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Abstract—To deal with large multimodal datasets, coupled
canonical polyadic decompositions are used as an approximation
model. In this paper, a joint compression scheme is introduced to
reduce the dimensions of the dataset. Joint compression allows to
solve the approximation problem in a compressed domain using
standard coupled decomposition algorithms. Computational com-
plexity required to obtain the coupled decomposition is therefore
reduced. Also, we propose to approximate the update of the
coupled factor by a simple weighted average of the independent
updates of the coupled factors. The proposed approach and its
simplified version are tested with synthetic data and we show that
both do not incur substantial loss in approximation performance.

I. Introduction

Among a plethora of multivariate models, low rank tensors

emerged as natural joint models to approximate latent mul-

tilinear quantitative information contained in blocks of data

with multiple diversities. They became standard models in

chemometrics, antenna array processing, sociology, medical

imaging, higher order statistics, hyperspectral imaging, and

quantum mechanics [1], [2], [3], [4], [5]. For example, time

series of hyperspectral images can be analyzed using low rank

tensors [5] with diversities corresponding to spatial, spectral

and temporal variations.

Why tensors are useful. It is possible to treat these

data with matrix-based methods such as principal components

analysis, linear regression, nonnegative matrix factorization.

But by doing so, intricate multilinear information contained

in the tensor is lost.

Apart from their ability to mine for patterns on data without

losing multilinear information, the second reason why tensors

are so important in data analysis is the existence of powerful

theoretical results linking tensor decomposition and measured

physical phenomena. For example, consider a given tensor as

an hyper-matrix with three indices or more. It is then tempting

to generalize the singular value decomposition (SVD) to

tensors. A vastly used generalization is the canonical polyadic

decomposition (CPD), invented by Hitchcock in 1927, also

called CANDECOMP/PARAFAC decomposition.
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The strength of the CPD is that its parameters may be

obtained uniquely from the data, so that constraints such as

orthogonality need not be imposed as in the SVD. In other

words, the CPD of a tensor hopefully recovers physically

meaningful parameters from data, such as spectra in chemo-

metrics or abundances in hyperspectral images.

Why coupling is useful. Among many challenges of

tensor data analysis, two different topics became especially

important: coupling multiple decompositions and speeding

up computations by dimensionality reduction. With ever-

increasing data storage and ever-reducing sensor costs, in the

last decade, the size of data to be analyzed has sky-rocketed.

In particular, for tensors, increasing dimensions of all modes

may result in an enormous increase in computation time and

data storage requirements. On the other hand, this also means

that data are now obtained through multiple sensors recording

different modalities of the same phenomenon. From these

multiple datasets, it is then natural to try to extract common

information. This common information can be exploited by

coupling the the datasets models through shared latent vari-

ables. For instance, EEG and MEG both capture different

spatial fingerprints from the same time-evolving sources in the

brain. For this reason, joint decompositions have been used

extensively in this context [6]. Instances of coupled tensor

decompositions can also be found in chemometrics or array

processing, among others [7].

Why compression is useful. To handle dimensionality

reduction without destroying the multilinear structure of the

data, standard tools of matrix algebra can be used [1], [8] as

explained in section II. Works have been proposed to extend

this compression method to more difficult models including

constraints [9], but little has been done for compressing

coupled data sets when the decomposition model is a coupled

CPD. The goal in this paper is not to deal with extremely

huge tensors, but to show that dimensionality reduction can be

applied before applying a coupled CPD to tensor data, and that

this compression may not deteriorate the coupling relationship

if properly computed. A first idea of joint dimentionality

reduction can be found in [8], but not in the context of tensors

coupled through their decomposition. For the sake of clarity,

only the case of tensors having identical factors in one mode

of their decompositions will be studied in this paper, but we

still shed light on issues with more flexible couplings, which



recently appeared in the literature [10], [11].

Contents of the paper. After recalling some basics on

tensor algebra, a theoretical framework for joint dimensional-

ity reduction when computing a coupled CPD is presented.

A consensus algorithm is then described to compute the

compressed CPD, and simulation results are shown to illustrate

the power of the suggested compression method. Finally, we

discuss extensions of this work to more general couplings,

which appear to be more difficult problems.

II. Tensor Decompositions

A. Definitions

A tensor T is a multilinear application from a Cartesian

product space of n1 vector spaces to another Cartesian product

of n2 vector spaces. If bases are fixed in each of these product

spaces, T can be seen as an array with n = n1 + n2

dimensions. We say that T is of order n. Thus a matrix is

exactly a tensor of order 2 [3].

Similarly to the matrix algebra, one of the main challenges

of tensor data analysis is to identify appropriate bases of

representation for the data with respect to the information to be

extracted. To do so, two generalizations of the SVD have been

developed, namely the CPD and the Tucker model [12]. For

CPD, the tensor should be diagonal in the new basis whereas

in the Tucker model, orthogonality is imposed among the basis

vectors, but the resulting tensor is not diagonal. Note that for

matrices, both constraints can be achieved at the same time

with the SVD, this is not the case for higher order tensors.

To change the basis of representation of a tensor, it is

sufficient to change the basis of each vector space in the

Cartesian product spaces defining the tensor. Therefore, for

a third order tensor, three matrices can be used to define this

basis multilinear transformation, and the following notation

can be used:

T = (U ⊗ V ⊗W )T ′ (1)

where ⊗ here denotes tensor product of linear operators on

each mode. It is not the Kronecker product in the general case

[13]. Another usual notation is the n-mode product [14].

In the case of a second order tensor (matrix) M , for well

chosen orthonormal basis U and V such that M ′ is a diagonal

matrix with the least number of nonzero elements in the diag-

onal, this yields the SVD: M = (U ⊗ V )M ′ = UM ′V T .

B. CPD

If one wishes to express the tensor as a diagonal tensor in

a new basis, the multilinear operator transforming the tensor

into this new basis defines the CPD:

T = (A⊗B ⊗C)L =
R
∑

r=1

λr A:,r ⊗B:,r ⊗C :,r (2)

where L is a diagonal tensor and ⊗ in the right-hand side can

be understood as an outer product, R is the minimum number

of non-zero values in L and is called tensor rank (it actually

coincides with usual rank when T is a matrix). Matrices A, B

and C are sometimes called the factors of T and are usually

not orthogonal.

The important feature of the CPD is that it supposedly

explains the data stored in T with a multilinear model

where each way, or modality, interacts with each other in a

multiplicative fashion. These interactions are decomposed in R
terms, each characterizing a simple component of the complex

interaction between the modalities. Since laws of physics are

often approximately linear, the CPD is commonly used to

retrieve parameters of a physical model.

Under mild sufficient conditions, often met in practice, this

decomposition is unique [15], [3]. However, in practice, data

are corrupted by noise, which typically has a much higher

rank than noiseless data. Thus, computing a meaningful tensor

decomposition becomes a low rank approximation problem,

which turns out to be ill-posed in general, but is still tractable

[16], [17].

C. High Order Singular Value Decomposition

If orthogonality is imposed on the transformation matrices of

higher order tensors (n > 2), picking the minimum number

of vectors to describe each new basis corresponds the High

Order SVD (HOSVD) [8]. This decomposition can be obtained

exactly with the algorithm below, which is also sufficiently

robust to noise. Let T (i) be the matrix obtained by unfolding

T along the i-th mode,











UN1 = SVD
(

T (1)

)

V N2 = SVD
(

T (2)

)

T = (U ⊗ V ⊗W )G

WN3 = SVD
(

T (3)

)

(3)

The obtained tensor G is called the core, and the dimensions

R1, R2 and R3 of the columns of U , V and W are the multi-

linear ranks of T . It is easily checked that multilinear ranks are

always smaller than or equal to tensor rank. Thus algorithm (3)

can be used for compression, since no information of interest

will be lost by truncating the SVDs up to R singular values.

Compressed tensor G is of dimensions R×R×R and its CPD

is related to the CPD of T through a simple change of basis,

T = (U ⊗ V ⊗W )G = (UAc ⊗ V Bc ⊗WCc)L (4)

Ac = UTA, Bc = V TB, Cc = W TC (5)

In the noisy case, compression is lossy but often considered

of high precision [8]. The multilinear ranks R1, R2 and R3

should be set a little higher than R to limit compression loss.

As a main disadvantage, HOSVD cannot be used for param-

eter estimation, due to the unrealistic orthogonality constraints

on the factors and on the core. Still, it is a powerful tool for

denoising and compression. In this paper, we consider HOSVD

only as a compression tool and, in the following section, we

show how it can be used to compress jointly coupled tensors.



III. Compression of coupled tensors

A. Coupling two tensors

Suppose that two datasets are acquired in the form of tensors

T and T
′, and that these datasets correspond to measurements

of the same phenomenon. Then a way to write the similarity

between the tensors is to impose a common factor in their

CPD. Considering white additive zero-mean Gaussian mea-

surement noise yields the following coupled models:











T = (A⊗B ⊗C)L+ E

T
′ =

(

A′ ⊗B′ ⊗C ′
)

L
′ + E

′

C = C ′ + Γ, Γij ∼ N (0, σ2
c )

(6)

where E and E
′ are the independent measurement noises with

variances σ2
n and σ′2

n , and σ2
c stands for the variance of a

random difference between C and C ′, which allows coupling

to be more flexible.

For reasons of space, in what follows we develop a joint

compression scheme for the exact coupling case, that is when

C = C ′. After presenting simulation results, we discuss the

difficulties encountered with the more general case of flexible

couplings [11].

B. Independent or joint compression ?

A direct approach to compress two coupled tensors is to

compress each of them independently, and then use the in-

formation of the coupling only in the CPD computation stage.

There are two issues with this method. First, two independent

compressions make no use of the fact that a constraint links

the factors. Thus it is sub-optimal.

Indeed, suppose W and W ′ are two bases for the third

mode of T and T
′. Then exact coupling on the third mode

means that span(W ) = span(W ′). Thus only one basis Wj

is needed to compress the two tensors.

Second, since data are noisy, compression bases will be

estimated with some error. However, the coupling relationship

is written for the true factors, so that compressing indepen-

dently will destroy the coupling relationship. Indeed, defining

WCc = C for noiseless compression and Ŵ
T
C = Ĉc for

noisy compression,

WCc = W ′C ′

c but Ŵ Ĉc 6= Ŵ ′Ĉ
′

c. (7)

However, if the same basis is used for compressing the two

tensors, then the estimation error on W j is reduced. Moreover

it does not affect the coupling model:

C = C ′ ⇒ Ŵ
T

j C = Ŵ
T

j C
′ ≡ Cc = C ′

c (8)

It is clear that the best basis to jointly compress both tensors

Wj is obtained by a truncated SVD of the stacked unfolding

matrices. If noise levels are different, then they can be taken

into account when stacking the unfolding matrices:
[

T (3)

σn

,
T ′

(3)

σ′

n

]

= W jΣjQj (9)

By choosing an orthonormal basis, the observation noise

is still white in both tensors. Moreover we have shown that

the coupling model is direct even in the compressed space.

Thus, the compressed optimization problem to solve (6) with

no noise in the coupling is the following

minimize Υ = (1/σ2
n) ‖G − (Ac ⊗Bc ⊗Cc)L‖2

F
+

+(1/σ′

n
2
) ‖G′ − (A′

c ⊗B
′

c ⊗C
′

c)L
′‖

2
F

w.r.t. Ac,Bc,Cc,L,A′

c,B
′

c,C
′

c,L
′

subject to Cc = C
′

c

where T = (U ⊗ V ⊗W j)G
T

′ = (U ′ ⊗ V
′ ⊗W j)G

′

(10)

IV. Alternating algorithm with weighted

averages

When computing the CPD of a tensor, there are basically two

main categories of method. Altenating least squares (ALS)

[1], which relies on the fact that Υ is quadratic with respect

to each factor in order to sequentially update each factor until

convergence. On the other hand, a gradient-based approach

can be used to update all the variables at once. Even though a

wide literature discusses advantages and disadvantages of the

two methods, they basically suffer from the same drawback

of finding only local minima at best.

A gradient-based all-at-once optimization method is de-

scribed in [18], [7] while an alternating method when the

coupling is flexible is presented in [11]. For coupling with

equality between factors, standard ALS [1] has to be modified

to update Cc by solving the linear system

Cc

[

A
T

cAc ∗B
T

cBc

σ2
n

+
A

′T

cA
′

c ∗B
′T

cB
′

c

σ′2
n

]

=

(11)

G
(3) (Ac ⊙Bc)

σ2
n

+
G

′(3) (A′

c ⊙B
′

c)

σ′2
n

where ∗ denotes entry-wise product and ⊙ denotes Khatri-Rao

product.

Having in mind possible extensions of coupled decomposi-

tion to N datasets with large N , we may want to process the

datasets in a distributed fashion. In this context, the update

of the coupled factor is the only operation which cannot be

parallelized through the different datasets. A straightforward

option to solve (11) in a distributed way is to evaluate the

matrices AT

cAc ∗ BT

cBc and G(3) (Ac ⊙Bc) in parallel,

then apply a weighted consensus algorithm [19] with weights

given by 1/σ2
n to retrieve the sums and, finally, solve the

system at each processing node. Another approximate solution

is to assume that each step of uncoupled ALS generates an

unbiased estimate of vec (Cc) with known covariances. We

can then obtain a better estimate by merging the independent

estimators with a scalar best linear unbiased estimator (BLUE).

For two datasets, assuming estimation covariances D and D′,

the scalar BLUE C⋆
c of Cc is given by



C
⋆
c =

(

Tr (D)−1
Cc +Tr

(

D
′
)

−1
C

′

c

)

/(Tr (D)−1+Tr
(

D
′
)

−1
)

(12)

where Tr(·) denotes the trace. In practice, estimation co-

variances are not available, and we can assume that

(Tr (D) /σ2
n) ≈ (Tr

(

D′
)

/σ′2
n), thus leading to a simple

weighted average:

C⋆
c =

(

(1/σ2
n)Cc + (1/σ′2

n)C
′

c

)

((1/σ2
n) + (1/σ′2

n)) (13)

Note that for N ≫ 2 datasets, this weighted average can also

be implemented in a distributed way using weighted consen-

sus. Observe from the assumption on the estimation variances

that for similar noise levels on the datasets, estimation perfor-

mance on Cc and C ′

c must be similar. From the multilinear

structure, this mainly depends on the correlation structure of

the columns of the other factors. As we will see in simulations

for tensors with random factors, this approximation gives an

estimation performance very close to (11).

V. Simulation on synthetic data

For each tensor, three factor matrices of size 50×3 are drawn

independently according to a standard Gaussian distribution,

but the third factor is exactly the same for both tensors. Then

the tensors are normalized to have a unit Frobenius norm.

Five algorithms to compute the CPD are compared. Three

work in a compressed domain of size 3× 3× 3. Compression

is computed jointly, but then only two algorithms consider

coupling in the compressed domain, one being the weighted

average ALS described in section IV while the second one

is an exact coupled ALS with update (11). The third one

is an uncoupled plain ALS for each small tensor. Two other

algorithms do not compress the initial tensors. One just runs

two independent ALS, the other is the exact coupled ALS

with update (11) but in the uncompressed domain. The total

mean squared error (MSE) on the coupled factors is plotted

in Figure 1, signal to noise ratio (SNR) of the first tensor is

fixed to approximately 33dB (σn = 10−4) while the other

varies from 0 to 40dB.

It appears from the simulation results that the coupling

relationship is crucial in the compression. Indeed, the jointly

compressed independent ALS algorithm has smaller total MSE

than the uncompressed independent ALS. Since compression

can also be seen as denoising, it can be concluded that joint

data compression helps denoising the noisy dataset using

information about the span of coupled factors contained in less

noisy data. This is not intuitive, since in theory compressing

should increase estimation error by reducing the amount of

information contained in a data set. Moreover, even without

including the coupling knowledge in the ALS algorithm, it

is already efficient to simply compress jointly in order to

compute small independent ALS. That is why an extension

of joint compression to more complex models would be of

crucial importance.

0 5 10 15 20 25 30 35 40
10−7

10−6

10−5

10−4

10−3

10−2

SNR (Y ′)

T
o
ta

l
M
S
E

Uncoupled ALS

Coupled ALS

Compressed ALS

Compressed averaged ALS

Compressed coupled ALS

Fig. 1. Total MSE for estimation of factors C and C
′ for the five described

algorithms. MSE is averaged on 100 realizations of the CP model and noise,
each estimate is the best among six different initialization points.

VI. Extensions and Challenges

Recently, direct coupling has been extended to cover more

complex interaction between datasets. In [10], only a few num-

ber of components are considered shared, while others are not

a priori related. In a previous work, we proposed a Bayesian

framework to cover noisy and non-linear relations between the

factors, although only the noisy linear coupling model case has

been well-studied as of yet [11]. Overall, extensions concern

error modeling or transformation modeling in the coupling

model. Either way, obtaining a joint compression based on

linear tools is difficult. Let us see why with a few simple

examples.

A. Shared/Unshared components

Assume the following coupling model.

C =
[

C⋆, C̃
]

C ′ =
[

C⋆, C̃
′
]

(14)

where C⋆ has r ≤ R columns and stands for shared compo-

nents. In the easiest scenario, r is known. Then compressing

the two data sets jointly would mean that only a part of the

joint basis Wj spans the shared subspace. However, since a

priori C⋆ is not orthogonal to C̃ and C̃
′

, what is obtained

when computing the SVD as in (9) cannot be identified as

shared and unshared singular vectors. Especially when the data

are noisy, it is not clear whether this method is still optimal.

On the other hand, it may provide us with a tool for identi-

fying the number of shared components, since the dimension

of the span of the stacked tensors should not be greater than

2R− r.

B. Noisy coupling

If two datasets are obtained from the same samples but with

a slight change in the experimental setting, then it is possible

that the shared factors C and C ′ have some discrepancies



w.r.t. the true underlying factor C⋆ measured by a probability

density. In other words,

C = C⋆ + Γ

C ′ = C⋆ + Γ
′ (15)

where Γ and Γ
′ follow two independent matrix normal dis-

tributions with diagonal covariances. Then trying to express

the coupling in a direct fashion leads to additional correlated

observation noise.

T = (A⊗B ⊗C⋆)L+ (A⊗B ⊗ Γ)L+ E

T
′ =

(

A′ ⊗B′ ⊗C⋆
)

L
′ +

(

A′ ⊗B′ ⊗ Γ
′
)

L
′ + E

′

(16)

Now we have an exact coupled decomposition model where

the noise is correlated. Moreover, this correlation depends on

the factors to be estimated A and B. This can be tackled by

first computing two independent decompositions, then using

the estimates of uncoupled factors to write the correlation

model in (16) to find a common representation basis under

this correlated noise. This is however much trickier than the

joint compression presented earlier, and an optimal solution is

still to be found.

C. Linear Coupling

There is however one case which directly relates to the joint

compression as presented earlier. If the coupling is noiseless

but expressed through a linear transformation H , i.e.

C ′ = HC, (17)

then a simple multiplication by H of the third mode of the

first tensor yields exact coupling:

Y = (I ⊗ I ⊗H)T =
(

A⊗B ⊗C ′
)

L+ E
′′ (18)

where E
′′ is correlated on the third mode. That is, vec(E ′′)

follows a normal distribution with Kronecker product co-

variance I ⊠ I ⊠ HHT . However, the left inverse of H

is required to recover factor C. In this scenario, the joint

compression scheme presented earlier can then be applied on

the transformed data.

VII. Conclusion

In this paper we have dealt with joint dimensionality reduction

for coupled tensors when joint CPD is to be applied to several

datasets. A simple algorithm is presented for joint compression

in the exact setting, and then demonstrated on simulated data

along with a simple coupling algorithm. Finally, we show how

the joint compression problem raises many issues and could

become an important topic among data scientists interested in

multimodality.
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