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Complementarity problems with respect
to Loewnerian cones

Alberto Seeger · David Sossa

Abstract This work deals with the analysis and numerical resolution of a broad class of
complementarity problems on spaces of symmetric matrices. The complementarity condi-
tions are expressed in terms of the Loewner ordering or, more generally, with respect to a
dual pair of Loewnerian cones.

Keywords Nonlinear complementarity problem · Loewner ordering · Cone-constrained
eigenvalue problem · Semismooth Newton method

1 Introduction

The main concern of this work is the analysis and numerical resolution of a class of nonlinear
complementarity problems formulated in Sn , the space of symmetric matrices of order n. As
usual, Sn is equipped with the trace inner product 〈Y, X〉 = tr(Y X) and the associated norm.
The first part of this work deals with a complementarity problem of the form

(SDCP)

{
�(X, Y, λ) = 0

0 � X ⊥ Y � 0,
(1)
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where the nonnegativity constraints are expressed in terms of the Loewner ordering� on Sn .
Following [20], we refer to the equilibrium model (1) as the Semi-Definite Complementarity
Problem (SDCP). The symbol λ stands for an unknown parameter vector in a Euclidean
space � and � is a continuously differentiable function from E := Sn × Sn × � to another
Euclidean space F. The dimension of each bold marked zero vector 0 is understood from the
context.

Although it is not strictly necessary, for simplicity in the exposition we assume that

dim(F) = dim(�) + dim(Sn). (2)

Such a dimensionality requirement is automatically satisfied in many practical cases. Below
we display two concrete examples for which the assumption (2) is in force.

Example 1.1 Let End(Sn) denote the vector space of linear endomorphisms on Sn . A
Loewner-eigenvalue of L ∈ End(Sn) is a scalar λ ∈ R such that the system

0 � X ⊥ (L(X) − λX) � 0

has a nonzero solution X ∈ Sn . Finding a Loewner- eigenvalue of L amounts to solve the
complementarity problem ⎧⎪⎨

⎪⎩
L(X) − λX − Y = 0

tr(X) − 1 = 0

0 � X ⊥ Y � 0.

(3)

The second equality in (3) is a normalization condition which ensures that X is a nonzero
solution. In this example one has � = R and F = Sn × R. Theorem 2.1 in [24] ensures that
the system (3) admits always a solution. The problem of finding Loewner-eigenvalues for
some particular linear endomorphisms is addressed for instance in [29].

Example 1.2 Consider an optimization problem of the form

minimize c(X) s.t. X � 0, A(X) = b, (4)

where c : Sn → R is a twice continuously differentiable convex function, A : Sn → R
m

is a linear map, and b ∈ R
m . A particular instance of (4) is the so-called nearest correlation

matrix problem, see [6,17]. The KKT-optimality conditions for the minimization problem
(4) are ⎧⎪⎨

⎪⎩
∇c (X) − AT (λ) − Y = 0

A(X) − b = 0

0 � X ⊥ Y � 0,

where∇c : Sn → Sn is the gradient map of c andAT is the adjoint map ofA. In this example
one has � = R

m and F = Sn × R
m .

Remark 1.3 Other particular cases of (1) can be found in [7,13,20]. Let Q ∈ Sn and L ∈
End(Sn). The so-called semidefinite linear complementarity problem{

L(X) + Q − Y = 0

0 � X ⊥ Y � 0

also fits into the model (1). Semidefinite LCPs have been analyzed by numerous authors,
both from a theoretical and algorithmic point of view.
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The second part of our work deals with a complementarity problem having the more
general form {

�(X, Y, λ) = 0

K 
 X ⊥ Y ∈ K∗.
(5)

The nonnegativity constraints on X and Y are now expressed in terms a Loewnerian cone K
and its positive dual coneK∗. By definition, a Loewnerian cone is the image of the SDP cone

Pn := {X ∈ Sn : X � 0}
under some invertible linear endomorphism on Sn . Loewnerian cones are not self-dual in
general, but they share a number of properties of the SDP cone. For instance, a Loewnerian
cone has a similar facial structure as the SDP cone.

2 Complementarity function approach for solving the SDCP

A natural strategy for solving (1) is to apply the Semismooth Newton Method (SNM) to the
nonlinear system {

�(X, Y, λ) = 0

κ(X, Y ) = 0,
(6)

where κ : Sn × Sn → Sn is a complementarity function for the SDP cone, i.e.,

κ(X, Y ) = 0 ⇔ 0 � X ⊥ Y � 0.

The function κ may not be differentiable. In order to apply the SNM one just needs to ensure
that κ is globally Lipschitz and semismooth. This requirement is fulfilled if one chooses for
instance the Fischer–Burmeister complementarity function

κfb(X, Y ) := X + Y − (X2 + Y 2)1/2

or the minimum complementarity function

κmin(X, Y ) := X − �Pn (X − Y ).

The square root operation ( · )1/2 is understood in the usual matrix sense and �Pn stands for
the projection map onto Pn . The functions κfb and κmin are known to be globally Lipschitz
and strongly semismooth, see [26] and [27].

For notational convenience we write the nonlinear system (6) in the more compact form

�(z) = 0, (7)

where � : E → W is given by

z = (X, Y, λ) 
→ �(z) := (�(X, Y, λ), κ(X, Y )).

Thanks to the assumption (2), the spaceW := F× Sn has the same dimension as E. In other
words, the system (7) has the same number of equations and unknown variables. We solve
the square system (7) with the following Semismooth Newton Method (SNM):

• Initialization. Choose an initial point z0 and set t = 0.
• Iteration. One has a current point zt . Pick Mt ∈ ∂�(zt ), find 	z such that

Mt	z = −�(zt ), (8)

and update zt+1 = zt + 	z.
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The symbol ∂�(z) stands for the Clarke generalized Jacobian of � at z (cf. [8]). Theoretical
aspects concerning the rate of convergence of the SNM can be consulted in [23].

Remark 2.1 We keep the SNM running until any of the following situations occur:

t = 1000 (lack of convergence),

cond(Mt ) ≥ 1010 (ill-conditioning),

‖�(zt )‖ ≤ 10−8 (a solution is found).

Here, cond(M) refers to the condition number of a linear map M . All our numerical experi-
ments are carried in Window 7 with a processor 3.40 GHz Intel Xeon, Memory(RAM) 8.00
Gb. The codes were implemented with Matlab 7.12.

2.1 Numerical experiments

The numerical experiments reported in this section concern the problemof finding aLoewner-
eigenvalue of a given map L ∈ End(Sn). So, the problem at hand is to solve (7) with
z = (X, Y, λ) and

�(z) = (L(X) − λX − Y, tr(X) − 1, κ(X, Y )). (9)

The linearized system (8) takes here the particular form

L(	X) − λt	X − 	Y − (	λ)Xt = −[L(Xt ) − λt Xt − Yt ] (10)

tr(	X) = −[tr(Xt ) − 1] (11)

Et (	X) + Ft (	Y ) = −κ(Xt , Yt ) (12)

with (Et , Ft ) ∈ ∂κ(Xt , Yt ). A convenient way to initialize the SNM for finding a zero of the
function (9) is to generate a random Gaussian matrix 
 ∈ Sn and set:

X0 = [tr(
)]−1
 ,

λ0 = ‖X0‖−2 〈L(X0), X0〉,
Y0 = L(X0) − λ0X0.

That a randommatrix
 ∈ Sn is Gaussianmeans that the entries
i, j (with i ≤ j) are random
variables following a standard normal law.

2.1.1 Performance of κfb

As a first choice,we let κ be the Fisher–Burmeister complementarity function. For the reader’s
convenience, we record below a useful lemma that can be found in [18].

Lemma 2.2 Let A, B ∈ Sn be such that A2 + B2 is nonsingular. Then κfb is continuously
differentiable at (A, B) and the partial differentials (with respect to X and Y ) are given by

(DXκfb)(A, B) = ISn − L−1
[A2+B2]1/2 ◦ LA (13)

(DY κfb)(A, B) = ISn − L−1
[A2+B2]1/2 ◦ LB . (14)

Here, ISn is the identity map on Sn and
U ∈ Sn 
→ LC (U ) = C •U := (CU +UC)/2

stands for the Lyapunov operator associated to C ∈ Sn.
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Table 1 SNM applied to (9)
with κ = κfb. Percentages of
success and failure

n = 3 n = 6 n = 9 n = 12

Success (%) 96.7 99.5 99.2 97.4

Divergence (%) 2.3 0.4 0.5 2.0

Ill-conditioning (%) 1.0 0.1 0.3 0.6

Table 2 SNM applied to (9)
with κ = κfb. Average NIPs and
average CPU times needed for
detecting a solution

n = 3 n = 6 n = 9 n = 12

NIP 1.05 1.01 1.01 1.04

CPU 0.2 0.6 2.9 8.4

When κ is taken as the Fisher–Burmeister complementarity function, Eq. (12) reads

Et (	X) + Ft (	Y ) = −κfb(Xt , Yt ) (15)

with (Et , Ft ) ∈ ∂κfb(Xt , Yt ). An explicit formula for computing the Clarke subdifferential
of κfb can be found in [28]. If the matrix X2

t + Y 2
t is nonsingular, then Lemma2.2 yields

Et = ISn − L−1
Ct

◦ LXt ,

Ft = ISn − L−1
Ct

◦ LYt ,

where Ct := [X2
t + Y 2

t ]1/2. In such a case, (15) takes the form

	X − L−1
Ct

(LXt (	X)) + 	Y − L−1
Ct

(LYt (	Y )) = −κfb(Xt , Yt ).

By applying LCt on each side of the above equality and rearranging terms, one gets

(Xt −[X2
t +Y 2

t ]1/2)•	X+(Yt −[X2
t +Y 2

t ]1/2)•	Y = [X2
t +Y 2

t ]1/2 •κfb(Xt , Yt ). (16)

In our first two experiments (cf.Tables1, 2), the map L is generated by means of a random
mechanism. To be more precise, we suppose that L is Gaussian, i.e., the entries of L are
independent random variables distributed according to a standard normal law. The “entries”
of L refer to the entries of the matrix representation of L with respect to the canonical basis
{Ei, j }1≤i≤ j≤n of Sn . If {ei }ni=1 denotes the canonical basis of R

n , then

Ei, j :=
{
ei eTi if i = j,

(ei eTj + e j eTi )/
√
2 if i �= j.

The dimension of the space End(Sn) is equal to t2n , where

tn := dim(Sn) = n(n + 1)/2.

So, one needs exactly t2n scalars for defining L. The percentages reported in Table1 are
estimated by working with a sample of 104 Gaussian random maps L. Figures are rounded
to one decimal place.

The word “Success” in Table1 means that the selected random initial point z0 has led to
a solution, i.e., to a root of (9). Of course, as in any Newton type method, one can perfectly
well encounter a situation of failure (divergence or ill-conditioning). As one can see from
Table1, the cases of ill-conditioning and divergence do not occur very often. We mention in
passing that we never encountered a situation of nonsmoothness, i.e., at each visited point
zt = (Xt , Yt , λt ), the matrix X2

t + Y 2
t was always nonsingular.
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In order to find a Loewner-eigenvalue of a given L, one initial point if often enough. On
some occasions, however, one has to run the SNM with more than one initial point. Table2
displays the expected Number of Initial Points (NIPs) needed for detecting a solution. These
figures have been estimated by using a sample of 104 Gaussian random maps L, so they
correspond to average values. The expected (or average) CPU time needed for detecting a
solution increases of course with n.

Remark 2.3 Note that (10)–(12) is a system of n2 + n + 1 equations in the same number of
unknown variables. So, the order of the system increases quadratically with n. This explains
somehow the rapid growth in CPU time reported in Table2.

The results reported in Table1 are extremely encouraging. However, one should not be
overoptimistic when L belongs to some special subsets of the space End(Sn). We have found
that the percentages of success of the SNM are significatively lower if L has for instance the
special structure

L(X) = AX A + 〈C, X〉B, (17)

where A, B,C ∈ Sn .

Remark 2.4 By theway, as shown in “Appendix”, it is possible to construct a triplet (A, B,C)

for which the map (17) has infinitely many Loewner-eigenvalues. Such situation is however
unlikely to occur if the matrices A, B,C are randomly generated.

Table3 has been constructed in the same way as Table1, except that now L has the special
form (17), where A, B,C ∈ Sn are random Gaussian matrices.

Two comments on Table3 are in order.

(i) Sometimes the current point zt = (Xt , Yt , λt ) is such that X2
t + Y 2

t is singular. As
shown in the last row of Table3, such situation occurs but it is rather rare. In our
opinion, it is not worthwhile to discuss in this paper the sophisticated issue of selecting
a pair (Et , Ft ) in ∂κfb(Xt , Yt ). Instead of bothering with the computation of the set
∂κfb(Xt , Yt ), we simply use Eq. (16), which makes sense even if X2

t + Y 2
t is singular.

The fact of encountering a point of nonsmoothness does not lead necessarily to a situation
of failure.

(ii) The instances of failure are essentially due to ill-conditioning, and not to divergence.
This phenomenon is reinforced when n increases, see the last column of Table3. Fixing
the ill-conditioning problem induced by the special map (17) is not however the main
concern of this work.

In spite of the negative results reported in Table3, one can still consider the SNM as a
viable strategy for computing the Loewner-eigenvalues of the map (17). Of course, one must
accept the possibility of initializing the SNMwith a large number of initial points. As shown
in Table4, the expected NIPs needed for detecting a solution grow rapidly with n.

Table 3 SNM applied to (9)
with κ = κfb. The map L has the
special form (17)

n = 3 n = 6 n = 9 n = 12

Success (%) 89.9 23.9 4.3 0.5

Divergence (%) 6.6 0.8 0.1 0.0

Ill-conditioning (%) 3.5 75.3 95.6 99.5

Nonsmoothness (%) 3.5 4.0 2.4 1.0
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Table 4 SNM applied to (9)
with κ = κfb. The map L has the
special form (17)

n = 3 n = 6 n = 9 n = 12

NIP 1.14 4.48 33.07 454.20

CPU 0.5 2.2 16.2 614.0

2.1.2 Performance of κmin

We now turn the attention to the minimum complementarity function. Equation (12) takes
the form

Et (	X) + Ft (	Y ) = −κmin(Xt , Yt ) (18)

with (Et , Ft ) ∈ ∂κmin(Xt , Yt ).We shall need following differentiability lemmadue toMalick
and Sendov [19]. The notation O(n) stands for the set of orthogonal matrices of order n,
λ(X) refers to the n-dimensional vector whose components are the eigenvalues of X ∈ Sn
arranged in nondecreasing order, Diag(x) is the diagonal matrix whose diagonal entries are
the components of x ∈ R

n , and � is used to indicate the Hadamard (or componentwise)
product. For each x ∈ R

n such that �n
i=1xi �= 0 and x1 ≤ · · · ≤ xn , one defines B(x) ∈ Sn

by setting

(B(x))i, j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i ≤ q, j ≤ q,

1 if i > q, j > q,

x j/(x j − xi ) if i ≤ q, j > q,

xi/(xi − x j ) if i > q, j ≤ q,

where q is the number of negative components of x .

Lemma 2.5 [19] The function M : Sn → R, defined by

M(X) := min
Y� 0

1

2
‖X − Y‖2,

is differentiable and its gradient at X is equal to �Pn (X). Furthermore, M is twice differ-
entiable at X if and only if X is nonsingular, in which case

D2M(X)(H1, H2) = 〈B(λ(X)), (UT H1U ) � (UT H2U )〉, (19)

where U ∈ O(n) is such that X = UDiag(λ(X))UT .

Thus, for all nonsingular X ∈ Sn , one has

D2M(X)(H1, H2) = 〈D�Pn (X)(H1), H2〉
and computing D�Pn (X)(H) is nothing but to find the Riesz representation of the linear
functional D2M(X)(H, ·). By using the formula (19), one gets

D�Pn (X)(H) = U
[
B(λ(X)) � (UT HU )

]
UT

=
∑

1≤i, j≤n

〈B(λ(X)), (UT HU ) � (UT Ei, jU )〉Ei, j . (20)

For numerical purposes, we rely on the representation (20).
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Table 5 SNM applied to (9)
with κ = κmin

n = 3 n = 6 n = 9 n = 12

Success (%) 86.7 97.6 99.3 98.6

Divergence (%) 12.9 2.4 0.6 1.0

Ill-conditioning (%) 0.4 0.0 0.1 0.4

Table 6 SNM applied to (9)
with κ = κmin

n = 3 n = 6 n = 9 n = 12

NIP 1.23 1.04 1.01 1.04

CPU 0.9 2.6 13.7 67.0

Lemma 2.6 Let A, B ∈ Sn be such that A − B is nonsingular. The κmin is differentiable at
(A, B) and the partial differentials (with respect to X and Y ) are given by

(DXκmin)(A, B) = ISn − D�Pn (A − B),

(DY κmin)(A, B) = D�Pn (A − B).

By exploiting the formulas established in Lemma2.6, one sees that (18) takes the form

[ISn − D�Pn (Xt − Yt )](	X) + D�Pn (Xt − Yt )(	Y ) = −κmin(Xt , Yt ).

whenever Xt − Yt is nonsingular. Tables5 and 6 have been constructed in the same way as
Tables1 and 2, respectively, except that now κ is the minimum complementarity function.
The map L is Gaussianly generated and has no special structure.

As in Table1, we never encountered a situation of nonsmoothness. Table5 shows that, in
terms of percentages of success, the performance of κ = κmin is of the same order as κ = κfb.
By contrast, Table6 shows that the CPU time needed by κ = κmin is clearly higher than the
CPU time needed by κ = κfb. The reason is that the computational effort for determining
(Et , Ft ) in (18) is much higher than in (15).

Remark 2.7 The performance of κ = κmin is similar to that of κ = κfb, also when L has
the special structure (17). For avoiding repetitions, we omit writing down the corresponding
table.

2.2 A brief comment on the squaring technique

The squaring technique is based on the representability of the SDP cone as a cone of squares:
Pn = {U 2 : U ∈ Sn}. One can get rid of the constraints X � 0 and Y � 0 by writing
X = U2 and Y = V 2. With such change of variables, the model (1) takes the form of a
smooth system of equations: {

�
(
U 2, V 2, λ

) = 0,〈
U 2, V 2

〉 = 0.
(21)

Unfortunately, the last equality in (21) is at the origin of a certain ill-conditioning in the
whole system. Besides, the system (21) is not square. By following a similar strategy as in
[9,10], one may shift the attention to a certain “companion” system{

�(U 2, V 2, λ) = 0,

U • V = 0,
(22)
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which is smooth, square, and usually well-conditioned. It must be observed that (22) is
related, but not equivalent, to the original problem (21). More precisely,

〈
U 2, V 2

〉 = 0
implies U • V = 0, but not conversely. The triplet (U, V, λ) is declared a fake solution to
(21) if the system (22) holds, but

〈
U 2, V 2

〉 �= 0.

Example 2.8 Consider the problem of finding a Loewner-eigenvalue of the map L given by
L(X) = tr(X)In , where In is the identity matrix of order n. The companion system (22)
becomes ⎧⎪⎨

⎪⎩
In − λU 2 − V 2 = 0,

‖U‖2 − 1 = 0,

U • V = 0.

(23)

One can check that

(U, V, λ) =
(

−e1eT1 + eneTn√
2

,

n∑
i=1

ei e
T
n+1−i , 0

)
(24)

is a fake solution. Indeed, (24) solves the system (23), but

〈
U 2, V 2〉 =

〈
e1eT1 + eneTn

2
, In

〉
= 1.

If one considers a map L ∈ End(Sn) that is randomly generated according to a Gaussian
distribution and applies the classical Newton method to the companion system⎧⎪⎨

⎪⎩
L(U 2) − λU 2 − V 2 = 0,

‖U‖2 − 1 = 0,

U • V = 0,

(25)

then one observes experimentally that, in case of convergence, one always obtains a triplet
(U, V, λ) that is not a fake solution, but a true one. In other words, the delivery of a fake
solution is a rather exceptional event. Instances of ill-conditioning in (25) can be observed
from time to time, but not frequently. On the negative side, our numerical tests show that
Newton’s method applied to (25) requires a very careful selection of the initial point in order
to ensure convergence. In view of this observation, it is reasonable to introduce a suitable
globalization technique as recommended by some authors.

3 On Loewnerian cones

In what follows,GL(Sn) stands for the group of invertible linear endomorphisms on Sn , i.e.,
GL(Sn) := {F ∈ End(Sn) : F is invertible}.

The next definition concerns a class of closed convex cones that are somewhat similar to Pn .

Definition 3.1 A closed convex cone K in Sn is Loewnerian if it representable as
K = {F(U ) : U � 0} (26)

for some F ∈ GL(Sn). One refers to (26) as the Loewnerian cone induced by F.
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ALoewnerian cone is nothing but the image ofPn under some invertible linear endomorphism
on Sn . The map F in the representation formula (26) is not unique. In fact,

F1,F2 ∈ GL(Sn) induce
the same Loewnerian cone

}
⇔ (F−1

2 ◦ F1)(Pn) = Pn .

Since Pn is proper and nonpolyhedral, so is any Loewnerian cone. A closed convex cone is
called proper if it is pointed and solid. A Loewnerian cone can also be represented in the
“inverse image” form

K = {X ∈ Sn : G(X) � 0} (27)

for some G ∈ GL(Sn). One passes from (26) to the dual representation (27) by taking G as
the inverse of F. Conversely, one passes from (27) to the primal representation (26) by taking
F as the inverse of G. The dual of a Loewnerian cone is a Loewnerian cone. Indeed, for all
F ∈ GL(Sn), one has

{F(U ) : U � 0}∗ = {F−T (V ) : V � 0} (28)

with F−T standing for the adjoint map of the inverse ofF. The following proposition concerns
the facial structure of Loewnerian cones.

Proposition 3.2 Let K be a Loewnerian cone induced by F ∈ GL(Sn).
(a) Each face of K is an exposed face. Furthermore, {dim(M) : M face of K} =

{t1, . . . , tn}, where tk := k(k + 1)/2 stands for the kth triangular number.
(b) M is a tk-dimensional face of K if and only if M = {F(U ) : U � 0, ImU ⊆ L} for

some linear subspace L ⊆ R
n of dimension k.

Proof As an application of [4, Theorem5], one sees that the transformation

2Sn
F�−→ 2Sn

F�(E) := {F(U ) : U ∈ E}
is a bijection between the faces of Pn and the faces of K. One can also check that

dim[F�(E)] = dim(E)

for any face E of Pn . The rest of the proof is a matter of recalling the well known facial
structure of Pn , see for instance [5, Chapter II.12] or [12, Section 4.2.2]. ��

A proper coneK in Sn is called rotund (cf. [25]) if every face ofK, other thanK itself and
{0}, is a half-line. Rotund cones are often times referred to as strictly convex cones because
they are characterized by the strict convexity condition

X1, X2 ∈ K not collinear �⇒ X1 + X2 ∈ int(K). (29)

By definition, a proper cone K in Sn is smooth if its dual is rotund.

Corollary 3.3 A Loewnerian cone in Sn, with n ≥ 3, is neither rotund nor smooth.

Proof Suppose that n ≥ 3. A rotund cone in Sn does not have a face of dimension t2 =
3. Hence, it cannot be Loewnerian by Proposition3.2(a). A smooth cone in Sn cannot be
Loewnerian either, because its dual is rotund. ��
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3.1 Complementarity relative to Loewnerian cones

Consider the general complementarity problem (5) withK being a Loewnerian cone induced
by F. Thanks to the duality formula (28) and the fact that

〈F(U ),F−T (V )〉 = 〈U, V 〉
for all U, V ∈ Sn , the model (5) can be written in the equivalent form{

�(F(U ),F−T (V ), λ) = 0,

0 � U ⊥ V � 0.
(30)

The latter complementarity problem has of course the same structure as (1). We are then
back to the context of Sect. 2. One can solve (30) by using for instance the complementarity
function technique with the Fisher–Burmeister function κfb. Another option is to use the
complementarity function technique directly on (5). As complementarity function for the
Loewnerian cone K one can use for instance

κ̂fb(X, Y ) := κfb

(
F−1(X),FT (Y )

)
.

Example 3.4 Consider the problem of finding a real λ such that the system

K 
 X ⊥ (L(X) − λX) ∈ K∗

has a nonzero solution X ∈ Sn . If K is a Loewnerian cone induced by F, then everything
boils down to solve the nonlinear system⎧⎪⎨

⎪⎩
L(F(U )) − λF(U ) − F−T (V ) = 0,

tr(F(U )) − 1 = 0,

κbf (U, V ) = 0.

Alternatively, one can work with the original variables X and Y :⎧⎪⎨
⎪⎩

L(X) − λX − Y = 0,

tr(X) − 1 = 0,

κ̂fb(X, Y ) = 0.

3.2 Examples of Loewnerian cones and counter-examples

We nowdress a short list of interesting proper cones that are Loewnerian.We do not claim that
all these cones are relevant in the theory of complementarity problems, but it is reasonable
to get acquainted with these examples just for the sake of academic knowledge. We start by
stating a trivial but useful lemma.

Lemma 3.5 Let C, B ∈ Sn be such that 〈C, B〉 �= 1. Then the map G : Sn → Sn defined by

G(X) = 〈C, X〉 B − X (31)

is invertible and its inverse F : Sn → Sn is given by

F(U ) = 〈C,U 〉
〈C, B〉 − 1

B −U.
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Proof For all U ∈ Sn , the matrix equation 〈C, X〉 B − X = U admits a unique solution
X ∈ Sn . Indeed, by taking the inner product with respect to C one gets

〈C, X〉 (〈C, B〉 − 1) = 〈C,U 〉.
From here one derives 〈C, X〉 as a function ofU and then one finds the solution X itself. ��

If X, B are symmetric matrices with B positive definite, then λmax(X, B) denotes the
largest real λ for which det(X − λB) = 0. When B is the identity matrix one simply writes
λmax(X).

Proposition 3.6 Let C, B ∈ Sn with B positive definite. The condition 〈C, B〉 �= 1 is neces-
sary and sufficient for the closed convex cone

K = {X ∈ Sn : λmax(X, B) ≤ 〈C, X〉} (32)

to be Loewnerian.

Proof Let G : Sn → Sn be given by (31). One has

G(X) � 0 ⇔ 〈C, X〉B � X

⇔ 〈u, Xu〉 ≤ 〈C, X〉 〈u, Bu〉 for all u ∈ R
n

⇔ λmax(X, B) ≤ 〈C, X〉.
In otherwords,K is representable as in (27). If 〈C, B〉 �= 1, thenG is invertible byLemma3.5,
and therefore K is Loewnerian. If 〈C, B〉 = 1, then R(B) = Ker(G) ⊆ K. Hence, K is not
pointed because it contains the line generated by B. ��
Remark 3.7 Suppose that 〈C, B〉 �= 1. The Loewnerian cone (32) is not self-dual in general.
However, its dual

K∗ =
{
Y ∈ Sn : λmax(Y,C) ≤ 〈B, Y 〉

〈C, B〉 − 1

}

has the same structure as (32).

Corollary 3.8 Let α ∈ R\{0, 1}. Then
K = {

X ∈ Sn : α λmax(X) ≤ n−1tr(X)
}

K ∗ = {
Y ∈ Sn : (1 − α)λmax(Y ) ≤ n−1tr(Y )

}
are mutually dual Loewnerian cones.

Proof One just needs to apply Proposition3.6 with B = In and C = (αn)−1 In . ��
Recall that λ(X) = (λ1(X), . . . , λn(X))T is the vector whose components are the eigen-

values of X ∈ Sn arranged in nondecreasing order. A spectral proper cone in Sn is a set of
the form

K = {X ∈ Sn : λ(X) ∈ P} , (33)

where P is a permutation invariant proper cone in R
n . An interesting family {K↑

q }nq=1 of
spectral proper cones arising in applications is given by

K↑
q :=

{
X ∈ Sn :

q∑
i=1

λi (X) ≥ 0

}
.

12



These cones have been studied in [3] and in many other publications. For q = 1, one gets

K↑
1 = {X ∈ Sn : λmin(X) ≥ 0} = Pn .

The choice q = n − 1 leads to

K↑
n−1 = {X ∈ Sn : λmax(X) ≤ tr(X)} ,

which is also a Loewnerian cone (cf. Corollary3.8). The analysis of the case 2 ≤ q ≤ n − 2
is more involved. The next proposition concerns the choice q = 2.

Proposition 3.9 Let n ≥ 4. The cone

K↑
2 = {X ∈ Sn : λ1(X) + λ2(X) ≥ 0} (34)

is not Loewnerian.

Proof The cone K↑
2 admits the representation (33) with

P = {x ∈ R
n : xi + x j ≥ 0 for all 1 ≤ i < j ≤ n}.

Such set P is a permutation invariant proper cone. Note that P is also polyhedral. In view of
[14, Lemma2.1], the set

E = {x ∈ P : xi + xn−1 = 0 for all i = 1, . . . , n − 2}
is a two-dimensional exposed face of P . By using such face E and Lewis’s facial theorem
[16, Theorem5.1], one can construct a two-dimensional face for K↑

2 . This fact and Proposi-

tion3.2(a) prove that K↑
2 is not Loewnerian. ��

The coneK↑
n−2 is not Loewnerian either, because it is the image ofK↑

2 under a nonsingular
transformation. In fact, one has the following general result.

Proposition 3.10 Let q ∈ {1, . . . , n − 1}. Then the linear map
X ∈ Sn 
→ G(X) := tr(X)

q
In − X

is a bijection between K↑
n−q and K↑

q .

Proof That G is invertible is clear from Lemma3.5. Since

λi (G(X)) = tr(X)

q
− λn−i+1(X)

for all i ∈ {1, . . . , n}, one has
q∑

i=1

λi (G(X)) = tr(X) −
q∑

i=1

λn−i+1(X) =
n−q∑
i=1

λi (X).

Hence,

K↑
n−q =

{
X ∈ Sn :

n−q∑
i=1

λi (X) ≥ 0

}

=
{
X ∈ Sn :

q∑
i=1

λi (G(X)) ≥ 0

}
= G−1(K↑

q ).

This completes the proof. ��
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By a revolution cone in Sn one understands a proper cone of the form
Rev(s, Y ) := {U ∈ Sn : s ‖U‖ ≤ 〈Y,U 〉},

where 0 < s < 1 and Y ∈ Sn is such that ‖Y‖ = 1. A revolution cone is a particular instance
of an ellipsoidal cone. By definition, an ellipsoidal cone in Sn is a set representable as

E(D, B) := {X ∈ Sn : ‖D(X)‖ ≤ 〈B, X〉}, (35)

where B ∈ Sn and D ∈ GL(Sn) are such that ‖D−T (B)‖ > 1. The latter inequality ensures
that (35) is a proper cone. Whether an ellipsoidal cone in Sn is Loewnerian or not depends
on the dimension n. The case n = 2 is somewhat special.

Proposition 3.11 One has:

(a) A proper cone in S2 is Loewnerian if and only if it is an ellipsoidal cone.
(b) Any ellipsoidal cone in Sn, with n ≥ 3, is not Loewnerian.

Proof One easily sees that (35) satisfies the strict convexity condition (29). Hence, (b) is a
consequence of Corollary3.3. Consider now the particular case n = 2. Note that

E(D, B) =
{
D−1(U ) : U ∈ Rev

(
1

‖D−T B‖ ,
D−T (B)

‖D−T B‖
)}

,

i.e., the action of D on the ellipsoidal cone (35) produces a revolution cone. So, it is enough
to show that a suitable chain

S2 L1−→ R
3 L2−→ R

3 L3−→ S2
of linear isomorphisms allows us to pass from a revolution cone to P2. One starts with the
standard linear isometry

L1

([
α β

β γ

])
:=
⎡
⎣ α√

2β
γ

⎤
⎦

between S2 and R
3. The action of L1 on a revolution cone Rev(s, Y ) in S2 produces a

revolution cone
rev(s, y) := {u ∈ R

3 : s ‖u‖ ≤ yT u}
in R

3. Then one constructs a linear invertible map L2 : R3 → R
3 that converts rev(s, y) into

the ice-cream cone
L3 := {x ∈ R

3 : [x21 + x22 ]1/2 ≤ x3}.
Such an L2 clearly exists. Finally, one constructs a linear isomorphism L3 : R3 → S2 that
converts L3 into P2. The explicit form of L3 can be found in [12, Section2.6] or in [21,
Chapter2.5]. ��

The next proposition concerns two classes of closed convex cones arising in the stability
analysis of dynamical systems.

Proposition 3.12 Consider amatrix A ∈ Mn with possible complex eigenvaluesμ1, . . . , μn.
Then

Klyap := {X ∈ Sn : AX + X AT � 0}, (36)

Kstein := {X ∈ Sn : X � AT X A} (37)
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are Loewnerian cones under the respective assumptions

μi + μ j �= 0 for all i, j ∈ {1, . . . , n}, (38)

μi μ j �= 1 for all i, j ∈ {1, . . . , n}. (39)

Proof The cones (36) and (37) are representable as in (27) with G given respectively by

Glyap(X) := AX + X AT ,

Gstein(X) := X − AT X A.

As established in [15], the spectral condition (38) implies the invertibility of the Lyapunov
operator Glyap : Sn → Sn , whereas (39) implies the invertibility of the Stein operator
Gstein : Sn → Sn . ��

4 By way of application: finding the nearest Euclidean distance matrix

A square matrix A of order m is an Euclidean distance matrix (EDM) if there are points
{pi }mi=1 in some Euclidean space Rd such that

ai j = ‖pi − p j‖22 for all i, j ∈ {1, . . . ,m},
where ‖ · ‖2 is the usual Euclidean norm on R

d . The EDMs of order m form a proper cone
in the space

S•
m := {X ∈ Sm : diag(X) = 0},

where diag(X) denotes the vector whose components are the diagonal entries of X . There is
a rich literature devoted to the analysis and applications of the cone

Em := {A ∈ S•
m : A is an EDM}.

The following proposition exploits the fact that S•
n+1 has the same dimension as Sn .

Proposition 4.1 Let φ be a linear isomorphism between S•
n+1 and Sn. Then

K = {φ(A) : A ∈ En+1 } (40)

is a Loewnerian cone.

Proof There exists a linear isomorphism L : Sn → S•
n+1 such that

En+1 = {L(U ) : U � 0}.
As shown in [1, Theorem3.2], one may consider for instance

L(U ) :=
[

0 [diag(U )]T
diag(U ) B(U ) − 2U

]
,

where

B(U ) := [diag(U )]1Tn + 1n[diag(U )]T

and 1n is the n-dimensional vector of ones. Hence, (40) is a Loewnerian cone induced by the
composition F = φ ◦ L. ��
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Remark 4.2 The dual of (40) is the Loewnerian cone induced by φ−T ◦ L−T . A matter of
computation shows that L−T : Sn → S•

n+1 is given by

L−T (V ) = 1

2

[
0 (V 1n)T

V 1n −V �

]
,

where V � is derived from V by setting zero to the diagonal entries.

An interesting problem of numerical linear algebra addressed in [1,11,22] is this: Given
a matrix C ∈ S•

n+1 generated by a random mechanism or obtained as outcome of some
physical experiment, one wishes to determine

�En+1(C) := projection of C onto En+1.

This problem is handled in [1,11] by expressing En+1 as intersection of two “simpler” cones
and by applying an alternating projection algorithm. We use here a completely different
approach:

– Firstly, we introduce a linear isometry φ : S•
n+1 → Sn and shift the attention to the

Loewnerian cone K = φ(En+1). Since φ is not merely a linear isomorphism, but also a
linear isometry, one has

�En+1(C) = φT (�K(A))

with A := φ(C). Indeed,

‖φT (�K(A)) − C‖ = ‖�K(A) − A‖ = min
X∈K ‖X − A‖

= min
W∈En+1

‖φ(W ) − A‖ = min
W∈En+1

‖W − C‖.

– Secondly, in order to find the projection of A onto K, we solve the complementarity
problem

K 
 X ⊥ (X − A) ∈ K∗ (41)

by using the SNM and a suitable complementarity function.

We now explain the details. As linear isometry φ : S•
n+1 → Sn we consider the map

φ

([
0 bT

b M

])
= M + √

2Diag(b),

whose adjoint is given by

φT (Z) =
[

0 1√
2
[diag(Z)]T

1√
2
diag(Z) Z�

]
.

Hence, K = φ(En+1) is the Loewnerian cone induced by

F(U ) = B(U ) − 2U + √
2Diag(diag(U )).

A matter of computation shows that

F−1(X) = (1/
√
8 )B(X) − (1/2)X�,

FT (Y ) = Diag
(√

2 diag(Y ) + 2Y �1n
)

− 2Y �,

F−T (V ) = (1/
√
2 )Diag(V 1n) − (1/2)V �.
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Table 7 SNM applied to (42) n = 25 n = 50 n = 75 n = 100

Success (%) 100 100 100 100

Divergence (%) 0 0 0 0

Ill-conditioning (%) 0 0 0 0

CPU (%) 5.9 79.6 217.6 839.1

Table 8 SNM applied to (43) n = 25 n = 50 n = 75 n = 100

Success (%) 100 100 100 100

Divergence (%) 0 0 0 0

Ill-conditioning (%) 0 0 0 0

CPU (%) 6.2 81.1 222.5 840.6

One can solve the complementarity problem (41) by applying the SNM to the system{
X − Y − A = 0,

κ̂fb(X, Y ) = 0.
(42)

We initialize the algorithm with a random Gaussian matrix X0 and Y0 = X0 − A. The
complementarity problem (41) can also be solved by applying the SNM to{

F(U ) − F−T (V ) − A = 0,

κfb(U, V ) = 0.
(43)

By way of initialization, we generate a random Gaussian matrix
 and setU0 = F−1(
) and
V0 = FT (
 − A).

Tables 7 and 8 report the performance of the SNM applied to (42) and (43), respectively.
The figures displayed in these tables are average values obtained by working with a sample
of 102 random Gaussian matrices C .

Remark 4.3 In a recent paper by Qi [22], the nearest EDM problem is treated by passing to
a certain dual optimization problem

minimizez∈Rn+1 θ(z) := (1/2)
∥∥�Qn+1 [C + Diag(z)]∥∥2 , (44)

where

Qn+1 := {A ∈ Sn+1 : 〈x, Ax〉 ≥ 0 when 〈1n+1, x〉 = 0}.
Note that the optimization problem (44) is unconstrained. The approach followed in [22]
consists in using the SNM to find a root of the gradient map

∇θ(z) := diag
(
�Qn+1 [C + Diag(z)]) .

Once a root z̄ has been found, then one evaluates

�En+1(C) = �Qn+1 (C + Diag(z̄)) .

Projecting onto Qn+1 offers no difficulty.
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5 By way of conclusion

This work shows that the SDCP can be solved efficiently by applying the SNM to the system
(6). The best results in terms of CPU time are obtained with the help of the Fisher–Burmeister
complementarity function κfb. Some comments concerning the genesis of this work and the
related literature are appropriate.

1. The idea of applying the SNM to a cone-constrained eigenvalue problem was considered
for the first time by Adly and Seeger [2]. The specific problem treated in [2] is that of
finding Pareto-eigenvalues in a given matrix A. This amounts to solve a complementarity
problem

⎧⎪⎪⎨
⎪⎪⎩

Ax − λx − y = 0,

〈1n, x〉 − 1 = 0,

0 ≤ x ⊥ y ≥ 0

(45)

involving the usual cone R
n+. Although the model (3) looks similar to (45), there are

important differences. To start with, (3) leads to a square system with n2 + n + 1
equations, whereas (45) leads to a square system with only 2n + 1 equations. Hence,
the involved dimensions are not of the same order. Secondly, the nonnegative orthant
is a polyhedral cone, whereas the SDP cone is non-polyhedral. As a consequence of
this fact, a matrix A has always a finite number of Pareto-eigenvalues, whereas a linear
endomorphism L on Sn may perfectly well have a continuum of Loewner-eigenvalues
(cf.Proposition5.1). In other words, the solution sets to (3) and (45) are structurally
different. Thirdly, the squaring technique

x = u[2] := u � u,

y = v[2] := v � v

based on the Hadamard product leads to a companion system

⎧⎪⎪⎨
⎪⎪⎩

Au[2] − λu[2] − v[2] = 0,

‖u‖2 − 1 = 0,

u � v = 0,

(46)

that is free of fake solutions. By contrast, the companion system (25) associated to (3)
may well admit fake solutions. In short, a complementarity problem relative to the SDP
cone differs substantially from a complementarity problems relative to the nonnegative
orthant.

2. The numerical resolution of Example1.1 is treated here for the first time. Example1.1
has been the driving motivation behind our work. By contrast, Example1.2 is mentioned
just to illustrate that the SDCP model (1) covers a wide variety of applications. The
literature dealing with the optimization problem (4) is quite extense and comparing
different methods for solving (4) is beyond the scope of this work.

Acknowledgments Both authors would like to thank the referees for meticulous reading of the manuscript
and for several suggestions that improved the presentation.
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Appendix

Let σ(L,Pn) denote the set of Loewner-eigenvalues of a linear map L : Sn → Sn . Such
set is called the Loewner-spectrum of L. The following proposition displays a map L whose
Loewner-spectrum is a set of infinite cardinality.

Proposition 5.1 Let L : Sn → Sn be given by L(X) = 〈C, X〉In, where C � 0. Then

[λmin(C), λmax(C)] ⊆ σ(L,Pn) =
n⋃

r=1

[ fr (C), gr (C)] , (47)

where fr (C) and gr (C) indicate respectively the sum of the r smallest and the sum of the r
largest eigenvalues of C.

Proof Assume that C �= 0, otherwise (47) holds trivially. A scalar λ belongs to σ(L,Pn) if
and only if there exists X ∈ Sn such that⎧⎪⎪⎨

⎪⎪⎩
X � 0, tr(X) = 1,

〈C, X〉In � λX,

〈C, X〉 = λ‖X‖2.
Hence,

σ(L,Pn) = {‖X‖−2〈C, X〉 : X ∈ �
}
, (48)

where � stands for the set of matrices X ∈ Sn satisfying
X � 0, tr(X) = 1, (49)

〈C, X〉(‖X‖2 − λmax(X)) ≥ 0. (50)

Under (49), the inequality (50) can be written as an equality. The set on the right-hand side
of (48) remains unchanged if one uses

�0 := {
X ∈ Sn : X � 0, tr(X) = 1, λmax(X) = ‖X‖2}

instead of �. On the other hand, one can check that

�0 =
n⋃

r=1

{
r−1QQT : Q ∈ O(n, r)

}
,

where Q ∈ O(n, r) indicates that Q is matrix of size n × r such that QT Q = Ir . Hence,

σ(L,Pn) =
n⋃

r=1

{
〈C, QQT 〉 : Q ∈ O(n, r)

}
.

Note that 〈C, QQT 〉 ranges over the interval [ fr (C), gr (C)] as the variable Q ranges over
O(n, r). ��
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