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Centers and partial volumes of convex cones I. Basic theory
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We study the concept of least partial volume of a proper cone in R n . This notion is a reasonable alternative to the classical concept of solid angle. In tandem, we study the concept of volumetric center of a proper cone. We compare this kind of center with the old notion of incenter.

Introduction

Let n denote the set of proper cones in R n . A closed convex cone is said to be proper if it is pointed and has nonempty interior. Perhaps the most natural way to define the "volume" of a proper cone K in R n is by setting btv(K

) := vol n (K ∩ B n ), ( 1 
)
where B n is the n-dimensional closed unit ball and vol n (•) stands for the n-dimensional Lebesgue measure. By an obvious reason, one refers to the positive number (1) as the 1 ball-truncated volume of K . The expression (1) is, up to a multiplicative constant, equal to the solid angle of K . Indeed, btv

(K ) = 1 n vol n-1 (K ∩ S n ),
where S n stands for the unit sphere of R n . The computation of ball-truncated volumes in spaces of dimension higher than three has been the object of several publications in the last decade, cf. [START_REF] Gourion | Deterministic and stochastic methods for computing the volumetric moduli of convex cones[END_REF][START_REF] Ribando | Measuring solid angles beyond dimension three[END_REF]. For a vast majority of proper cones arising in practice, it is hopeless to derive an easily computable formula for evaluating the ball-truncated volume, so one has to resort to all kinds of numerical schemes: use of multivariate power series as in [START_REF] Ribando | Measuring solid angles beyond dimension three[END_REF], numerical integration methods as in [START_REF] Gourion | Deterministic and stochastic methods for computing the volumetric moduli of convex cones[END_REF], Section 3), probabilistic methods as in [START_REF] Gourion | Deterministic and stochastic methods for computing the volumetric moduli of convex cones[END_REF], Section 5), etc.

Our work has essentially two goals. The first one is to study in depth the concept of least partial volume, which is a fruitful alternative to the concept of ball-truncated volume.

Definition 1.1 The partial volume of K ∈ n relative to x ∈ R n is the possibly infinite number

v K (x) := vol n (K ∩ H x ),
where H x is the closed half-space given by H x := {u ∈ R n : x, u ≤ 1}. The finite number lpv(K ) := min

x∈S n vol n (K ∩ H x ) (2)
is called the least partial volume of K .

The functions lpv : n → R and btv : n → R share a number of properties: monotonicity with respect to set inclusion, invariance under orthogonal transformations, etc. These functions differ however in a substantial way.

As we shall see in Sect. 3, the minimization problem (2) has exactly one solution. Geometrically speaking, such solution can be viewed as a "center" of the dual cone K * := {y ∈ R n : y, x ≥ 0 for all x ∈ K }.

(3) Since ( 3) is proper as well and has K as dual cone, we suggest to consider the following definition.

Definition 1.2 Let K ∈ n . The volumetric center of K , denoted by (K ), is the unique solution to the minimization problem lpv(K * ) = min

x∈S n vol n (K * ∩ H x ). ( 4 
)
The analysis and computation of volumetric centers is the second goal of our work. In particular, we discuss the link between the volumetric center and the incenter of a proper cone. The incenter of K ∈ n , denoted by ξ(K ), is defined as the unique solution to the maximization problem

r (K ) := max x∈S n ∩K dist(x, ∂ K ),
where dist(x, ∂ K ) stands for the distance from x to the boundary of K . The vector ξ(K ) belongs clearly to the interior of K . The coefficient r (K ) is called the inradius of K . The reader is conveyed to Henrion andSeeger (2010a, b, 2011), and [START_REF] Seeger | Centers of sets with symmetry or cyclicity properties[END_REF] for general material concerning the theory of incenters.

Basic facts on partial volumes

We start the discussion by recalling some basic properties of the extended real valued function v K : R n → R ∪ {∞}. Such a function is known in the optimization community, specially among practitioners of interior point methods [cf. [START_REF] Güler | Barrier functions in interior point methods[END_REF][START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF][START_REF] Truong | Geometry of homogeneous convex cones, duality mapping, and optimal selfconcordant barriers[END_REF]]. For instance, Güler (1996, Theorem 4.1) has derived the integral representation formula

v K (x) = 1 n! K e -x,y dy (5)
for all x ∈ int(K * ). As a function of the vector x, the integral on the right-hand side of (5) corresponds to the Koszul-Vinberg characteristic function of K * . The next proposition sets straight a number of technical details.

Proposition 2.1 Let K ∈ n . One has:

(a) v K (x) ≥ x -n btv(K ) for all x = 0. In particular, v K is positive on R n . (b) v K (x) < ∞ if and only if x ∈ int(K * ). (c) v K (t x) = t -n v K (x) for all t > 0 and x ∈ R n . (d) v K is convex. In fact, v K is strictly log-convex on int(K * ). (e) v K is infinitely often differentiable on int(K * ).
Proof (a) For all x = 0, one has 

H x ⊇ x -1 B n . Hence, v K (x) ≥ vol n K ∩ ( x -1 B n ) = vol n x -1 (K ∩ B n ) = x -n btv(K ). (b) Let x ∈ R n . The set K ∩ H x is closed, convex,
K ∩ H t x = t -1 (K ∩ H x ).
(d) and (e) See (Faraut and Korányi 1994, Proposition I.3.3) and (Faraut and Korányi 1994, Proposition I.3.1), respectively.

The function v K has many other interesting properties. For instance, it is known that v K behaves as a barrier function for K * . Such a property plays an important role in the analysis of interior point methods. The following result is a refinement of (Faraut and Korányi 1994, Proposition I.3.2).

Proposition 2.2 Let K ∈ n and {x ν } ν∈N be a bounded sequence in the interior of K * . Then

lim ν→∞ v K (x ν ) = ∞ if and only if lim ν→∞ dist(x ν , ∂ K * ) = 0. ( 6 
)
Proof As pointed out in (Seeger 2012, Lemma 5.1), one has

K e -x,y dy ≤ 1 dist(x, ∂ K * ) n K e -y dy (7)
for all x ∈ int(K * ). The above inequality proves the "only if" part of ( 6). The proof of the "if" part runs as follows. Suppose that dist(x ν , ∂ K * ) goes to 0, but that

κ := lim inf ν→∞ v K (x ν )
is finite. One must arrive to a contradiction. Take a subsequence {x ϕ(ν) } ν∈N such that

lim ν→∞ v K (x ϕ(ν) ) = κ.
Without loss of generality, one may suppose that x := lim ν→∞ x ϕ(ν) exists. By passing to the limit on the right-hand side of

dist( x, ∂ K * ) ≤ x -x ϕ(ν) + dist(x ϕ(ν) , ∂ K * ),
one sees that x ∈ ∂ K * . In such a case (Faraut and Korányi 1994, Proposition I.3.2) implies that v K (x ϕ(ν) ) goes to infinity, a clear contradiction.

The "if" part of ( 6) is no longer true if the sequence {x ν } ν∈N is unbounded. The combination of Proposition 2.1(a) and the inequality (7) leads to the following sandwich for lpv(K ).

Proposition 2.3 For all K ∈ n , one has btv(K ) ≤ lpv(K ) ≤ r (K * ) -n btv(K ). ( 8 
)
Proof The first inequality in (8) follows from Proposition 2.1(a). Note that

K e -y dy = ∞ 0 K ∩tS n e -t dy dt = (n -1)! vol n-1 (K ∩ S n ).
Hence, (7) can be rewritten as

v K (x) ≤ 1 dist(x, ∂ K * ) n btv(K ).
It suffices now to take the minimum with respect to x ∈ S n ∩ int(K * ).

As seen in the proof of Proposition 2.1(b), if K ∈ n and x ∈ int(K * ), then K ∩ H x is an n-dimensional convex body. Sometimes it is easier to compute the volume of a convex body by evaluating the volume of an associated convex body that has one dimension less. This is the basic idea behind the following proposition.

Proposition 2.4 Let K ∈ n and x ∈ int(K * ). Then v K (x) = 1 n x vol n-1 (K ∩ ∂ H x ), ( 9 
)
with ∂ H x denoting the boundary of H x .

Proof Formula (9) appears already in the proof of (Güler 1996, Theorem 4.1), at least for the particular case in which x ∈ int(K * ) is a unit vector. If x ∈ int(K * ) is not a unit vector, then we write

v K (x) = v K x x x = 1 x n v K x x = 1 n x n vol n-1 K ∩ ∂ H x -1 x and observe that K ∩ ∂ H x -1 x = x (K ∩ ∂ H x ) . Hence, v K (x) = 1 n x n vol n-1 ( x (K ∩ ∂ H x )) = 1 n x vol n-1 (K ∩ ∂ H x ) ,
as desired.

In the sequel, GL(n) denotes the general linear group of nonsingular matrices of order n and the superscript "T" stands for transposition.

Proposition 2.5 Let K = G(Q) with G ∈ GL(n). Then, for all x ∈ int(K * ), one has v K (x) = |det G| v Q (G T x). Proof One can easily check that int(K * ) = {x ∈ R n : G T x ∈ int(Q * )}, K ∩ H x = G Q ∩ H G T x .
So, it suffices to take the n-dimensional Lebesgue measure on each side of the last equality.

Example 2.6 As pointed out in [START_REF] Güler | Barrier functions in interior point methods[END_REF]

, one has v R n + (x) = n! n i=1 x i -1 for all x ∈ int(R n + ).
Consider now an arbitrary simplicial cone, i.e., a proper cone of the form

K = G(R n + ) with G ∈ GL(n). One gets v K (x) = 1 n! |det G| n i=1 g i , x
for all x ∈ int(K * ).

Basic facts on volumetric centers

We now introduce the concept of volumetric center into the discussion. The idea is to use the following simple but fundamental fact.

Proposition 3.1 Let K ∈ n . Then v K admits a unique minimizer on S n . Furthermore, such a minimizer lies in the interior of K * .

Proof In view of the statements (a) and (c) of Proposition 2.1, the minimization problem (2) has the same optimal value and the same solution set as

minimize v K (x) x ∈ B n . ( 10 
)
The solution set to (10) has at most one element, because it is a convex set contained in S n . It remains to prove that (10) has at least one solution. Let {x ν } ν∈N be a sequence in

B n ∩ int(K * ) such that lim ν→∞ v K (x ν ) = lpv(K ).
Without loss of generality, one may suppose that x := lim ν→∞ x ν exists. By using Proposition 2.2, one deduces that x is a solution to (10) and that x ∈ int(K * ).

A result similar to Proposition 3.1 is obtained by exchanging the roles of K and K * . As mentioned in Sect. 1, the unique solution to (4) is denoted by (K ) and it is called the volumetric center of K .

The following result is easy and consistent with geometric intuition. The first formula in Proposition 3.2 says that lpv : n → R is invariant under orthogonal transformations. The second formula says that an orthogonal transformation acting on a proper cone modifies its volumetric center as expected. The notation O(n) refers to the set of orthogonal matrices of order n.

Proposition 3.2 Let K ∈ n . Then, for all U ∈ O(n), one has lpv(U (K )) = lpv(K ), (U (K )) = U ( (K )).

More generally, for any pair A, B of invertible matrices such that A

T A = B T B, one can write lpv(A(K )) = lpv(B(K )), (11) A -1 (A(K )) = B -1 (B(K )). (12) Proof Note that lpv(U (K )) = min{vol n [U (K ) ∩ H x ] : x ∈ S n } = min{vol n U (K ∩ H U T x ) : x ∈ S n } = min{vol n K ∩ H U T x : x ∈ S n }.
The change of variables y = U T x leads to

lpv(U (K )) = min{vol n (K ∩ H y ) : y ∈ S n } = lpv(K ),
and shows that (K ) = U T (U (K )). For proving ( 11) and ( 12), one just needs to observe that A(K ) is the image of B(K ) under the orthogonal matrix AB -1 .

The next theorem characterizes the volumetric center of K ∈ n as the unique fixed point of the gradient map

∇ K : int(K ) → R n , where K : int(K ) → R is the strictly concave function given by K (x) := - 1 n log[v K * (x)].
In view of ( 5), one has

∇ K (x) = - ∇v K * (x) nv K * (x) = 1 n K * ye -x,y dy K * e -x,y dy . For subsequence use, we recall that ⎧ ⎨ ⎩ ∇ K is a bijection between int(K ) and int(K * ), ∇ K (t x) = t -1 ∇ K (x) for all t > 0 and x ∈ int(K ), the Hessian matrix ∇ 2 K (x) is negative definite for all x ∈ int(K ). ( 13 
)
The properties listed in (13) can be found for instance in (Faraut and Korányi, 1994, Section I.3).

Theorem 3.3 Let K ∈ n . Then (K ) is the unique solution to the fixed point problem x ∈ int(K ), x = ∇ K (x). ( 14 
)
In particular, (K ) belongs not only to int(K ), but also to int(K * ).

Proof By writing down the optimality conditions for the minimization of the convex function v K * on the convex set B n , one sees that (K ) is equal to the unique solution to the system

x ∈ S n ∩ int(K ), -∇v K * (x) ∈ N B n (x),
where N B n (x) is the normal cone to B n at x. This system can be written in the equivalent form

x ∈ int(K ), ∇v K * (x) = ∇v K * (x), x x. ( 15 
)
The equality stated in (15) contains implicitly the information that x is a unit vector. Since v K * is positively homogeneous of degree -n, the Euler equation

∇v K * (x), x = -nv K * (x)
holds for all x ∈ int(K ). Hence, the system (15) can be rewritten as in ( 14).

Remark 3.4 [START_REF] Vinberg | The theory of convex homogeneous cones[END_REF] suggested to use the unique solution to the fixed point problem ( 14) as definition of "center" for a homogeneous cone K ∈ n , but in fact one can dispense from homogeneity. One says that K ∈ n is homogeneous if, for all x, y ∈ int(K ), there exists

A ∈ GL(n) such that A(K ) = K and Ax = y.
The fixed point characterization of (K ) can be exploited in manifold ways. For instance, one can use it to derive a formula for computing the volumetric center of a Cartesian product of finitely many proper cones.

Corollary 3.5 Let n = n 1 + • • • + n q with n 1 , . . . , n q ≥ 1. Let K be the Cartesian product of the cones K 1 ∈ n 1 , . . . , K q ∈ n q . Then K ∈ n and n 1/2 (K ) = n 1/2 1 (K 1 ), . . . , n 1/2 q (K q ) , ( 16 
) lpv (K ) κ n = lpv(K 1 ) κ n 1 . . . lpv(K q ) κ n q , ( 17 
)
where

κ n = n n/2 /n!.
Proof Clearly, K * is the Cartesian product of the K * i 's. A matter of computation shows that, for all x = (x 1 , . . . , x q ) ∈ int(K ), one has

v K * (x) = n 1 ! . . . n q ! n! v K * 1 (x 1 ) . . . v K * q (x q ), ∇ K (x) = n 1 n ∇ K 1 (x 1 ), . . . , n q n ∇ K q (x q ) . ( 18 
)
The combination of ( 13), (18), and Theorem 3.3, leads to (16). On the other hand,

v K * ( (K )) = n 1 ! . . . n q ! n! v K * 1 n 1 n (K 1 ) . . . v K * q n q n (K q ) = κ n κ n 1 . . . κ n q v K * 1 ( (K 1 )) . . . v K * q (K q ) .
In other words,

lpv (K * ) κ n = lpv(K * 1 ) κ n 1 . . . lpv(K * q ) κ n q . ( 19 
)
The equality ( 17) is obtained from ( 19) by exchanging the roles of K i and K * i .

Analysis of a few particular cones

Computing a volumetric center may be difficult or not depending on the geometric nature of the cone. The computation of (K ) is greatly simplified if K ∈ n is symmetric with respect to one or several linear subspaces. Symmetry with respect to a linear subspace is understood in the classical sense, i.e., invariance with respect to reflection through that subspace [(cf. [START_REF] Barker | Generalizations of top-heavy cones[END_REF], Definition 1)].

Lemma 4.1 Let L be a linear subspace with respect to which K ∈ n is symmetric. Then (K ) ∈ L.

Proof Combine Proposition 3.2 and the symmetry principle established in (Seeger and Torki 2014, Theorem 2.4).

Let S(K ) denote the intersection of all linear subspaces with respect to which K ∈ n is symmetric. The dimension of the subspace S(K ) is called the symmetry rank of K . We mention in passing that S(K * ) = S(K ) for all K ∈ n . In particular, K * and K have the same symmetry rank.

Theorem 4.2 Suppose that K ∈ n has symmetry rank equal to 1, i.e., there exists a vector c ∈ S n such that S(K ) = Rc. Then

(K ) = (K * ) = c if c ∈ K , -c if c / ∈ K .
Proof By applying Lemma 4.1 first to K and then to K * , one gets (K ) = ±c and (K * ) = ±c, respectively. Since the unit vectors (K ) ∈ int(K ) and (K * ) ∈ int(K * ) cannot be opposite, one necessarily has (K ) = (K * ).

By the way, saying that K ∈ n has symmetry rank equal to 1 is weaker than saying that K is symmetric with respect to a one-dimensional subspace. The next two corollaries are obtained straightforwardly from Theorem 4.2. We just give short sketches of theirs proofs.

Corollary 4.3 Let K ∈ n be permutation invariant, i.e., P(K ) = K for all permutation matrix P. Then

(K ) = (K * ) = 1 n / √ n if 1 n ∈ K , -1 n / √ n if 1 n / ∈ K ,
where 1 n stands for the n-dimensional vector of ones. 

(R n + ) = 1 n / √ n. Thus, lpv(R n + ) = v R n + 1 n √ n = n n/2 n! .
A top-heavy cone in R n is a proper cone that can be expressed as epigraph of a norm on R n-1 . Such class of cones has been studied in depth by [START_REF] Fiedler | Cones which are topheavy with respect to a norm[END_REF], see also [START_REF] Barker | Generalizations of top-heavy cones[END_REF].

Corollary 4.5 Let K ∈ n be top-heavy up to orthogonal transformation, i.e., there exist an orthogonal matrix U = [u 1 , . . . , u n ] of order n and a norm on R n-1 such that K = U (epi ), where

epi := x ∈ R n : (x 1 , . . . , x n-1 ) ≤ x n . Then (K ) = (K * ) = u n . Furthermore, lpv(K ) = 1 n vol n-1 (B ),
where B denotes the closed unit ball associated to .

Proof In view of Proposition 3.2, it suffices to consider the case in which U is equal to I n , the identity matrix of order n. In such a case, K is symmetric with respect to the line generated by n-th canonical vector e n := (0, . . . , 0, 1) T . Thus, (K ) = (K * ) = e n and lpv(K

) = v K (e n ) = 1 n vol n-1 K ∩ ∂ H e n .
For completing the proof we observe that K ∩ ∂ H e n is equal to B × {1}.

There are plenty of interesting proper cones that fit into the setting of Corollary 4.5. By way of example we mention

L n := ⎧ ⎨ ⎩ x ∈ R n : n-1 i=1 x 2 i 1/2 ≤ x n ⎫ ⎬ ⎭ (Lorentz or circular cone), K n, p := ⎧ ⎨ ⎩ x ∈ R n : n-1 i=1 |x i | p 1/ p ≤ x n ⎫ ⎬ ⎭ ( p -cone with 1 ≤ p < ∞), K n,∞ := x ∈ R n : max 1≤i≤n-1 |x i | ≤ x n ( ∞ -cone), E M := (z, t) ∈ R n : z, Mz ≤ t (upward ellipsoidal cone).
The upward ellipsoidal cone E M is defined in terms of a symmetric positive definite matrix M of order n -1. All the above cones have the vector e n as volumetric center.

Their least partial volumes are given by the following explicit formulas:

lpv (L n ) = π (n-1)/2 n ((n + 1)/2) , lpv K n, p = [2 (1 + 1/ p)] n-1 n (1 + (n -1)/ p) , lpv K n,∞ = 2 n-1 /n, lpv (E M ) = lpv (L n ) √ det M ,
where stands for the usual Euler gamma function.

As shown above, the least partial volume of the upward ellipsoidal cone E M can be computed in a straightforward manner. To the best of our knowledge, there is no simple formula for evaluating the ball-truncated volume of E M . Another useful proper cone that fits into the setting of Corollary 4.5 is the revolution cone rev(c, s)

:= {x ∈ R n : s x ≤ c, x },
where c ∈ S n determines the revolution axis and s ∈]0, 1[ is a parameter reflecting the degree of aperture of the cone. One gets

(rev(c, s)) = c, lpv (rev(c, s)) = 1 s 2 -1 n-1 2 lpv (L n ) .
The next proposition concerns the case of a general ellipsoidal cone, i.e., not necessarily upward. By definition, an ellipsoidal cone in R n is an image of the Lorentz cone L n under a nonsingular matrix, cf. [START_REF] Stern | Invariant ellipsoidal cones[END_REF]. Ellipsoidal cones have been studied under different angles by a number of authors, see for instance [START_REF] Bhattacharya | Ellipsoidal cones and rendezvous of multiple agents[END_REF] for an application of ellipsoidal cones in control theory.

Proposition 4.6 Let K = G(L n ) with G ∈ GL(n). Then lpv (K ) = (-μ) n/2 |det G| lpv (L n ) ,
where μ is the smallest eigenvalue of the symmetric matrix

G := G -T (I n -2e n e T n )G -1 .
Furthermore, (K ) is an eigenvector of G associated to the eigenvalue μ. More precisely, (K ) is the unique solution to

G x = μ x, x = 1, G -T e n , x > 0. ( 20 
)
Proof Following similar steps as in (Seeger 2013, Lemma 5), one can check that

K = U (E M ) (21)
for some U ∈ O(n) and some positive definite symmetric matrix M of order n -1. We briefly explain the construction of U and M. The matrix G is clearly symmetric. Let

λ 1 (G ) ≥ . . . ≥ λ n-1 (G ) ≥ λ n (G )
be the eigenvalues of G arranged in nonincreasing order. By applying Silvester's inertia theorem, one sees that μ = λ n (G ) is negative and all the other eigenvalues of G are positive. Hence, the diagonal matrix

M := -μ -1 Diag λ 1 (G ) , . . . , λ n-1 (G )
is positive definite. Let the columns of U be formed with an orthonormal basis of eigenvectors of G . As last column of U we take the vector x ∈ R n which solves (20). Such choices of M and U lead to the representation formula ( 21), from where one gets (K ) = U e n = x and

lpv(K ) = lpv(E M ) = lpv (L n ) √ det M . ( 22 
)
It remains now to substitute det M = (det G) -2 (-μ) -n into ( 22).

The dual of an ellipsoidal cone is an ellipsoidal cone. The next corollary is a consequence of the representation formula ( 21) and the fact that

(E M ) * = E M -1 .
Corollary 4.7 Let K be an ellipsoidal cone in R n . Then

(K * ) = (K ), ( 23 
) lpv(K * ) lpv(K ) = lpv(L n ) 2 . ( 24 
)
Proof One can represent K as in ( 21). In such a case, K * = U (E M -1 ) and

U T (K * ) = (E M -1 ) = (E M ) = U T (K ).
This proves (23). On the other hand,

lpv(K * ) lpv(L n ) = lpv(E M -1 ) lpv(L n ) = 1 det(M -1 ) = 1 √ detM -1 = lpv(E M ) lpv(L n ) -1 = lpv(K ) lpv(L n ) -1
.

This proves (24).

Continuity issues

Let n denote the set of nontrivial closed convex cones in R n . Recall that a closed convex cone is nontrivial if it is different from the zero cone and the whole space. Topological and continuity issues on n are relative to the spherical metric δ. By definition, the spherical distance between a pair P, Q of elements in n is the number 

δ(P, Q) := haus(P ∩ S n , Q ∩ S n ),
δ bt (P, Q) := haus(P ∩ B n , Q ∩ B n ).
In fact, one has

δ bt (P, Q) ≤ δ(P, Q) ≤ 2δ bt (P, Q)
for all P, Q ∈ n . Convergence with respect to the spherical metric is also equivalent to convergence in the Painlevé-Kuratowski sense.

A nontrivial closed convex cone is said to be solid if it has nonempty interior. Since the sets ptd

n := {K ∈ n : K is pointed}, sol n := {K ∈ n : K is solid}
are open in the metric space ( n , δ), so does their intersection n = ptd n ∩ sol n . A natural question to ask is whether lpv : n → R and : n → R n are continuous functions. The situation is well understood in what concerns ball-truncated volumes, inradiuses, and incenters. For instance, Gourion and Seeger (2012, [Theorem 2.3]) proved that btv : n → R is Lipschitzian. Proposition 5.1 There exists a constant n such that

|btv(P) -btv(Q)| ≤ n δ(P, Q) for all P, Q ∈ n .
The real valued function btv(•) is well defined not just on n , but also on the larger set n . The following Lipschitzness result is a direct consequence of (Iusem and Seeger 2008, Proposition 13).

Proposition 5.2 For all P, Q ∈ n , one has

|r (P) -r (Q)| ≤ 2δ(P, Q).
The vector ξ(K ) is well defined as long as K belongs to sol n . The continuity of the incenter function ξ : sol n → R n has been established in (Henrion and Seeger 2010a, Theorem 2.9). Recently, Seeger (2014, Theorem 7) proved that the incenter function is not merely continuous, but also locally Hölderian.

Proposition 5.3 For all P, Q ∈ sol n , one has

ξ(P) -ξ(Q) ≤ 4 √ r (P) + r (Q) [δ(P, Q)] 1/2 .
In particular, ξ : sol n → R n is locally Hölderian with Hölder exponent 1/2. The next theorem is the main result of this section. It shows that lpv(K ) and (K ) behave in a continuous manner with respect to perturbations in the argument K ∈ n . We state first three useful lemmas. The first lemma concerns n-dimensional volumes of symmetric differences of compact convex sets. Recall that the circumradius of a convex body ⊆ R n is defined as the radius of the smallest closed ball containing .

Lemma 5.4 Let ⊆ R n be a convex body with circumradius equal to ρ. Then

vol n (C D) ≤ (3ρ) n -1 ρ vol n (B n ) haus(C, D)
for any pair C, D of nonempty compact convex subsets of .

Proof There exists a unique z ∈ R n , called the circumcenter of , such that

⊆ z + ρB n . Let t = haus(C, D). Since D ⊆ C + tB n , one has vol n (D\C) ≤ vol n ((C + tB n )\C) = vol n (C + tB n ) -vol n (C). But vol n (C + tB n ) = n k=0 k (C) t k ,
where 0 (C), . . . , n (C) are the coefficients in the Steiner polynomial associated to C. The coefficients k (C) are nonnegative and depend not just on C, but also on the dimension n of the ambient space. In fact,

k (C) = n! k!(n -k)! V (C, . . . , C n-k , B n , . . . , B n k ) ,
where V (C 1 , . . . , C n ) stands for the mixed volume of the convex bodies C 1 , . . . , C n .

In particular, 0 (C) = vol n (C). As mentioned in (Gardner 1995, Appendix A.3), the function V is nondecreasing in each argument with respect to set inclusion. It follows that

vol n (D\C) ≤ n k=1 k (C) t k ≤ n k=1 k (z + ρB n ) t k-1 t ≤ 1 2ρ n k=1 k (z + ρB n ) (2ρ) k t. ( 25 
)
The last equality is due to the fact that t ≤ 2ρ, because C and D are subsets of . By equating coefficients in the polynomials

vol n (z + ρB n + tB n ) = (ρ + t) n vol n (B n ), vol n (z + ρB n + tB n ) = n k=0 k (z + ρB n ) t k , one gets k (z + ρB n ) = n! k!(n -k)! ρ n-k vol n (B n ).
Substituting this information into (25) and simplifying, one obtains

vol n (D\C) ≤ (3ρ) n -1 2ρ vol n (B n ) t.
The same estimate holds for the n-dimensional volume of C\D.

The second lemma is a technical result concerning the distance from a point to the boundary of a convex cone.

Lemma 5.5 Let K ∈ n . Then, for all x ∈ R n and r ≥ x , one has

dist(x, r B n ∩ ∂ K ) = dist(x, ∂ K ) ≤ x .
Proof Take any y 0 ∈ ∂ K such that dist(x, ∂ K ) = xy 0 . Since ∂ K is stable under multiplication by positive scalars, one has xy 0 , y 0 = 0. By using Pythagoras rule

x -y 0 2 + y 0 2 = x 2 , one gets y 0 ≤ x and dist(x, ∂ K ) ≤ x . One also obtains dist(x, r B n ∩ ∂ K ) = dist(x, ∂ K ), because y 0 ∈ r B n ∩ ∂ K .
The third and last lemma concerns the convergence of boundaries of converging cones. As a consequence of Lemma 5.6, one sees that:

If {K ν } ν∈N ⊆ n converges to K ∞ ∈ n , then lim ν→∞ haus(S n ∩ ∂ K ν , S n ∩ ∂ K ∞ ) = 0.
Lemma 5.6 For all P, Q ∈ n , one has

haus(S n ∩ ∂ P, S n ∩ ∂ Q) ≤ 2δ bt (P, Q). ( 26 
)
Proof It suffices to proves that dist(x, ∂ Q) ≤ 2δ bt (P, Q) for all x ∈ S n ∩ ∂ P. Let x be as just mentioned. Note that C := 2B n ∩ P and

D := 2B n ∩ Q are convex bodies in R n . Since ∂ D = (2B n ∩ ∂ Q) ∪ (2S n ∩ Q), one has dist(x, ∂ D) = min {dist(x, 2B n ∩ ∂ Q), dist(x, 2S n ∩ Q)} . Clearly, dist(x, 2S n ∩ Q) ≥ dist(x, 2S n ) = 1, dist(x, 2B n ∩ ∂ Q) = dist(x, ∂ Q) ≤ 1,
the second line being a consequence of Lemma 5.5. It follows that

dist(x, ∂ Q) = dist(x, ∂ D) ≤ max z∈S n ∩∂ P dist(z, ∂ D) ≤ max z∈∂C dist(z, ∂ D) ≤ haus(C, D),
where the last inequality is obtaining by applying (Wills 2007, Theorem 14). Finally, by using a simple positive homogeneity argument, one sees that haus(C, D) = 2δ bt (P, Q).

We do not know if the inequality (26) remains true for P, Q in the larger set n . Anyway, we now are ready to state: Theorem 5.7 The functions lpv : n → R and : n → R n are continuous.

Proof Let {K ν } ν∈N be a sequence in n converging to a certain K ∞ ∈ n , i.e., lim

ν→∞ δ(K ν , K ∞ ) = 0. ( 27 
)
We must prove that

lim ν→∞ lpv(K ν ) = lpv(K ∞ ) (28) lim ν→∞ (K ν ) = (K ∞ ). ( 29 
)
For the sake of clarity in the exposition, we divide the proof into several steps.

Step 1 We prove that {lpv(K ν )} ν∈N is bounded. For each ε positive, let ε (K ∞ ) denote the smallest closed convex cone containing the compact set K ∞ ∩ S n + εB n . We take ε sufficiently small in order to ensure that ε (K ∞ ) is proper. One has

K ν ∩ S n ⊆ K ∞ ∩ S n + δ(K ν , K ∞ )B n ⊆ K ∞ ∩ S n + εB n ⊆ ε (K ∞ )
for all ν large enough. In particular,

K ν ⊆ ε (K ∞ ) and lpv(K ν ) ≤ lpv( ε (K ∞ )).
Step 2 We prove that for each sequence {x ν } ν∈N satisfying

x ν ∈ S n ∩ int(K * ν ), (30) x ∞ := lim ν→∞ x ν exists and belongs to int(K * ∞ ), (31) 
there exists a constant s ∈ ]0, 1[ such that

K ν ∪ K ∞ ⊆ rev(x ν , s) (32) 
for all ν large enough. Thanks to the Walkup-Wets isometry theorem (cf. [START_REF] Walkup | Continuity of some convex-cone-valued mappings[END_REF], Theorem 1]), the condition ( 27) is equivalent to

lim ν→∞ δ(K * ν , K * ∞ ) = 0. (33) Since x ∞ ∈ int(K * ∞ )
, there exists a small positive s such that

x ∞ + 2sB n ⊆ int(K * ∞ ).
By combining (33) and a standard stability result for Painlevé-Kuratowski limits (cf. [Rockafellar and Wets 1998, Proposition 4.15]), one gets

x ∞ + 2sB n ⊆ int(K * ν )
for all ν greater than a certain integer ν 0 . Since {x ν } ν∈N converges to x ∞ , it follows that

x ν + sB n ⊆ K * ∞ and x ν + sB n ⊆ K * ν
for all ν greater than another integer ν 1 ≥ ν 0 . By passing to dual cones in

R + (x ν + sB n ) ⊆ K * ∞ and R + (x ν + sB n ) ⊆ K * ν ,
one gets the reverse inclusions rev(x ν , s) ⊇ K ∞ and rev(x ν , s) ⊇ K ν . This proves (32).

Step 3 We show that, for any {x ν } ν∈N as in Step 2, one has

lim ν→∞ v K ν (x ν ) = v K ∞ (x ∞ ). ( 34 
)
As we saw already, x ν ∈ int(K * ∞ ) for all ν large enough. Hence, one can write

|v K ν (x ν ) -v K ∞ (x ∞ )| ≤ |v K ν (x ν ) -v K ∞ (x ν )| + |v K ∞ (x ν ) -v K ∞ (x ∞ )|. Since v K ∞ : int(K * ∞ ) → R is continuous, one has lim ν→∞ v K ∞ (x ν ) = v K ∞ (x ∞
). On the other hand, thanks to (5), one gets

n! |v K ν (x ν ) -v K ∞ (x ν )| ≤ a ν with a ν := D ν e -x ν ,y dy and D ν := K ν K ∞ .
By using (32), one obtains

a ν ≤ D ν e -s y dy = 1 s n D ν e -y dy = 1 s n ∞ 0 D ν ∩tS n e -t dy dt = 1 s n ∞ 0 e -t vol n-1 (D ν ∩ tS n )dt = (n -1)! s n vol n-1 (D ν ∩ S n ). But vol n-1 (D ν ∩ S n ) = n vol n (D ν ∩ B n ) = n vol n ((K ν ∩ B n ) (K ∞ ∩ B n )) .
By applying Lemma 5.4 with = B n , one sees that

lim ν→∞ vol n-1 (D ν ∩ S n ) = 0.
Hence, lim ν→∞ a ν = 0 and lim

ν→∞ v K ν (x ν ) = v K ∞ (x ∞ ).
This completes the proof of (34).

Step 4 We show that, for any {x ν } ν∈N as in Step 2, one has

lim ν→∞ ∇v K ν (x ν ) = ∇v K ∞ (x ∞ ).
We start by writing

∇v K ν (x ν )-∇v K ∞ (x ∞ ) ≤ ∇v K ν (x ν )-∇v K ∞ (x ν ) + ∇v K ∞ (x ν )-∇v K ∞ (x ∞ ) . The continuity of ∇v K ∞ : int(K * ∞ ) → R n yields lim ν→∞ ∇v K ∞ (x ν ) -∇v K ∞ (x ∞ ) = 0.
On the other hand, Step 5 We prove a technical inequality relating v K (x) and dist(x, ∂ K * ). To be more precise, we show that One obtains (35) by combining above inequality and the fact that vol n (M) = vol n (ξ(K ) + r (K )B n ) + α -1 x vol n-1 (r (K )B n-1 ) ≥ α -1

n! ∇v K ν (x ν ) -∇v K ∞ (x ν ) = K ν ye -x ν ,y dy - K ∞ ye -x ν ,
v K (x) ≥ vol n-1 (B n-1 ) n! [r (K )] n-1 e -2 x -1 dist(x, ∂ K * ) ( 35 
x [r (K )] n-1 vol n-1 (B n-1 ) .

Step 6 Finally, we prove ( 28) and (29). To do this, we work with the sequence {x ν } ν∈N given by x ν := (K * ν ).

(36)

The condition ( 30) is clearly in force. One may assume that x ∞ := lim ν→∞ x ν exists, otherwise one works with a convergent subsequence {x ϕ(ν) } ν∈N and the corresponding subsequence {K ϕ(ν) } ν∈N . Clearly, x ∞ ∈ K * ∞ . We claim that x ∞ ∈ int(K * ∞ ). Suppose, to the contrary, that

x ∞ ∈ ∂ K * ∞ . One has dist(x ν , ∂ K * ν ) ≤ x ν -x ∞ + dist(x ∞ , ∂ K * ν ) ≤ x ν -x ∞ + ζ ν with ζ ν := max x∈S n ∩ ∂ K * ∞ dist(x, ∂ K * ν ).
By exploiting the convergence condition (33) and Lemma 5.6, one sees that lim ν→∞ ζ ν = 0. Hence, lim ν→∞ dist(x ν , ∂ K * ν ) = 0. But, thanks to Step 5, one has

lpv(K ν ) = v K ν (x ν ) ≥ vol n-1 (B n-1 ) n!e 3 [r (K ν )] n-1 dist(x ν , ∂ K * ν )
.

The inradius function r : n → R is known to be continuous. Since lim ν→∞ r (K ν ) = r (K ∞ ) = 0, it follows that lim ν→∞ lpv(K ν ) = ∞, contradicting the result of Step 1. Summarizing, the special sequence (36) satisfies ( 30) and (31). By passing to the limit in the optimality condition

∇v K ν (x ν ) = ∇v K ν (x ν ), x ν x ν , one gets ∇v K ∞ (x ∞ ) = ∇v K ∞ (x ∞ ), x ∞ x ∞ .
This and x ∞ ∈ int(K * ∞ ) imply that x ∞ = (K * ∞ ). We have shown in this way that lim ν→∞ (K * ν ) = (K * ∞ ).

The equality ( 29) is then obtained by exchanging the roles of K ν and K * ν . Finally, observe that

  stands for the classical Pompeiu-Hausdorff distance between a pair C, D of nonempty compact subsets of R n . Convergence with respect to the spherical metric is equivalent to convergence with respect to the ball-truncated metric

  y dy ≤ b ν with b ν := D ν y e -x ν ,y dy.One proves that lim ν→∞ b ν = 0 by using a similar technique as in Step 3. Indeed, vol n-1(D ν ∩ tS n ) dt = n! s n+1 vol n-1 (D ν ∩ S n ).

  ) for all K ∈ n and x ∈ int(K * ). The term dist(x, ∂ K * ) is clearly positive and equal toα x := min u∈K ∩ S n u, x . Let u x ∈ K ∩ S n be such that u x , x = α x . The set M := ξ(K ) + r (K )B n + α -1 x co{0, u x } is contained in K , and max y∈M y, x = ξ(K ), x + r (K ) x + 1 ≤ 2 x + 1. Hence, n! v K (x) ≥ M e -y,x dy ≥ e -2 x -1 vol n (M).

  Proof As shown in(Seeger and Torki 2014, Example 2.5), if K ∈ n is permutation invariant, then S(K ) is equal to the line generated by 1 n . Since R n + is permutation invariant and contains 1 n , one has

	Example 4.4

This completes the proof of the theorem.

The inequality (35) has further consequences. For instance, it can be used to derive the following generalization of Proposition 2.2. A sequence

Uniform solidity is an assumption arising naturally in a number of situations, cf. (Henrion and Seeger 2011, Theorem 3.4).

Proposition 5.8 Let {K ν } ν∈N be a sequence in n satisfying the uniform solidity condition (37). Let {x ν } ν∈N be a bounded sequence in R n such that x ν ∈ K * ν . Then

Proof The "only if" part is a consequence of the inequality

and the boundedness of {btv(K ν )} ν∈N . The "if" part follows from

and the hypothesis (37).

We do not know whether : n → R n is locally Hölderian or not. This difficult question is left open for the time being. What is clear however is that lpv : n → R is not Lipschitzian. The next example illustrates this point.

Example 5.9 Let K = L n and K ν = rev(e n , cos θ ν ) with θ

Hence, lim ν→∞ lpv(K ν )lpv(K ) δ(K ν , K ) = ∞.