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Abstract We study the concept of least partial volume of a proper cone in R
n . This

notion is a reasonable alternative to the classical concept of solid angle. In tandem,
we study the concept of volumetric center of a proper cone. We compare this kind of
center with the old notion of incenter.
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1 Introduction

Let �n denote the set of proper cones in R
n . A closed convex cone is said to be proper

if it is pointed and has nonempty interior. Perhaps the most natural way to define the
“volume” of a proper cone K in R

n is by setting

btv(K ) := voln(K ∩ Bn), (1)

where Bn is the n-dimensional closed unit ball and voln(·) stands for the n-dimensional
Lebesgue measure. By an obvious reason, one refers to the positive number (1) as the
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ball-truncated volume of K . The expression (1) is, up to a multiplicative constant,
equal to the solid angle of K . Indeed,

btv(K ) = 1

n
voln−1(K ∩ Sn),

where Sn stands for the unit sphere of R
n . The computation of ball-truncated volumes

in spaces of dimension higher than three has been the object of several publications in
the last decade, cf. (Gourion and Seeger 2010; Ribando 2006). For a vast majority of
proper cones arising in practice, it is hopeless to derive an easily computable formula
for evaluating the ball-truncated volume, so one has to resort to all kinds of numerical
schemes: use of multivariate power series as in (Ribando 2006), numerical integration
methods as in (Gourion and Seeger 2010, Section 3), probabilistic methods as in
(Gourion and Seeger 2010, Section 5), etc.

Our work has essentially two goals. The first one is to study in depth the concept
of least partial volume, which is a fruitful alternative to the concept of ball-truncated
volume.

Definition 1.1 The partial volume of K ∈�n relative to x ∈R
n is the possibly infinite

number

vK (x) := voln(K ∩ Hx ),

where Hx is the closed half-space given by Hx := {u ∈ R
n : 〈x, u〉 ≤ 1}. The finite

number
lpv(K ) := min

x∈Sn

voln(K ∩ Hx ) (2)

is called the least partial volume of K .

The functions lpv : �n → R and btv : �n → R share a number of properties:
monotonicity with respect to set inclusion, invariance under orthogonal transforma-
tions, etc. These functions differ however in a substantial way.

As we shall see in Sect. 3, the minimization problem (2) has exactly one solution.
Geometrically speaking, such solution can be viewed as a “center” of the dual cone

K ∗ := {y ∈ R
n : 〈y, x〉 ≥ 0 for all x ∈ K }. (3)

Since (3) is proper as well and has K as dual cone, we suggest to consider the following
definition.

Definition 1.2 Let K ∈ �n . The volumetric center of K , denoted by �(K ), is the
unique solution to the minimization problem

lpv(K ∗) = min
x∈Sn

voln(K ∗ ∩ Hx ). (4)

The analysis and computation of volumetric centers is the second goal of our work.
In particular, we discuss the link between the volumetric center and the incenter of
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a proper cone. The incenter of K ∈ �n , denoted by ξ(K ), is defined as the unique
solution to the maximization problem

r(K ) := max
x∈Sn∩K

dist(x, ∂K ),

where dist(x, ∂K ) stands for the distance from x to the boundary of K . The vector
ξ(K ) belongs clearly to the interior of K . The coefficient r(K ) is called the inradius
of K . The reader is conveyed to Henrion and Seeger (2010a, b, 2011), and Seeger and
Torki (2014) for general material concerning the theory of incenters.

2 Basic facts on partial volumes

We start the discussion by recalling some basic properties of the extended real val-
ued function vK : R

n → R ∪ {∞}. Such a function is known in the optimization
community, specially among practitioners of interior point methods [cf. (Güler 1996;
Nesterov and Nemirovskii 1994; Truong and Tuncel 2004)]. For instance, Güler (1996,
Theorem 4.1) has derived the integral representation formula

vK (x) = 1

n!
∫

K
e−〈x,y〉dy (5)

for all x ∈ int(K ∗). As a function of the vector x , the integral on the right-hand
side of (5) corresponds to the Koszul-Vinberg characteristic function of K ∗. The next
proposition sets straight a number of technical details.

Proposition 2.1 Let K ∈ �n. One has:

(a) vK (x) ≥ ‖x‖−n btv(K ) for all x = 0. In particular, vK is positive on R
n.

(b) vK (x) < ∞ if and only if x ∈ int(K ∗).
(c) vK (t x) = t−nvK (x) for all t > 0 and x ∈ R

n.
(d) vK is convex. In fact, vK is strictly log-convex on int(K ∗).
(e) vK is infinitely often differentiable on int(K ∗).

Proof (a) For all x = 0, one has Hx ⊇ ‖x‖−1
Bn . Hence,

vK (x) ≥ voln
[

K ∩ (‖x‖−1
Bn)

]
= voln

[
‖x‖−1 (K ∩ Bn)

]
= ‖x‖−n btv(K ).

(b) Let x ∈ R
n . The set K ∩ Hx is closed, convex, and has nonempty interior. Hence,

vK (x) is finite if and only if K ∩ Hx is bounded. Note that K ∩ Hx is bounded exactly
when x ∈ int(K ∗). (c) Take the n-dimensional Lebesgue measure on each side of the
equality

K ∩ Htx = t−1(K ∩ Hx ).

(d) and (e) See (Faraut and Korányi 1994, Proposition I.3.3) and (Faraut and Korányi
1994, Proposition I.3.1), respectively. ��
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The function vK has many other interesting properties. For instance, it is known
that vK behaves as a barrier function for K ∗. Such a property plays an important role in
the analysis of interior point methods. The following result is a refinement of (Faraut
and Korányi 1994, Proposition I.3.2).

Proposition 2.2 Let K ∈ �n and {xν}ν∈N be a bounded sequence in the interior of
K ∗. Then

lim
ν→∞ vK (xν) = ∞ if and only if lim

ν→∞ dist(xν, ∂K ∗) = 0. (6)

Proof As pointed out in (Seeger 2012, Lemma 5.1), one has

∫
K

e−〈x,y〉dy ≤
(

1

dist(x, ∂K ∗)

)n ∫
K

e−‖y‖dy (7)

for all x ∈ int(K ∗). The above inequality proves the “only if” part of (6). The proof
of the “if” part runs as follows. Suppose that dist(xν, ∂K ∗) goes to 0, but that

κ := lim inf
ν→∞ vK (xν)

is finite. One must arrive to a contradiction. Take a subsequence {xϕ(ν)}ν∈N such that

lim
ν→∞ vK (xϕ(ν)) = κ.

Without loss of generality, one may suppose that x̄ := limν→∞ xϕ(ν) exists. By passing
to the limit on the right-hand side of

dist(x̄, ∂K ∗) ≤ ‖x̄ − xϕ(ν)‖ + dist(xϕ(ν), ∂K ∗),

one sees that x̄ ∈ ∂K ∗. In such a case (Faraut and Korányi 1994, Proposition I.3.2)
implies that vK (xϕ(ν)) goes to infinity, a clear contradiction. ��

The “if” part of (6) is no longer true if the sequence {xν}ν∈N is unbounded. The
combination of Proposition 2.1(a) and the inequality (7) leads to the following sand-
wich for lpv(K ).

Proposition 2.3 For all K ∈ �n, one has

btv(K ) ≤ lpv(K ) ≤ [
r(K ∗)

]−n btv(K ). (8)

Proof The first inequality in (8) follows from Proposition 2.1(a). Note that

∫
K

e−‖y‖dy =
∫ ∞

0

(∫
K∩tSn

e−t dy

)
dt = (n − 1)! voln−1(K ∩ Sn).
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Hence, (7) can be rewritten as

vK (x) ≤
(

1

dist(x, ∂K ∗)

)n

btv(K ).

It suffices now to take the minimum with respect to x ∈ Sn ∩ int(K ∗). ��
As seen in the proof of Proposition 2.1(b), if K ∈ �n and x ∈ int(K ∗), then K ∩ Hx

is an n-dimensional convex body. Sometimes it is easier to compute the volume of
a convex body by evaluating the volume of an associated convex body that has one
dimension less. This is the basic idea behind the following proposition.

Proposition 2.4 Let K ∈ �n and x ∈ int(K ∗). Then

vK (x) = 1

n‖x‖ voln−1(K ∩ ∂ Hx ), (9)

with ∂ Hx denoting the boundary of Hx .

Proof Formula (9) appears already in the proof of (Güler 1996, Theorem 4.1), at least
for the particular case in which x ∈ int(K ∗) is a unit vector. If x ∈ int(K ∗) is not a
unit vector, then we write

vK (x) = vK

(
‖x‖ x

‖x‖
)

= 1

‖x‖n
vK

(
x

‖x‖
)

= 1

n‖x‖n
voln−1

(
K ∩ ∂ H‖x‖−1x

)

and observe that K ∩ ∂ H‖x‖−1x = ‖x‖ (K ∩ ∂ Hx ) . Hence,

vK (x) = 1

n‖x‖n
voln−1 (‖x‖ (K ∩ ∂ Hx )) = 1

n‖x‖ voln−1 (K ∩ ∂ Hx ) ,

as desired. ��
In the sequel, GL(n) denotes the general linear group of nonsingular matrices of

order n and the superscript “T” stands for transposition.

Proposition 2.5 Let K = G(Q) with G ∈ GL(n). Then, for all x ∈ int(K ∗), one has

vK (x) = |det G| vQ(GT x).

Proof One can easily check that

int(K ∗) = {x ∈ R
n : GT x ∈ int(Q∗)},

K ∩ Hx = G
(
Q ∩ HGT x

)
.

So, it suffices to take the n-dimensional Lebesgue measure on each side of the last
equality. ��
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Example 2.6 As pointed out in Güler (1996), one has vR
n+(x) = [

n! �n
i=1xi

]−1 for
all x ∈ int(Rn+). Consider now an arbitrary simplicial cone, i.e., a proper cone of the
form K = G(Rn+) with G ∈ GL(n). One gets

vK (x) = 1

n!
|det G|

�n
i=1〈gi , x〉

for all x ∈ int(K ∗).

3 Basic facts on volumetric centers

We now introduce the concept of volumetric center into the discussion. The idea is to
use the following simple but fundamental fact.

Proposition 3.1 Let K ∈ �n. Then vK admits a unique minimizer on Sn. Further-
more, such a minimizer lies in the interior of K ∗.

Proof In view of the statements (a) and (c) of Proposition 2.1, the minimization prob-
lem (2) has the same optimal value and the same solution set as

{
minimize vK (x)

x ∈ Bn .
(10)

The solution set to (10) has at most one element, because it is a convex set contained
in Sn . It remains to prove that (10) has at least one solution. Let {xν}ν∈N be a sequence
in Bn ∩ int(K ∗) such that

lim
ν→∞ vK (xν) = lpv(K ).

Without loss of generality, one may suppose that x̄ := limν→∞ xν exists. By using
Proposition 2.2, one deduces that x̄ is a solution to (10) and that x̄ ∈ int(K ∗). ��

A result similar to Proposition 3.1 is obtained by exchanging the roles of K and
K ∗. As mentioned in Sect. 1, the unique solution to (4) is denoted by �(K ) and it is
called the volumetric center of K .

The following result is easy and consistent with geometric intuition. The first for-
mula in Proposition 3.2 says that lpv : �n → R is invariant under orthogonal trans-
formations. The second formula says that an orthogonal transformation acting on a
proper cone modifies its volumetric center as expected. The notation O(n) refers to
the set of orthogonal matrices of order n.

Proposition 3.2 Let K ∈ �n. Then, for all U ∈ O(n), one has

lpv(U (K )) = lpv(K ),

�(U (K )) = U (�(K )).
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More generally, for any pair A, B of invertible matrices such that AT A = BT B, one
can write

lpv(A(K )) = lpv(B(K )), (11)

A−1�(A(K )) = B−1�(B(K )). (12)

Proof Note that

lpv(U (K )) = min{voln[U (K ) ∩ Hx ] : x ∈ Sn}
= min{voln

[
U (K ∩ HU T x )

] : x ∈ Sn}
= min{voln

(
K ∩ HU T x

) : x ∈ Sn}.

The change of variables y = U T x leads to

lpv(U (K )) = min{voln(K ∩ Hy) : y ∈ Sn} = lpv(K ),

and shows that �(K ) = U T �(U (K )). For proving (11) and (12), one just needs to
observe that A(K ) is the image of B(K ) under the orthogonal matrix AB−1. ��

The next theorem characterizes the volumetric center of K ∈ �n as the unique
fixed point of the gradient map ∇	K : int(K ) → R

n , where 	K : int(K ) → R is the
strictly concave function given by

	K (x) := −1

n
log[vK ∗(x)].

In view of (5), one has

∇	K (x) = −∇vK ∗(x)

nvK ∗(x)
= 1

n

∫
K ∗ ye−〈x,y〉dy∫
K ∗ e−〈x,y〉dy

.

For subsequence use, we recall that

⎧⎨
⎩
∇	K is a bijection between int(K ) and int(K ∗),
∇	K (t x) = t−1∇	K (x) for all t > 0 and x ∈ int(K ),

the Hessian matrix ∇2	K (x) is negative definite for all x ∈ int(K ).

(13)

The properties listed in (13) can be found for instance in (Faraut and Korányi, 1994,
Section I.3).

Theorem 3.3 Let K ∈ �n. Then �(K ) is the unique solution to the fixed point problem

x ∈ int(K ), x = ∇	K (x). (14)

In particular, �(K ) belongs not only to int(K ), but also to int(K ∗).
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Proof By writing down the optimality conditions for the minimization of the convex
function vK ∗ on the convex set Bn , one sees that �(K ) is equal to the unique solution
to the system

x ∈ Sn ∩ int(K ), −∇vK ∗(x) ∈ NBn (x),

where NBn (x) is the normal cone to Bn at x . This system can be written in the equivalent
form

x ∈ int(K ), ∇vK ∗(x) = 〈∇vK ∗(x), x〉 x . (15)

The equality stated in (15) contains implicitly the information that x is a unit vector.
Since vK ∗ is positively homogeneous of degree −n, the Euler equation

〈∇vK ∗(x), x〉 = −nvK ∗(x)

holds for all x ∈ int(K ). Hence, the system (15) can be rewritten as in (14). ��
Remark 3.4 Vinberg (1963) suggested to use the unique solution to the fixed point
problem (14) as definition of “center” for a homogeneous cone K ∈ �n , but in fact
one can dispense from homogeneity. One says that K ∈ �n is homogeneous if, for all
x, y ∈ int(K ), there exists A ∈ GL(n) such that A(K ) = K and Ax = y.

The fixed point characterization of �(K ) can be exploited in manifold ways. For
instance, one can use it to derive a formula for computing the volumetric center of a
Cartesian product of finitely many proper cones.

Corollary 3.5 Let n = n1 + · · · + nq with n1, . . . , nq ≥ 1. Let K be the Cartesian
product of the cones K1 ∈ �n1 , . . . , Kq ∈ �nq . Then K ∈ �n and

n1/2� (K ) =
(

n1/2
1 �(K1), . . . , n1/2

q �(Kq)
)

, (16)

lpv (K )

κn
= lpv(K1)

κn1

. . .
lpv(Kq)

κnq

, (17)

where κn = nn/2/n!.
Proof Clearly, K ∗ is the Cartesian product of the K ∗

i ’s. A matter of computation shows
that, for all x = (x1, . . . , xq) ∈ int(K ), one has

vK ∗(x) = n1! . . . nq !
n! vK ∗

1
(x1) . . . vK ∗

q
(xq),

∇	K (x) =
(n1

n
∇	K1(x1), . . . ,

nq

n
∇	Kq (xq)

)
. (18)

The combination of (13), (18), and Theorem 3.3, leads to (16). On the other hand,

vK ∗(�(K )) = n1! . . . nq !
n! vK ∗

1

(√
n1

n
�(K1)

)
. . . vK ∗

q

(√
nq

n
�(Kq)

)

= κn

κn1 . . . κnq

vK ∗
1
(�(K1)) . . . vK ∗

q

(
�(Kq)

)
.
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In other words,
lpv (K ∗)

κn
= lpv(K ∗

1 )

κn1

. . .
lpv(K ∗

q )

κnq

. (19)

The equality (17) is obtained from (19) by exchanging the roles of Ki and K ∗
i . ��

4 Analysis of a few particular cones

Computing a volumetric center may be difficult or not depending on the geometric
nature of the cone. The computation of �(K ) is greatly simplified if K ∈ �n is
symmetric with respect to one or several linear subspaces. Symmetry with respect to
a linear subspace is understood in the classical sense, i.e., invariance with respect to
reflection through that subspace [(cf. Barker and Carlson 1979, Definition 1)].

Lemma 4.1 Let L be a linear subspace with respect to which K ∈ �n is symmetric.
Then �(K ) ∈ L.

Proof Combine Proposition 3.2 and the symmetry principle established in (Seeger and
Torki 2014, Theorem 2.4). ��

Let S(K ) denote the intersection of all linear subspaces with respect to which
K ∈ �n is symmetric. The dimension of the subspace S(K ) is called the symmetry
rank of K . We mention in passing that S(K ∗) = S(K ) for all K ∈ �n . In particular,
K ∗ and K have the same symmetry rank.

Theorem 4.2 Suppose that K ∈ �n has symmetry rank equal to 1, i.e., there exists a
vector c ∈ Sn such that S(K ) = Rc. Then

�(K ) = �(K ∗) =
{

c if c ∈ K ,

−c if c /∈ K .

Proof By applying Lemma 4.1 first to K and then to K ∗, one gets �(K ) = ±c and
�(K ∗) = ±c, respectively. Since the unit vectors �(K ) ∈ int(K ) and �(K ∗) ∈
int(K ∗) cannot be opposite, one necessarily has �(K ) = �(K ∗). ��

By the way, saying that K ∈ �n has symmetry rank equal to 1 is weaker than
saying that K is symmetric with respect to a one-dimensional subspace. The next
two corollaries are obtained straightforwardly from Theorem 4.2. We just give short
sketches of theirs proofs.

Corollary 4.3 Let K ∈ �n be permutation invariant, i.e., P(K ) = K for all permu-
tation matrix P. Then

�(K ) = �(K ∗) =
{

1n/
√

n if 1n ∈ K ,

−1n/
√

n if 1n /∈ K ,

where 1n stands for the n-dimensional vector of ones.
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Proof As shown in (Seeger and Torki 2014, Example 2.5), if K ∈ �n is permutation
invariant, then S(K ) is equal to the line generated by 1n. ��
Example 4.4 Since R

n+ is permutation invariant and contains 1n, one has �(Rn+) =
1n/

√
n. Thus,

lpv(Rn+) = vR
n+

(
1n√

n

)
= nn/2

n! .

A top-heavy cone in R
n is a proper cone that can be expressed as epigraph of a norm

on R
n−1. Such class of cones has been studied in depth by Fiedler and Haynsworth

(1973), see also Barker and Carlson (1979).

Corollary 4.5 Let K ∈ �n be top-heavy up to orthogonal transformation, i.e., there
exist an orthogonal matrix U = [u1, . . . , un] of order n and a norm 
 on R

n−1 such
that K = U (epi 
), where

epi 
 := {
x ∈ R

n : 
(x1, . . . , xn−1) ≤ xn
}
.

Then �(K ) = �(K ∗) = un . Furthermore,

lpv(K ) = 1

n
voln−1(B
),

where B
 denotes the closed unit ball associated to 
.

Proof In view of Proposition 3.2, it suffices to consider the case in which U is equal to
In , the identity matrix of order n. In such a case, K is symmetric with respect to the line
generated by n-th canonical vector en := (0, . . . , 0, 1)T . Thus, �(K ) = �(K ∗) = en

and

lpv(K ) = vK (en) = 1

n
voln−1

(
K ∩ ∂ Hen

)
.

For completing the proof we observe that K ∩ ∂ Hen is equal to B
 × {1}. ��
There are plenty of interesting proper cones that fit into the setting of Corollary 4.5.

By way of example we mention

Ln :=
⎧⎨
⎩x ∈ R

n :
(

n−1∑
i=1

x2
i

)1/2

≤ xn

⎫⎬
⎭ (Lorentz or circular cone),

Kn,p :=
⎧⎨
⎩x ∈ R

n :
(

n−1∑
i=1

|xi |p

)1/p

≤ xn

⎫⎬
⎭ (�p- cone with 1 ≤ p < ∞),

Kn,∞ :=
{

x ∈ R
n : max

1≤i≤n−1
|xi | ≤ xn

}
(�∞- cone),

EM :=
{
(z, t) ∈ R

n : √〈z, Mz〉 ≤ t
}

(upward ellipsoidal cone).
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The upward ellipsoidal cone EM is defined in terms of a symmetric positive definite
matrix M of order n − 1. All the above cones have the vector en as volumetric center.
Their least partial volumes are given by the following explicit formulas:

lpv (Ln) = π(n−1)/2

n 	((n + 1)/2)
,

lpv
(
Kn,p

) = [2 	(1 + 1/p)]n−1

n 	(1 + (n − 1)/p)
,

lpv
(
Kn,∞

) = 2n−1/n,

lpv (EM ) = lpv (Ln)√
det M

,

where 	 stands for the usual Euler gamma function.
As shown above, the least partial volume of the upward ellipsoidal cone EM can

be computed in a straightforward manner. To the best of our knowledge, there is no
simple formula for evaluating the ball-truncated volume of EM . Another useful proper
cone that fits into the setting of Corollary 4.5 is the revolution cone

rev(c, s) := {x ∈ R
n : s ‖x‖ ≤ 〈c, x〉},

where c ∈ Sn determines the revolution axis and s ∈]0, 1[ is a parameter reflecting
the degree of aperture of the cone. One gets

� (rev(c, s)) = c,

lpv (rev(c, s)) =
(

1

s2 − 1

) n−1
2

lpv (Ln) .

The next proposition concerns the case of a general ellipsoidal cone, i.e., not neces-
sarily upward. By definition, an ellipsoidal cone in R

n is an image of the Lorentz cone
Ln under a nonsingular matrix, cf. Stern and Wolkowicz (1991). Ellipsoidal cones
have been studied under different angles by a number of authors, see for instance
Bhattacharya et al. (2004) for an application of ellipsoidal cones in control theory.

Proposition 4.6 Let K = G(Ln) with G ∈ GL(n). Then

lpv (K ) = (−μ)n/2 |det G| lpv (Ln) ,

where μ is the smallest eigenvalue of the symmetric matrix

G� := G−T (In − 2eneT
n )G−1.

Furthermore, � (K ) is an eigenvector of G� associated to the eigenvalue μ. More
precisely, � (K ) is the unique solution to

G�x = μ x, ‖x‖ = 1, 〈G−T en, x〉 > 0. (20)
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Proof Following similar steps as in (Seeger 2013, Lemma 5), one can check that

K = U (EM ) (21)

for some U ∈ O(n) and some positive definite symmetric matrix M of order n − 1.
We briefly explain the construction of U and M . The matrix G� is clearly symmetric.
Let

λ1(G
�) ≥ . . . ≥ λn−1(G

�) ≥ λn(G
�)

be the eigenvalues of G� arranged in nonincreasing order. By applying Silvester’s
inertia theorem, one sees that μ = λn(G�) is negative and all the other eigenvalues of
G� are positive. Hence, the diagonal matrix

M := −μ−1Diag
(
λ1(G

�) , . . . , λn−1(G
�)
)

is positive definite. Let the columns of U be formed with an orthonormal basis of
eigenvectors of G�. As last column of U we take the vector x̄ ∈ R

n which solves
(20). Such choices of M and U lead to the representation formula (21), from where
one gets �(K ) = Uen = x̄ and

lpv(K ) = lpv(EM ) = lpv (Ln)√
det M

. (22)

It remains now to substitute det M = (det G)−2(−μ)−n into (22). ��
The dual of an ellipsoidal cone is an ellipsoidal cone. The next corollary is a

consequence of the representation formula (21) and the fact that

(EM )∗ = EM−1 .

Corollary 4.7 Let K be an ellipsoidal cone in R
n. Then

�(K ∗) = �(K ), (23)

lpv(K ∗) lpv(K ) = [
lpv(Ln)

]2
. (24)

Proof One can represent K as in (21). In such a case, K ∗ = U (EM−1) and

U T �(K ∗) = �(EM−1) = �(EM ) = U T �(K ).

This proves (23). On the other hand,

lpv(K ∗)
lpv(Ln)

= lpv(EM−1)

lpv(Ln)
= 1√

det(M−1)
=

(
1√

detM

)−1

=
(

lpv(EM )

lpv(Ln)

)−1

=
(

lpv(K )

lpv(Ln)

)−1

.

This proves (24). ��
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5 Continuity issues

Let �n denote the set of nontrivial closed convex cones in R
n . Recall that a closed

convex cone is nontrivial if it is different from the zero cone and the whole space.
Topological and continuity issues on �n are relative to the spherical metric δ. By
definition, the spherical distance between a pair P, Q of elements in �n is the number

δ(P, Q) := haus(P ∩ Sn, Q ∩ Sn),

where

haus(C, D) := max

{
max
x∈C

dist(x, D), max
x∈D

dist(x, C)

}

stands for the classical Pompeiu–Hausdorff distance between a pair C, D of nonempty
compact subsets of R

n . Convergence with respect to the spherical metric is equivalent
to convergence with respect to the ball-truncated metric

δbt(P, Q) := haus(P ∩ Bn, Q ∩ Bn).

In fact, one has

δbt(P, Q) ≤ δ(P, Q) ≤ 2δbt(P, Q)

for all P, Q ∈ �n . Convergence with respect to the spherical metric is also equivalent
to convergence in the Painlevé-Kuratowski sense.

A nontrivial closed convex cone is said to be solid if it has nonempty interior. Since
the sets

�
ptd
n := {K ∈ �n : K is pointed},

�sol
n := {K ∈ �n : K is solid}

are open in the metric space (�n, δ), so does their intersection �n = �
ptd
n ∩ �sol

n . A
natural question to ask is whether lpv : �n → R and � : �n → R

n are continuous
functions. The situation is well understood in what concerns ball-truncated volumes,
inradiuses, and incenters. For instance, Gourion and Seeger (2012, [Theorem 2.3])
proved that btv : �n → R is Lipschitzian.

Proposition 5.1 There exists a constant �n such that

|btv(P) − btv(Q)| ≤ �nδ(P, Q)

for all P, Q ∈ �n.

The real valued function btv(·) is well defined not just on �n , but also on the
larger set �n . The following Lipschitzness result is a direct consequence of (Iusem
and Seeger 2008, Proposition 13).

13



Proposition 5.2 For all P, Q ∈ �n, one has

|r(P) − r(Q)| ≤ 2δ(P, Q).

The vector ξ(K ) is well defined as long as K belongs to �sol
n . The continuity of

the incenter function ξ : �sol
n → R

n has been established in (Henrion and Seeger
2010a, Theorem 2.9). Recently, Seeger (2014, Theorem 7) proved that the incenter
function is not merely continuous, but also locally Hölderian.

Proposition 5.3 For all P, Q ∈ �sol
n , one has

‖ξ(P) − ξ(Q)‖ ≤ 4√
r(P) + r(Q)

[δ(P, Q)]1/2.

In particular, ξ : �sol
n → R

n is locally Hölderian with Hölder exponent 1/2.

The next theorem is the main result of this section. It shows that lpv(K ) and �(K )

behave in a continuous manner with respect to perturbations in the argument K ∈ �n .
We state first three useful lemmas. The first lemma concerns n-dimensional volumes
of symmetric differences of compact convex sets. Recall that the circumradius of a
convex body � ⊆ R

n is defined as the radius of the smallest closed ball containing �.

Lemma 5.4 Let � ⊆ R
n be a convex body with circumradius equal to ρ. Then

voln(C�D) ≤ (3ρ)n − 1

ρ
voln (Bn) haus(C, D)

for any pair C, D of nonempty compact convex subsets of �.

Proof There exists a unique z ∈ R
n , called the circumcenter of �, such that � ⊆

z + ρBn . Let t = haus(C, D). Since D ⊆ C + tBn, one has

voln(D\C) ≤ voln ((C + tBn)\C) = voln(C + tBn) − voln(C).

But

voln (C + tBn) =
n∑

k=0


k(C) tk,

where 
0(C), . . . , 
n(C) are the coefficients in the Steiner polynomial associated to
C . The coefficients 
k(C) are nonnegative and depend not just on C , but also on the
dimension n of the ambient space. In fact,


k(C) = n!
k!(n − k)! V (C, . . . , C︸ ︷︷ ︸

n−k

, Bn, . . . , Bn︸ ︷︷ ︸
k

) ,

where V (C1, . . . , Cn) stands for the mixed volume of the convex bodies C1, . . . , Cn .
In particular, 
0(C) = voln(C). As mentioned in (Gardner 1995, Appendix A.3), the
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function V is nondecreasing in each argument with respect to set inclusion. It follows
that

voln(D\C) ≤
n∑

k=1


k(C) tk ≤
[

n∑
k=1


k(z + ρBn) tk−1

]
t

≤ 1

2ρ

[
n∑

k=1


k(z + ρBn) (2ρ)k

]
t. (25)

The last equality is due to the fact that t ≤ 2ρ, because C and D are subsets of �. By
equating coefficients in the polynomials

voln(z + ρBn + tBn) = (ρ + t)n voln(Bn),

voln(z + ρBn + tBn) =
n∑

k=0


k(z + ρBn) tk,

one gets


k(z + ρBn) = n!
k!(n − k)! ρn−k voln(Bn).

Substituting this information into (25) and simplifying, one obtains

voln(D\C) ≤ (3ρ)n − 1

2ρ
voln (Bn) t.

The same estimate holds for the n-dimensional volume of C\D. ��
The second lemma is a technical result concerning the distance from a point to the

boundary of a convex cone.

Lemma 5.5 Let K ∈ �n. Then, for all x ∈ R
n and r ≥ ‖x‖, one has

dist(x, rBn ∩ ∂K ) = dist(x, ∂K ) ≤ ‖x‖.

Proof Take any y0 ∈ ∂K such that dist(x, ∂K ) = ‖x − y0‖. Since ∂K is stable under
multiplication by positive scalars, one has 〈x − y0, y0〉 = 0. By using Pythagoras rule

‖x − y0‖2 + ‖y0‖2 = ‖x‖2,

one gets ‖y0‖ ≤ ‖x‖ and dist(x, ∂K ) ≤ ‖x‖. One also obtains

dist(x, rBn ∩ ∂K ) = dist(x, ∂K ),

because y0 ∈ rBn ∩ ∂K . ��
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The third and last lemma concerns the convergence of boundaries of converging
cones. As a consequence of Lemma 5.6, one sees that:

{
If {Kν}ν∈N ⊆ �n converges to K∞ ∈ �n,

then limν→∞ haus(Sn ∩ ∂Kν, Sn ∩ ∂K∞) = 0.

Lemma 5.6 For all P, Q ∈ �n, one has

haus(Sn ∩ ∂ P, Sn ∩ ∂ Q) ≤ 2δbt(P, Q). (26)

Proof It suffices to proves that dist(x, ∂ Q) ≤ 2δbt(P, Q) for all x ∈ Sn ∩ ∂ P . Let x
be as just mentioned. Note that C := 2Bn ∩ P and D := 2Bn ∩ Q are convex bodies
in R

n . Since

∂ D = (2Bn ∩ ∂ Q) ∪ (2Sn ∩ Q),

one has

dist(x, ∂ D) = min {dist(x, 2Bn ∩ ∂ Q), dist(x, 2Sn ∩ Q)} .

Clearly,

dist(x, 2Sn ∩ Q) ≥ dist(x, 2Sn) = 1,

dist(x, 2Bn ∩ ∂ Q) = dist(x, ∂ Q) ≤ 1,

the second line being a consequence of Lemma 5.5. It follows that

dist(x, ∂ Q) = dist(x, ∂ D) ≤ max
z∈Sn∩∂ P

dist(z, ∂ D)

≤ max
z∈∂C

dist(z, ∂ D) ≤ haus(C, D),

where the last inequality is obtaining by applying (Wills 2007, Theorem 14). Finally,
by using a simple positive homogeneity argument, one sees that haus(C, D) =
2δbt(P, Q). ��

We do not know if the inequality (26) remains true for P, Q in the larger set �n .
Anyway, we now are ready to state:

Theorem 5.7 The functions lpv : �n → R and � : �n → R
n are continuous.

Proof Let {Kν}ν∈N be a sequence in �n converging to a certain K∞ ∈ �n , i.e.,

lim
ν→∞ δ(Kν, K∞) = 0. (27)
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We must prove that

lim
ν→∞ lpv(Kν) = lpv(K∞) (28)

lim
ν→∞ �(Kν) = �(K∞). (29)

For the sake of clarity in the exposition, we divide the proof into several steps.

Step 1 We prove that {lpv(Kν)}ν∈N is bounded. For each ε positive, let 	ε(K∞) denote
the smallest closed convex cone containing the compact set K∞ ∩ Sn + εBn . We take
ε sufficiently small in order to ensure that 	ε(K∞) is proper. One has

Kν ∩ Sn ⊆ K∞ ∩ Sn + δ(Kν, K∞)Bn

⊆ K∞ ∩ Sn + εBn

⊆ 	ε(K∞)

for all ν large enough. In particular, Kν ⊆ 	ε(K∞) and lpv(Kν) ≤ lpv(	ε(K∞)).

Step 2 We prove that for each sequence {xν}ν∈N satisfying

xν ∈ Sn ∩ int(K ∗
ν ), (30)

x∞ := lim
ν→∞ xν exists and belongs to int(K ∗∞), (31)

there exists a constant s ∈ ]0, 1[ such that

Kν ∪ K∞ ⊆ rev(xν, s) (32)

for all ν large enough. Thanks to the Walkup-Wets isometry theorem (cf. [Walkup and
Wets 1967, Theorem 1]), the condition (27) is equivalent to

lim
ν→∞ δ(K ∗

ν , K ∗∞) = 0. (33)

Since x∞ ∈ int(K ∗∞), there exists a small positive s such that

x∞ + 2sBn ⊆ int(K ∗∞).

By combining (33) and a standard stability result for Painlevé-Kuratowski limits
(cf. [Rockafellar and Wets 1998, Proposition 4.15]), one gets

x∞ + 2sBn ⊆ int(K ∗
ν )

for all ν greater than a certain integer ν0. Since {xν}ν∈N converges to x∞, it follows
that

xν + sBn ⊆ K ∗∞ and xν + sBn ⊆ K ∗
ν

17



for all ν greater than another integer ν1 ≥ ν0. By passing to dual cones in

R+(xν + sBn) ⊆ K ∗∞ and R+(xν + sBn) ⊆ K ∗
ν ,

one gets the reverse inclusions rev(xν, s) ⊇ K∞ and rev(xν, s) ⊇ Kν . This proves
(32).

Step 3 We show that, for any {xν}ν∈N as in Step 2, one has

lim
ν→∞ vKν (xν) = vK∞(x∞). (34)

As we saw already, xν ∈ int(K ∗∞) for all ν large enough. Hence, one can write

|vKν (xν) − vK∞(x∞)| ≤ |vKν (xν) − vK∞(xν)| + |vK∞(xν) − vK∞(x∞)|.

Since vK∞ : int(K ∗∞) → R is continuous, one has limν→∞ vK∞(xν) = vK∞(x∞).

On the other hand, thanks to (5), one gets

n! |vKν (xν) − vK∞(xν)| ≤ aν

with

aν :=
∫

Dν

e−〈xν ,y〉dy and Dν := Kν�K∞.

By using (32), one obtains

aν ≤
∫

Dν

e−s‖y‖dy = 1

sn

∫
Dν

e−‖y‖dy = 1

sn

∫ ∞

0

(∫
Dν∩tSn

e−t dy

)
dt

= 1

sn

∫ ∞

0
e−t voln−1(Dν ∩ tSn)dt = (n − 1)!

sn
voln−1(Dν ∩ Sn).

But

voln−1(Dν ∩ Sn) = n voln(Dν ∩ Bn) = n voln ((Kν ∩ Bn)�(K∞ ∩ Bn)) .

By applying Lemma 5.4 with � = Bn , one sees that

lim
ν→∞ voln−1(Dν ∩ Sn) = 0.

Hence, limν→∞ aν = 0 and limν→∞ vKν (xν) = vK∞(x∞). This completes the proof
of (34).

Step 4 We show that, for any {xν}ν∈N as in Step 2, one has

lim
ν→∞ ∇vKν (xν) = ∇vK∞(x∞).
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We start by writing

‖∇vKν (xν)−∇vK∞(x∞)‖ ≤ ‖∇vKν (xν)−∇vK∞(xν)‖+‖∇vK∞(xν)−∇vK∞(x∞)‖.

The continuity of ∇vK∞ : int(K ∗∞) → R
n yields

lim
ν→∞ ‖∇vK∞(xν) − ∇vK∞(x∞)‖ = 0.

On the other hand,

n! ‖∇vKν (xν) − ∇vK∞(xν)‖ =
∥∥∥∥
∫

Kν

ye−〈xν ,y〉dy −
∫

K∞
ye−〈xν ,y〉dy

∥∥∥∥ ≤ bν

with

bν :=
∫

Dν

‖y‖e−〈xν ,y〉dy.

One proves that limν→∞ bν = 0 by using a similar technique as in Step 3. Indeed,

bν ≤
∫

Dν

‖y‖e−s‖y‖dy = 1

sn+1

∫
Dν

‖y‖e−‖y‖dy = 1

sn+1

∫ ∞

0

(∫
Dν∩tSn

te−t dy

)
dt

= 1

sn+1

∫ ∞

0
te−t voln−1(Dν ∩ tSn) dt = n!

sn+1 voln−1(Dν ∩ Sn).

Step 5 We prove a technical inequality relating vK (x) and dist(x, ∂K ∗). To be more
precise, we show that

vK (x) ≥ voln−1(Bn−1)

n!
[r(K )]n−1e−2‖x‖−1

dist(x, ∂K ∗)
(35)

for all K ∈ �n and x ∈ int(K ∗). The term dist(x, ∂K ∗) is clearly positive and equal
to

αx := min
u∈K∩ Sn

〈u, x〉.

Let ux ∈ K ∩ Sn be such that 〈ux , x〉 = αx . The set

M := ξ(K ) + r(K )Bn + α−1
x co{0, ux }

is contained in K , and

max
y∈M

〈y, x〉 = 〈ξ(K ), x〉 + r(K )‖x‖ + 1 ≤ 2‖x‖ + 1.
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Hence,

n! vK (x) ≥
∫

M
e−〈y,x〉dy ≥ e−2‖x‖−1voln(M).

One obtains (35) by combining above inequality and the fact that

voln(M) = voln (ξ(K ) + r(K )Bn) + α−1
x voln−1 (r(K )Bn−1)

≥ α−1
x [r(K )]n−1voln−1 (Bn−1) .

Step 6 Finally, we prove (28) and (29). To do this, we work with the sequence {xν}ν∈N

given by
xν := �(K ∗

ν ). (36)

The condition (30) is clearly in force. One may assume that x∞ := limν→∞ xν exists,
otherwise one works with a convergent subsequence {xϕ(ν)}ν∈N and the corresponding
subsequence {Kϕ(ν)}ν∈N. Clearly, x∞ ∈ K ∗∞. We claim that x∞ ∈ int(K ∗∞). Suppose,
to the contrary, that x∞ ∈ ∂K ∗∞. One has

dist(xν, ∂K ∗
ν ) ≤ ‖xν − x∞‖ + dist(x∞, ∂K ∗

ν ) ≤ ‖xν − x∞‖ + ζν

with

ζν := max
x∈Sn∩ ∂K ∗∞

dist(x, ∂K ∗
ν ).

By exploiting the convergence condition (33) and Lemma 5.6, one sees that
limν→∞ ζν = 0. Hence, limν→∞ dist(xν, ∂K ∗

ν ) = 0. But, thanks to Step 5, one has

lpv(Kν) = vKν (xν) ≥ voln−1(Bn−1)

n!e3

[r(Kν)]n−1

dist(xν, ∂K ∗
ν )

.

The inradius function r : �n → R is known to be continuous. Since limν→∞
r(Kν) = r(K∞) = 0, it follows that limν→∞ lpv(Kν) = ∞, contradicting the result
of Step 1. Summarizing, the special sequence (36) satisfies (30) and (31). By passing
to the limit in the optimality condition

∇vKν (xν) = 〈∇vKν (xν), xν〉 xν,

one gets
∇vK∞(x∞) = 〈∇vK∞(x∞), x∞〉 x∞.

This and x∞ ∈ int(K ∗∞) imply that x∞ = �(K ∗∞). We have shown in this way that

lim
ν→∞ �(K ∗

ν ) = �(K ∗∞).

The equality (29) is then obtained by exchanging the roles of Kν and K ∗
ν . Finally,

observe that
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lim
ν→∞ lpv(Kν) = lim

ν→∞ vKν (xν) = vK∞(x∞) = lpv(K∞).

This completes the proof of the theorem. ��

The inequality (35) has further consequences. For instance, it can be used to derive
the following generalization of Proposition 2.2. A sequence {Kν}ν∈N in �n is said to
be uniformly solid if

inf
ν∈N

r(Kν) > 0. (37)

Uniform solidity is an assumption arising naturally in a number of situations,
cf. (Henrion and Seeger 2011, Theorem 3.4).

Proposition 5.8 Let {Kν}ν∈N be a sequence in �n satisfying the uniform solidity
condition (37). Let {xν}ν∈N be a bounded sequence in R

n such that xν ∈ K ∗
ν . Then

lim
ν→∞ vKν (xν) = ∞ if and only if lim

ν→∞ dist(xν, ∂K ∗
ν ) = 0.

Proof The “only if” part is a consequence of the inequality

vKν (xν) ≤
(

1

dist(xν, ∂K ∗
ν )

)n

btv(Kν)

and the boundedness of {btv(Kν)}ν∈N. The “if” part follows from

vKν (xν) ≥ voln−1(Bn−1)

n!
[r(Kν)]n−1e−2‖xν‖−1

dist(xν, ∂K ∗
ν )

and the hypothesis (37). ��

We do not know whether � : �n → R
n is locally Hölderian or not. This difficult

question is left open for the time being. What is clear however is that lpv : �n → R

is not Lipschitzian. The next example illustrates this point.

Example 5.9 Let K = Ln and Kν = rev(en, cos θν) with θν := (π/2) − (1/ν). Then

lpv(Kν) − lpv(K ) =
(

tan2 θν − 1
)

lpv(Ln),

δ(Kν, K ) = sin(θν − (π/4)).

Hence,

lim
ν→∞

lpv(Kν) − lpv(K )

δ(Kν, K )
= ∞.
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