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Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide 

information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and 

the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical 

model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical 

predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity 

with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the 

available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus. 

PACS numbers: 43.20.+g, 45.70.-n, 46.40.Cd, 43.20.Mv

 

 
Transition from fluidity to rigidity in disordered 

media is a poorly understood phenomena in mechanics. 

This problem keeps attracting the attention of researchers 

studying its particular manifestations such as the 

transition to glassiness in liquids [1,2] and to jamming in 

colloidal dispersions or granular packings [2,3]. General 

interest in the unjamming transition in unconsolidated 

granular media is supported by its macroscopic 

manifestation in nature in the form of avalanches of sand 

and snow [4]. 

Recent theoretical investigations [1,3] as well as 

numerical experiments with packing of elastic grains [5-

10] have predicted that in the vicinity of the jamming 

transition in the solid phase the elasticity of a disordered 

material is controlled not just by the elasticity of the 

individual contacts between the grains but also by 

material relaxation via non-affine motion of the grains. In 

particular, the dependence of the shear rigidity G on 

pressure p deviates from the law 3/1
pG ∝ that follows 

from the Hertz-Mindlin theory of contacts between 

spheres [11,12]. The theory [3] indicates that the shear 

modulus G  should also be proportional to the excess 

coordination number of contacts zδ  with respect to the 

critical isostatic number zc at the jamming transition, 

where the number of the contacts in the system is equal to 

the number of force balance equations [1]. This results, 

due to the relation 1/ 3
z pδ ∝  [3], in 3/2

pG ∝ , while the 

bulk elastic modulus B  does not contain additional 

scaling with pressure: 1/3
B p∝ . The scaling exponent 2/3 

had earlier been found numerically for random packings 

of frictionless particles at zero temperature interacting 

through the repulsive Hertzian potential [5,6]; the 

corresponding range of pressures p evaluated numerically 

can be estimated for glass beads to be 100 Pa 10 MPap≤ ≤ . 

These results have been confirmed for 100 kPap ≥  in 

Ref. [7,8]. Moreover very recently numerical experiments 

[9,10] have demonstrated that the scaling is not modified 

by friction at least for the 2D packing of spheres. The 

deviation from the scalings GG p
α∝  (with 3/2=Gα ) and 

BpB
α∝  (with 3/1=Bα ) is predicted [7,10] only at 

higher pressures MPap 10≥ , where the condition 

c
z zδ <<  (i.e. the vicinity of the jamming transition) no 

longer holds. 

To the best of our knowledge there has only been 

a single attempt to experimentally verify these theoretical 

simulations, using photoelastic disks near the 2D 

jamming transition [13], in which reasonable agreement  

with theory was found. However the features predicted 

for the packing of spheres have not been tested 

experimentally. The measurement of the dependence on 

pressure of the shear and longitudinal sound velocities ,S L
c , 

which under the condition of negligible variations of 

density scale as the square root of the elastic moduli, is a 

classical method for the evaluation of the state of an 

unconsolidated granular medium [14-16]. That the 

behavior 1/ 2 S

Sc G p
α∝ ∝  with 1/ 3

S
α =  has not been revealed 

in most of the earlier experiments could be attributed to 

an important deviation from the jamming threshold 

pressure 0=p  (for example, 2 MPap ≥  in [16], 

5 MPap ≥  in [9]). However, the exponent 3/1=Sα  has 

not been documented even in experiments conducted at 

much lower pressures ( 5 kPa 50 kPap≤ ≤ )[17] although 

there are indications that 1/ 4
S

α >  holds over a limited 

range of pressures 5 kPa 20 kPap≤ ≤ . In a very limited 

interval 50 kPa 100 kPap≤ ≤  the exponent 0.3Sα = , which is 

closer to 1/3 than to 1/4, has been proposed to fit the 

experimental data in Refs. [14,15]. It could be concluded 

that there are indications of fast scaling ( 4/1>Sα ) in 

some acoustic experiments, but this phenomena has never 

been observed over a wide enough interval of sufficiently 

low pressures for the precise evaluation of the scaling 

exponent. 
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To access the elastic moduli of granular media at 

much lower pressures than usual we use waveguide 

acoustic modes propagating along the mechanically free 

surface of an unconsolidated granular medium [18,19]. 

The localization of these modes near the surface is due to 

the bending of the acoustic rays towards the surface 

caused by an increase with depth of the rigidity of the 

gravity-loaded granular packing (the acoustic mirage 

effect
20

). Through experiments at ultrasonic frequencies 

( 500 Hz 5 kHzf≤ ≤ , an order of magnitude higher than in 

earlier experiments [21,22]), we are able to test near-

surface layers at low pressures corresponding to the 

vicinity of the jamming transition. The lowest-order 

waveguide mode at its highest frequency 3 kHzf =  

propagates at a velocity ~15 m/s and penetrates only ~0.5 

cm beneath the surface, probing the material at pressures 

less than 75 Pa. This is below the lowest pressure level 

accessed in numerical simulations [7,8]. However, even at 

the bottom of the experimental container (Fig. 1) at a 

depth of 20 cm, which can be accessed through the low-

frequency higher-order modes, the pressure does not 

exceed 7.5 kPa, and is lower than in the most of the 

earlier experiments with bulk acoustic waves. The new 

experimental method proposed here to study such 

properties of granular materials consists in measuring at 

the surface of a granular layer the motion associated with 

the propagation of guided surface acoustic modes. The 

waves are excited using a 1 mm thick aluminium plate 

attached to a shaker and partly buried in the granular 

material (Fig. 1). The vertical surface velocity as a 

function of time and distance is measured with the help of 

a laser Doppler vibrometer with a surface focused beam 

(sensitivity 1mm/s/V within the frequency band 80 Hz –

20 kHz). The particle velocity is recorded every 

millimeter along the propagation direction from the 

source over a 300 mm distance. Typically, a maximum 

vertical velocity of 45.10 m s−  at 1 kHz was observed close 

to the source. As the mechanical nonlinearity of a 

granular medium increases on approaching the jamming 

point, [6,17] we checked that the data are not influenced 

by the wave amplitude in the chosen range of excitation 

strengths. Using the measured signal in the time-space 

domain it is straightforward to perform the time and space 

double Fourier transform of the signals and to obtain 

frequency-wavenumber signals and plots of the dispersion 

curves for different guided acoustic modes. The 

experiments are performed on a granular material 

consisting of glass beads 150 mµ  in diameter in a large 

tank of dimensions 80 cm × 50 cm × 20 cm (see Fig. 1). 

The sample is prepared before each experiment as 

follows: the container is filled up with the grains and is 

shaken gently. Then acoustic excitations of different 

amplitudes and frequency ranges are applied for several 

hours until a stable response of the medium is obtained.  

A typical experimentally obtained pattern in the 

(ω, k)-domain is presented in Figure 2. The range 

0<k<50-100 m
-1

 is probably affected by the reflection of 

the waves from the container walls, but the short-wave 

part corresponds to the modes guided in the horizontal 

channel [18,19,22]. 

The dispersion relations in Fig. 2 are plotted 

using an intensity scale corresponding to the logarithm of 

the the normalized Fourier transform of the particle 

velocity. In order to further increase the contrast, 

threshold filtering was performed. The measurements 

were repeated a number of times with different excitation 

functions, namely short pulses with Gaussian spectra 

centered at different frequencies. For each dataset, 

maxima of the smoothed intensity function for different k-

points were found. In 80% of the different experimental 

conditions these maxima were in good agreement with 

each other. We selected only these points and calculated 

the power-law approximation curves together with the 

standard deviation for each mode. In Fig. 2 the solid lines 

represent the averages ± standard deviations.  

 

FIG. 1. Experimental setup. 

 
FIG. 2. A typical dispersion curve. Thin lines bounding the 

“tubes” indicate average + standard deviation and average - 

standard deviation curves obtained as a result of a statistical 

treatment of a number of patterns. 

For the interpretation of the experimental data, 

guided surface acoustic modes (GSAMs) [18,19] 

polarized in the sagittal (vertical) plane are modeled with 

the continuous medium approximation assuming local 

isotropy of the elastic properties. The horizontal ux and 

the vertical uy components of the mechanical 

displacement vector ( ) ( ){ },
i t ikx

x y
U u y u y e

ω −=
�

 are controlled 

in microscopically a inhomogeneous medium with 

vertical stratification , , ( )S L S Lc c y=  by a system of 

coupled Helmholtz equations [18,19] 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 ,

2 .

S x L x L S y S y

L y S y S x L S x

c u c k u ik c c u c u

c u c k u ik c u c c u

ω

ω

 ′ ′′ ′+ − = − +  

 ′′′ ′+ − = + − 
 

 

Here the prime denotes the y-derivative. In addition to 

conditions of zero stress tensor at the mechanically free 

boundary (y=0) the eigen-problem for GSAMs includes 

the conditions of localization ( 0)(, →∞→yu yx
). In 

unconsolidated granular media, the stratification of sound 

velocities is controlled by the dependence of the elastic 

moduli on pressure, which increases linearly with depth 

because of gravity ( p gy yρ= ∝ , where ρ  is the 

density and g  is the gravitational acceleration). 



 
3

100 1000200 300 500

10
4

2x10
4

8x10
3

6x10
3

4x10
3

Assuming ,

, , ( ) S L

S L S Lc gy
α

γ ρ= , where 
LS ,γ  are depth-

independent coefficients, normalizing the depth-

coordinate to the inverse wave number 1
k

−  ( ky y⇒ ) and 

using the substitution 
yy uiu ⇒ , we transform the 

governing equations in a form convenient for numerical 

evaluation: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 22 22

2 2 22 22

2 ,

( 2 ) .

S S SL L

S S SL L

x x y y

y y x x

y u y u y y u y u

y u y u y u y y u

α α αα α

α α αα α

δ δ

δ δ

′ ′′ ′+ Ω − = − +

′′′ ′+ Ω − = − − −

(1)

Here ( )( ) S

S
k k g

α
ω γ ρΩ =  is the normalized frequency 

and ( ) ( )
2 2 2L S

L S
g k

α α
δ γ γ ρ

−
= is a dimensionless 

parameter equal to the square of the ratio of the 

longitudinal to shear velocities at a depth of about the 

GSAM penetration ( 1−∝ ky ). In the previously studied 

case, [18,19]
 

S L
α α α= ≡ , there was no characteristic 

spatial scale in the system; the eigen frequencies 
nΩ  

( ,...2,1=n ) of GSAMs and the acoustic field spatial 

distributions (eigen modes) obtained through the 

numerical solution [19,20] did not depend on k  (because 

for 
LS αα =  the parameter δ  is k -independent). The 

power-law dispersion relation for GSAMs then follows 

from the definition of Ω : αααργω −− ∝Ω= 11)( kkgSnn
. 

The solutions lose their self-similarity [18,19] as soon as 

S L
α α≠ ; in this case a characteristic spatial scale 

0y  

might be formally defined by 
0 0

( ) ( )
S L

c y c y= , and the 

eigenfunctions of the problem (1) would start to depend 

on k . However, theoretically the self-similarity should be 

recovered in the asymptotic limits 1<<δ  and 1δ >> . The 

former case is impossible in physical reality because 

1δ >  due to (4 / 3)
L S

c B G c G∝ + > ∝ . For the 

theoretically predicted relation 
LS αα >  the inequality 

1δ >>  could be expected for sufficiently short-

wavelength GSAMs due to 2( )S Lk
α αδ −∝ . In the 

asymptotic case 1δ >> , similar to the situation in which 

acoustic waves propagate at the interface of the ocean 

with unconsolidated water-saturated sediments [23], the 

system (1) can be transformed into equations describing 

two types of waveguide modes: fast and slow. 

The modes, which we call here fast modes (in 
accordance with the notation of fast seismo-acoustic 

waves [23]), are purely compressive; their description 

follows from Eq. (1) when shear rigidity is completely 

neglected ( 0=Sc ). Correspondingly, the fast modes are 

controlled by the distribution of the velocity ( )Lc y , and 

the dispersion relation scales as 1 Lk
αω −∝ . These modes 

can be easily detected in experiments with normal laser 

incidence since they have a significant vertical component 

of the surface displacement. 

However in the same limiting case 0,
S

c δ→ → ∞  there 

exists a second type of waves termed here the slow modes. 

They are controlled only by the profile ( )Sc y  and have a 

dispersion relation scaling as 1 Sk
αω −∝ , but they are not 

pure shear and contain a compression contribution 

( 1
divU δ −∝
�

). However, as it has been shown by our 

numerical analysis of Eq. (1), the corresponding vertical 

component of the surface displacement is typically very 

weak except for very low order modes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIG. 3. Experimental dispersion curves (solid lines) represented 

as ± standard deviation intervals and theoretical points fitted to 

them. The numbers indicate mode orders. The bunch of solid 

grey and black lines provides for comparison the theoretical 

slopes theor

Lα−=16/5  and theor

Sα−=13/2 . The inset shows a 

plot of the theoretical normalized ratios of the vertical 

component of the particle displacement vector at the surface to 

the modulus of this vector, as a function of mode number. 

In the real experimental situation the condition 

1δ >>  is fulfilled with a limited precision: our fits (Fig. 3) 

of the experimental data (Fig. 2) using the numerical 

solution of Eq. (1) provide 4.6 4.9δ ≈ −  only. Thus, 

although the experimentally detected modes are neither 

purely fast nor slow, some of the theoretical dispersion 

curves for 4.6 4.9δ ≈ −  are mainly determined by 
Sα  and 

Sγ  (quasi-slow modes), while the others are mainly 

determined by the values of 
Lα  and 

Lγ  (quasi-fast 

modes). In this sense, the modes 1-10, 13-22 and 25-30 in 

our analysis covering the first 30 modes are quasi-slow 

and thus poorly visible except for some low order modes, 

whereas the modes 11-12 and 23-24 are quasi-fast and 

easily detectable. Variations of about 2% in the 

papameters , ,,S L S Lα γ  shift these mode numbers by 1-2. 

The insert in Fig. 3 shows the theoretical vertical 

projections of the polarization vector at the surface, i.e. 

the vertical components of the particle displacement 

normalized on the displacement modulus, for the modes 

of different order. This could be used to qualitatively 

estimate the visibility as measured by the laser vibrometer. 

We identify the first four lowest “tubes” in Fig. 2 with the 

first four lowest order (n =1-4) GSAMs, and the two other 

tubes with the four quasi-fast modes 11, 12, 23, 24. The 

other modes are invisible in experiment (Fig. 2) and are 

not plotted in Fig. 3. 

Matching of the curves is typically realized as 

the minimization of an objective function, penalizing only 

points coming out of the corresponding experimental 

intervals and leaving complete freedom to the points 

within intervals. For modes higher than the fourth, only 

points with visibility greater than 0.5 were considered. 

The minimization was performed by the principal axis 

method (PRAXIS) developed by Brent [24] and also 

known as the modified Powell algorithm, which is one of 

the most effective amongst methods of function 

optimization without analytical knowledge of derivatives. 
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This procedure has provided the optimized parameters of 

the rigidity profiles in Eq. (1): exp 6.43 0.13
S

γ = ±  [SI], 
exp 14.8 0.4
L

γ = ±  [SI], exp
0.320 0.006Sα = ± , and exp 0.305 0.01Lα = ±  

with the residual value of the objective function around 

200 s
-1

. The errors given above have the following sense: 

if the fitted value is perturbed by the value of the error, 

the objective function doubles. 

Our fitted scaling exponents exp
0.96

theor

S Sα α≈ , 
exp 0.64 0.01 0.96 theor

G G
α α= ± ≈  provide the first experimental 

confirmation for the theoretically predicted behavior of 

shear rigidity of the 3D disordered packing of spherical 

elastic beads near the jamming transition 0.666...
theor

Gα = . 

At the same time, the experimentally revealed scaling 

exponent of the bulk modulus exp 0.61 0.02 1.83 theor

B B
α α= ± ≈  

is much closer to the scaling exponent of the shear 

modulus than to theoretical value 0.333...
theor

B
α =  Our 

attempt to impose the theoretical value 
Lα  and 

compensate this misfit by matching the other parameters 

,S Lγ  and 
S

α  led to an important deviation from the 

experimental data and to a drastic increase in the residual 

objective function. We have estimated that the wave 

velocity dispersion due to medium microinhomogeneity at 

the scale of the grain size and the diffraction of GSAMs 

caused by the finite dimensions of our acoustic source 

[both are not taken into account by the model (1)] give a 

negligible contribution to the experimentally determined 

dispersion relations in Fig. 2. We also verified by 

examining the depth profiles of all eigenmodes visible in 

experiment that their contact with the bottom of the 

container can be neglected and that the results obtained 

for the half-space are self-consistent. The experiment 

therefore indicates that in the vicinity of the jamming 

transition near the mechanically free surface, relaxation of 

the granular media via non-affine motion in response to 

compression could be very similar to that in response to 

shear loading. This is in contradiction to the theoretical 

predictions obtained earlier [3,5-10] for macroscopically 

homogeneous and isotropic media. 

The key to understanding of this discrepancy is 

the realisation that the granular medium in our 

experiments is both macroscopically inhomogeneous (not 

only because of the vertical stratification, but also just 

because of the presence of the surface [25]) and 

macroscopically anisotropic [17,26] (because of the 

preferential direction of its loading by the gravity field). 

Even in continuum mechanics, inhomogeneity — 

including the surface as a particular case — and 

anisotropy induce, through the breaking some symmetry 

constraints, the coupling of compression and shear motion. 

Acoustic mode conversion S L⇔  takes place at each 

point of the inhomogeneous media. Pure compression and 

shear waves can be the eigenmodes of homogeneous 

anisotropic media only along particular directions, 

otherwise the eigenmodes are quasi-longitudinal and 

quasi-shear, combining both compressional and shear 

motion. We suggest that it could be macroscopic 

inhomogeneity and anisotropy that through breaking some 

symmetry constraints couple non-affine motions caused 

by compression and shear loading on the microscale, 

allowing disordered granular media under local 

compression and shear to relax in a similar way. To verify 

this hypothesis the numerical simulations of the type 

described in Refs. [5-10] need to include the effects of 

macroscopic inhomogeneity and anisotropy, and the 

model in Eq. (1) should be extended to the anisotropic 

case. The rattlers, particles that do not overlap with the 

other particles [6] and commonly excluded from the 

analysis of scaling exponents in granular media[6,13], 

could also (as any other type of defects) couple 

compression and shear, contributing an extra relaxation 

pathway for the granular medium under compressional 

loading. Equal exponents αG and αB are in fact expected 

according to disordered lattice models for rigidity 

percolation where all elastic moduli obey the same scaling 

behavior (see [27] and the references therein). 

The success in fitting our experimental results 

using theoretical predictions for the static (equilibrium) 

shear modulus indicates that the characteristic time scale 

n a
τ −

 of the disordered granular packing non-affine 

relaxation near the jamming transition ( 7.5 kPap ≤ ) does 

not exceed few microseconds, as is evident from the 

quasi-equilibrium condition 1n aωτ − << . To determine the 

relaxation time 
n a

τ −
 or a distribution of relaxation times, 

higher acoustic frequencies than those reported here 

should be used. 

This study was supported by ANR project No. 

NT05-341989. 
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