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Introduction

This is the second part of a work initiated in [START_REF] Seeger | Epigraphical cones I[END_REF] and whose aim is to survey the class of epigraphical cones. A convex cone in the Euclidean space R n+1 is an epigraphical cone if it can be represented as epigraph epif = {(x, t) ∈ R n+1 : f (x) ≤ t} of a nonnegative sublinear function f : R n → R. An epigraphical cone is always closed and nontrivial, i.e., different from the whole space and different from the zero cone. It is also solid in the sense that it has a nonempty topological interior. If K is an epigraphical cone in R n+1 , then its associated nonnegative sublinear function is given by

f K (x) = min{t ∈ R : (x, t) ∈ K}.
Any geometric statement on K can be formulated in terms of a corresponding analytic property of f K . The reference [START_REF] Seeger | Epigraphical cones I[END_REF] provides various examples of interesting epigraphical cones and explains how to combine them in order to produce new epigraphical cones. The next lemma is a bridge for passing from the class of epigraphical cones to the wider class of solid closed convex cones. We start by recalling a useful definition. 

K = U (epif ). (1) 
Proof. That a solid cone K admits the representation (1) has been proven in [START_REF] Henrion | Inradius and circumradius of various convex cones arising in applications[END_REF]Proposition 2.8].

Conversely, that a cone of the form (1) is solid is a consequence of [21, Proposition 2.1] and the fact that solidity is a property that is invariant under orthogonal transformations.

Example 1.3. The nonnegative orthant R n+1 + is a solid closed convex cone in R n+1 . It is not an epigraphical cone, but it is orthogonally equivalent to an epigraphical cone. Consider the orthogonal matrix U = [u 1 , . . . , u n , u n+1 ] constructed as follows: the columns of the submatrix Ũ = [u 1 , . . . , u n ] form an orthonormal basis of the linear subspace

L n = {v ∈ R n+1 : v 1 + . . . + v n+1 = 0}
and u n+1 = (n + 1) -1/2 (1, . . . , 1) T is a unit vector orthogonal to L n . One can check that

R n+1 + = U (epif ),
where f : R n → R is the nonnegative sublinear function given by

f (x) = max 1≤i≤n+1 - √ n + 1 ( Ũ x) i
and ( Ũ x) i denotes the i-th component of Ũ x. One sees that f is nonnegative because Ũ x ∈ L n for all x ∈ R n . The set epif = {(x, t) ∈ R n+1 : ( Ũ x) i + (n + 1) -1/2 t ≥ 0 for all i = 1, . . . , n + 1} looks more involved than R n+1 + , but it has the merit of being an epigraphical cone.

The equality [START_REF] Aubin | Set-Valued Analysis[END_REF] expresses the fact that K is orthogonally equivalent to an epigraphical cone. The interest of having such a representation formula for K is clear: when it comes to study the structure of K, everything boils down to examining the function f . This observation is the leading motivation behind the present work. The organization of the paper is as follows:

-Section 2 concerns the facial structure of an epigraphical cone.

-Section 3 establishes a few results about rotundity and smoothness of epigraphical cones.

-Section 4 exploits the theory of epigraphical cones for obtaining some approximation results involving Painlevé-Kuratowski limits.

-Section 5 provides rules for computing the characteristic function of an epigraphical cone. The concept of characteristic function of a cone is understood in the sense of Vinberg [START_REF] Vinberg | The theory of homogeneous convex cones[END_REF].

-Section 6 deals with the application of epigraphical cones in optimization theory.

We keep the same notation and terminology as in [START_REF] Seeger | Epigraphical cones I[END_REF]. In particular, int(Ω), bd(Ω), cl(Ω) indicate respectively the interior, boundary, and closure of a set Ω. The unit sphere and the closed unit ball of R d are denoted by S d and B d , respectively. However, we deviate from the general spirit of [START_REF] Seeger | Epigraphical cones I[END_REF]. The emphasis now is put in the study of properties that are valid up to orthogonal characterizations, which allows to consider a class of convex cones larger than the class of epigraphical cones.

Facial analysis of epigraphical cones

A face of a nonempty closed convex set Ω in an Euclidean space is a nonempty subset F of Ω satisfying the following property:

(1 -λ)x + λy ∈ F with x, y ∈ Ω and λ ∈]0, 1[ =⇒ x, y ∈ F.
A face is necessarily closed and convex. If Ω is a closed convex cone, then so is every face of Ω. The next theorem tells how to identify the faces of an epigraphical cone. For the sake of clarity in the exposition, we assume that the associated nonnegative sublinear function f : R n → R is positive, i.e., it vanishes only at the origin 0 n . In such a case

B f := {x ∈ R n : f (x) ≤ 1} is a compact convex set.
Theorem 2.1. Let f : R n → R be a positive sublinear function and p ∈ {0, 1, . . . , n}. Then

F → Ψ(F ) = R + (F × {1})
is a bijection between the set of p -dimensional faces of B f and the set of (p + 1) -dimensional faces of epif .

Proof. Let F be a face of B f . We claim that Ψ(F ) is a face of epif . Pick (x, t) and (y, s) in epif and

λ ∈]0, 1[ such that (1 -λ)(x, t) + λ(y, s) ∈ Ψ(F ). (2) 
One may suppose that t ̸ = 0, otherwise (x, t) = 0 n+1 and we are done. Similarly, one may suppose that s ̸ = 0. The condition (2) says that

(1 -λ)x + λy = αz (1 -λ)t + λs = α
with α ≥ 0 and z ∈ F . Hence, α ̸ = 0 and

z = [ (1 -λ)t (1 -λ)t + λs ] x t + [ λs (1 -λ)t + λs ] y s
is a convex combination of two vectors in B f . Since F is a face of B f , it follows that x/t and y/s are in F . This proves that (x, t) and (y, s) are in Ψ(F ) and completes the proof of our claim.

Conversely, let G be a nonzero face of epif . There exists a compact convex set F in R n such that Ψ(F ) = G. Such F is unique and given by

F = {x ∈ R n : (x, 1) ∈ G}. ( 3 
) We claim that (3) is a face of B f . Pick x, y ∈ B f and λ ∈]0, 1[ such that (1 -λ)x + λy ∈ F . Hence, (1 -λ)(x, 1) + λ(y, 1) ∈ G.
Since G is a face of epif , it follows that (x, 1) and (y, 1) are in G. Therefore, x and y are in F . This proves that F is a face of B f . For completing the proof of the theorem we check that

dim[Ψ(F )] = dim(F ) + 1. (4) 
The relation ( 4) is probably known since it holds for any nonempty compact convex set F in R n , and not just for a face of B f . Let p be the dimension of F . Then,

F ⊂ u 0 + {u 1 , . . . , u p }
for suitable vectors {u k } p k=0 in R n . Hence, any element of Ψ(F ) can be expressed in the form

(x, t) = t ( u 0 + p ∑ k=1 λ k u k , 1 ) = t (u 0 , 1) + p ∑ k=1 tλ k (u k , 0)
with t ≥ 0 and λ 1 , . . . , λ p ∈ R. Thus, Ψ(F ) ⊂ span{(u 0 , 1) , (u 1 , 0) , . . . , (u p , 0)}.

This shows that the dimension of Ψ(F ) is at most p + 1. On the other hand, since dim(F ) = p, it is possible to find vectors {v 0 , v 1 , . . . , v p } in F such that {(v 0 , 1), (v 1 , 1), . . . , (v p , 1)} are linearly independent. Hence, Ψ(F ) contains p + 1 linearly independent vectors, and therefore its dimension is at least p + 1. This completes the proof of (4).

Remark . The case p = 0 is of special interest because it concerns the identification of the extreme rays of an epigraphical cone. This theme has been treated already in [21, Corollary 2.2]. The case p = n yields the well known formula

epif = R + (B f × {1}) (5)
for the epigraph of a positive sublinear function.

By combining Theorem 2.1 and the next lemma one can identify the faces of a proper cone, not necessarily an epigraphical one. As many authors do, we say that a closed convex cone is proper if it solid and pointed. Lemma 2.2. For a closed convex cone K in R n+1 the following statements are equivalent:

(a) K is proper.

(b) There exists v ∈ int(K) such that ⟨v, z⟩ > 0 for all nonzero z ∈ K.

(c) K is orthogonally equivalent to the epigraph of a positive sublinear function f : R n → R.

Proof. (a) ⇒ (b). Let K + denote the dual cone of K. Since K ∩ -K + = {0 n+1 } , ( 6 
)
the convex cone P = K + K + is closed. We claim that P is pointed. To see this, take a ∈ P ∩ -P and write

a = b 1 + c 1 = -(b 2 + c 2 ) with b 1 , b 2 ∈ K and c 1 , c 2 ∈ K + . Hence, K ∋ (b 1 + b 2 ) = -(c 1 + c 2 ) ∈ -K + .
In view of (6), one gets b 1 = -b 2 and c 1 = -c 2 . Since K and K + are pointed, it follows that b 1 = b 2 = c 1 = c 2 = 0 n+1 . This yields a = 0 n+1 and proves the pointedness of P . As a consequence,

P + = (K + K + ) + = K + ∩ K
is solid. To see that (b) holds, one just needs to pick any v from the interior of P + . (b) ⇒ (c). Let v ∈ int(K) be such that ⟨v, z⟩ > 0 for all z ∈ K\{0 n+1 }. [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] Without loss of generality one may assume that ∥v∥ = 1. Let {u 1 , . . . , u n } be an orthonormal basis for the linear subspace

v ⊥ = {z ∈ R n+1 : ⟨v, z⟩ = 0}. Then U = [u 1 , . . . , u n , v] ∈ O n+1 and U T v = e n+1 := (0 n , 1)
belongs to the interior of Q = U T (K). In view of [START_REF] Faraut | Analysis on Symmetric Cones[END_REF], the closed convex cone Q is contained in the half-space R n × R + . Hence, Q is the epigraph of the nonnegative sublinear function

x ∈ R n → f Q (x) = min{t ∈ R : (x, t) ∈ Q}.
It remains to check that f Q is positive. Suppose, on the contrary, that f Q vanishes at some nonzero vector x. Hence, the linear combination 

z = ∑ n i=1 x i u i is a nonzero vector in K such that ⟨v, z⟩ = n ∑ i=1 x i ⟨v, u i ⟩ = 0, contradicting (7) 

Rotundity and smoothness

Rotundity and smoothness are fundamental properties concerning the unit ball of a normed space. Such notions can be extended to general convex bodies and even to proper cones. The next definition can be found for instance in [START_REF] Stern | Invariant ellipsoidal cones[END_REF].

Definition 3.1. A proper cone K in an Euclidean space is rotund if every face of K, other than K itself and {0}, is a half-line (called an extreme ray).

Rotund cones are often times referred to as strictly convex cones because they are characterized by the strict convexity condition

z, v ∈ K not collinear, λ ∈]0, 1[ =⇒ (1 -λ)z + λv ∈ int(K).
Rotund cones play an important role in mathematical economics [START_REF] Radner | Paths of economic growth that are optimal with regard only to final states: a turnpike theorem[END_REF] and other fields [START_REF] Gritzmann | Cross-positive matrices revisited[END_REF][START_REF] Schneider | On the invariant faces associated with a cone-preserving map[END_REF]. A nice example of rotund cone is the elliptic cone

E(Q) := {(x, t) ∈ R n+1 : √ ⟨x, Qx⟩ ≤ t}
associated to a positive definite symmetric matrix Q of order n. Also the ℓ p -cone

K p = {(x, t) ∈ R n+1 : ∥x∥ p ≤ t} is rotund if one takes p ∈]1, ∞[
. By contrast, the choices p = 1 or p = ∞ lead to proper cones that are not rotund. All this can be explained in a clear-cut manner with the help of the next proposition.

Proposition 3.2. For a positive sublinear function f : R n → R the following statements are equivalent:

(a) epif is rotund.

(b) f is rotund in the sense that f (x) = 1, f (y) = 1, x ̸ = y imply f (x + y) < 2.
(c) The boundary of B f contains no line-segment.

Proof. (a) ⇔ (c) is a consequence of Theorem 2.1 and (c) ⇔ (b) is obvious.

Example 3.3. The intersection of two elliptic cones is a rotund epigraphical cone. Indeed, if Q 1 and Q 2 are positive definite symmetric matrices of order n, then the intersection

E(Q 1 ) ∩ E(Q 2 ) is
an epigraphical cone whose associated nonnegative sublinear function

x ∈ R n → f (x) = max { √ ⟨x, Q 1 x⟩, √ ⟨x, Q 2 x⟩
} is positive and rotund.

The next corollary is helpful when it comes to check the rotundity of a proper cone that is not necessarily an epigraphical cone.

Corollary 3.4. A proper cone K in R n+1 is rotund if and only if it is orthogonally equivalent to the epigraph of a rotund positive sublinear function

f : R n → R.
Proof. It is a matter of combining Lemma 2.2 and Proposition 3.2. A key observation is that the notion of rotundity for proper cones is invariant under orthogonal transformations.

Remark . The notion of local uniform rotundity is one of the main topics in renorming theory [START_REF] Deville | Smoothness and Renormings in Banach Spaces[END_REF][START_REF] Moltó | A Nonlinear Transfer Technique for Renorming[END_REF]. It has been traditionally considered only as a matter for norms. However, the definition can be easily generalized for positive sublinear functions. This opens the way to the definition of local uniform rotundity for proper cones. For instance, one may declare a proper cone K in R n+1 to be locally uniformly rotund if it is orthogonally equivalent to the epigraph of a locally uniformly rotund positive sublinear function f : R n → R.

There is no universally accepted definition of smoothness for proper cones. The notion of smoothness that we adopt here is not that of [START_REF] Kuriki | Weights of chi-square distribution for smooth or piecewise smooth cone alternatives[END_REF], but one that is dual to rotundity.

Definition 3.5. A proper cone K in an Euclidean

space is smooth if its dual cone K + is rotund.
The most bothering aspect of Definition 3.5 is the need of knowing K + , a cone that is not always directly available. Anyhow, the next proposition clarifies the geometric meaning of smoothness. As one can see, it is possible to check whether an epigraphical cone is smooth without evaluating its dual cone. 

x ∈ R n → f (x) = (f • ) • (x) = max y̸ =0n ⟨y, x⟩ f • (y) is then differentiable on R n \{0 n }.
In fact, by using Danskin's differentiability theorem [START_REF] Danskin | The theory of max-min, with applications[END_REF] one sees that the gradient of f at a given point x ∈ R n \{0 n } is the unique solution to the maximization problem

f (x) = max y∈B f • ⟨y, x⟩.
(b) ⇒ (c). This implication is easy and well known. (c) ⇒ (a). The theory of convex bodies asserts that if each boundary point of B f has a unique supporting hyperplane, then the boundary of the polar set

(B f ) • = {y ∈ R n : ⟨y, x⟩ ≤ 1 for all x ∈ B f } contains no line-segment. Since (B f ) • = B f • , it follows that f • is rotund. A posteriori, also f 3 is rotund.
By combining (8) and Proposition 3.2, one sees that epif is smooth.

Example 3.7. The Minkowski sum of two elliptic cones is a smooth epigraphical cone. Indeed, if Q 1 and Q 2 are positive definite symmetric matrices of order n, then E(Q 1 )+E(Q 2 ) is an epigraphical cone whose associated nonnegative sublinear function

x ∈ R n → f (x) = min u+v=x { √ ⟨u, Q 1 u⟩ + √ ⟨v, Q 2 v⟩
} is positive and smooth. Also the vertical sum 

E(Q 1 ) ⊕ v E(Q 2 ) = { (x, t) ∈ R n+1 : √ ⟨x, Q 1 x⟩ + √ ⟨x, Q 2 x⟩ ≤ t } is a smooth epigraphical cone, but the intersection E(Q 1 ) ∩ E(Q 2 )

Approximation results

An epigraphical cone is not necessarily pointed, but it can always be approximated in the Painlevé-Kuratowski sense by a sequence of pointed epigraphical cones. This is the idea behind the formulation of the next lemma. In the sequel, the notation lim k→∞ C k stands for the Painlevé-Kuratowski limit of a sequence {C k } k∈N of nonempty sets in an Euclidean space. The definition and main properties of Painlevé-Kuratowski limits can be consulted in standard books on set convergence [START_REF] Aubin | Set-Valued Analysis[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF]. Since we are working in a finite dimensional setting, convergence in the Painlevé-Kuratowski sense is equivalent to convergence with respect to the uniform metric

ϱ(K 1 , K 2 ) := max ∥z∥=1 |dist[z, K 1 ] -dist[z, K 2 ]| ,
or with respect to any other equivalent metric for that matter (cf. [START_REF] Iusem | Distances between closed convex cones: old and new results[END_REF]).

Lemma 4.1. Let f : R n → R be a nonnegative sublinear function. Then

epif = lim k→∞ epif k = cl [ ∞ ∪ k=1 epif k ] ( 9 
)
where f k : R n → R is the positive sublinear function given by f k (x) = max{f (x), k -1 ∥x∥}.

Proof. That f k is a positive sublinear function is clear. The sequence {f k } k≥1 is pointwisely nonincreasing and

f (x) = lim k→∞ f k (x) = inf k≥1 f k (x)
for all x ∈ R n . This implies the Painlevé-Kuratowski convergence of the sequence {epif k } k∈N and the formulas stated in [START_REF] Güler | Barrier functions in interior point methods[END_REF].

The geometric interpretation of ( 9) is as follows: what we are doing is to approximate epif by another epigraphical cone that is smaller, namely epif k = (epif ) ∩ R k . Here

R k := {(x, t) ∈ R n+1 : ∥x∥ ≤ kt}
is a revolution cone whose axis is generated by e n+1 . The half-aperture angle of R k is equal to

θ k = arccos ( 1/ √ 1 + k 2 ) ,
i.e., a positive number smaller than π/2. Note that epif k is pointed because R k is pointed. The next approximation result can be found in [START_REF] Seeger | On eigenvalues induced by a cone constraint[END_REF]. We give here a shorter proof that is based on the theory of epigraphical cones. Theorem 4.2. Let K be a closed convex cone in an Euclidean space X. Suppose that K is not a sublinear space. Then (a) There exists an upward monotonic sequence {Q k } k∈N of pointed closed convex cones in X such that K = lim k→∞ Q k .

(b) There exists a downward monotonic sequence {P k } k∈N of solid closed convex cones in X such that K = lim k→∞ P k .

Proof. Since X can be taken as the linear space spanned by K, there is no loss of generality in assuming that K is solid. To avoid trivialities we assume also that dimX ≥ 2. If one sets n = dimX -1, then one can identify X with R n+1 . In view of [10, Proposition 2.8], there exist U ∈ O n+1 and a nonnegative sublinear function f : R n → R such that K = U (epif ). Hence, one can approximate K by means of the pointed closed convex cone

Q k = U (epif k ) with f k as in Lemma 4.1. Note that Q k ⊂ Q k+1 for all k ∈ N, and 
lim k→∞ Q k = U ( lim k→∞ epif k ) = U (epif ) = K.
Consider now the part (b). Since K + is not a linear subspace either, there exists an upward monotonic sequence {W k } k∈N of pointed closed convex cones in X such that

K + = lim k→∞ W k . If one sets P k = W + k , then {P k } k∈N is a downward monotonic sequence of solid closed convex cones in X such that lim k→∞ P k = ( lim k→∞ W k ) + = (K + ) + = K,
the leftmost equality being a consequence of the Walkup-Wets isometry theorem [START_REF] Walkup | Continuity of some convex-cone-valued mappings[END_REF].

Another approximation result in the same spirit concerns the possibility of approximating a closed convex cone by a rotund cone or by a smooth cone. Theorem 4.3. Let K be a closed convex cone in an Euclidean space X. Suppose that K is not a sublinear space. Then (a) K = lim k→∞ R k for some upward monotonic sequence {R k } k∈N of rotund cones in X.

(b) K = lim k→∞ S k for some downward monotonic sequence {S k } k∈N of smooth cones in X.

Proof. Without loss of generality one can assume that K is solid and that dimX ≥ 2. As before, we set n = dimX -1 and identify X with R n+1 . Then we write

K = U (epif ) R k = U (epi g k ),
where U and f are as in the proof of Theorem 4.2, and

g k (x) = f (x) + k -1 ∥x∥. Note that R k ⊂ R k+1 for all k ∈ N, and lim k→∞ R k = U ( lim k→∞ epi g k ) = U (epif ) = K.
Each R k is pointed because the sublinear function g k is positive. Since K is solid, R k is solid (hence, proper) for all k large enough (cf. [START_REF] Iusem | Pointedness, connectedness, and convergence results in the space of closed convex cones[END_REF]Corollary 5.2]). It remains to check that R k is rotund, but this is a consequence of Proposition 3.2 and the fact that g k is rotund. The part (b) is obtained from (a) by relying on duality arguments.

Theorem 4.4 says that any closed convex cone can be approximated in the Painlevé-Kuratowski sense by a polyhedral cone. Theorem 4.4. Any closed convex cone in an Euclidean space X can be written as Painlevé-Kuratowski limit of a sequence of polyhedral cones in X.

Proof. Let K be a closed convex cone in X. We suppose that K is not a linear subspace, otherwise we are done. Since one can take X as the linear space spanned by K, there is no loss of generality in assuming that K is solid. As in Theorem 4.2, one assumes that dimX ≥ 2, one sets n = dimX -1, and one identifies X with R n+1 . In view of Theorem 4.2, for all k ∈ N there exists a pointed closed convex cone 

Q k in R n+1 such that ϱ(Q k , K) ≤ 1/k. We represent Q k = U k (epif k ) in
epif k = R + (B f k × {1}) Note that B f k is a nonempty compact convex set in R n . Thanks to [17, Theorem 2.1], there exists a polytope Ω k in R n such that haus(Ω k , B f k ) ≤ 1/k
with "haus" standing for the classical Pompeiu-Hausdorff metric. Since 0 n ∈ int(B f k ), one may suppose that 0 n ∈ int(Ω k ). Consider now the polyhedral cone

P k = R + (Ω k × {1}) .
Thanks to [12, Proposition 6.3], one has the estimate

ϱ(P k , epif k ) ≤ 2 haus(Ω k , B f k ).
Observe that U k (P k ) is a polyhedral cone and

ϱ(U k (P k ), K) ≤ ϱ(U k (P k ), Q k ) + ϱ(Q k , K) = ϱ (U k (P k ), U k (epif k )) + ϱ(Q k , K) = ϱ(P k , epif k ) + ϱ(Q k , K) ≤ 2(1/k) + (1/k).
This shows that K = lim k→∞ U k (P k ) and completes the proof of the theorem.

Characteristic function of an epigraphical cone

If K is a solid closed convex cone in R d , then its characteristic function Φ K : int(K) → R is defined by the d-dimensional integral Φ K (z) := ∫ K + e -⟨z,v⟩ dv.
Such a definition of characteristic function is discussed in the book [7, Chapter 1] and in many other places [START_REF] Faybusovich | Self-concordant barriers for cones generated by Chebyshev systems[END_REF][START_REF] Güler | Barrier functions in interior point methods[END_REF][START_REF] Vinberg | The theory of homogeneous convex cones[END_REF]. Some authors refer to Φ K as the Vinberg (or Koszul-Vinberg) characteristic function of K.

It is clear that Φ K is positively homogeneous of degree -d. As shown in [7, Proposition I.3.2], a fundamental property of Φ K is that of behaving as barrier function for the cone K. This means that lim

k→∞ Φ K (z k ) = ∞ (10)
for any sequence {z k } k∈N in int(K) converging to a point on the boundary of K. As can be seen from the next lemma, there is also a converse statement: the condition (10) forces {z k } k∈N to approach the boundary of K.

Lemma 5.1. Let K is a solid closed convex cone in R d . Then for all z ∈ int(K), one has

Φ K (z) ≤ ( 1 dist[z, bd(K)] ) d ∫ K + e -∥v∥ dv.
Proof. The point z is at positive distance from bd(K). If r is such distance, then z + rB d ⊂ K. This inclusion amounts to saying that r ∥v∥ ≤ ⟨z, v⟩ for all v ∈ K + . Hence

Φ K (z) ≤ ∫ K + e -r∥v∥ dv.
By using a positive homogeneity argument and a suitable change of variables, the term r moves out of the integral as a factor r -d .

We now address the question of computing the characteristic function of an epigraphical cone. In the sequel one uses the notation

Ξ f • (x, s) := ∫ {f • ≤s} e ⟨x,y⟩ dy, ( 11 
)
where integration is carried out over the sublevel set {f

• ≤ s} = {y ∈ R n : f • (y) ≤ s}.
Theorem 5.2. If f : R n → R is a positive sublinear function, then

Φ epif (x, t) = 1 t ∫ R n e ⟨x,y⟩-tf • (y) dy (12) = ∫ ∞ 0 e -ts Ξ f • (x, s)ds ( 13 
)
for all (x, t) ∈ int(epif ).

Proof. Let (x, t) be in the interior of E f . Then

Φ epif (x, t) = ∫ epif 3 e -(⟨x,w⟩+ts) dwds (14) = ∫ R n [ ∫ ∞ f 3 (w) e -⟨x,w⟩-ts ds ] dw (15) = ∫ R n [ e -⟨x,w⟩ e -tf 3 (w) t ] dw,
where ( 14) is a consequence of (8), and ( 15) is due to Fubini's integration theorem. The change of variables y = -w leads finally to the formula [START_REF] Iusem | Distances between closed convex cones: old and new results[END_REF]. In order to obtain (13) one integrates [START_REF] Kuriki | Weights of chi-square distribution for smooth or piecewise smooth cone alternatives[END_REF] in a different order. One has

Φ epif (x, t) = ∫ ∞ 0 [ ∫ {f 3 ≤s} e -(⟨x,w⟩+ts) dw ] ds = ∫ ∞ 0 e -ts [ ∫ {f 3 ≤s} e -⟨x,w⟩ dw ] ds.
It suffices now to observe that the inner integral is equal to Ξ f • (x, s).

As one can see from ( 13), the function Φ epif (x, • ) is nothing but the standard Laplace transform of Ξ f • (x, • ). It is not always easy to compute the multidimensional integral [START_REF] Iusem | Pointedness, connectedness, and convergence results in the space of closed convex cones[END_REF], not to mention its Laplace transform, but there are some particular cases were this can be done explicitly. The next example is inspired from [9, Section 7.4].

Example 5.3. Consider the positive sublinear function

f (x) = ∥x∥ 1 , in which case f • (y) = ∥y∥ ∞ . One start by computing Ξ f • (x, s) = ∫ ∥y∥∞≤s e ⟨x,y⟩ dy = n ∏ i=1 ∫ s -s e -x i y i dy i = n ∏ i=1 σ(x i , s).
Here

σ(τ, s) = { (e τ s -e -τ s ) /τ if τ ̸ = 0 2s if τ = 0.
Then one needs to evaluate the Laplace transform at t of the function ∏ n i=1 σ(x i , •). Of course, one supposes that ∥x∥ 1 < t. For each i ∈ {1, . . . , n}, one has to distinguish between the cases x i ̸ = 0 and x i = 0. Consider for instance the configuration x 1 > 0, . . . , x n > 0. Since,

n ∏ i=1 ( e x i s -e -x i s ) = ∑ ε i =±1 ( n ∏ i=1 ε i ) e ∑ n i=1 sε i x i , one ends up with Φ epif (x, t) = [ n ∏ i=1 x i ] -1 ∑ ε i =±1 ∏ n i=1 ε i t - ∑ n i=1 ε i x i .

Moment-generating function techniques

Since f • is positively homogeneous, a simple change of variables in the integral (12) leads to

Φ epif (x, t) = 1 t n+1 ∫ R n e ⟨t -1 x, y⟩-f • (y) dy , which in turn implies that Φ epif (x, t) = 1 t n+1 Φ epif ( x t , 1 ) . ( 16 
)
In other words, one can always restrict the attention to the particular case t = 1. By the way, the relation ( 16) is consistent with the fact that Φ epif is positively homogeneous of degree -(n + 1).

Example 5.4. Let f (x) = ∥x∥ ∞ , in which case f • (y) = ∥y∥ 1 . A matter of computation shows that Φ epif (x, 1) = ∫ R n e ⟨x, y⟩ e -∥y∥ 1 dy = n ∏ i=1 ∫ ∞ -∞ e x i τ -|τ | dτ = n ∏ i=1 2 1 -x 2 i whenever ∥x∥ ∞ < 1.
In view of ( 16), one obtains

Φ epif (x, 1) = 2 n t n-1 ∏ n i=1 (t 2 -x 2 i )
whenever ∥x∥ ∞ < t, recovering in this way a formula stated in [9, Lemma 7.3].

It is worthwhile to mention that

x ∈ int(B f ) → M f (x) := Φ epif (x, 1) = ∫ R n
e ⟨x, y⟩ e -f • (y) dy can be seen as the moment-generating function of an n -dimensional random vector distributed according to the density function y → e -f • (y) . Strictly speaking, e -f • is a density function only up to a positive normalization factor. A density functions of the form ce -g , for some constant c and some norm g, generalizes the classical Laplace density function. This way of perceiving M f leads to a number of analytic results that are well known in probability theory. The next corollary is mentioned just by way of illustration. (b) If f is even, then so is M f .

Remark . Partial differentiation of Φ epif with respect to x leads to

∇ x Φ epif (x, t) = 1 t ∫ R n
y e ⟨x,y⟩-tf • (y) dy for all (x, t) ∈ int(epif ). In particular,

∇M f (x) = ∫ R n y e ⟨x,y⟩-f • (y) dy for all x ∈ int(B f ).
The above gradient has a special meaning if one sets x = 0 n . Indeed, the term

∇M f (0 n ) = ∫ R n y e -f • (y) dy
corresponds to a mathematical expectation.

The next proposition provides a formula for computing the characteristic function of an elliptic cone. The moment-generating function

x ∈ int (B n ) → M(x) = ∫ R n
e ⟨x, y⟩ e -∥y∥ dy associated to e -∥•∥ is something intrinsic to the Euclidean space R n and can be computed once and for all. One has

M(x) = κ n [1 -∥x∥ 2 ] (n+1)/2 ,
where the constant κ n is given by

κ n = M(0 n ) = ∫ R n e -∥y∥ dy = π n 2 n! ( n 2 ) Γ ( n 2 )
with Γ standing for the Euler gamma function.

Proposition 5.6. Let Q be a positive definite symmetric matrix of order n. Let {u 1 , . . . , u n } be an orthonormal basis of eigenvectors of Q and let {λ 1 , . . . , λ n } be the corresponding eigenvalues.

Then, for all (x, t) ∈ int[E(Q)], one has

Φ E(Q) (x, t) = 1 t n+1 √ det Q M ( L T x t ) (17) = κ n √ det Q [t 2 -∥L T x∥ 2 ] (n+1)/2 (18) 
with L standing for the matrix of order n whose j-th column is the vector √ λ j u j .

Proof. The polar of f (x) = √ ⟨x, Qx⟩ is given by f

• (y) = √ ⟨y, Q -1 y⟩. Hence, Φ E(Q) (x, 1) = ∫ R n e ⟨x,y⟩ e - √ ⟨y, Q -1 y⟩ dy.
By using the spectral decomposition

Q = U DU T = n ∑ j=1 λ j u j u T j
and the orthogonal transformation η = U T y, one gets

Φ E(Q) (x, 1) = ∫ R n e ⟨U T x, η⟩ e - √ ⟨η, D -1 η⟩ dη.
Finally, the change of variables

ξ j = η j / √ λ j leads to Φ E(Q) (x, 1) = √ λ 1 • • • λ n ∫ R n e ⟨L T x
, ξ⟩ e -∥ξ∥ dξ.

This completes the proof of the case t = 1. The formula ( 17) is then obtained by using the homogenization mechanism [START_REF] Moussaoui | Subdifferentiability and inf-sup theorems[END_REF].

Example 5.7. By taking Q = I n as the identity matrix of order n one recovers the well known formula (cf. [START_REF] Faraut | Analysis on Symmetric Cones[END_REF][START_REF] Güler | Barrier functions in interior point methods[END_REF])

Φ Λ (x, t) = κ n [t 2 -∥x∥ 2 ] (n+1)/2
for the characteristic function of the (n + 1) -dimensional Lorentz cone

Λ := {(x, t) ∈ R n+1 : ∥x∥ ≤ t}.
More generally, the choice Q = (tan ϑ) -2 I n leads to the expression

Φ rev(ϑ) (x, t) = κ n tan ϑ [(t tan ϑ) 2 -∥x∥ 2 ] (n+1)/2
for the characteristic function of a revolution cone rev(ϑ) := {(x, t) ∈ R n+1 : (tan ϑ) -1 ∥x∥ ≤ t} with half-aperture angle equal to ϑ.

Epigraphical conic programming

An epigraphical conic program (ECP) is an optimization problem of the form minimize ⟨c, z⟩ with respect to the Karush-Kuhn-Tucker multipliers λ 1 , . . . , λ N ∈ (epif ) + . If one keeps [START_REF] Gritzmann | Cross-positive matrices revisited[END_REF] in mind, then a matter of simplification shows that the dual problem can be written in the form maximize

N ∑ k=1 ⟨b k , λ k ⟩ (20) λ 1 , . . . , λ N ∈ epif 3 N ∑ k=1 A T k λ k = c.
Let v primal and v dual denote the optimal values of ( 19) and [START_REF] Schneider | On the invariant faces associated with a cone-preserving map[END_REF], respectively. The general duality theory for convex optimization problems leads to the following result. ii) f is polyhedral and ( 19) is feasible.

Proof. Under the assumption (ii), one can convert [START_REF] Rockafellar | Variational Analysis[END_REF] and ( 20) into a pair of dual linear programs, one of which is feasible. Hence, the other problem is feasible as well, and both problems have the same optimal value. Under the Slater type qualification hypothesis (i), the dual problem (20) admits a solution and both problems have the same optimal value. This can be shown by using one of the many existing min-max theorems for convex-concave Lagrangeans, see for instance [16, Corollary 4.2].

First application: finding a Chebishev center

Consider a finite set Ω = {ω 1 , . . . , ω N } of distinct points in R n . One wishes to find a vector x ∈ R n that is regarded as the "center" of Ω. There are different ways of formalizing the concept of center. The Chebishev strategy consists in minimizing the maximal deviation function

x ∈ R n → δ max (x) := max 1≤k≤N f (x -ω k ) ,
where f is a given norm on R n . By definition, a Chebishev center of Ω is a solution to the minimization problem r cheb = min x∈R n δ max (x). The number r cheb is called the Chebishev radius of Ω. Since δ max is continuous and has bounded level sets, the existence of a Chebishev center is automatically guaranteed. On the other hand, minimizing δ max is clearly equivalent to solving minimize t

(x, t) ∈ R n+1 f (x -ω k ) ≤ t for all k ∈ {1, . . . , N }.
This can be written of course in the conic programming format minimize t (

(x, t) ∈ (ω k , 0) + epif for all k ∈ {1, . . . , N }.

Since ( 21) is a particular instance of the general ECP, one obtains the following conclusion.

Corollary 6.2. Let f be a norm on R n . Then the Chebishev radius of Ω is equal to the optimal value of the maximization problem maximize

N ∑ k=1 ⟨ω k , y k ⟩ (22) (y k , s k ) ∈ epif • for all k ∈ {1, . . . , N } N ∑ k=1 y k = 0 n , N ∑ k=1 s k = 1,
where the decision variables are the vectors y 1 , . . . , y N ∈ R n and the scalars s 1 , . . . , s N .

Proof. For obtaining the dual problem [START_REF] Seeger | On eigenvalues induced by a cone constraint[END_REF], one just needs to work out the general model [START_REF] Schneider | On the invariant faces associated with a cone-preserving map[END_REF] with

z = [ x t ] , c = [ 0 n 1 ] , b k = [ ω k 0 ] , A k = I n+1 .
For the sake of matrix calculus we are writing the vectors of R n+1 in column notation. The KKT multipliers are the (n + 1)-dimensional vectors

λ 1 = [ y 1 s 1 ] , . . . , λ N = [ y N s N ] ,
which we identify with the pairs (y 1 , s 1 ), . . . , (y N , s N ). Note that the Slater type qualification condition (i) mentioned in Lemma 6.1 holds automatically in the present context. Indeed, if one picks any x ∈ R n and t bigger than max 1≤k≤N f (x -ω k ), then

A k z -b k = [ x t ] - [ ω k 0 ] ∈ int (epif )
for all k ∈ {1, . . . , N }.

The maximization problem ( 22) is perhaps better understood if one writes it in the form maximize

N ∑ k=1 s k ⟨ω k , u k ⟩ s k ≥ 0, f • (u k ) ≤ 1 for all k ∈ {1, . . . , N } N ∑ k=1 s k u k = 0 n , N ∑ k=1 s k = 1,
where the maximum is taken over all the representations of 0 n as convex combination of N vectors in the ball B f • associated to the polar norm f • .

Second application: finding a Fermat center

Instead of the maximal deviation function δ max one could use the total deviation function

x ∈ R n → δ sum (x) := N ∑ k=1 f (x -ω k ).
The existence of a minimum of δ sum is not problematic either. By definition, a Fermat center of Ω is a solution to the minimization problem

r fermat = min x∈R n δ sum (x). ( 23 
)
The above minimal value is called the Fermat radius of Ω. Following [START_REF] Boyd | Applications of second-order cone programming[END_REF], we write the unconstrained problem [START_REF] Stern | Invariant ellipsoidal cones[END_REF] Proof. We apply again Lemma 6.1, but this time we use

z = [ x τ ] , c = [ 0 n 1 N ] , b k = [ ω k 0 ] , A k = [ I n O n,N 0 T n e T k,N
] .

Here τ is the column vector whose components are τ 1 , . . . , τ N , the symbol O n,N indicates the zero matrix of size n × N , and e k,N is the k-th canonical vector of R N . The equality constraint in [START_REF] Schneider | On the invariant faces associated with a cone-preserving map[END_REF] becomes

N ∑ k=1 [ I n 0 n O N,n e k,N ] [ y k s k ] = [ 0 n 1 N ] ,
which after simplification yields ∑ N k=1 y k = 0 n and s k = 1 for all k ∈ {1, . . . , N }. This explains the form (25) that we are getting for the dual problem associated to [START_REF] Vinberg | The theory of homogeneous convex cones[END_REF]. The Slater type qualification condition (i) mentioned in Lemma 6.1 is again in force. To see this, pick any x ∈ R n and then let τ1 > f (x -ω 1 ), . . . , τN > f (x -ω N ). In such a case,

A k z -b k = [ x τk
] -

[ ω k 0 ] ∈ int (epif )
for all k ∈ {1, . . . , N }.

Final comments

The nice survey by Boyd et al. This is of course a particular instance of the general model [START_REF] Rockafellar | Variational Analysis[END_REF].

  . Summarizing, we have shown that K is orthogonally equivalent to the epigraph of the positive sublinear function f Q . (c) ⇒ (a). It follows from [21, Proposition 2.1] and the fact that properness is invariant under orthogonal transformations.

Proposition 3 . 6 .

 36 For a positive sublinear function f : R n → R the following statements are equivalent: (a) epif is smooth. (b) f is smooth, i.e., differentiable on R n \{0 n }.

  (c) Every boundary point of B f admits exactly one supporting hyperplane. Proof. (a) ⇒ (b). By assumption, the dual cone of epif is rotund. But (epif ) + = epif 3 (8) with f 3 : R n → R denoting the skewed polar of f (cf. [21, Section 2.3]). Recall that f 3 (y) = f • (-y), where f • is the usual polar function. By Proposition 3.2, the positive sublinear function f 3 is rotund. Hence, f • is rotund. By a classical duality argument,

Corollary 5 . 5 .

 55 Let f : R n → R be a positive sublinear function. Then (a) M f is strictly logconvex and infinitely often differentiable on int(B f ).

A

  k z -b k ∈ epif for all k ∈ {1, . . . , N } with f : R n → R standing for a positive sublinear function. The decision variable z is a vector in some Euclidean space, say R d . The matrices A 1 , . . . , A N and the vectors c, b 1 , . . . , b N are known and have appropriate dimensions. A dual problem to (19) can be constructed by using the standard Lagrangean formalism. If one introduces a Lagrangean function L of the form L(z, λ 1 , . . . , λ N ) = ⟨c, z⟩ + N ∑ k=1 ⟨λ k , b k -A k z⟩, then the dual problem to (19) consists in maximizing the term inf z∈R d L(z, λ 1 , . . . , λ N )

Lemma 6 . 1 .

 61 Let f : R n → R be a positive sublinear function. Then the equality v primal = v dual holds under any of the following two qualification hypotheses: i) There exists z ∈ R d such that A k z -b k ∈ int (epif ) for all k ∈ {1, . . . , N }.

fCorollary 6 . 3 .

 63 (x -ω k ) ≤ τ k for all k ∈ {1, . . . , N }, where the decision variables are the components of x ∈ R n and the auxiliary variables τ 1 , . . . , τ N . The latter problem can be reformulated as minimize τ k ) ∈ (ω k , 0) + epif for all k ∈ {1, . . . , N }, so we are dealing with yet another particular case of the general ECP. Let f be a norm on R n . Then the Fermat radius of Ω is equal to the optimal value of the maximization problem maximizeN ∑ k=1 ⟨ω k , y k ⟩ (25) f • (y k ) ≤ 1 for all k ∈ {1, . . . , N } N ∑ k=1 y k = 0 n .

[ 3 ]

 3 on second-order conic programming (SOCP) focuses the attention on the optimization model minimize ⟨w, x⟩ (26) ∥A k x + b k ∥ ≤ ⟨c k , x⟩ + d k for all k ∈ {1, . . . , N }.

  Let K be a nontrivial closed convex cone in R n+1 . Then K is solid if and only if there exist U ∈ O n+1 and a nonnegative sublinear function f : R n → R such that

Definition 1.1. Let O d denote the group of orthogonal matrices of order d. Two convex cones K 1 , K 2 in the Euclidean space R d are orthogonally equivalent if there exists U ∈ O d such that K 2 = U (K 1 ). Lemma 1.2.

  Proof. Combine Lemma 2.2, Proposition 3.6, and the fact that the notion of smoothness for proper cones is invariant under orthogonal transformations.

may not be smooth. The next corollary fully characterizes the class of smooth cones. Corollary 3.8. A proper cone K in R n+1 is smooth if and only if it is orthogonally equivalent to the epigraph of a smooth positive sublinear function f : R n → R.

  terms of a suitable matrix U k ∈ O n+1 and a corresponding positive sublinear function f k : R n → R. As in[START_REF] Deville | Smoothness and Renormings in Banach Spaces[END_REF], one has

SOCP are typically solved by interior point methods (cf. [2,3,13]). Such methods can be adapted to the epigraphic conic program (19), provided one has a suitable barrier function for the set epif . It is here where the Vinberg characteristic function Φ epif enters into action. It would lead us to far to describe all the technicalities of the interior point method applied to (19), but this is certainly something that deserves an exhaustive treatment in a more specialized paper.