Peculiar effective elastic anisotropy of nanometric multilayers studied by surface Brillouin scattering
Abstract
We show in this paper by using a two-scale transition model that the elastic anisotropy of a thin film specimen can be tuned by appropriate stacking design. The anisotropic behaviour is illustrated for two monophase thin films, namely W which is perfectly elastically isotropic and Au which is strongly elastically anisotropic, and for a nanometric W/Au multilayers. The experimental measurements show that the model capture the elastic anisotropy rather well even for a nanometric multilayer stacking (period of 12 nm) and that the elastic anisotropy of W/Au multilayer is more pronounced than the ones of the two components for a fraction of 50%. This enhanced anisotropy is discussed in view of the multilayer microstructure
Origin | Files produced by the author(s) |
---|
Loading...