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Abstract 
An experimental method for measuring the elastic constants of poroelastic foams as a 
function of frequency is presented. The method is based on the measurement of phase 
velocities of guided acoustic waves in a slab of the material. Standing waves are generated in 
the material and the phase velocities are evaluated using the spatial Fourier Transform of the 
displacement profile of the upper surface. The displacement is measured with the help of a 
Laser Doppler vibrometer along a line corresponding to the direction of propagation of plane 
surface waves. The spatial Fourier Transform provides the wave numbers and the phase 
velocities are obtained from the relationship between wave number and frequency. The phase 
velocity of several guided modes could be measured in highly porous foams saturated by air. 
The modes were also studied theoretically and from the theoretical and experimental results, 
it was possible to determine the frequency behavior of the real part of the shear modulus and 
in a frequency range higher than the traditional methods. Experimental results concerning 
guided waves in isotropic porous materials tend to suggest that information about the 
anisotropy of the elastic matrix can also be obtained.  

INTRODUCTION 

Biot (1956) proposed the theory of propagation of acoustic waves in isotropic 
poroelastic homogeneous medium. Such a material supports one additional slow 
longitudinal wave which is diffusive at low frequencies but propagative at high 
frequencies and carries useful information on some of the porous material properties. 
However, the main limitation of the model is the lack of data on the dynamic 
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rigidities of the porous frame. Some of the classical methods for determining the 
elastic parameters are limited in frequency range. In the past few years, new 
experimental methods have been proposed to characterize the elastic properties of 
foams or fibrous materials used in the field of acoustics. A new method for measuring 
the shear modulus of air-filled porous materials based on the propagation of Rayleigh 
waves in thick layers was recently proposed by Allard et al. [1] and provided useful 
information above 3 kHz. More recently, Allard et al. [2] have proposed a new 
method of measurement in thinner samples in which Biot’s shear wave is excited. 
This method is based on the effect of the resonance of the porous frame around the 
quarter shear wavelength on the pole of the reflection coefficient. 
Foams may be anisotropic, especially orthotropic or transverse isotropic. Surface 
wave velocity has been proved to be the useful tool in determining the dynamic 
properties of saturated porous materials. Surface modes in liquid saturated media are 
studied by a number of researchers (Deresiewicz [3], Feng and Johnson [4], Kelders 
[5], Lauriks [6] and Smith et al [7]). Recently the detection of guided waves in a layer 
of sound absorbing porous material of finite thickness has been reported at Kyoto by 
Boeckx et al. [8]. A new experimental method is proposed in this article for the 
determination of the modes of propagation in a plate of finite sizes in the Lamb 
conditions. This method, characterized by an increased signal to noise ratio and 
measurement accuracy, is based on the generation of standing waves in the layer of 
porous material. Theoretical results on guided waves in transverse isotropic 
poroelastic solid (TIPS) are also presented.  

BIOT’S THEORY 

Following Biot (1956) [9], the equations of motion for transverse isotropic poro-
elastic solid are given by  
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where β  is porosity, ijτ  are the total stress components acting on  both the solid and 
fluid phases, fp  is the pore fluid pressure , fρ  is the mass density of the fluid, ρ is 
the bulk density of the porous material, iu , iU  are the components of the average 
displacements of the solid and fluid phases respectively, iW = ( )ii uU −β  are the 
components of fluid-discharge velocity. The viscodynamic operator ( )2F B ω  

represents the friction between the solid and fluid phases. For circular pores, ib̂  = 
ik

ξ , 

where ξ and ki are the viscosity and permeability of the pore fluid, respectively. For 
cylindrical pores, the permeability is given by ,8
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=  where a  is the pore size 

and iδ  is the shape factor and its value is one for circular cylindrical pores.  
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Where σ  is the flow resisitivity, B² is the Prandtlnumber and Λ  the characteristic 
length for which the value is given for cylindrical pores. 
The iĉ in equations (1) are experimentally determined parameters that account for the 
fact that not all of the fluid moves in the direction of macroscopic pressure gradient 
because of the shape and orientation of the interstitial cavities. In the case of straight 
pores, these constants are unity. 
Following Biot, (1962) [10], the constitutive equations for the transversely isotropic 
porous solid with symmetry about z -axis, are 

( ) ζτ 63212 BeBeeBeB zzyyxxxxxx ++++=  , 

( ) ζτ 63212 BeBeeBeB zzyyxxyyyy ++++=  , 

( ) ζτ 734 BeeBeB yyxxzzzz +++=  ,       (2) 

yzyz eB52=τ  , zxzx eB52=τ  , xyyz eB12=τ  , 

fp  = ( ) ζ876 BeBeeB zzyyxx +++  , where 
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81 ,,......... BB are the eight elastic constants for transversely isotropic porous solid 
(TIPS). The constants for isotropic solids can be obtained by following substitutions 

124673251 2,,, BBBBBBBBB +==== . 
The plane harmonic wave solutions of equations (1) are written in the form  
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where 1a , 3a  , b1 and b3 are the wave amplitudes. Substituting these expressions in 
the equations (1) through the equations (2), we obtain a set of four equations, 
nontrivial solution of which is possible only if 
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The expressions for 0T , 1T , 2T  and 3T  are given in Appendix and are well described 
by Sharma and Gogna [11]. 
The roots of the equation (4) are, in general, complex. We denote these roots by q(n), 
n =1, 2,..., 6. Three roots with positive real parts correspond to the waves traveling in 
the positive z-direction (down going waves) and the other three roots with negative 
real parts correspond to the waves traveling in the negative z-direction (up going 
waves). We order the six roots q(n), n = 1,2,..,6 such that q(1), q(2), q(3) correspond 
to the three up going waves, namely quasi- Pf, quasi- Ps and quasi- SV waves 
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respectively; and q(6), q(5) and q(4) correspond to the down going  quasi- Pf, quasi- 
Ps and quasi- SV waves respectively. 
The displacements associated with the up going and down going quasi-body waves in 
transverse isotropic porous layer (TIPS) are 
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where )(nf  are relative excitation factors.  

A. TIPS plate backed by rigid surface 

First we study the case when a layer of transversely isotropic poroelastic solid of 
thickness H is lying on a rigid surface. The boundary conditions at the free surface z 
= 0 are the vanishing of stress components zzτ , zxτ  and fp  i.e. 
     zzτ = zxτ  = fp  = 0 .      (6) 
And at the surface z = H which is backed by rigid surface, boundary conditions are 
given by the vanishing of displacement components xu , zu and zW  i.e. 
    xu  = zu  = zW  = 0 .       (7) 

Using the relations (2) and the expressions (5), the boundary conditions (6) and (7) 
yields the dispersion equation for the TIPS plate backed by rigid substrate on one end 
in the form of following determinant 
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where  
,)( Hnqin ωθ = [ ])()()( 31 nianrnaLCn += ,

[ ] [ ])()()()()( 1133 nRbnMainrnRbnQaDn +++=  
[ ] [ ])()()()()( 1133 nQbnFainrnQbnCaPn +++= , )()( ncqnr = . 

B. Free TIPS Plate 

Next is the case when the TIPS plate is free on both sides. The boundary conditions in 
this case are the vanishing of stresses zzτ , zxτ  and fp at the surface z = 0 as well as at 
z = H which gives the determinant equation  
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EXPERIMENTAL SETUP AND PRINCIPLE 

The experimental principle for studying guided waves in poro-elastic plates is shown 
in figure 1. The experimental setups and principles are also discussed by L. Boeckx et 
al. [12, 13]. A setup for studying the guided waves in a poro-elastic plated backed by 
rigid surface is presented on the left-hand side. Guided waves in a free poro-elastic 
plate can be investigated by the experimental setup presented in the right-hand side of 
figure 1. An electro dynamical shaker was used as a source. An aluminum plate was 
attached to the shaker to realize a line source. The shaker was fed with a stepped 
sinusoidal signal provided by the function generator unit of an SRS SR780 2 channel 
signal analyzer. The frequency of the sinusoidal signal was used as a reference for the 
lock-in amplifier of the SRS analyzer. A laser Doppler vibrometer detected the 
normal displacement component of the wave motion induced by the shaker. Patches 
of reflective tape were applied to the porous plate to realize reflection from the upper 
surface of the plate. A rigid ending was applied in both situations to eliminate partial 
reflection from the lateral boundaries of the porous plate. The rigid ending was a 
heavy metal plate at which perfect reflection of the guided waves could occur. It was 
attempted to realize a plate with infinite lateral dimensions using these rigid endings.  
When the plate was backed by a rigid substrate (left part of figure 1) the excitation 
region was opposite to the rigid ending of the porous plate. For the free condition 
(right part of figure 1) the excitation region was in the middle of the plate. Although a 
poro-elastic plate mounted in free conditions is easier to excite and offers a 
symmetrical displacement pattern, it can not always be realized. Most of the sound 
absorbing foams are very soft and therefore sagging effects would occur when 
mounted in free conditions. An investigation of the guided waves in a poro-elastic 
plate backed by a rigid substrate therefore offers a valuable and interesting 
alternative. 
The normal displacement of the surface of the plate was measured for each driving 
frequency. The measurement point was allowed to move along a line parallel to the 
direction in which the plane waves propagate. The laser beam at the output of the 
laser Doppler vibrometer was collimated and a mirror/lens arrangement, which was 
mounted on a positionable arm, insured that the beam was always focused on the 
surface of the material at any position of the beam. A typical step size of the 
measurement is between 1 up to 5 mm and the length of the samples was typically 
around 1m. Due to the perfect reflection of the guided waves at the rigid endings an 
interference pattern arises. This standing wave pattern is measured along a direction 
parallel to the direction in which the plane surface waves propagate. The periodicity 
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of the standing wave pattern is determined by the guided waves which are allowed to 
propagate at the driving frequency. Measured standing wave patterns were Fourier 
transformed to obtain the spatial spectrum. 
 

  
Figure 1 – Experimental setup for measuring guided waves in a poro-elastic plate backed by 

a rigid substrate (left) and for a plate in free conditions(right) 

The maxima in the spatial spectrum correspond with the allowed propagating modes. 
The dispersive behaviour of the phase velocities is then obtained from the angular 
driving frequency and the wave number of the specific mode. 

RESULTS AND DISCUSSION 

Guided wave propagation in two isotropic poro-elastic plates was measured to 
validate the experimental principle. The measured material properties of these 
samples can be found in Table 1. Foam 1 is mounted in free conditions. Foam 2 was 
backed by a rigid substrate. The phase velocity dispersion curves are shown in figure 
2. The circles indicate measured phase velocities. Clear experimental evidence was 
found for the existence of three guided waves propagating in a poro-elastic plate for 
both samples. The frequency range for which this guided wave propagation was 
measured exceeds that of classical quasi-static elasticity experiments. 
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Figure 2 – Measured phase velocities (circles) of guided waves in a poro-elastic plate, Foam 

1, mounted in free conditions (a) and in a poro-elastic plate, Foam 2, backed by a rigid 
substrate (b).The solid lines indicate the calculated phase velocity dispersion curves.  

The solid lines which are presented in parts (a) and (b) of figure 3 represent the 
calculated phase velocity dispersion curves for a poro-elastic plate mounted in the 
specific boundary conditions. The phase velocity dispersion curves presented in part 
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(a) of figure 2 are analogous to the classical Lamb phase velocity dispersion curves. 
The phase velocity dispersion curves presented in part (b) of figure 2 resemble the 
guided waves which propagate in an elastic plate which is backed by a rigid substrate. 
These curves are calculated by locating the zeros of a characteristic determinant 
analogous to the determinants given by equation (8) and (9). The exact details of the 
determinants used for the calculation of the dispersive behaviour of the phase 
velocities in figure 2 are given in [12, 13].  
The values of the parameters which are used for the calculation of the solid curves in 
figure 2 were measured and are given in Table 1. The phase velocities of Foam 1 
(part a) were fitted best by a constant shear modulus, as indicated in Table 1. 
 

The phase velocities of Foam 2 show 
however a clear frequency dependency 
which could only be accounted for by 
the use of a frequency dependent shear 
modulus. The frequency dependency of 
the shear modulus which was found 
from the measured phase velocities was 
already presented in figure 9 part (a) of 
[12]. The frequency dependency of the 
shear modulus was verified at low 
frequencies by quasi-static elasticity 
experiments and at high frequencies by 
the Rayleigh wave experiments as 
described by [1]. 

                 Table 1: Material properties 

CONCLUSIONS 

An experimental method has been presented for the measurement of the elastic 
behaviour of poro-elastic materials. The experimental method is based on the 
generation of guided waves in poro-elastic plates. A theoretical study of guided 
waves in TIPS layers has been presented. The proposed experimental method was 
validated by measuring the phase velocities of guided waves in an isotropic elastic 
porous material and in an isotropic visco-elastic porous material. In future research 
the experimental method will also be applied for studying the phase velocities of 
guided waves in transverse isotropic poro-elastic materials.  
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