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Experimentally determined dispersion relations for acoustic waves guided along the mechanically free
surface of an unconsolidated granular packed structure provide information on the elasticity of granular
media at very low pressures that are naturally controlled by the gravitational acceleration and the depth
beneath the surface. The experiments confirm recent theoretical predictions that relaxation of the
disordered granular packing through nonaffine motion leads to a peculiar scaling of shear rigidity with
pressure near the jamming transition corresponding to zero pressure.

The transition from fluidity to rigidity in disordered
media is a poorly understood phenomenon in mechanics.
This problem continues to attract the attention of research-
ers studying its particular manifestations such as the tran-
sition to glassiness in liquids [1,2] and to jamming in
colloidal dispersions or granular packings [2,3]. General
interest in the unjamming transition in unconsolidated
granular media is supported by its macroscopic manifesta-
tion in nature in the form of avalanches of sand and
snow [4].

Recent theoretical investigations [1,3] as well as numeri-
cal experiments with packing of elastic grains [5–10] have
predicted that in the vicinity of the jamming transition in
the solid phase the elasticity of a disordered material is
controlled not just by the elasticity of the individual con-
tacts between the grains but also by material relaxation via
nonaffine motion of the grains. In nonaffine motion origi-
nated from microscopic disorder in the coordinates of the
beads, the displacement of an individual bead does not
follow precisely a direction imposed by the macroscopic
load. The dependence of the shear rigidity G on pressure p
deviates from the law G / p1=3 that follows from the
Hertz-Mindlin theory of contacts between spheres [11].
The theory [3] indicates that the shear modulus G should
also be proportional to the excess coordination number of
contacts �z with respect to the critical isostatic number zc
at the jamming transition, where the number of the contacts
in the system is equal to the number of force balance
equations [1]. This results, due to the relation �z / p1=3

[3], in G / p2=3, while the bulk elastic modulus B does not
contain additional scaling with pressure: B / p1=3. The
scaling exponent 2=3 had earlier been found numerically
for random packings of frictionless particles at zero tem-
perature interacting through the repulsive Hertzian poten-
tial [5,6]; the corresponding range of pressures p evaluated
numerically can be estimated for glass beads to be

100 Pa � p � 10 MPa. These results have been con-
firmed for p � 100 kPa in Refs. [7,8]. Moreover, very
recently numerical experiments [9,10] have demonstrated
that the scaling is not modified by friction at least for the
2D packing of spheres. The deviation from the scalings
G / p�G (with �G � 2=3) and B / p�B (with �B � 1=3)
is predicted [7,10] only at higher pressures p � 10 MPa,
where the condition �z� zc no longer holds.

To the best of our knowledge there has only been a single
attempt to experimentally verify these theoretical simula-
tions, using photoelastic disks near the 2D jamming tran-
sition [12], in which reasonable agreement with theory was
found. However, the features predicted for the packing of
spheres have not been tested experimentally. The measure-
ment of the dependence on pressure of the shear and
longitudinal sound velocities cS;L, which under the condi-
tion of negligible variations of density scale as the square
root of the elastic moduli, is a classical method for the
evaluation of the state of an unconsolidated granular me-
dium [13,14]. The fact that the behavior cS / G1=2 / p�S
with �S � 1=3 has not been revealed in most of the earlier
experiments could be attributed to an important deviation
from the jamming threshold pressure p � 0 (for example,
p � 2 MPa in [14]). There are indications of fast scaling
(�S > 1=4) in some acoustic experiments [13,15], but this
phenomenon has never been observed over a wide enough
interval of sufficiently low pressures for the precise evalu-
ation of the scaling exponent.

To access the elastic moduli of granular media at much
lower pressures than usual we use waveguide acoustic
modes propagating along the mechanically free surface
of an unconsolidated granular medium [16,17]. The local-
ization of these modes near the surface is due to the
bending of the acoustic rays towards the surface caused
by an increase with depth of the rigidity of the gravity-
loaded granular packing (the acoustic mirage effect [18]).
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Through experiments at frequencies (500 Hz � f �
5 kHz, an order of magnitude higher than in earlier experi-
ments [19]), we are able to test near-surface layers at low
pressures corresponding to the vicinity of the jamming
transition. The lowest-order waveguide mode at its highest
frequency f � 3 kHz propagates at a velocity �15 m=s
and penetrates only �0:5 cm beneath the surface, probing
the material at pressures less than 75 Pa. This is below the
lowest pressure level accessed in numerical simulations
[7,8]. However, even at the bottom of the experimental
container (Fig. 1) at a depth of 20 cm, which can be
accessed through the low-frequency higher-order modes,
the pressure does not exceed 7.5 kPa, and is lower than in
most of the earlier experiments with bulk acoustic waves.
The waves are excited using a 1 mm thick aluminum plate
attached to a shaker and partly buried in the granular
material (Fig. 1). The vertical surface velocity is measured
as a function of time and distance with the help of a laser
Doppler vibrometer with a surface focused beam (sensi-
tivity 1 mm s�1 V�1 within the frequency band 80 Hz–
20 kHz). The particle velocity is recorded every millimeter
along the propagation direction from the source over a
300 mm distance. A maximum vertical velocity of 5�
10�4 m=s at 1 kHz was observed close to the source. As
the mechanical nonlinearity of a granular medium in-
creases on approaching the jamming point [6,15], we
checked that the data are not influenced by the wave
amplitude in the chosen range of excitation strengths.
This demonstrates the existence of linear guided acoustic
waves near a surface at zero precompression. Note, for
comparison, that in a 1D chain of beads at zero precom-
pression the linear acoustic waves do not exist (sonic
vacuum) [20]. Using the measured signal in the time-space
domain it is straightforward to perform the time and space
double Fourier transform of the signals and plot the dis-
persion curves for different guided acoustic modes. The
experiments are performed on a granular material consist-
ing of glass beads 150 �m in diameter in a large tank of
dimensions 80 cm� 50 cm� 20 cm (see Fig. 1).

A typical experimentally obtained pattern in the (!, k)
domain is presented in Fig. 2. The range 0< k<
50–100 m�1 is probably affected by the reflection of the
waves from the container walls, but the short-wave part
corresponds to the modes guided in the horizontal channel
[16,17].

The dispersion relations in Fig. 2 are plotted using an
intensity scale corresponding to the logarithm of the nor-
malized Fourier transform of the particle velocity. The
measurements were repeated a number of times with dif-
ferent excitation functions, namely, short pulses with
Gaussian spectra centered at different frequencies. For
each data set, maxima of the smoothed intensity function
for different k points were found. In 80% of the different
experimental conditions these maxima were in good agree-
ment with each other. We selected only these points
and calculated the power-law approximation curves to-
gether with the standard deviation for each mode. In
Fig. 2 the solid lines represent the mean values� standard
deviations.

For the interpretation of the experimental data, guided
surface acoustic modes (GSAMs) [16,17] polarized in the
sagittal (vertical) plane are modeled with the continuous
medium approximation assuming local isotropy of the
elastic properties. The horizontal ux and the vertical uy
components of the mechanical displacement vector ~U �
fux	y
; uy	y
ge

i!t�ikx are controlled in a medium with ver-
tical stratification cS;L � cS;L	y
 by a system of coupled
Helmholtz equations

	c2
Su
0
x

0 � 	!2 � c2

Lk
2
ux � ik�	c2

L � 2c2
S
u
0
y � 	c2

Suy

0
;

	c2
Lu
0
y

0 � 	!2 � c2

Sk
2
uy � ikfc2

Su
0
x � �	c

2
L � 2c2

S
ux

0g:

Here the prime denotes the y derivative. In addition to
conditions of zero stress tensor at the mechanically free
boundary (y � 0) the eigenproblem for GSAMs includes
the conditions of localization [ux;y	y! 1
 ! 0]. In un-
consolidated granular media, the stratification of sound
velocities is controlled by the dependence of the elastic
moduli on pressure, which increases linearly with depth
because of gravity (p � �gy / y, where � is the density
and g is the gravitational acceleration). Assuming cS;L �
�S;L	�gy


�S;L , where �S;L are depth-independent coeffi-

FIG. 1 (color online). Experimental setup.

FIG. 2 (color online). A typical dispersion curve. Thin lines
bounding the tubes indicate average� standard deviation and
average� standard deviation curves obtained as a result of a
statistical treatment of a number of patterns.
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cients, normalizing the depth coordinate to the inverse
wave number k�1 (ky) y) and using the substitution
iuy ) uy, we transform the governing equations in a
form convenient for numerical evaluation:

	y2�Su0x

0 � 	�2 � �y2�L
ux � 	�y

2�L � 2y2�S
u0y

� 	y2�Suy

0;

�	y2�Lu0y

0 � 	�2 � y2�S
uy � �y

2�Su0x

� �	�y2�L � 2y2�S
ux

0:

(1)

Here � � !=	�Sk
	k=�g

�S is the normalized frequency

and � � 	�L=�S

2	�g=k
2�L�2�S is a dimensionless pa-

rameter equal to the square of the ratio of the longitudinal
to shear velocities at a depth of about the GSAM penetra-
tion (y / k�1). In the previously studied case, [16,17]
�S � �L � �, there was no characteristic spatial scale in
the system; the eigenfrequencies �n (n � 1; 2; . . . ) of
GSAMs and the acoustic field spatial distributions (eigen-
modes) obtained through the numerical solution did not
depend on k (because for �S � �L the parameter � is k
independent). The power-law dispersion relation for
GSAMs then follows from the definition of �: !n �
�n�S	�g
�k1�� / k1��. The solutions lose their self-
similarity as soon as �S � �L. However, theoretically
the self-similarity should be recovered in the asymptotic
limits �� 1 and �� 1. For the theoretically predicted
relation �S > �L the inequality �� 1 could be expected
for sufficiently short-wavelength GSAMs due to � /
k2	�S��L
. In the asymptotic case �� 1, similar to the
situation in which acoustic waves propagate at the inter-
face of the ocean with unconsolidated water-saturated sedi-
ments [21], the system (1) can be transformed into
equations describing two types of waveguide modes: fast
and slow.

The modes, which we call here fast modes (in accor-
dance with the notation of fast seismoacoustic waves [21]),
are purely compressive; their description follows from
Eq. (1) when shear rigidity is completely neglected (cS �
0). Correspondingly, the fast modes are controlled by the
distribution of the velocity cL	y
, and the dispersion rela-
tion scales as ! / k1��L . These modes can be easily
detected in experiments with normal laser incidence since
they have a significant vertical component of surface
displacement.

However, in the same limiting case cS ! 0, �! 1
there exists a second type of waves termed here the slow
modes. They are controlled only by the profile cS	y
 and
have a dispersion relation scaling as ! / k1��S , but they
are not pure shear and contain a compression contribution
(div ~U / ��1). However, as it has been shown by our
numerical analysis of Eq. (1), the corresponding vertical
component of the surface displacement is typically very
weak except for very low order modes.

In the real experimental situation the condition �� 1 is
fulfilled with a limited precision: our fits (Fig. 3) of the
experimental data (Fig. 2) using the numerical solution of

Eq. (1) provide � � 4:7–4:8 only. Thus, although the
experimentally detected modes are neither purely fast nor
slow, some of the theoretical dispersion curves for � �
4:7–4:8 are mainly determined by �S and �S (quasislow
modes), while the others are mainly determined by the
values of �L and �L (quasifast modes). In this sense, the
modes 1–10, 14–23, and 26–30 in our analysis covering
the first 30 modes are quasislow and thus poorly visible
except for some low order modes, whereas the modes 11–
13, 24, and 25 are quasifast and easily detectable. The inset
of Fig. 3 shows the theoretical vertical projections of the
polarization vector at the surface, i.e., the vertical compo-
nents of the particle displacement normalized on the dis-
placement modulus, for the modes of different order. This
could be used to qualitatively estimate the visibility as
measured by the laser vibrometer. We identify the first
four lowest ‘‘tubes’’ in Fig. 2 with the first four lowest-
order (n � 1–4) GSAMs, and the two other tubes with the
five quasifast modes 11–13, 24, 25. The other modes are
invisible in experiment (Fig. 2).

Matching of the curves is typically realized as the mini-
mization of an objective function, penalizing only points
coming out of the corresponding experimental intervals
and leaving complete freedom to the points within inter-
vals. For modes higher than the fourth, only points with
visibility greater than 0.5 were considered. The minimiza-
tion was performed by the principal axis method developed
by Brent [22]. This procedure has provided the optimized
parameters of the rigidity profiles in Eq. (1): �exp

S �
6:42� 0:13 [SI], �exp

L � 14:4� 0:4 [SI], �exp
S � 0:316�

0:006, and �exp
L � 0:31� 0:01 with the residual value of

the objective function around 200 s�1. The errors given
above have the following sense: if the fitted value is

FIG. 3. Experimental dispersion curves (solid lines) repre-
sented as � standard deviation intervals and theoretical points
fitted to them. The numbers indicate mode orders. The bunch of
solid gray and black lines provides for comparison the theoreti-
cal 5=6 � 1� �theor

L and 2=3 � 1� �theor
S . The inset shows a

plot of the theoretical normalized ratios of the vertical compo-
nent of the particle displacement vector at the surface to the
modulus of this vector, as a function of mode order.
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perturbed by the value of the error, the objective function
doubles.

Our fitted scaling exponents �exp
S � 0:95�theor

S , �exp
G �

0:63� 0:01 � 0:95�theor
G provide the first experimental

confirmation for the theoretically predicted behavior of
shear rigidity of the 3D disordered packings of spherical
elastic beads near the jamming transition �theor

G �
0:666 . . . . At the same time, the experimentally revealed
scaling exponent of the bulk modulus �exp

B � 0:62�
0:02 � 1:86�theor

B is much closer to the scaling exponent
of the shear modulus than to theoretical value �theor

B �
0:333 . . . . Our attempt to impose the theoretical value �L
and compensate this misfit by matching the other parame-
ters �S;L and �S led to an important deviation from the
experimental data and to a drastic increase in the residual
objective function. The experiment therefore indicates that
in the vicinity of the jamming transition near the mechani-
cally free surface, relaxation of the granular media via
nonaffine motion in response to compression could be
very similar to that in response to shear loading. This is
in contradiction to the theoretical predictions obtained
earlier [3,5–10] for macroscopically homogeneous and
isotropic media.

The key to understanding this discrepancy is the real-
ization that the granular medium in our experiments is both
macroscopically inhomogeneous (not only because of the
vertical stratification, but also just because of the presence
of the surface [23]) and macroscopically anisotropic
[15,24] (because of the preferential direction of its loading
by the gravity field). Even in continuum mechanics, inho-
mogeneity—including the surface as a particular case—
and anisotropy induce, through breaking some symmetry
constraints, coupling of compression and shear motion.
Acoustic mode conversion S, L takes place at each point
of the inhomogeneous media. Pure compression and shear
waves can be the eigenmodes of homogeneous anisotropic
media only along particular directions, otherwise the
eigenmodes are quasilongitudinal and quasishear, combin-
ing both compressional and shear motion. We suggest that
it could be macroscopic inhomogeneity and anisotropy that
through breaking some symmetry constraints couple non-
affine motions caused by compression and shear loading on
the microscale, allowing disordered granular media under
local compression and shear to relax in a similar way. To
verify this hypothesis the numerical simulations of the type
described in Refs. [5–10] need to include the effects of
macroscopic inhomogeneity and anisotropy, and the model
in Eq. (1) should be extended to the anisotropic case. The
rattlers, particles that do not overlap with the other parti-
cles [6] and commonly excluded from the analysis of
scaling exponents in granular media [6,12], could also
(as any other type of defects) couple compression and
shear, contributing an extra relaxation pathway for the
granular medium under compressional loading. Equal ex-
ponents �G and �B are in fact expected according to

disordered lattice models for rigidity percolation where
all elastic moduli obey the same scaling behavior (see
[25] and the references therein).

The success in fitting our experimental results using
theoretical predictions for the static (equilibrium) shear
modulus indicates that the characteristic time scale �n�a
of the disordered granular packing nonaffine relaxation
near the jamming transition (p � 7:5 kPa) does not exceed
few microseconds, as is evident from the quasiequilibrium
condition !�n�a � 1. To determine the relaxation time
�n�a or a distribution of relaxation times, higher acoustic
frequencies than those reported here should be used.

This study was supported by ANR project No. NT05-
341989.
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