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A FINITE VOLUME SCHEME FOR BOUNDARY-DRIVEN
CONVECTION-DIFFUSION EQUATIONS WITH RELATIVE ENTROPY

STRUCTURE

FRANCIS FILBET AND MAXIME HERDA

Abstract. We propose a finite volume scheme for a class of nonlinear parabolic equations endowed
with non-homogeneous Dirichlet boundary conditions and which admit relative entropy functionals.
For this kind of models including the porous media equations, Fokker-Planck equations for plasma
physics or dumbbell models for polymer flows, it has been proved that the transient solution converges
to a steady-state when time goes to infinity. The present scheme is built from the resolution of the
stationary equation in order to preserve steady-states and natural Lyapunov functionals which provide
a satisfying long-time behavior. After describing the numerical scheme, we present several numerical
results which confirm the accuracy and underline the efficiency to preserve the large-time asymptotic.
Keywords. Finite volume methods, relative entropy, non-homogeneous Dirichlet boundary condi-
tions, polymers, magnetized plasma, porous media
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1. Introduction

In this paper we propose to elaborate a finite volume scheme for nonlinear convection-diffusion
equations with relative entropy structure set in a bounded domain and endowed with either non-
homogeneous Dirichlet and/or null outward flux (generalized Neumann) boundary conditions. The
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main objective of building such a scheme is to capture the correct long-time behavior when the
solution converges to equilibrium.

1.1. General Setting. Let Ω be a polyhedral open bounded connected subset of Rd with boundary
Γ. Let us introduce an advection field E : Ω→ Rd and η : R→ R a strictly increasing smooth function
onto R satisfying η(0) = 0. We consider the following nonlinear convection-diffusion equation with
non-homogeneous Dirichlet boundary conditions

(1)



∂f

∂t
+ ∇ · (E η(f)−∇η(f)) = 0 in x ∈ Ω, t ≥ 0,

f = f b on x ∈ Γ = ∂Ω, t ≥ 0,

f(t = 0) = f in in x ∈ Ω.
In [6], T. Bodineau, C. Villani, C. Mouhot and J. Lebowitz showed that this equation admits a large
class of Lyapunov functionals, that we will denote, using their denomination, relative φ-entropies.
Each functional is generated by a convex function φ and depends on a stationary state of (1).
Therefore, we assume that there exists f∞ which satisfies

(2)


∇ · (E η(f∞)−∇η(f∞)) = 0 in x ∈ Ω,

f∞ = f b on x ∈ Γ.
Let us define the relative entropy corresponding to (1) and the associated dissipation.

Definition 1.1 (Entropy generating functions). For any non-empty interval J of R containing 1, we
say that φ ∈ C2(J,R+) is an entropy generating function or simply entropy function if it is strictly
convex and satisfies φ(1) = 0 and φ′(1) = 0.

Then from an entropy function φ, the entropy functional is built as follows.

Definition 1.2 (Relative φ-entropy and dissipation). For any entropy generating function φ, we
denote by Hφ the so-called relative φ-entropy defined by

Hφ(t) =
∫

Ω

∫ f(t,x)

f∞(x)
φ′
(

η(s)
η(f∞(x))

)
dsdx,

and by Dφ the relative φ-entropy dissipation defined by

Dφ(t) =
∫

Ω
|∇h|2 φ′′(h) η(f∞) dx,

where h is the ratio between the transient and stationary nonlinearities

(3) h = η(f)
η(f∞) , if x ∈ Ω and h = 1, if x ∈ Γ.

Typical examples of relative φ-entropy are the so-called physical relative entropies and p-entropies
(or Tsallis relative entropies) generated by, respectively,

(4) φ1(x) = x ln(x)− (x− 1), φp(x) = xp − px
p− 1 + 1 with p ∈ (1, 2].

Let us note that for the linear problem, namely with η(x) = x, the relative φ-entropy rewrites

Hφ(t) =
∫

Ω
φ

(
f

f∞

)
f∞ dx.

One readily sees that, since η and φ′ are increasing functions satisfying η(0) = 0 and φ′(1) = 0,
the local relative φ-entropy is a non-negative quantity. This yields Hφ ≥ 0 and it cancels if and only
if f and f∞ coincide almost everywhere. The φ-entropies are not, in general, distances between the
solution and the steady state. However Csiszar-Kullback type inequalities [13, 22, 25] yield a control
of the L1 distance between the solution and the equilibrium. Therefore if a relative φ-entropy goes
to zero when time goes to infinity, the solution converges to equilibrium in a strong sense.
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The following result was proved in [6, Theorem 1.4] and yields the entropy-entropy dissipation
principle for Equation (1), namely the decrease of all the relative φ-entropies. The first step consists
in reformulating the equation using the ratio (3). It writes

(5) ∂f

∂t
+ ∇ · ([E η(f∞)−∇η(f∞)] h − η(f∞)∇h) = 0.

Proposition 1.3. Any L∞ solution of (1) satisfies in the sense of distributions

(6) dHφ
dt = −Dφ ≤ 0,

for any entropy generating function φ.

The formal computations leading to (6) motivate our choices in the elaboration of the discrete
scheme. Therefore, we recall the proof yielding the entropy equality.

Proof. First, we integrate (5) against φ′(h), integrate by parts and use the boundary conditions and
the fact that φ′(1) = 0 to get

dHφ
dt =

∫
Ω
φ′ (h)∇ · [(∇η(f∞)−Eη(f∞))h+∇hη(f∞)] dx

= −
∫

Ω
(∇η(f∞)−Eη(f∞)) · ∇hφ′′ (h)hdx−

∫
Ω
|∇h|2 φ′′(h)η(f∞) dx.

Let ϕ be the only C1 function satisfying, ϕ′(s) = φ′′ (s) s and ϕ(1) = 0, given by ϕ(s) = sφ′(s)−φ(s).
Introducing it in the last expression yields

dHφ
dt = −

∫
Ω

(∇η(f∞)−Eη(f∞)) · ∇ϕ(h) dx−Dφ

= −Dφ,
where we integrated the first term by parts, used the stationary equation (2) and the boundary
conditions. �

There are two important facts that justifies the use of (5) instead of (1) to derive the above entropy
dissipation inequality. The rewriting transforms the advection field E on η(f) into an incompressible
field ∇η(f∞) − E η(f∞) on h. Therefore, the contribution of the convection vanishes when the
time derivative of the relative entropy is computed and the convexity of φ then suffices to provide
dissipation. The underlying cancellations stems from the transformation of∇hφ′′ (h)h into a gradient
thanks to ϕ and on the fact that f∞ solves (2). The second reason is that considering the equation
on h instead of f changes non-homogeneous Dirichlet boundary conditions into homogeneous ones
on h− 1. This and the properties of φ enables the cancellations of boundary terms. In other words,
the φ relative entropies are the correct functionals and (5) the right form of the equation to capture
the boundary-driven dynamic. The purpose of this work is the preservation by a discrete scheme of
the whole class of relative entropy dissipation inequalities of the continuous model. This will be done
adapting the above strategy to a finite volume discretization of the equation.

Let us emphasize that E is a general field and need not to be either incompressible nor irrotational
as for parabolic equations with a gradient flow structure [24]. Indeed, assuming some regularity
on the advection field, one can apply the Hodge decomposition to get the existence of a potential
ϕ : Ω→ R and F : Ω→ Rd such that
(7) E = ∇ϕ+ F, ∇ · F = 0
When F = 0, there are many examples in the literature [19, 11, 5, 9, 8, 12] of finite volume schemes
preserving entropy dissipation properties. C. Chainais-Hillairet and F. Filbet studied in [11] a finite
volume discretization for nonlinear drift-diffusion system and proved that the numerical solution
converges to a steady-state when time goes to infinity. In [8], M. Burger, J. A. Carrillo and M.
T. Wolfram proposed a mixed finite element method for nonlinear diffusion equations and proved
convergence towards the steady-state in case of a nonlinear Fokker-Planck equation with uniformly
convex potential. All these schemes exploit the gradient flow structure of the equation, which gives
a natural entropy.
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In the non-symmetric case F 6= 0, the gradient structure cannot be exploited anymore, but as
Proposition 1.3 show, there is still a relative entropy structure, which may be investigated to prove
convergence to a steady state. The relative entropy properties of Fokker-Planck type equations in the
whole space are exhaustively studied in the famous paper [3] of A. Arnold, P. Markowich, G. Toscani,
A. Unterreiter and specific properties of the non-symmetric equations have been investigated in [2, 1].

In bounded domains, entropy properties are often used in the context of no-flux boundary con-
ditions or in the whole space, but few results concern Dirichlet boundary conditions. In [5], M.
Bessemoulin-Chatard proposed an extension of the Scharfetter-Gummel for finite volume scheme for
convection-diffusion equations with nonlinear diffusion and non-homogeneous and unsteady Dirich-
let boundary conditions. While in the latter work the author presents a scheme with a satisfying
long-time behavior for a larger class of models than those of the present paper, our strategy and
objectives differ. Here we aim at preserving a whole class of relative entropies and build our scheme
for the transient problem from a discretization of the stationary equation.

Let us precise that we can generalize our approach to the more general boundary conditions{
f = f b on ΓD,
[E η(f)−∇η(f)] · n(x) = 0 on ΓN ,

with Γ = ΓD∪ΓN . Our results hold in this setting with minor modifications but to avoid unnecessary
technicalities in the notation and in the analysis we consider non-homogeneous Dirichlet conditions
on the whole boundary. However, numerical results will be shown in both cases.

1.2. Physical models. Before describing our numerical scheme, let us present some physical models
described by equation (1) for which the large-time asymptotic has been studied using entropy/entropy-
dissipation arguments. Some of these models are the homogeneous part of kinetic Fokker-Planck-type
equations and this work constitutes a first step towards treating full kinetic models. In future work,
we aim at adapting the strategy developed here to ensure the property of convergence to local equi-
librium for the solutions of these equations.

1.2.1. The Fokker-Planck equation with magnetic field. A classical model of plasma physics
describing the dynamic of charged particles evolving in an external electromagnetic field (−∇xφ(x),B(x))
is given by the Vlasov-Fokker-Planck equation reading

(8) ∂F

∂t
+ v · ∇xF −∇xφ · ∇vF + (v ∧B) · ∇vF = ∇v · (vF +∇vF ).

For more details on the model we refer to [7, 20]. In [7], Bouchut and Dolbeault proved that the
solution of (8) in the whole phase space and without magnetic field converges to a global equilibrium.
Their proof mainly relies on the decrease of the free energy functional, which corresponds to the
physical relative entropy introduced in (4). The external magnetic field does not alter the relative
entropy inequality. We refer to [20] for the corresponding computations. Here, we consider the
phenomena happening in the velocity space which results in a Fokker-Planck equation with magnetic
field, namely equation (1) with η(s) = s and where the advection field is given by
(9) E(v) = −v + v ∧B,
with constant magnetic field B. In applications, the velocity variable v usually lives in R3. However
when performing numerical simulations, one needs to restrict the velocity domain to a bounded set Ω.
On the edge of this restricted domain Ω, we shall consider the following non-homogeneous Dirichlet
boundary conditions
(10) f(t,v) = f∞(v) ∀v ∈ ∂Ω,
where f∞ is the local Maxwellian associated with (8) which writes

(11) f∞(v) = 1
(2π)3/2 e

− |v|
2

2 ∀v ∈ Ω,

and is a stationary state of (1)-(9)-(10). With the boundary conditions (10), one recovers the
same stationary state as in the whole space while working in a bounded domain. As for the more
complicated kinetic model (8), free energy (relative φ-entropy) decrease holds.
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Our approach is particularly promising for this kind of problem when the solution develops some
micro-instabilities around a steady state. In this situation, it is important that numerical artifacts
do not generate some spurious oscillations.

1.2.2. The dumbbell model for the density of polymers in a dilute solution. The following
kinetic equation describes the evolution of the density F (t,x,k) of polymers at time t and position
x diluted in a fluid flow of velocity u(x) from a mesoscopic point of view

(12) ∂F

∂t
+ u · ∇xF = −∇k ·

[(
∇xu k− 1

2∇kΠ(k)
)
F − 1

2∇kF

]
.

The polymers are pictured as two beads linked by a spring and the variable k stands for the vector
indicating the length and orientation of the molecules. The potential Π is given by Π(k) = |k|2/2 in
the case of Hookean dumbbells or by Π(k) = − ln(1−|k|2)/2 in the case of Finite Extensible Nonlinear
Elastic dumbbells. In the complete model, the velocity of the fluid u follows an incompressible Navier-
Stokes equation featuring an additional force term modeling for the contribution of the polymers on
the dynamic of the fluid which results in a nonlinear kinetic-fluid coupling. Here, we consider the
simpler case where u(x) is a given incompressible field. For more details on the modeling, we refer to
[21] and references therein. We also refer to the paper [23] of Masmoudi that treats the well-posedness
and provides additional information on the model.

Once again we aim at approximating numerically the ”velocity” part of the kinetic equation (12)
which rewrites as (1) with η(s) = s and where the advection field is given by

(13) E(k) = A k− 1
2∇kΠ(k),

with a constant matrix A satisfying tr(A) = 0 and to be seen as the gradient of an incompressible
velocity field at some space location. Natural boundary conditions for this model are given by null
outward flux. In [21], the long-time behavior of (12) and of the latter reduced model are investigated
using relative φ-entropies where φ may typically be given by (4).

1.2.3. A nonlinear model, the porous medium equation. The porous medium equation is a
nonlinear PDE writing

(14) ∂f

∂t
= ∆fm,

with m > 1. It can model many physical applications and generally describes processes involving
fluid flow, heat transfer or diffusion. The typical example is the description of the flow of an isentropic
gas through a porous medium. There is a huge literature on this equation and we refer to the book
of Vásquez [26] for the detailed mathematical theory.

Here, equation (14) is set in a bounded domain Ω with non-homogeneous Dirichlet boundary
conditions

f(t,x) = f b(x) > 0 ∀x ∈ ∂Ω,

such that it might be recast like (1) with a null advection field and with η(s) = sm. Using their
relative φ-entropy method, Bodineau, Mouhot, Villani and Lebowitz show exponential convergence
to equilibrium for this nonlinear equation.

1.3. Outline. The plan of the paper is as follows. In Section 2, we present the semi-discrete finite
volume scheme and the discrete version of the relative φ-entropies. Then we prove in Section 3 the
main properties of our scheme, namely the relative φ-entropy dissipation as well as well-posedness,
stability and long-time behavior of solutions. In Section 4, we adapt these results to the implicit
and explicit Euler time discretization of the scheme. We end up providing numerical proofs of the
properties of our schemes as well as a convergence analysis on several test cases consisting in three-
dimensional versions of models presented above, with their various boundary conditions.
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2. Presentation of the numerical schemes

In this section, we introduce our scheme in the semi-discrete form. We start with some notation
associated to our finite volume approximation of Equation (5).

A discretization of Ω, is defined by the triplet D = (T , E,P). The mesh T is a finite family of
nonempty connected open disjoint subsets of Ω called the control volumes K ∈ T . The closure of
the union of all the control volumes shall be equal to Ω̄. The set E is a finite family of nonempty
open disjoint subsets of Ω̄ called the edges σ ∈ E. Each edge is a subset of an affine hyperplane in
Rd−1 with positive measure. It is also assumed that for any control volume K ∈ T there exists a
subset EK of E such that the closure of the union of all the edges in EK is equal to ∂K = K̄ \ K.
We also define several subsets of E. The family of interior edges Eint is given by {σ ∈ E, σ * Γ} and
the family of exterior edges by Eext = E \ Eint. Similarly, for any control volume K ∈ T , we define
Eint,K = Eint ∩ EK and Eext,K = Eext ∩ EK . Moreover we assume that for any edge σ, the number
of control volumes sharing the edge σ, namely the cardinality of {K ∈ T , σ ∈ EK} is exactly 2 for
interior edges and 1 for exterior edges. With this assumptions, every interior edge is shared by two
control volumes, say K and L, so that we may use the notation σ = K|L whenever σ ∈ Eint. The
set P = {xK}K∈T is a finite family of points satisfying that for any control volume K ∈ T , xK ∈ K.
The Dirichlet condition on the boundary is given by f b ∈ L∞(Γ) which is assumed to be positive.
The approximate solution f(t) at time t ∈ [0, T ) is an element of the set

Xfb =
{
f ∈ RT × REext : fσ = 1

m(σ)

∫
σ
f bdm, ∀σ ∈ Eext

}
.

For any function ψ : R→ R, and f ∈ Xfb we shall define the component-wise composition with the
intuitive notation ψ(f) = ((ψ(fK))K∈T , (ψ(fσ))σ∈Eext). Finally, to ease the notation we sometimes
denote by f the piecewise constant function satisfying f(x) = fK almost everywhere for each K ∈ T .

In order to get a numerical approximation of the solution of (1), for which the numerical solution
converges to a consistent steady state of (2) and satisfies the discrete equivalent of the entropy-entropy
dissipation equality (6), we proceed in two steps.

• We first solve a discrete steady state problem consistent with (2).
• We use the steady state to define a numerical flux such that the numerical solution satisfies
discrete equivalents of the φ-entropy inequalities (6). In particular we want the numerical
solution to converge to the discrete steady state when time goes to infinity.

2.1. Discretization of the steady state equation. In this subsection, we look for an approxima-
tion f∞ ∈ Xfb of the continuous stationary state (2). This means that we construct a discrete flux
which approximates consistently the flux (E η(f∞)−∇η(f∞)) ·n of the stationary equation (2) and
such that its discrete divergence cancels, namely

(15)
∑
σ∈EK

F∞K,σ = 0.

Our method do allow to approach the fluxes from the analytical steady states as well as finding an
approximate steady state from a finite volume discretization. For some models, the global equilibrium
f∞ may be known analytically. Therefore, we construct a discrete approximation in Xfb by a
standard projection

f∞K = 1
m(K)

∫
K
f∞ dx,

and the numerical flux F∞K,σ is given by

F∞K,σ =
∫
σ

(E η(f∞)−∇η(f∞) ) · nK,σdm,

where the integrals may be computed exactly or approximated with a quadrature formula. In any
case, equation (15) shall be satisfied as well as the interior continuity condition,

F∞K,σ = −F∞L,σ, if σ = K|L ∈ Eint.
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Let us precise that this last condition is required and satisfied for all the discrete flux we define in
the following.

On the other hand, when the steady state is not explicitly known we may apply a finite volume
scheme to compute a numerical approximation. Once again, our method do not impose any particular
scheme for solving the stationary equation but for the sake of completeness we propose the following
that we actually use in some of our numerical simulations. Keeping in mind that most of the
models we consider arise as space-homogeneous part of kinetic equations, we need to deal with
potentially small (but non-zero) Dirichlet boundary conditions as well as confining potentials. this
results in Maxwellian-like equilibria where f∞ is maximal somewhere inside the domain and quickly
decays towards small values at the boundary. Therefore finding a scheme that can provide a good
approximation with this few information on the boundary is a hard task in itself. Here is our
proposition to deal with this issue.

We replace the unknown f∞ by h∞ = η(f∞)/ exp(φ) where φ is the potential of the advection
field E in its Hodge decomposition (7). At the continuous level the stationary equation (2) then
rewrites 

∇ ·
[
eφ(Fh∞ −∇h∞)

]
= 0 in x ∈ Ω,

h∞ = η(f b) exp(−φ) on x ∈ Γ.

With the above formulation of Equation (2), and provided that f b is of the same order as exp(φ) on
the boundary, we expect the solution h∞ to be close to 1 inside the domain and on the boundary.
The corresponding finite volume scheme is given by (15), where the fluxes F∞K,σ are discretized with
upwind discretization for the convective part and with a two-points centered gradient for the diffusion.

2.2. Discretization of evolution equation. Now we treat the time evolution problem and use the
numerical flux constructed from the steady state problem (2) to build a numerical approximation of
the time evolution equation. The scheme reads in semi-discrete form

(16) ∀K ∈ T ,


m(K)dfK

dt
(t) +

∑
σ∈EK

FK,σ = 0, ∀t ∈ [0, T ),

fK(0) = 1
m(K)

∫
K
f in(x) dx.

We first define h ∈ X1 as h = η(f)/η(f∞) with component-wise division and for each K ∈ T and
σ ∈ ∂K, the flux is given by

(17) FK,σ = F conv
K,σ + F diss

K,σ ,

where we call F conv
K,σ the convective flux and F diss

K,σ the dissipative flux corresponding to the diffusive
term. The convective flux approximates the advection part of the continuous flux in (5), namely
[E η(f∞)−∇η(f∞)]h · n. The corresponding discrete velocity field is given by

UK,σ = 1
m(σ)F

∞
K,σ,

and we define the associated monotone convective flux by

(18) F conv
K,σ =


m(σ)

[
U+
K,σg(hK , hL)− U−K,σg(hL, hK)

]
if σ = K|L,

m(σ)
[
U+
K,σg(hK , hσ)− U−K,σg(hσ, hK)

]
otherwise,

where for any real number u, we define the positive and negative part of u to be respectively u+ =
max(u, 0) and u− = max(−u, 0). The function g : R2 → R is locally Lipschitz-continuous, non-
decreasing in the first variable, non-increasing in the second variable and satisfies g(s, s) = s for
consistency. In the numerical simulations, we use a classical upwind flux which corresponds to
g(s, t) = s. The dissipative flux F diss

K,σ is an approximation of the diffusion part of the continuous flux
7



−η(f∞)∇h · n in (5) and is built on a standard centered approximation of the derivative along the
outward normal vector of each edge, namely

(19) F diss
K,σ = −τση(f∞σ )DK,σh,

where f∞σ is an consistent approximation of the stationary state on the edge σ to be chosen. In
the following we just suppose that it is given by, say, f∞σ = (f∞K + f∞L )/2. The quantity τσ is the
transmissibility of the edge σ, given by

τσ = m(σ)
dσ

,

where

dσ =
{
d(xK , σ) + d(xL, σ) if σ ∈ Eint, σ = K|L,
d(xK , σ) if σ ∈ Eext,K ,

with d(·, ·) the euclidean distance Rd. The difference operator DK,σ is defined for any K ∈ T and
σ ∈ EK by DK,σ : RT × REext −→ R,

(20) DK,σu =
{
uL − uK if σ ∈ Eint, σ = K|L,
uσ − uK if σ ∈ Eext,K .

For consistency of the discrete gradients, we require an orthogonality condition for the mesh, namely

∀x,y ∈ σ = K|L, (x− y) · (xK − xL) = 0.

2.3. Discrete relative φ-entropies. For f ∈ Xfb , the semi-discrete equivalent of the relative φ-
entropy in (1.2) is given by

(21) Hφ(f) =
∑
K∈T

m(K)eφ,K(f),

where eφ = (eφ,K)K∈T is the local relative φ-entropy writing

eφ,K(f) =
∫ fK

f∞K

φ′
(

η(s)
η(f∞K )

)
ds, ∀K ∈ T .

We also introduce the contributions of the convective and diffusive part of the equation to the relative
entropy variation

(22) Cφ(f) =
∑
K∈T

∑
σ∈EK

φ′(hK)F conv
K,σ , Dφ(f) =

∑
K∈T

∑
σ∈EK

φ′(hK)F diss
K,σ .

In Proposition 3.3 we will show that Dφ is consistent with its continuous analogue Dφ. In the
continuous setting, the contribution of the advection vanishes in the variation of the relative φ-
entropy. We will show in Proposition 3.3 that it is not the case in the discrete setting. However the
monotonicity properties of the convective flux make this term an additional numerical dissipation to
the relative φ-entropy.

3. Analysis of the semi-discrete scheme

In this section we present the properties of the semi-discrete scheme (16)-(19). Let us state the
first main result of this paper which regroups the well-posedness, entropy dissipation and stability
properties.

Theorem 3.1. Suppose that the initial data f in and the stationary state f∞ are positive and consider
the semi-discrete scheme (16)-(19) corresponding to (1). Then,

• there exists a unique global solution f ∈ C1(R+;Xfb) ;
• there exists two positive constants I, I only depending on the initial data f in and the stationary
state f∞, such that for all t ≥ 0 and K ∈ T ,

I ≤ fK(t) ≤ I ;
8



• the scheme preserves the stationary state f∞ and dissipates every relative φ-entropy defined
in (21), namely for any t ≥ 0,

(23) d

dt
Hφ +Dφ ≤ 0 and Dφ ≥ 0,

where the dissipation Dφ is consistent with Dφ.

The key-point in the proof of Theorem 3.1 is to prove the entropy dissipation estimate for any
function φ. Then we establish the L∞ bound on f . This is done in Section 3.1 and the rest of the
proof is detailed in Section 3.2.

Furthermore, in linear cases η(s) = s we can also prove exponential decay rate of the solution to
the discrete equilibrium, using the φ-entropy inequalities and a discrete Poincaré-Sobolev inequality.

Theorem 3.2. (Exponential return to equilibrium) Under the assumptions of Theorem 3.1 and for
η(s) = s, let f be the solution of the semi-discrete scheme (16)-(19). Then for ξ > 0 such that
dK,σ ≥ ξdσ for all control volume K ∈ T and edge σ ∈ EK , there exists a rate κ > 0 depending on
the domain, ξ and f∞ (but not on the discretization) and a constant C0,∞ depending additionally to
the initial data such that

Hφ(t) ≤ C0,∞ e−κt,

for all φ-entropy satisfying 2
(
φ
′′′
)2
≤ φ′′φIV . In particular, this implies that the semi-discrete

solution goes to equilibrium exponentially fast in time
‖f(t)− f∞‖2L1(Ω) ≤ C0,∞ e−κt.

The proof of Theorem 3.2 is given in Section 3.3.

3.1. Relative entropy dissipation and stability. In the following we prove the relative entropy
inequalities (23) of Theorem 3.1. The result is stated in the following Proposition.

Proposition 3.3. Let T ∈ R+ ∪ {∞} and f ∈ C1(0, T ;Xfb). Then, for any entropy function φ, the
dissipations associated to f defined in (22) satisfy the following properties.

• The numerical dissipation Cφ(f) is non-negative.
• The physical dissipation rewrites

(24)

Dφ(f) =
∑
σ∈Eint
σ=K|L

τσ DK,σh DK,σφ
′(h) η(f∞σ )

+
∑
K∈T

∑
σ∈Eext,K

τσ DK,σh DK,σφ
′(h) η(f∞σ ) ≥ 0.

Moreover if f satisfies the scheme (16)-(19), then,

(25) d

dt
Hφ +Dφ = −Cφ ≤ 0.

We proceed in three steps to prove Proposition 3.3. First we prove the entropy equality (25). Then,
we show that Dφ is consistent with its continuous analogue and we finish by the most important
property which is the non-negativity of Cφ coming from monotony properties of the convective
flux. We recall that at the continuous level, this quantity vanishes. This justifies the denomination
numerical (entropy) dissipation. To prove the non-negativity of the numerical dissipation we will
compare it with C

Mφ

φ which is the numerical dissipation of a special centered convective flux that
depends on the entropy function φ. Let us define the latter here as well as some complementary
notation.

Definition 3.4. A functionM : R+×R+ → R is called a mean function if it satisfies for all s, t ∈ R+,
(1) M(s, t) = M(t, s)
(2) M(s, s) = s

9



(3) If s < t, then s < M(s, t) < t

We also define Mσ : Xub −→ R by Mσ(u) = M(uK , uL) if σ = K|L and Mσ(u) = M(uK , uσ)
otherwise. This is well defined thanks to the symmetry of M . For any such function M , we define
the centered convective flux associated to M by

FMK,σ(f) = m(σ) UK,σ Mσ(h),

and
CMφ =

∑
K∈T

∑
σ∈EK

φ′(hK)FMK,σ.

Finally for any entropy generating function φ, it is elementary to show that

Mφ(s, t) = ϕ(s)− ϕ(t)
φ′(s)− φ′(t) ,

where ϕ(s) = sφ′(s)− φ(s), defines a continuous mean function. We call it the φ-mean.

Remark 3.5. Let us note that for the 2-entropy generating function φ2(s) = (s − 1)2 , the corre-
sponding ϕ-mean is the arithmetic mean and therefore FMφ2

K,σ is a classical centered approximation
for the convective flux, namely for σ ∈ Eint

F
Mφ2
K,σ = m(σ) UK,σ

hK + hL
2 .

When choosing the generator of the physical entropy φ1(s) = s log(s)− s+ 1, the corresponding mean
function is the logarithmic mean reading Mφ1(s, t) = (s− t)/(log(s)− log(t)).

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. First note that a simple computation yields

d

dt
Hφ =

∑
K∈T

m(K)dfK
dt

φ′(hK) = −
∑
K∈T

φ′(hK)
∑
σ∈EK

FK,σ = −(Cφ +Dφ).

using the definition of the dissipations (22) and the scheme (16)-(19). Then, to prove (24), we use
(22) and (19) to get

Dφ(f) = −
∑
K∈T

∑
σ∈EK

τσ DK,σh φ
′(hK) η(f∞σ )

and the result stems from a discrete integration by parts.
Now, let us prove the non-negativity of Cφ. Let M be any mean function. We start by integrating

Cφ − CMφ by parts. It yields

Cφ − CMφ = −
∑
σ∈Eint
σ=K|L

(F conv
K,σ − FMK,σ)DK,σ(φ′(h))−

∑
K∈T

∑
σ∈Eext,K

(F conv
K,σ − FMK,σ)DK,σ(φ′(h)).

Now let us just remark that for any K ∈ T and σ ∈ Eint,

− (F conv
K,σ − FMK,σ)DK,σ(φ′(h)) = m(σ)U+

K,σ(g(hK , hK)− g(hK , hL))(φ′(hL)− φ′(hK))
+m(σ)U+

K,σ(Mσ(h)− hK)(φ′(hL)− φ′(hK))
+m(σ)U−K,σ(hL −Mσ(h))(φ′(hL)− φ′(hK))
+m(σ)U−K,σ(g(hL, hK)− g(hL, hL))(φ′(hL)− φ′(hK)).

where we used that g(s, s) = s. If σ ∈ Eext, the same equation holds replacing hL with hσ. Therefore,
since φ′ and g(s, ·) are monotonically non-decreasing functions and Mσ(h) is always between hK and
hL (resp. hσ), the above quantity is non-negative. Hence, Cφ ≥ CMφ .

10



Finally, a simple computation using two integrations by parts yields

C
Mφ

φ = −
∑
σ∈Eint
σ=K|L

F
Mφ

K,σDK,σ(φ′(h))−
∑
K∈T

∑
σ∈Eext,K

F
Mφ

K,σDK,σ(φ′(h))

= −
∑
σ∈Eint
σ=K|L

F∞K,σDK,σ(ϕ(h))−
∑
K∈T

∑
σ∈Eext,K

F∞K,σDK,σ(ϕ(h))

=
∑
K∈T

∑
σ∈EK

F∞K,σϕ(hK) = 0,

where we used Equation (15) in the last equality. Thus, Cφ ≥ C
Mφ

φ = 0. �

Remark 3.6. Let us note that if we had used the fluxes FMφ

K,σ instead of F conv
K,σ in our scheme, then

it would have given,
d
dtHφ +Dφ = 0,

which is exactly what we get for the continuous problem. However, the scheme would have been φ-
dependent. With our upwind discretization, we get the whole class of relative entropy inequalities at
the cost of an additional numerical dissipation.

The discrete entropy inequalities (23) constitute a large set of Lyapunov functionals that we may
use to derive stability properties of the solution. Let us define precisely the stability property of the
scheme. Because of the reformulation of (1) into (5) it corresponds to the L∞ stability of h.

Definition 3.7. We say that a solution to the semi-discrete scheme (16) is stable on [0, T ) if
∀t ∈ [0, T ), ∀K ∈ T , hK(t) ∈ J,

where J = [min(1,minK hK(0)), max(1,maxK hK(0))].

Remark 3.8. Since the stationary state f∞ is assumed to be positive (component-wise), we introduce
the positive constants

m∞ = min
K∈T

η(f∞K ), M∞ = max
K∈T

η(f∞K ).

and we set
I = [η−1(m∞min J), η−1(M∞max J)],

where J is defined in Definition 3.7. Assume that f ∈ C1(0, T ;Xfb) is a solution to the scheme
(16)-(19) that is stable in the sense of Definition 3.7. Then,

∀K ∈ T , ∀t ∈ [0, T ), fK(t) ∈ I.
This means that the stability of h, positivity of f∞ and strict monotonicity of η provide the stability
of f .

Lemma 3.9. Assume that f ∈ C1(0, T ;Xfb) is such that for any entropy function φ,
d
dtHφ +Dφ ≤ 0,

with non-negative dissipations Dφ. Then it is stable on [0, T ) in the sense of Definition 3.7.

Proof. We first restrict to the case where J is such that inf J < 1 < sup J . Note that the Bernoulli
function defined by B(x) = x/(exp(x)− 1) is a strictly convex C2 function. Then, for any ε > 0 and
u0 ∈ R, one readily checks that the functions

φε,u0 : u 7−→ φε,u0(u) = ε

[
B

(
u− u0
ε

)
−B

(1− u0
ε

)]
+B′

(1− u0
ε

)
(1− u),

are entropy generating functions. Moreover, when ε tends to 0, both converges uniformly on any
compact subset of R to

φε,u0 −→
{

(· − u0)+ if u0 > 1
(· − u0)− if u0 < 1

.

11



Now, integrating the entropy inequalities, we get in particular that

0 ≤ Hφε,u0
(t) ≤ Hφε,u0

(0).

If one takes u0 = inf J , then u0 < 1 and hence passing to the limit ε→ 0 in the latter equation leads
to

0 ≤
∑
K∈T

m(K)
∫ fK(t)

f∞K

(
η(s)
η(f∞K ) − u0

)−
ds ≤

∑
K∈T

m(K)
∫ fK(0)

f∞K

(
η(s)
η(f∞K ) − u0

)−
ds.

Using the definition of u0 one sees that the integrands of the right-hand side vanish. Therefore, for
any K ∈ T , ∫ fK(t)

f∞K

(
η(s)
η(f∞K ) − u0

)−
ds = 0,

which yields that hK(t) ≥ u0. The same argument gives the bound from above. Now if inf J = 1
or sup J = 1, then with the same proof we have that uniformly in ε > 0, K ∈ T and t ∈ [0, T ),
hK(t) ∈ Jε = [inf J − ε, sup J + ε]. Therefore hK(t) ∈ J . �

3.2. Proof of Theorem 3.1. The Cauchy-Lipschitz theorem yields the existence and uniqueness of
a maximal solution f ∈ C1(0, T ;Xfb) to the Cauchy problem (16)-(19) for some positive final time
T . On this time interval we can apply Proposition 3.3 to get the entropy inequalities (23) for all
generating function φ. Using Lemma 3.9 and Remark 3.8, we get the existence of finite constants
I = sup I and I = inf I depending only on the stationary state and the initial data such that

∀t ∈ [0, T ), ∀K ∈ T , I ≤ fK(t) ≤ I.

Since the solution of the Cauchy problem do not blow up at time T , it is actually global.
The preservation of the stationary state stems from the fact that F diss

K,σ (f∞) = 0 for all σ ∈ EK and∑
σ∈EK

F conv
K,σ (f∞) =

∑
σ∈EK

m(σ)
(
U+
K,σ − U

−
K,σ

)
=
∑
σ∈EK

F∞K,σ = 0,

using (15).

3.3. Long-time behavior: proof of Theorem 3.2. In this section, we study the long-time behav-
ior of the discrete solution in the linear case η(s) = s. After providing some preliminary comments
and results we prove Theorem 3.2. Our strategy for getting exponential decay to equilibrium from
entropy-entropy dissipation properties (23) is the use of a discrete Poincaré-Sobolev type inequality,
namely an inequality yielding

Hφ ≤ λPS Dφ,

for some constant λPS only depending on the domain, f∞ (hence implicitly on the boundary con-
ditions) and not on the discretization. While the question of the existence of a general φ-Poincaré-
Sobolev for any entropy generating function φ, even in the continuous setting, goes way beyond the
scope of this paper (see [6, 3]), it is however possible get such a functional inequality for the particular
entropy function φ2(s) = (s− 1)2. Now, let us detail the whole procedure.

We restrict our class of entropy generating functions to that introduced by Arnold, Markowich,
Toscani and Unterreiter in [3], that is those satisfying φ ∈ C4(R+) and(

φ
′′′)2

≤ 1
2φ
′′ φIV .

Let us note that the physical and p-entropies are generated by these entropy functions. The goal of
this restriction is to use the consequences of [3, Lemma 2.6] which yield that any such φ is bounded
from above by a quadratic entropy function, namely

φ(s)
φ′′(1) ≤ φ2(s) := (s− 1)2.
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Therefore, the same inequality holds for the corresponding relative entropies and it suffices to show
that the 2-entropy goes to zero exponentially fast in time to get the same result for the whole class
relative entropies. The dissipation of 2-entropy is closely related to the discrete H1 semi-norm

|u|21,2,T =
∑
σ∈E

τσ |DK,σu|2 ,

for which M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet proved a discrete Poincaré-
Sobolev inequality in [4, Theorem 6], that we shall recall here. Let us first define the Lp norm

‖u‖p0,p =
∑
K∈T

m(K) |uK |p .

Proposition 3.10 ([4]). Suppose that the mesh satisfy the following regularity constraint: there
exists ξ > 0 such that dK,σ ≥ ξdσ for all control volume K ∈ T and edge σ ∈ EK . Then there exists
a constant C only depending on the domain such that for all u ∈ X0, it holds

‖u‖0,2 ≤
C

ξ1/2 |u|1,2,T

We are now equipped to prove the long-time behavior result of Theorem 3.2.

Proof of Theorem 3.2. Since h− 1 ∈ X0, we may use the expression (24) of the 2-entropy dissipation
Dφ2 in Proposition 3.3 and the result of Proposition 3.10 to get

Dφ2(f) ≥ 2
∑
σ∈E

τσ |DK,σ(h− 1)|2 η(f∞σ )

≥ 2m∞ξ1/2

C
‖h− 1‖20,2.

Then we notice that M∞‖h − 1‖0,2 controls Hφ2 and inject everything in the entropy inequality to
get

d

dt
Hφ2 + 2m∞ ξ1/2

C M∞
Hφ2 ≤ 0,

which yields the first result. For the estimate in L1 it suffices to apply the Hölder inequality to get

‖f − f∞‖0,1 ≤ ‖f∞‖1/20,1 ‖f/
√
f∞ −

√
f∞‖0,2 = ‖f∞‖1/20,1 H

1/2
ϕ .

�

4. Analysis of fully discrete schemes

Here, we introduce the explicit and implicit Euler time discretization of the semi-discrete scheme
(16)-(19). We denote by fn the approximation of f at time tn = n∆t and to ease the notation we
shall use the superscript n for any other quantity depending on fn.

4.1. Implicit Euler. The fully discrete implicit scheme is given for all K ∈ T and n ∈ N by

(26)



m(K)f
n+1
K − fnK

∆t +
∑
σ∈EK

Fn+1
K,σ = 0,

Fn+1
K,σ = F conv

K,σ (fn+1) + F diss
K,σ (fn+1),

f0
K = 1

m(K)

∫
K
f in(x) dx,

and the fluxes are defined in (18) and (19).

Theorem 4.1 (Implicit Euler). Suppose that the initial data f in and the stationary state f∞ are
positive and consider the fully-discrete implicit scheme defined by (26),(18) and (19). Then,

• there exists a unique solution f : N 7→ Xfb;
13



• there exists two positive constants I, I only depending on the initial data f in and the stationary
state f∞, such that for all n ∈ N and K ∈ T ,

I ≤ fnK ≤ I ;
• the scheme preserves the stationary state f∞ and dissipates every relative φ-entropy defined
in (21), namely for any n ∈ N,

(27)
Hn+1
φ −Hn

φ

∆t +Dn+1
φ ≤ 0 and Dn+1

φ ≥ 0,

where the dissipation Dn+1
φ is consistent with Dφ(tn+1).

Proof. The existence of a unique solution to the implicit scheme can be shown with a fixed point strat-
egy close to that in [16, Remark 4.9] and we do not detail this part. Let us derive the entropy inequal-
ity. The Taylor-Young theorem provide the existence of θn,n+1

K ∈ (min(fnK , f
n+1
K ), max(fnK , f

n+1
K ))

such that

en+1
φ,K − e

n
φ,K =

∫ fn+1
K

fnK

φ′
(

η(s)
η(f∞K )

)
ds

= φ′(hn+1
K )(fn+1

K − fnK)− 1
2ψK(θn,n+1

K )(fn+1
K − fnK)2

= − ∆t
m(K)φ

′(hn+1
K )

∑
σ∈EK

Fn+1
K,σ −

1
2ψK(θn,n+1

K )(fn+1
K − fnK)2,

where ψK is given by

(28) ψK : x 7→ η′(x)
η(f∞K )φ

′′
(
η(x)
η(f∞K )

)
.

Note that ψK is a positive function thanks to the positive monotony of η and φ′. With equation (22)
this yields

Hn+1
φ −Hn

φ

∆t +Dn+1
φ ≤ −Cn+1

φ − 1
2∆t

∑
K∈T

ψK(θn,n+1
K )(fn+1

K − fnK)2m(K) ≤ 0,

and the rest follows. �

4.2. Explicit Euler. The fully discrete explicit scheme is given for all K ∈ T and n ∈ N by

(29)



m(K)f
n+1
K − fnK

∆t +
∑
σ∈EK

FnK,σ = 0,

FnK,σ = F conv
K,σ (fn) + F diss

K,σ (fn),

f0
K = 1

m(K)

∫
K
f in(x) dx,

and the fluxes are defined in (18) and (19). Before stating the result on this scheme, let us introduce

(30) aK,σ =


dσ
[
U+
K,σ(hK − g(hK , hL)) + U−K,σ(g(hL, hK)− hK)

]
/ DK,σh if σ = K|L,

dσ
[
U+
K,σ(hK − g(hK , hσ)) + U−K,σ(g(hσ, hK)− hK)

]
/ DK,σh otherwise,

with the convention aK,σ = 0 if DK,σ = 0. Then mark that we can use this aK,σ to reformulate the
convective part of the scheme as a ”diffusive term”, thank to the incompressibility of UK,σ. Indeed,
for all K ∈ T , we have

−
∑
σ∈EK

τσ aK,σ DK,σh =
∑
σ∈EK

F conv
K,σ − hK

∑
σ∈EK

m(σ)UK,σ =
∑
σ∈EK

F conv
K,σ ,

where we used (15). Moreover, because of the monotonicity properties of g, its local Lipschitz
continuity and the fact that s = g(s, s), we have that, if h ∈ J (cf. Definition 3.7), then

0 ≤ aK,σ ≤ Cg U∞,
14



where Cg is the Lipschitz constant of g on J2 and U∞ = maxK∈T maxσ∈EK dσ |UK,σ|.

Theorem 4.2 (Explicit Euler). Let f : N 7→∈ Xfb be defined by the fully-discrete explicit scheme
(29), (18) and (19). Suppose that the initial data f in and the stationary state f∞ are positive. Then,

• there exists a positive constant C∞,in depending only on the initial data and the stationary
state such that under the CFL condition

max
K∈T

max
σ∈EK

τσ∆t
m(K) ≤ C∞,in,

there exists two positive constants I, I only depending on the initial data f in and the stationary
state f∞, such that for all n ∈ N and K ∈ T ,

I ≤ fnK ≤ I ;
• if Φ is a family of entropy functions with second derivate bounded between mΦ and MΦ, then
there exists a positive constant C̃∞,independing only on the initial data and the stationary
state such that for every ε ∈ (0, 1), under the CFL condition

max
K∈T

max
σ∈EK

τσ∆t
m(K) ≤ C̃∞,in

mΦ
MΦ

ε,

f dissipates every relative φ-entropy with φ ∈ Φ, namely for any n ∈ N,

(31)
Hn+1
φ −Hn

φ

∆t + (1− ε)Dn
φ ≤ 0 and Dn

φ ≥ 0

where the dissipation Dn
φ is consistent with Dφ(tn).

Moreover the scheme preserves the stationary state f∞.

Proof. We proceed in three steps. First we derive the entropy-entropy production equality which
differ mainly differ from the implicit case by the sign of the remainder term. Then we prove the L∞
stability of the scheme in order to achieve the third step, which is the control of the remainder term.

Entropy equality: We proceed exactly as in the proof of Theorem 4.1 to get the existence of θn,n+1
K

such that

(32)
Hn+1
φ −Hn

φ

∆t +Dn
φ ≤ −Cnφ + 1

2∆t
∑
K∈T

ψK(θn,n+1
K )(fn+1

K − fnK)2m(K),

for ψK defined by (28). Note that the sign of the last term has changed compared to the implicit
scheme.

L∞ stability: Let δ > 0 be such that inf I > δ > 0 and define M δ
η = sups∈Iδ η

′(s), for Iδ :=
[inf I − δ, sup I + δ]. We want to show by induction on n ∈ N that if

(33) max
K∈T

max
σ∈EK

τσ∆t
m(K) ≤ min

(
δ

Nedge (sup J − inf J) (Cg U∞ +M∞) ,
m∞

Nedge M δ
η (Cg U∞ +M∞)

)
,

then hnK ∈ J for all K ∈ T . In condition (33), the left term of the right-hand side will be useful to
prove a first L∞ bound that is worse than the induction hypothesis by a margin of δ. Then we use
the convexity property and the right term of the right-hand side of hypothesis (33) to improve the
estimate. By the definition of J the induction property holds for n = 0. Suppose that it holds for
n ∈ N. The scheme (29) rewrites

fn+1
K = fnK + ∆t

m(K)
∑
σ∈EK

τσ(aK,σ + η(f∞K )) DK,σh
n,

and therefore, since (33) (left constant) is satisfied, fn+1
K ∈ Iδ for all K ∈ T . By the mean value

theorem, there exists gnK ∈ Iδ such that

hn+1
K − hnK = η′(gnK)

η(f∞K ) (fn+1
K − fnK).

15



The scheme can then be rewritten as

hn+1
K =

1− η′(gnK) ∆t
η(f∞K ) m(K)

∑
σ∈EK

τσ(aK,σ + η(f∞K ))

hnK + η′(gnK) ∆t
η(f∞K ) m(K)

∑
σ∈Eint,K
σ=K|L

τσ(aK,σ + η(f∞K )) hnL

+ η′(gnK) ∆t
η(f∞K ) m(K)

∑
σ∈Eext,K

τσ(aK,σ + η(f∞K )) hnσ,

which, because of (33) (right constant), provides hn+1
K as a convex combination of elements of the

convex J and hence {hn+1
K }K∈T ⊆ J . The CFL constant C∞,in can then be taken as the supremum

of the right hand side of (33) when δ ∈ (0, inf I).

Control of the remainder term:
Using the scheme, the last term in (32) can be estimated with the Cauchy-Schwartz inequality as

∆t
2
∑
K∈T

1
m(K)ψK(θn,n+1

K )

 ∑
σ∈EK

FnK,σ

2

≤
Nedge ∆t MΦM

0
η (Cg U∞ +M∞)2

m∞

∑
K∈T

∑
σ∈EK

τ2
σ

m(K) (DK,σh
n)2 ,

Then, using that
Dn
φ ≥

mΦ m∞
2

∑
K∈T

∑
σ∈EK

τσ (DK,σh
n)2 ,

yields (31) provided that the CFL condition is satisfied with constant

C̃∞,in = m2
∞

2 Nedge M0
η (Cg U∞ +M∞)2 .

�

Remark 4.3. The CFL constants of the proof seem to depend on the size of the mesh through U∞,
m∞, M∞ and Nedge. However, if we restrict the class of meshes to those which cannot exceed a
certain number of edges by control volume, then the three constants related to the stationary state
can be made independent of the mesh assuming consistency of the stationary flux. Of course, even
if we do not enter into details on the approximation of the stationary solution, the transient scheme
relies on it, therefore consistency is a natural hypothesis.

5. Numerical simulations

5.1. Convergence and order of accuracy. In this part, we provide a numerical experiment show-
ing the spatial accuracy of our scheme, especially in the long-time dynamic. The test case is the linear
drift-diffusion equation with η(s) = s set in one dimension on the domain Ω = (0, 1). We choose the
time step is ∆t = 10−6, the final time is T = 2 and the time discretization is implicit. Furthermore
the advection field E(x) = 1 and the boundary conditions are f(t, 0) = 2 and f(t, 0) = 1 + exp(1).
With these parameters the following function

f(t, x) = 1 + exp(x) + exp
(
x

2 −
(
π2 + 1

4

)
t

)
sin(πx)

is a solution of (1) and converges to the stationary state f∞(x) = 1 + exp(x) as time goes to infinity.
In order to illustrate the advantage of our approach compared to the one consisting in a direct

approximation of (1), we perform numerical simulations using our entropy preserving scheme (16)-
(19) and a finite volume scheme applied on f with an upwinding for the convective terms and centered
approximation of the gradient for the diffusive ones.

In Table 1, we measure the L1 and L∞ error between the reconstruction of the approximate
solution fN obtained on the regular mesh (xi = ∆x/2 + i∆x)i∈{0,...,N−1} of size ∆x = 1/N for both
schemes.

The error and experimental order are respectively given by
epN = sup

t∈[0,T )
‖ΠNf − fN‖Lp(Ω), kp2N = | log(e2N )− log(eN )|/ log(2),
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where ΠN is the projection operator on the mesh, namely

ΠNf =
N−1∑
i=0

fi 1[xi−1/2,xi+1/2)

with fi a numerical approximation of the average of f on (xi−1/2, xi+1/2).

N Error e1
N Order Error e1

N Order Error e∞N Order Error e∞N Order
(16)− (19) Upwind (16)− (19) Upwind

20 2.206.10−3 4.283.10−3 3.444.10−3 7.394.10−3

40 1.247.10−3 0.82 2.370.10−3 0.85 1.959.10−3 0.81 4.042.10−3 0.87
80 6.589.10−4 0.92 1.243.10−3 0.93 1.038.10−3 0.92 2.106.10−3 0.94
160 3.376.10−4 0.96 6.358.10−4 0.97 5.329.10−4 0.96 1.073.10−3 0.97
320 1.703.10−4 0.99 3.21.10−4 0.99 2.690.10−4 0.99 5.41.10−4 0.99
640 8.494.10−5 1 1.606.10−4 1 1.342.10−4 1 2.705.10−4 1
1280 4.184.10−5 1.02 7.981.10−5 1.01 6.613.10−5 1.02 1.344.10−4 1.01

Table 1. Experimental spatial order of convergence in L1 and L∞ on [0, T ).

Both schemes are first order accurate, but we observe that our entropy preserving scheme (16)-
(19) is performing better since the numerical error is twice smaller than the classical upwind scheme.
Furthermore in Figure 1, we observe that for large time the numerical error corresponding to the
entropy preserving scheme (16)-(19) decays to zero and the order of magnitude of the error becomes
up to one hundred times smaller than the one corresponding to the upwinding scheme. This numerical
test illustrates on a simple example the advantage of the entropy preserving scheme (16)-(19).
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(a) (b)

Figure 1. Convergence and order of accuracy. Time evolution of the l1 error
norm for (a) the entropy preserving scheme and (b) the classical upwind scheme.

5.2. Fokker-Planck with magnetic field. We now consider the homogeneous Fokker-Planck equa-
tion with an external magnetic field

∂f

∂t
+ v ∧B · ∇vf = ∇v · (vf +∇vf) inR+ × R3,

f(t = 0) = f0 inR3,

where the external magnetic field is B = (0, 0, 4) whereas the initial datum f0 is given by the sum of
two Gaussian distributions

f0(v) = 1
(2π)3/2

[
α exp

(
−|v− v1|2

2

)
+ (1− α) exp

(
−|v− v2|2

2

)]
,
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with α = 3/4, v1 = (−1, 2, 0) and v2 = (2,−1, 0).
This equation is solved numerically in a bounded domain Ω = (−8, 8)3 on various meshes from

N = 243, toN = 803 points and ∆t = 0.01 using a time implicit scheme. We choose non homogeneous
Dirichlet boundary conditions f b = f∞, where f∞ is the steady state, that is, the Maxwellian
distribution

f∞(v) = 1
(2π)3/2 exp

(
−|v|

2

2

)
.

Here the knowledge of the steady state f∞ allows to compute the stationary flux F∞K,σ from a
quadrature formula and (f∞K )K∈T .

Then for h = f/f∞ we define the relative entropy H1(h) by

H1(h) :=
∫
R3

(h− 1)2 f∞ dv

and its corresponding dissipation D1(h) as

D1(h) := 2
∫
R3
|∇h|2 f∞ dv.

Finally for h = f/f∞ we also define H2(h) and D2(h) by

H2(h) :=
∫
R3

[h log (h)− h+ 1] f∞ dv and D2(h) :=
∫
R3

1
h
|∇h|2 f∞ dv.

In Figure 2, we represent the time evolution of the entropy H1(h), the dissipation D1(h) and the
numerical dissipation due to the convective term C1(h) in log scale. On the one hand, when N ≥ 643

points, the entropy and the physical dissipation are well approximated compared to a reference
solution : both of them are decreasing function of time and converge to zero with an exponential
decay rate. These figures illustrate the convergence to equilibrium exponentially fast. On the other
hand, the numerical dissipation of the convective term C1(h) converges to zero when the space step
goes to zero, but since the scheme is only first order accurate, it is relatively slow. Fortunately,
the numerical dissipation C1(h) also converges to zero when times goes to infinity exponentially
fast, hence it does not affect the accuracy on the decay rate for large time. From these numerical
experiments, we get some numerical evidence of the uniform accuracy of the scheme with respect to
time.
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(a) (b)

(c)

Figure 2. Fokker-Planck equation with an external magnetic field. Time
evolution of (a) the entropy H1(h) (b) the physical dissipation D1(h) and (c) the
numerical dissipation C1(h) for different meshes

Furthermore, in Figures 3 and 4 we present a comparison between the physical dissipation Dα,
for α ∈ {1, 2} which is consistent with (6) and the numerical dissipation Cα due to the convective
(22) for N = 243 and N = 643 points. First for N = 243, the numerical dissipation C1(h) is too
large and the decay to equilibrium is amplified. However, for N = 643, the initial dissipation due to
the numerical error is smaller than the physical dissipation and then C1(h) converges to zero as fast
as the physical dissipation D1(h), hence the decay rate obtained for the numerical solution is still
consistent with the solution to the Fokker-Planck equation for large time.

Remark 5.1. For the same mesh if we take a larger magnetic field, the numerical dissipation is
larger than the physical one. Even if both of them seem to converge to zero with the same decay rate,
the dissipation is amplified.
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(a) (b)

Figure 3. Fokker-Planck equation with an external magnetic field. Time
evolution of the physical dissipation and the numerical dissipation (D1(h), C1(h))
corresponding to the entropy H1(h) with (a) N = 243 mesh points (b) N = 643 mesh
points.

(a) (b)

Figure 4. Fokker-Planck equation with an external magnetic field. Time
evolution of the physical dissipation and the numerical dissipation (D2(h), C2(h))
corresponding to the entropy H2(h) with (a) N = 243 mesh points (b) N = 643 mesh
points.

Finally, in Figures 5 and 6, we propose the time evolution of the distribution function at different
times. The first column represents an isovalue f(t,v) ≡ 0.01 of the distribution function whereas the
second column is a two dimensional projection in the plane vx − vy, we first observe the effect of the
magnetic fields where the two bumps rotate and then under the effect of the Fokker-Planck operator
the solution converges to a Maxwellian distribution represented by a sphere in R3.
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(a) (b)

Figure 5. Fokker-Planck equation with an external magnetic field. (a) one
isovalue (b) vx − vy projection of the distribution in the velocity space at time t = 0,
t = 0.1 and t = 0.2.
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(a) (b)

Figure 6. Fokker-Planck equation with an external magnetic field. (a) one
isovalue f(t,v) = 0.01 (b) vx − vy projection of the distribution in the velocity space
at time t = 0.3, t = 0.4 and t = 0.9.

5.3. Polymer flow in a dilute solution. We investigate the numerical approximation to the kinetic
Fokker-Planck equation for polymers [23]

∂F

∂t
= −∇k ·

[(
A k− 1

2∇kΠ(k)
)
F − 1

2∇kF

]
.

F (t = 0) = F0 in Ω ⊂ R3,
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where the matrix A represents the gradient of an external velocity field and is given by

A =

 1/4 −1/2 0
1/2 −1/4 0
0 0 0


and the domain is Ω = (−4, 4)3, Π(k) = |k|2/2. The initial datum F0 is given by the sum of two
Gaussian distributions

F0(k) = 1
2 (2π)3/2

[
exp

(
−|k− k1|2

2

)
+ exp

(
−|k− k2|2

2

)]
,

with k1 = (−3/2, 1, 0) and k2 = (1,−3/2, 0). This equation is supplemented with homogeneous
Neumann boundary conditions such that global mass is conserved. For the numerical simulations we
choose various meshes from N = 243 to 643 points with ∆t = 0.01 using a time implicit scheme. In
this case, the steady state is not known, hence the steady state equation is first solved numerically
to compute a consistent approximation of the equilibrium (f∞K )K∈T and the stationary flux F∞K,σ.

Then for h = F/f∞ we define the relative entropy H1(h) by

H1(h) :=
∫
R3

(h− 1)2 f∞ dk

and its corresponding dissipation D1(h) as

D1(h) := 2
∫
R3
|∇h|2 f∞ dk.

In Figure 7, we represent the time evolution of the entropy H1(h), its dissipation D1(h) and the
numerical dissipation due to the convective term C1(h) in log scale. First when N ≥ 323 points, the
entropy and the physical dissipation are well approximated compared to a reference solution computed
with a fine mesh. Once again both of them are decreasing function of time and converge to zero with
an exponential decay rate. The numerical dissipation of the convective term C1(h) is much smaller
than the physical one and also converges to zero when times goes to infinity exponentially fast, hence
it does not affect the accuracy on the decay rate for large time.

(a) (b)

Figure 7. Polymer flow in a dilute solution. Time evolution of the to the
entropy H1(h) and the corresponding physical dissipation and numerical dissipation
(D1(h), C1(h)) with N = 323 mesh points.

Finally, in Figure 8, we set forth the time evolution of the distribution function at different time.
The first column represents an isovalue f(t,k) ≡ 0.02 of the distribution function whereas the second

23



column is a two dimensional projection in the plane kx − ky, the solution converges to the discrete
steady state, which is consistent to the equilibrium.

Figure 8. Polymer flow in a dilute solution. (a) one isovalue F (t,k) = 0.02
(b) kx − ky projection of the distribution in the k space at time t = 0.2, t = 0.7 and
t = 5.
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5.4. Porous medium equation. We finally study the numerical approximation of the porous
medium equation


∂f

∂t
= ∆fm

f(t = 0) = f0 in Ω = (0, 1)× (−1, 1)2,

with m = 2 and f0 ≡ 1 together with Dirichlet boundary conditions

f b =


6 if x = 1 and y2 + z2 ≤ 1/8.

1 else.

This model is nonlinear and without convective terms. Since the steady state is not known, we first
compute a numerical approximation (f∞K )K∈T and the corresponding stationary flux F∞K,σ.

For the numerical simulations we choose various meshes from N = 303 to 603 using a first order
time explicit scheme, hence the time step now satisfies a CFL condition ∆t = O(∆x2). For instance
as a reference solution, we choose N = 603 and ∆t = 0.0001. In Figure 9, we represent the time
evolution of the relative entropy and the physical and numerical dissipation for N = 303. These
results are in good agreement with those obtained using a finer mesh and the numerical dissipation
is several order of magnitude smaller than the physical dissipation.

(a) (b)

Figure 9. Porous medium equation. Time evolution of (a) the entropy H1(h)
(b) the physical dissipation and the numerical dissipation (D1(h), C1(h)) withN = 303

mesh points.

Finally in Figure 10 we represent the time evolution of the distribution function in the three
dimensional space. At the initial time the solution is uniform and equation to one, hence the fluid
is injected at the boundary x = 1 and we observe how it is diffused in the porous medium at time
t = 0.05, 0.1 and 0.25. For t ≥ 0.5, the solution is very close to the equilibrium.
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t = 0.05 t = 0.1

title
t = 0.25 t = 1

Figure 10. Porous medium equation. one isovalue f(t,x) = 1.2 of the distri-
bution and its x− y projection at time t = 0.05, t = 0.1, t = 0.25 and t = 1.

6. Comments and conclusion

In this paper, we have built a scheme for boundary-driven convection-diffusion equations that
preserves the relative φ-entropy structure of the model. We gave several test cases that confirm
the satisfying long time behavior of the numerical scheme in different settings (non-homogeneous
Dirichlet/generalized Neumann boundary conditions, explicit and implicit time discretization, linear
and nonlinear model).

There are several directions that may be investigated for future work. The first objective is to
generalize this scheme to anisotropic diffusions. This mainly requires an adapted discretization of
the gradient operator in every direction and there are several papers [17, 14, 15, 18, 10] of Eymard,
Herbin, Gallouet, Guichard and Cances are dealing with this issue. Their techniques are based on
hybrid finite volume schemes for which the discrete gradient relies on the use of auxiliary unknowns
located on the edges between control volumes. This approach seems to be adaptable to our scheme
provided that the gradient can be defined in a φ-independent way in order to preserve the whole
class of Lyapunov functional.

The spirit of our scheme is to start from a consistent discretization of the steady state and build
the transient scheme upon the latter to ensure a satisfying behavior in the long-time asymptotic.
Therefore, another less specific direction would be the adaptation of this strategy to other types of
numerical scheme (Discontinuous Galerkin, Finite elements, etc.).

Finally, as we saw in the introduction, many kinetic models (depending on space and velocity
variables) such the Vlasov-Fokker-Planck equation or the full dumbbell model for polymers write as
the sum of a transport in space and a (convection)-diffusion in velocity. The second part of these
models is treated in the present paper. While the diffusion operator is not coercive in all the variables,
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thanks to the phase space mixing properties of the transport operator, this still leads to an entropy-
diminishing behavior and a trend to a global equilibrium. This property is called hypocoercivity [27]
and its preservation by numerical schemes has never been studied to our knowledge and this would
be another interesting extension of this work.
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sparse matrix routines.
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