We can restrict our attention to model (1) instead of the

full model (3) for the simulations of µ as every component of ξ except µ remains

fixed. An alternative reparametrization of µ, θ and ρ will prove useful. Denote

x = (x′1, . . . , x
′
n)′ where xi = (xi1, . . . , xik)′. First, note that the full conditional

distribution of µ reduces to the conditional distribution of µ given (x, n0, ρ, τ) as

there exists a natural bijection between xij and (θij , rij). Second, if we denote

by N2k(xi;µi, I2k) the value of the density of N2k(µi, I2k) at xi, it is easy to

check that

N2k(xi;µ
τi
i , I2k) = N2k(x

τ−1
i
i ;µi, I2k).

Consequently, if we set yi = x
τ−1
i
i , sampling from the posterior distribution of µ

in the DPM model (1) reduces to sampling from the posterior distribution of µ

in the following conjugate DPM model:

yi|µi ∼ N2k(µi, I2k),

µi|P ∼ P,

P ∼ DP (n0P0).

(4)

There exist several samplers for conjugate DPM models; for a review, we re-

fer the reader to MacEachern (1998); Neal (2000); Griffin and Holmes (2010).

Following the notations of Dahl (2003), we use a parametrization of µ in terms

of:

• a set partition η = {S1, . . . , Sq} for {1, . . . , n} where each Sj represents a

cluster, i.e., µi = µj if there exists j1 ∈ {1, . . . , q} such that i, j ∈ Sj1 and

µi 6= µj if there exist j1, i1 ∈ {1, . . . , q}, i1 6= j1 such that i ∈ Si1 , j ∈ Sj1 ,

• a vector φ = (φ1, . . . , φq) composed of the distinct values of µ, i.e., φj = µi

for all i ∈ Sj .
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Then, the conjugate DPM model (4) may be expressed as:

yi|η, φ ∼ N2k(
∑q
j=1 φj1{i∈Sj}, I2k),

φj |η ∼ P0,

η ∼ p(η) ∝
∏q
i=1 n0Γ(|Sj |),

(5)

where |Sj | is the cardinal of Sj , 1A is the indicator function for the event A, Γ

denotes the gamma function and p stands for the generic notation for any den-

sity. We can integrate over the clusters locations parameter φ analytically in (5)

as P0 is conjugate to the normal distribution of yi given η and φ. Then, we run

the SAMS sampler of Dahl (2003) for simulating η. This sampler may improve

the merge-split sampler initially proposed by Jain and Neal (2004). Once a sim-

ulation of η is obtained, it is easy to simulate the clusters locations parameter φ

from its full conditional which reduces to sample independently each φj from a

N2k(Σj
∑
i∈Sj yi/|Sj |,Σj) distribution with Σ−1j = |Sj |−1I2k + Σ−10 (ρ). As rec-

ommended by the previous authors, we combine three runs of the Metropolis-

Hastings update of the SAMS sampler with a full scan of Gibbs sampling for

µ (see MacEachern, 1994, for a presentation of this particular Gibbs sampler).

Some details of the SAMS and the Gibbs samplers used in this article are given

in the Appendix.

Simulations of r It is shown in the Appendix that the rij are independent

given (θ, τ, µ, ρ, n0) with density :

p(rij |θ, τ, µ, ρ, n0) ∝ rije−
1
2 (rij−u′ijµiτi(j))

2

, (6)

with u′ij = (cos θij , sin θij). If we denote by N+
1 (m, v) the univariate normal

distribution truncated to [0,∞), we remark that (6) is close to the value of the
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density of N+
1 (u′ijµiτi(j), 1) at rij . It is then natural to simulate from (6) by a

Metropolis-Hastings step with a N+
1 (u′ijµiτi(j), 1) as the proposal distribution.

Clearly, the probability of acceptance reduces to the ratio min{rnewij /roldij , 1}

where roldij and rnewij are, respectively, the current and the proposed values of rij

in the algorithm.

Simulations of τ As the prior distribution of τ is uniform, we have that:

p(τ |θ, r, µ, ρ, n0) = p(τ |x, µ)

∝ p(x|τ, µ)

∝
n∏
i=1

N2k(xi;µ
τi
i , I2k).

Thus, given (θ, r, µ, ρ, n0), the τi are independent with density (with respect to

the counting measure on the set T of permutations of {1, . . . , k}) :

p(τi|x, µ) =
N2k(xi;µ

τi
i , I2k)∑

t∈T N2k(xi;µti, I2k)
. (7)

Simulations of ρ From (3), it is clear that the full conditional distribu-

tion of ρ reduces to the conditional distribution of ρ given µ. Then, using

the parametrization of µ in terms of (η, φ) and (5), we note that η and ρ are

independent and that:

p(ρ|θ, r, µ, τ, n0) = p(ρ|η, φ)

∝ p(φ|η, ρ)p(ρ|η)

∝

 q∏
j=1

p(φj |ρ)

 p(ρ). (8)

We show in the Appendix that |Σ−10 (ρ)| = ρ−2 and that the components of the

matrix Σ−10 (ρ) are independant (constant) of ρ except the components of the
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first 2 by 2 diagonal submatrix (lines and columns 1 and 2). As this submatrix

is equal to (ρ−1 + (k − 1))I2, it is easily seen that

φ′iΣ
−1
0 (ρ)φ′i = (ρ−1 + (k − 1))φ′i1φi1 + constant

= ρ−1φ′i1φi1 + constant.

where constant stands for a generic notation for an expression independent of

ρ. Since φj |ρ ∼ P0(ρ) = N2k(0,Σ0(ρ)) and ρ ∼ IG(aρ, bρ), we have that:

q∏
j=1

p(φj |ρ) ∝ ρ−qe−
1
2ρ
−1 ∑q

j=1 φ
′
i1φi1 ,

and it is easy to conclude from (8) that the full conditional of ρ is

IG

(
aρ + q, bρ +

1

2

q∑
i=1

φ′i1φi1

)
. (9)

Simulations of n0 Using the arguments of Escobar and West (1995), under

the G(an0
, bn0

) prior, n0 is updated at each Gibbs iteration by sampling first an

additional variable ζ from a Beta distribution and then a new value of n0 from

a mixture of Gamma distributions as follows:

ζ|n0 ∼ B (n0 + 1, n)

n0|ζ, q ∼ πnG(an0
+ q, bn0

− log ζ) + (1− πn)G(an0
+ q − 1, bn0

− log ζ),
(10)

with weights πn defined by πn/(1− πn) = (an0
+ q − 1)/[n(bn0

− log ζ)].

The whole procedure is summarized in the Algorithm 1.
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Algorithm 1

Require: Data set θ = (θ1, . . . , θn).
Require: Hyperparamaters aρ, bρ, an0

, bn0
.

Repeat :

1. Simulate η.

(a) Run three times the SAMS sampler.

(b) Run the Gibbs sampler.

2. Simulate φj ∼ N2k(Σj
∑
i∈Sj yi/|Σj |,Σj) for each cluster j.

3. Propose rnewij ∼ N+
1 (u′ijµiτi(j), 1), accept with probability

min(rnewij /roldij , 1).

4. Simulate new τi from 7.

5. Simulate new ρ from 9.

6. Simulate n0 from 10.

4 Simulations

Before using our algorithm on real data, we test it on two simulation studies.

The performances of our method are investigated using the Adjusted Rand

Index (ARI), proposed by Hubert and Arabie (1985), to compare our obtained

partition to the actual one. The Rand Index (Rand, 1971) is a well known

measure of the similarity between two partitions. If we denote by N00 the

numbers of pairs that are in the same cluster in both partitions and by N11

the number of pairs that are in different clusters in both partitions, then the

Rand Index is defined by the ratio (N00 + N11)/(n2 ). The ARI is a corrected-

for-chance version of the Rand index. Its expected value (under the generalized

hypergeometric model) is equal to 0 and its maximum is 1 while the expected

value of the Rand Index depends on the number of clusters. For a presentation of

the different criteria for clusterings comparison and for a study on the usefulness

of the adjusted measures, we refer the reader to Fritsch and Ickstadt (2009) and

14



Nguyen et al. (2009).

4.1 Influence of the precision parameter ρ

First we choose to simulate data using a procedure which is close to our model

in order to investigate the influence of the precision parameter ρ. We set q = 3

clusters of 10 data. We simulate the coordinates µij of each center µi on the

circle with fixed radius ρ. The first coordinate µi1 is simulated according to a

uniform distribution on the circle with radius ρ. The other coordinates µij , j =

2, . . . , 5 (so k = 5) are generated according to a noisy rotation with angle 2πj/5

of µi1. For each cluster i, we generate 10 data according to PN10(µi, I10). A

comparison of the generated data is provided in Figure 2 with different values

for ρ; for the clarity of the picture we choose to represent only q = 2 clusters

of 5 observations. It is clear from Figure 2 that large values of ρ provide small

variability for the projected observations. According to this remark we choose

a noninformative prior for ρ by setting aρ = bρ = 0.01.

4.2 Robustness to the hyperparameters an0 and bn0

It is well-known that the number of clusters does depend on n0 whose prior

distribution is fixed by the hyperparameters an0
and bn0

. In this subsection we

investigate the sensitivity of the ARI with respect to these hyperparameters.

We apply the same simulation strategy as in the previous subsection with a

fixed ρ = 20. Note that the parameters an0
and bn0

are not at all involved in

the simulation of the dataset. The mean values for the ARI over 100 simulated

data sets are given in Table 1.

Table 1 suggests that a choice of an0/bn0 approximatively between 1 to 10

provides good and similar results.
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Figure 2: Two data sets are generated with two different values for the parameter
ρ to highlight the influence of this parameter. Two clusters of five data are
represented on each plot. Each data is composed of k = 5 angles on the circle.
One cluster is represented by the black cross, the other by the red square.
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Table 1: Adjusted Rand Index (Proportion of clustering with the actual number
of clusters) according to an0 and bn0 .

bn0
= 0.1 bn0

= 1 bn0
= 10 bn0

= 100 bn0
= 1000

an0
= 0.1 0.73 (0.80) 0.71 (0.79) 0.62 (0.72) 0.63 (0.75) 0.59 (0.67)

an0
= 1 0.76 (0.91) 0.72 (0.84) 0.65 (0.79) 0.67 (0.76) 0.64 (0.71)

an0
= 10 0.72 (0.76) 0.78 (0.96) 0.69 (0.84) 0.67 (0.80) 0.65 (0.74)

an0 = 100 0.70 (0.70) 0.68 (0.79) 0.79 (0.92) 0.72 (0.82) 0.62 (0.75)
an0 = 1000 0.66 (0.69) 0.62 (0.72) 0.68 (0.79) 0.75 (0.88) 0.65 (0.76)

5 Real data

We then apply the methodology to a real data set from post-operative treatment

of liver cancer at the Institute of Sainte Catherine in Avignon, France (see Figure

1 and Table 2). Let us recall that no other competing methods exist for these

kind of multivariate circular data except the method described in Abraham

et al. (2013) with a fixed number of clusters. By consequence, our results are

compared to those of Abraham et al. (2013) in which the number of clusters

was preselected to q = 2.

Let us remind that the a priori distribution of n0 is a gamma distribution

with parameter an0
and bn0

with expected value equal to an0
/bn0

(if an0
> 1)

and variance equal to an0/b
2
n0

(if an0 > 2). Recall that the expected number

of clusters given n0 is approximately equal to n0 log(1 + n/n0) (Teh, 2010).

According to the results of Section 4, the results are rather robust with respect

to the choice of the hyperparameters an0 and bn0 with 1 ≤ an0/bn0 ≤ 10. We

choose a rather non-informative prior by setting an0
= 3 and bn0

= 0.3 which

leads to a distribution of n0 centered around 3 with a large variance. Other

values for an0
and bn0

have been tested and give nearly the same results. As in

Section 4, we choose a non-informative prior by setting aρ = bρ = 0.01.

The majority clustering (mode of the posterior distribution of the cluster-
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ings) is the same as in Abraham et al. (2013) (two clusters: one containing

data 1,2,6,9 and 12, the second containing data 3,4,5,7,8,10,11,13 and 14) with

a posterior probability equal to 30.5%. This result was awaited and is coherent

with the choice of 2 clusters in the previous method. But the real gain from

our Bayesian approach is to look beyond this majority clustering. Here there

are 3 more clusterings that are significant and that could give some information

on this real dataset. The second majority clustering is nearly the same as the

previous one : the clusters are the same but data 6 is alone in a third cluster.

Indeed, this data is very atypical because it is the only one that contains an an-

gle near 1.69π. The posterior probability for this clustering is 14.9%. The third

majority clustering gives nearly the same information with a posterior probabil-

ity of 13.5%. There are two clusters : one with data 6 and a second with all the

others. Finally, another clustering with a posterior probability of 12.0% is made

up of only one cluster. Even with other choices for the hyperparameters an0

and bn0 , the posterior probability of this clustering remains high. It enlights

the fact that all the data share some common traits and the main difference

in the two clusters of the majority clustering only stands for one angle. All

the clusterings are included in Figure 3 sorted by their posterior probabilities.

Remark that a credible region with a posterior probability of 71% is composed

of the 4 previous clusterings.

We give in Figure 4 the posterior distribution of the number of clusters. The

posterior probabilities of 1, 2 or 3 clusters are respectively 65%, 21% and 12%.

Consequently, the number of clusters is certainly (with probability 98%) less

than or equal to 3.

As expected, these results are in line with the clusterings obtained in Abra-
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Figure 3: Barplot of the proportion of the different clusterings.
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Figure 4: Posterior distribution of the number of clusters.
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ham et al. (2013) but also add some information. Indeed, the choice of 2 clusters

is not made a priori. We have different clusterings associated with different prob-

abilities that help us understanding this data set : all data have similarities and

data 6 is the most dissimilar.

MCMC convergence diagnostics was investigated with the clustering entropy

−
q∑
i=1

|Si|
n

log

(
|Si|
n

)
.

Traceplots for this quantity and for other parameters of the model suggest a

good mixing and the convergence of our chain.

Table 2: Real data set (radians).

Patient 1stangle 2ndangle 3rdangle 4thangle 5thangle
1 1.81π 0 π/4 π/2 π
2 1.78π 0 π/4 π/2 π
3 1.89π π/4 π/2 3/4π π
4 1.94π 0.28π 0.56π 3/4π 0.97π
5 -0.17π π/2 π/4 3/4π π
6 1.69π -0.06π π/4 π/2 π
7 3π/4 0.28π 0.53π 3/4π π
8 1.86π 0.06π π/2 3/4π π
9 π/2 π 1.81π 0 π/4
10 0.31π 0.56π 3/4π 1π/2 -0.19π
11 1.81π 0.1π π/2 3/4π π
12 π/4 π/2 π 1.81π 0
13 0.72π π -0.08π π/4 π/2
14 0.22π 0.56π 3/4π π 1.89π

6 Conclusion

We present a full Bayesian framework for the clustering of multivariate direc-

tional or circular data. It is based on a hierarchical model that combines Pro-

jected Normal distributions and a Dirichlet Process. The parameters of the
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model are then inferred using a Metropolis-Hastings within Gibbs algorithm.

The simulation study and the real data example show the benefits of this ap-

proach. Indeed, the number of clusters is chosen automatically by the method

and the final result is much more complete than the majority clustering which

is usually provided by classical clustering algorithms. However some improve-

ments could be contemplated as, for example, incorporating covariates (shape

or size of the tumor, stage of the cancer, sex, age, ...) to preselect the beam

positions.

7 Appendix

7.1 Specification of the prior of P0

Let us recall the notations of Section 2. We denote by R the 2 × 2-matrix

of the rotation in R2 with angle 2π/k and center 0 and set µi1 ∼ N2(0, ρI2)

and µij |µi,j−1 ∼ N2(Rµi,j−1, I2) for j ∈ {2, . . . , k}. We denote by P0 the

distribution of µi = (µ′i1, . . . , µ
′
ik)′. Then, there exist independent random vari-

ables εj ∼ N2(0, I2), independent of µi1 such that µij = Rj−1µi1 + εj for

j ∈ {2, . . . , k}. It is then clear that P0 is centered, gaussian with covariance

matrix

Σ0(ρ) =



ρI2 ρR′ ρR2′ . . . ρR(k−1)′

ρR (ρ+ 1)I2 ρR′ . . . ρR(k−2)′

...
. . .

. . .
. . .

...

ρRk−2 ρRk−3 . . . (ρ+ 1)I2 ρR′

ρRk−1 ρRk−2 . . . ρR (ρ+ 1)I2


,
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where R′ is the transposed matrix of R and that

Σ−10 (ρ) =



(ρ−1 + (k − 1))I2 −R′ −R2′ . . . −R(k−2)′ −R(k−1)′

−R I2 0 . . . . . . 0

−R2 0
. . .

. . .
. . .

...

...
...

. . .
. . .

. . .
...

−Rk−2
...

. . .
. . . I2 0

−Rk−1 0 . . . . . . 0 I2


.

Furthermore, Theorem 13.3.8 of Harville (1997) lead us to |Σ−10 (ρ)| = ρ−2.

7.2 SAMS and Gibbs sampler

7.2.1 SAMS Sampler

The SAMS sampler is given in details in Dahl (2003). Formula (12) of Dahl

(2003) reduces to

P (l ∈ Si|Si, Sj) =

|Si|N2k

(
yl; Σi

∑
h∈Si yh/|Si|, I2k + Σi

)
|Si|N2k

(
yl; Σi

∑
h∈Si yh/|Si|, I2k + Σi

)
+ |Sj |N2k

(
yl; Σj

∑
h∈Sj yh/|Sj |, I2k + Σj

)
and formula (14) for the Metropolis-Hastings ratio is obtained with

p(ySj ) =

|Sj |∏
h=1

N2k

yih ; Σ−j
∑
h∈S−j

yh/|S−j |, I2k + Σ−j


where Sj = {i1, . . . , i|Sj |}, S−j = {i1, . . . , ij−1} and Σ−j =(
|S−j |−1I2k + Σ−10 (ρ)

)−1
.
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7.2.2 Gibbs sampler

Let us denote by η = {S1, . . . , Sq} the current partition of the algorithm. For

i = 1, . . . , n, the observation i is assigned to cluster Sj , j ∈ {1, . . . , q} with

probability proportional to

|S−j | ×N2k

yi; Σj
∑
i∈Sj

yi/|S−j |, I2k + Σj


where |S−j | is the cardinal of Sj \{i}, or to (a new) cluster Sq+1 with probability

proportional to

n0 ×N2k (yi; 0, I2k + Σ0(ρ)) .

7.3 Full conditional distributions

Full conditional of r Recall that xi = (x′i1, . . . , x
′
ik)′ ∈ (R2)k, i ∈ {1, . . . , n},

are independant with distributionN2k(µτii , I2k) with µτii = (µ′iτi(1), . . . , µ
′
iτi(k)

)′ ∈

(R2)k and that xij = (xij1, xij2)′ = (rij cos θij , rij sin θij)
′. Then, it is easy to

see that (θij , rij) are independant given τ, µ, ρ and n0, with density :

p(θij , rij |τ, µ, ρ, n0) = (2π)−1 e−
1
2µ
′
iτi(j)

µiτi(j) rij e
− 1

2 (r2ij−2riju
′
ijµiτi(j)),

with u′ij = (cos θij , sin θij). Then,

p(r|θ, τ, µ, ρ, n0) ∝ p(θ, r|τ, µ, ρ, n0)

∝
n∏
i=1

k∏
j=1

p(θij , rij |τ, µ, ρ, n0)

∝
n∏
i=1

k∏
j=1

rije
− 1

2 (rij−u′ijµiτi(j))
2

.
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