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Abstract
Quantum system inversion concerns learning the characteristics of the underlying Hamiltonian

by measuring suitable observables from the responses of the system’s interaction with members

of a set of applied fields. Various aspects of inversion have been confirmed in theoretical, numer-

ical and experimental works. Nevertheless, the presence of noise arising from the applied fields

may contaminate the quality of the results. In this circumstance, the observables satisfy proba-

bility distributions, but often the noise statistics are unknown. Based on a proposed theoretical

framework, we present a procedure to recover both the unknown parts of the Hamiltonian and the

unknown noise distribution. The procedure is implemented numerically and seen to perform well

for illustrative Gaussian, exponential and bi-modal noise distributions.
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I. INTRODUCTION

The interaction between a quantum system and an applied field can be used to gather

information about the system by measuring suitable observables for various incarnations

of the field (see [1–3, 8, 14, 17, 18] for some related works). Such an inversion endeavor,

seeking information about the system, has to take into account the possibility that the

measurements are contaminated by noise, possibly from multiple sources, or that the model

does not adequately describe all relevant characteristics of the system. Many considerations

arise, including the following list:

S-1 The number of levels is unknown. Except for spins, the number of levels can generally

take on any value, including the prospect of there being a continuum. The nature

of the field bandwidth and intensity plays into which aspects of the system dynamics

are accessible due to the field. In addition, unless the molecule is aligned (which is

also possible) with the control field there will be vibration-rotation transitions. The

circumstance does not change the key algorithmic principles set out in this work, but

it can make the actual number of levels and dipole elements more involved.

S-2 Intense fields can be important in some problems where excited electronic states play a

role, which can bring in non-resonant processes (i.e., virtual states, requiring adequate

models). Moreover intense fields may lead to models including the nonlinear field

coupling coefficients in the Hamiltonian.

S-3 If the system is in a thermal initial state, then the initial state will be a Boltzmann

distribution instead of a single cold molecule in the ground or a pure state. The

inversion will then need to deal with the distribution of molecules.

The performance of inversion needs to acknowledge the issues above. In addition, there

will always be noise in the observations, but assuming that it is random and symmetric (e.g.

Gaussian) then signal averaging may reduce its influence. However, noise may accompany

the control field with the following circumstances:

F-1 Different molecules (even if they are oriented) will see different fields as the field

generally has a spatial (e.g., a Gaussian) lateral spread.
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F-2 A so-called spatio-temporal ”chirp” may occur, where there is some unknown complex

spatio-temporal pattern (possibly fluctuating) in the field. When the pattern is not

uniform it has to be factored into the model with, possibly nonlinear, additional terms,

see [9].

F-3 Although the field may be known before entering the sample, optical distortion during

propagation can lead to additional field uncertainty in the domain where the data is

taken.

F-4 The variations in field are stochastic from shot-to-shot with respect to the frequency

dependence of the amplitudes and phases. The origin of this behavior is mainly due

to the laser source and possibly jitter in the optics. The implications for the control

data due to this occurrence is likely more significant at higher intensities.

Collecting all of these items pose a daunting, but not an impossible challenge to treat. In

this work we limit the focus on the randomness coming from the last item F-4 above. These

are related to so-called ”fixed systematic errors”, see [12, section VI.A. equations (38) and

(40)] or ”systematic control error”, see [13] in the quantum computing literature. In [15]

”low frequency noise” is used (cf. also [10, section IV. C.]): it is the portion of the (control)

amplitude noise that has a correlation time up to 103 times longer than the timescale of the

dynamics therefore it can be considered as constant in time. The understanding of laser

noise and various associated models is an active area of research [6, 11, 19].

We present the theoretical background and analysis in Section II. The numerical algorithm

and simulation results are given in Section III. Final remarks are made in Section IV.

II. THEORETICAL FRAMEWORK

A. The model

We introduce the following notation:

• LM1,M2,··· ,Mm is the Lie algebra spanned by the matrices M1,M2, · · · ,Mm;

• For any matrix or vector X we denote by X∗ its adjoint (the transpose, complex

conjugate);
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• HN is the set of all Hermitian matrices HN = {X ∈ CN×N |X∗ = X};

• Ψ(t,H, u(·), µ,Ψ0) is the solution of the equation (1) below; to simplify the notation,

when there is no ambiguity, we denote it as Ψ(t);

• SU(N) is the special unitary group of degree N , which is the group of N ×N unitary

matrices with determinant 1;

• su(N) is the Lie Algebra of skew-Hermitian matrices (the Lie algebra of SU(N));

• A set of commuting observables O = {O1, ..., OK} (named SCO hereafter) satisfies

[Ok, O`] = 0, ∀k, ` ∈ {1, ..., K};

• L(X) is the distribution of the random variable X.

Let us consider the following controlled quantum system with time-dependent wave-

function Ψ(t) satisfying the Schrödinger equation:


iΨ̇(t,H, u(·), µ,Ψ0) = (H − u(t)µ)Ψ(t,H, u(·), µ,Ψ0)

Ψ(0, H, u(·), µ,Ψ0) = Ψ0,
(1)

where H is the internal (”free”) Hamiltonian and µ the coupling operator between the control

u(t) ∈ L1
loc(R+;R) and the system. We work in a finite dimensional framework, therefore

H,µ ∈ HN for some N ∈ N∗. The free Hamiltonian H is taken as known and the goal is to

recover the matrix entries of µ from laboratory measurements of some observables depending

on Ψ(t). The control u(t) can be changed in the laboratory to gather sufficient information

on the system for the inversion to extract µ.

In the laboratory, the control field is produced by superposition of several frequencies,

each with a specific amplitude and phase:

u(t) = σ(t)
∑
α 6=β

Aαβsin(ωαβt+ θαβ), (2)

where σ(t) is a Gaussian envelope in time and ωαβ = Eβ − Eα is the transition frequency

between the eigenvalues Eα an Eβ of H. The amplitudes Aαβ and the phases θαβ are the

control parameters. In practice, the control fields cannot be produced perfectly. When

we repeat nominally the same experiment, there can be a random shift in the amplitudes,
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which means for each experiment, there is a multiplicative noise factor on the amplitudes.

Accordingly the perturbation is modeled by a random multiplicative factor Y acting on the

control i.e., u(t) is replaced by Y · u(t). This model has the assumption that each Aαβ has

the same shift; in addition we do not treat here possible noise appearing in the phases θαβ.

In principle, the same methodology may apply to noise appearing in the phases; however at

this time adapted ensemble controllability results are not available and this requires working

with a high-dimensional probability distribution (one dimension for each independent noise

in a phase). As a final remark, noise in the amplitudes and phases does not imply that the

origin is in the pulse shaper but from the driving laser and represented in the fashion above.

The perturbation Y takes values in V = {y`, ` ≤ L} ⊂ R. We denote ξ` = P(Y = y`),

where the column vector ξ with entries ξ1, · · · , ξL is a probability distribution on V . The

numerical values of the possible perturbations y` are known but their occurrence probabil-

ities ξ` are unknown and thus Ψ is a random variable, as are all measurements depending

on Ψ. Repeating the control experiment several times will yield the distribution of the

measurements.

The measurements are of the form 〈OΨ(T,H, u, µ,Ψ0),Ψ(T,H, u, µ,Ψ0)〉 with O ∈ HN

being a member of a list of possible measurable operators. Often, only one observable

operator is readily available, but the experiment can be repeated many times, including

with distinct chosen fields. Generally for two observables O1, O2 ∈ HN no information is

available on the joint distribution of the values 〈O1Ψ(T,H, u, µ,Ψ0),Ψ(T,H, u, µ,Ψ0)〉 and

〈O2Ψ(T,H, u, µ,Ψ0),Ψ(T,H, u, µ,Ψ0)〉.

B. Theoretical result

The following theorem proves that under certain assumptions on the system and the SCO

O, if we obtain the same distributions for all observables in O and for all controls, then the

dipole moment µ and the probabilities (ξ`)L`=1 can be identified up to some multiplicative

phases.

Remark II.1. As the noise (with unknown distribution) Y multiplies the unknown dipole

µ, when the couple (Y, µ) is a solution, any couple (Y/λ, λµ) is a solution too; thus it is

only possible to obtain Y and µ up to a multiplicative factor (here λ). If, for instance,

some additional information on Y or µ is known the constant λ can be set accordingly. As
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such, we will suppose from now on that for at least one transition an absorption intensity

measurement can be performed which provides the value of |µk,`|2 for some given k, ` (see [4,

Chapter XIII, Section C.3.b Fermi’s Golden Rule, p. 1299]). This is recalled in assumption

Hyp-D below.

Theorem II.2. Let H, µ1, µ2 ∈ HN , H diagonal, µ1 6= 0, µ2 6= 0, Y1, Y2 two random

variables with values in the same set V, at least one of which is non-null, Ψ1
0,Ψ2

0 ∈ SN some

initial states and denote for a = 1, 2 and u ∈ L1
loc(R+,R): Ψa(t, u) = Ψ(t,H, u(·), µa,Ψa

0).

Let O be a (non-trivial) SCO. We suppose that N ≥ 3 and:

Hyp-A LiH,iµ1 = LiH,iµ2 = su(N);

Hyp-B tr(H) = tr(µ1) = tr(µ2) = 0;

Hyp-C the eigenvalues of H are all of multiplicity one.

Hyp-D |(µ1)k,`|2 = |(µ2)k,`|2 6= 0 for some fixed k, ` .

The final observation time is denoted T (assumed large enough) and we suppose the following

equality of distributions:

L(〈OΨ1(T, uY1),Ψ1(T, uY1)〉) = L(〈OΨ2(T, uY2),Ψ2(T, uY2)〉) ∀u ∈ L1([0, T ];R), ∀O ∈ O,
(3)

then for some (αi)Ni=1 ∈ RN :


(µ1)jk = ±ei(αj−αk)(µ2)jk, ∀j, k ≤ N,

P(Y1 = y`) = P(Y2 = ±y`) ∀` ≤ L.
(4)

Remark II.3. The ± signs in equation (4) are due to the hypothesis Hyp-D which leaves

the sign undetermined; it may also appear when the sign of the noise is ambiguous i.e., when

Y1 and −Y1 have the same distribution.

Remark II.4. The SCO O may contain just one observable.

Proof. The proof requires the tools introduced in [7] where the additive noise u(·) + Y was

considered. In order to keep it simple we only give the main ideas and the modifications
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with respect to proof presented there. Using Lemma 5.1 in [7], for all ` ≤ L and O ∈ O,

there exists κO(`) ≤ L such that

〈OΨ1(T, u · y`),Ψ1(T, u · y`)〉 = 〈OΨ2(T, u · yκO(`)),Ψ2(T, u · yκO(`))〉. (5)

Reasoning as in the proof of theorem 4.1 of [7], this implies that there exists W ∈ SU(N)

diagonal such that yκO(`)µ2 = Wy`µ1W
−1. Since at least one of Y1 or Y2 is non-null, we can

suppose, without loss of generality, that y` 6= 0; we deduce the existence of some λ ∈ R\{0}
such that 

(µ1)jk = λei(αj−αk)(µ2)jk, ∀j, k ≤ N,

P(Y1 = y`) = P(Y2 = λy`) ∀` ≤ L.
(6)

However, since µ1 and µ2 are fixed for all O and ` we obtain that λ is independent of `,

which, using assumption Hyp-D, gives the conclusion.

Remark II.5. The hypothesis Hyp-A is required for identification while Hyp-B is rather

a convention. Hypothesis Hyp-C can be relaxed (as in [7]) if the O is a Complete Set of

Commuting Observables (CSCO).

III. NUMERICAL RESULTS

A. The algorithm

Several numerical simulations were performed in order to illustrate the theoretical result

in Section II. In all cases we simulate the ”real” system with Hamiltonian H, dipole moment

µreal, noise Y real with distribution L(Y real) = ∑L
`=1 ξ

real
` δy` and observablesO = {O1, ..., OK}

that correspond to the Hamiltonian H, specified by projections {|e1〉〈e1|, ... , |eN〉〈eN |}.
Here |e1〉 is the j-th eigenstate of H. Note that here we take O = {O1, ..., OK} to be the

entire set of projectors, but one would be enough for the theoretical result to hold, see the

Remark II.4.

The measurements provide the distributions of the observables for each control u:

L∑
k=1

ξrealk δ|〈Ψ(T,H,u·yk,µreal,Ψ0
1),ej〉|2). (7)
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The Hamiltonian H is assumed known to high accuracy. In contrast, we suppose that

a priori we only know the order of magnitude of the dipole moment. This information is

useful as an initial guess for the inversion procedure.

To find the dipole moment and the noise distribution of the control amplitudes we mini-

mize the difference between

(i) the observed distribution calculated, at some suitably large time T , with the current

dipole candidate µ and the current noise distribution candidate ∑L
k=1 ξkδyk and

(ii) the real observable distribution calculated with the real dipole moment µreal and the

real distribution ∑L
k=1 ξ

real
k δyk .

The difference is summed over several controls u1,...,uNu and defined as:

J (µ, (ξk)Lk=1; (ui)Nui=1) = log

 1
Nu

Nu∑
i=1

N∑
j=1
W1

[
L∑
k=1

ξkδ|〈Ψ(T,H,ui·yk,µ,Ψ0
1),ej〉|2 ,

L∑
k=1

ξrealk δ|〈Ψ(T,H,ui·yk,µreal,Ψ0
1),ej〉|2

] . (8)

Here W1 represents the 1-Wasserstein (also known as Kantorovich-Rubinstein) distance be-

tween two distributions (see page 34-35 in [16]); for two probability distributions Z1, Z2

having cumulative distribution functions FZ1(respectively FZ2) the distance is:

W1(Z1, Z2) =
∫ 1

0
|F−1
Z1 (x)− F−1

Z2 (x)|dx. (9)

Other distances could also be used, e.g. W2. We start the optimization with an initial guess

µ0 (see (14)); the distribution ξ0 is initialized to be uniform. The iteration n ≥ 1 consists

in the following steps:

Algo 1 Randomly choose Nu controls uni , i = 1, ..., Nu ;

Algo 2 minimize ξ → J (µn−1, ξ; (ui)Nui=1) and set ξn to be a minimizer (in practice a close

approximation);

Algo 3 minimize µ → J (µ, ξn; (ui)Nui=1) and set µn to be a minimizer (in practice a close

approximation);

For the step Algo 2, denote aijk = |〈Ψ(T,H, uni · yk, µn,Ψ0
1), ej〉|2 and bijk = |〈Ψ(T,H, uni ·
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yk, µreal,Ψ0
1), ej〉|2. A part of the algorithm is to minimize the error:

log
 1
Nu

Nu∑
i=1

N∑
j=1
W1(

L∑
k=1

ξkδaij
k
,
L∑
k=1

ξrealk δbij
k

)
 . (10)

The differential of the distance W1 is not trivial to compute (see [16] for a rigorous

mathematical treatment); instead, in this step, we use the L2 distance between the smoothed

densities: each Dirac mass is replaced by a Gaussian distribution with small variance (here

ν2 = 10−4): δaij
k

is replaced by the normal distribution N (aijk , ν2) and δbij
k

is replaced by

N (bijk , ν2)). The use of parameter ν does not assume any particular distribution for ξreal

and does not bias towards one, it is only a rapid way to obtain a computable gradient.

We compute the L × L matrix Mij whose entries Mij
k,` = 1

ν·
√

2πe
−

(aij
k
−aij
`

)2

2·ν2 account for

the density of the distribution N (aij` , ν2) at the point aijk (and a similar matrix M′ij with

M′ij
k,` = 1

ν·
√

2πe
−

(bij
k
−bij
`

)2

2·ν2 for the real distribution). When ν is small the minimizer of the

term in (10) is close to the minimizer of ∑Nu
i=1

∑N
j=1 ‖Mijξ −M′ijξreal‖2 which is given by

the formula:

ξn,raw =
Nu∑
i=1

N∑
j=1

(Mij)TMij

−1Nu∑
i=1

N∑
j=1

(Mij)TM′ij

 ξreal. (11)

The term ξn,raw is corrected to be a probability distribution and set to ξn:

ξn = 1∑L
`=1 |ξn,raw` | (|ξ

n,raw
1 |, ..., |ξn,rawL |) . (12)

For the step Algo 3 there is no explicit solution; a classical unconstrained nonlinear

optimization algorithm is employed (we used the Gnu Octave procedure ”fminunc”).

Once the algorithm finished, the remaining overall multiplicative constant λ (see Re-

mark II.1)) is set consistent with the data (see below the examples).
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B. Numerical tests: N observables

We consider the 4-level system (N = 4) in [5] having:

H =



0.0833 −0.0038 −0.0087 0.0041

−0.0038 0.0647 0.0083 0.0038

−0.0087 0.0083 0.0036 −0.0076

0.0041 0.0038 −0.0076 0.0357


, µreal =



0 5 −1 0

5 0 6 −1.5

−1 6 0 7

0 −1.5 7 0


. (13)

We set Nu = 36; the controls are defined by formula (2) with amplitudes (Aαβ) chosen

at random, uniformly in [0, 0.1 · ‖H‖l∞‖µreal‖l∞
= 0.0012] and the phases θαβ in [0, 2π]. For the

values (13) the initial guesses are:

µ0
g =



0 3.76 −1.31 0

3.76 0 3.51 −1.78

−1.31 3.51 0 6.72

0 −1.78 6.72 0


, µ0

e =



0 10 1 1

10 0 10 1

1 10 0 10

1 1 10 0


, µ0

b =



0 7.48 −0.51 0

7.48 0 8.83 −0.87

−0.51 8.83 0 5.87

0 −0.87 5.87 0


.(14)

The average relative errors of these initial guesses are 42%, 70% and 50%. Guesses µ0
g and

µ0
b are obtained by multiplying element-wise µreal by uniform random variables in [0.4, 1.6]

(i.e., up to 60% average relative error); the term µ0
e is obtained by taking roughly the order

of magnitude of the entries of µreal: the values smaller or about 1 are taken to be 1 while

the others are set to 10. The observables arising from the Hamiltonian H are projections

{|e1〉〈e1|, |e2〉〈e2|, |e3〉〈e3|, |e4〉〈e4|} to eigenstates:

|e1〉 =
(

0.0845 −0.1313 0.9651 0.2101
)T

, |e2〉 =
(
−0.1305 −0.0856 −0.2103 0.9651

)T
,

|e3〉 =
(

0.2118 0.9647 0.0838 0.1325
)T

, |e4〉 =
(

0.9649 −0.2118 −0.1314 0.0830
)T

. (15)

In the basis {e1, e2, e3, e4} the Hamiltonian H is diagonal with eigenvalues E1 = 0, E2 =

0.0365, E3 = 0.0651, E4 = 0.0857. We set the final time T = 3200 which is about 10 periods

of the smallest transition frequency 2π/(E4 − E3) = 314 in H.

With respect to Remark II.1 we suppose that the value |(µreal)12|2 = 25 is known.

The support for the distribution Y is known and denoted [ym, yM ]; in the numerical

tests we take ym = 0.5 and yM = 1.5. We discretize the set of possible values of the
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perturbation with L = 51 equidistant points y` = ym + (` − 1) · yM−ym
L−1 , ` = 1, ..., L. The

values y` are supposed known but not the probabilities ξreal` that define the distribution

L(Y real) = ∑L
`=1 ξ

real
` δy` of the perturbation Y real. Several distributions are tested; they are

constructed by discretizing, truncating and re-normalizing several classical distributions:

• Y real = Y g being a Gaussian distribution centered at 1 with variance equal to 0.0025:

ξreal,g` = f g`∑L
k=1 f

g
k

` = 1, · · · , L with f gk = 1√
0.0025

√
2π
e−

(yk−1)2

2·0.0025 , (16)

• Y real = Y e being a shifted exponential distribution form:

ξreal,e` = f e`∑L
k=1 f

e
k

` = 1, · · · , L with f ek = 5 · e−5·(yk−ym), (17)

• Y real = Y b being the bi-modal distribution which is the sum of two Gaussian distri-

butions. We choose the first one centered at 0.8 with variance equal to 0.0025 and the

second one centered at 1.2 with variance equal to 0.0049:

ξreal,b` = f b`∑L
k=1 f

b
k

` = 1, · · · , L with f bk = 1√
0.0025

√
2π
e−

(yk−0.8)2

2·0.0025 + 1√
0.0049

√
2π
e−

(yk−1.2)2

2·0.0049 .

(18)

The dipole moments converge in 10 iterations. The numerical values are rescaled in order

to use that |(µreal)12|2 = 25; same is done for the noise distributions. We obtain µ10
g , µ10

e

and µ10
b :

‖µ10
g − µreal‖∞ = 5 · 10−5, µ10

g =



0 5 −1 0

5 0 5.99995 −1.5

−1 5.99995 0 6.99999

0 −1.5 6.99999 0


, (19)

‖µ10
e − µreal‖∞ = 10−4, µ10

e =



0 5 −1 0

5 0 6 −1.5

−1 6 0 6.9999

0 −1.5 6.9999 0


, (20)
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‖µ10
b − µreal‖∞ = 6 · 10−5, µ10

b =



0 5 −1 0

5 0 5.99999 −1.5

−1 5.99999 0 6.99994

0 −1.5 6.99994 0


. (21)

The error norm is ‖·‖∞ is the largest, in absolute value, of the error components. See figures

1,2, 3 for the results. The tables I and II present the match of the probability distributions

of the observables.

FIG. 1. Identification of the Gaussian distribution (16). The real distribution is in blue, the
numerical result in red. Good agreement with the unknown noise distribution ξreal is obtained;
the error on the dipole moment is 5 · 10−5, see equation (19).

C. A single measured observable

We use the same system as in the Section III B except that here we consider the extreme

case when only one observable is available as function of the control field. The observable

is the projection |e3〉〈e3| to the third eigenstate.

The initial guess is:

µ0
b =



0 10 1 1

10 0 10 1

1 10 0 10

1 1 10 0


, (22)
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Iteration n = 1
Real distribution

O\u u1
1 u1

2 u1
3

O1

O2

O3

O4

Initial guess
O\u u1

1 u1
2 u1

3

O1

O2

O3

O4

TABLE I. The match of the observation distributions for the bi-modal distribution (18). We
plot the histograms at the start of the inversion algorithm i.e., iteration step n = 1. In the left
sub-table are the histograms of the observations ∑L

k=1 ξ
real
k δ|〈Ψ(T,H,u1

1·yk,µreal,Ψ0
1),ej〉|2 with the real

distribution; in the right sub-table the histograms correspond to the initial guess which is the
uniform distribution. Each column corresponds to a control field, here only the first 3 control fields
u1

1, u1
2 and u1

3 are shown. Each line corresponds to a specific observable in the SCO set O. The
initial guess is seen to be a poor approximation, as the histograms in left and right sub-tables differ
substantially.

Final iteration n = 10
Real distribution

O\u u10
1 u10

2 u10
3

O1

O2

O3

O4

Numerical candidate
O\u u10

1 u10
2 u10

3

O1

O2

O3

O4

TABLE II. Converged result (iteration n = 10) from initial guess Table I. The identification works
well as the left and right sub-tables match. As explained, the control fields are chosen randomly at
each iteration and in particular the controls chosen at iteration n = 1 and n = 10 are not the same
(otherwise the histograms corresponding to observations with the real noise distribution would be
the same as in Table I left sub-table). Here the results for u10

1 , u10
2 and u10

3 are displayed.
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FIG. 2. Identification of the exponential distribution (17). The real distribution is in blue, the
numerical result in red. Good agreement with the unknown noise distribution ξreal is obtained;
the error on the dipole moment is 10−4, see equation (20).

FIG. 3. Identification of the bi-modal distribution (18). The real distribution is in blue, the
numerical result in red. Good agreement with the unknown noise distribution ξreal is obtained;
the error on the dipole moment is 6 · 10−5, see equation (21).

The coefficient µ2,1 = µ1,2 = 5 is fixed, as previously stated, but now it is treated as

a constraint by the algorithm (which will thus only optimize the other coefficients). The

14



algorithm minimizes the difference:

J (µ, (ξk)Lk=1; (ui)Nui=1) = log
{

1
Nu

Nu∑
i=1
W1

[
L∑
k=1

ξkδ|〈Ψ(T,H,ui·yk,µ,Ψ0
1),e3〉|2 ,

L∑
k=1

ξrealk δ|〈Ψ(T,H,ui·yk,µreal,Ψ0
1),e3〉|2

] . (23)

The distribution Y real tested is the bi-modal model. The algorithm converges and after 5,10

and 15 iterations, the dipole moments we obtain respectively have an L2 error of 0.17246,

0.03736 and 4.5652 · 10−4 respectively. In order to test the robustness of the algorithm with

respect to other error norms, we use the L2 error norm ‖ · ‖L2 (the square root of the sum of

squares of the components). The convergence is slower than in Section III B when we treat

µ2,1 = µ1,2 = 5 as a constraint.

0
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0.05
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0.07

0.08

0.4 0.6 0.8 1 1.2 1.4 1.6

FIG. 4. Identification of the bi-modal distribution (18) after 5 iterations. The real distribution
is in blue, the numerical result in red. The noise distribution starts to have the same qualitative
features as ξreal; the L2 error on the dipole moment is 0.17246.

Remark III.1. A legitimate question is related to the scaling of the identification with

respect to the number N of levels. Note first that the computation in equation (23) only

depends on the number of observables (and not on N , as equation (10) seemed to indicate).

On the other hand, the computation of the W1 distance is independent on N and, for one

dimensional laws, straightforward.

Of course in order to compute the observables, numerical simulations are performed, and

these do depend on N . But such simulations allow for trivial parallelization which could

15
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FIG. 5. Identification of the bi-modal distribution (18) after 10 iterations. The real distribution
is in blue, the numerical result in red. The noise distribution starts to converge; the L2 error on
the dipole moment is 0.03736.
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FIG. 6. Identification of the bi-modal distribution (18) after 15 iterations. The real distribution
is in blue, the numerical result in red. Good agreement with the unknown noise distribution ξreal

is obtained; the L2 error on the dipole moment is 4.5652 · 10−4.

bring down the wall-clock time per iteration to that of a single numerical resolution of the

N-level system. Such a time is a lower bound because one needs to check whether a candidate

solution is indeed a good solution.
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FIG. 7. The L2 error ‖µk − µreal‖L2 for k = 1, ..., 15 iterations.

IV. CONCLUSION

The inversion of the dipole moment has been considered in a model where the noise

coming from the laser source is non-negligible and of unknown distribution. The model

considered here has noise acting multiplicatively on the control intensity and is the same for

all frequency components.

First, we proved theoretically that if one can measure repeatedly (at least) one observable

for many control fields, the set of probability distributions of this observable is enough to

recover both the dipole and the noise distribution. Then, a numerical algorithm based on

the Wasserstein distance between the probability distributions was proposed and seen to

perform well for several different, non-perturbative, noise distributions and initial guesses

for the dipole. As subject for future study is the question of how to treat noise of possibly

distinct character reflected in each of the amplitudes and phases or other different noise

models as discussed in the Introduction. In addition, there are several further issues to

consider in future work for creating a realistic algorithm for quantum system data inversion.
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[6] Pascal Dufour, Guy Rousseau, Michel Piché, and Nathalie McCarthy. Optical noise reduction

in a femtosecond ti: sapphire laser pumped by a passively stabilized argon ion laser. Optics

communications, 247(4):427–436, 2005.

[7] Ying Fu and Gabriel Turinici. Quantum Hamiltonian and dipole moment identification in

presence of large control perturbations. https://hal.archives-ouvertes.fr/hal-01068969

(submitted), September 2014.

[8] J. M. Geremia and H. Rabitz. Optimal Hamiltonian identification: The synthesis of quantum

optimal control and quantum inversion. The Journal of Chemical Physics, 118(12):5369–5382,

2003.

[9] Xun Gu, Selcuk Akturk, and Rick Trebino. Spatial chirp in ultrafast optics. Optics Commu-

nications, 242(4-6):599 – 604, 2004.

[10] David Hocker, Constantin Brif, Matthew D. Grace, Ashley Donovan, Tak-San Ho,

Katharine Moore Tibbetts, Rebing Wu, and Herschel Rabitz. Characterization of control

noise effects in optimal quantum unitary dynamics. Phys. Rev. A, 90:062309, Dec 2014.

18



[11] Eugene N Ivanov, Scott A Diddams, and Leo Hollberg. Experimental study of noise properties

of a ti: sapphire femtosecond laser. IEEE transactions on ultrasonics, ferroelectrics, and

frequency control, 50(4):355–360, 2003.

[12] Kaveh Khodjasteh and Lorenza Viola. Dynamical quantum error correction of unitary oper-

ations with bounded controls. Phys. Rev. A, 80:032314, Sep 2009.

[13] Kaveh Khodjasteh and Lorenza Viola. Dynamically error-corrected gates for universal quan-

tum computation. Phys. Rev. Lett., 102:080501, Feb 2009.

[14] Y. Maday and J. Salomon. A greedy algorithm for the identification of quantum systems.

In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.

CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages 375–379, Dec 2009.
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