Espaces de configuration généralisés. Espaces topologiques i-acycliques. Suites spectrales basiques.

Alberto Arabia

To cite this version:

Alberto Arabia. Espaces de configuration généralisés. Espaces topologiques i-acycliques. Suites spectrales basiques.. 2016. hal-01325863v5

HAL Id: hal-01325863
https://hal.science/hal-01325863v5
Preprint submitted on 17 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract. The generalized configuration spaces of a topological space X are the subspaces $\Delta_{\leq \ell} X^m \subseteq X^m$, defined, for all $0 \leq \ell \leq m \in \mathbb{N}$, as:
\[
\begin{align*}
\Delta_{\leq \ell} X^m & := \{(x_1, \ldots, x_m) \in X^m \mid \text{Card } \{x_1, \ldots, x_m\} \leq \ell\}, \\
\Delta_{\ell} X^m & := \Delta_{\leq \ell} X^m \setminus \Delta_{\leq \ell-1} X^m, \\
F_m(X) & := \Delta_m X^m.
\end{align*}
\]
They are endowed with the action of the symmetric group S_m permuting coordinates. Our first motivation in this work was to transpose standard problems on classical configuration spaces $F_m(X)$ to the generalized ones and to try to solve them for large families of spaces using uniform methods. Among the questions we considered, the following had quite complete answers with cohomology coefficients in zero characteristic fields.

- Compute the character of the representation $S_m: H(\Delta_{\leq \ell} X^m)$.
- Compute the Poincaré polynomial of the quotients of $\Delta_{\leq m-a} X^m$ by finite subgroups of S_m. Show that, for fixed $a \in \mathbb{N}$ the Betti numbers of these spaces are given by 'universal' polynomials on m and the Betti numbers of X.
- Prove the degeneracy of the Leray spectral sequences for usual maps between generalized configuration spaces, e.g. the canonical projections $F_{b+a}(X) \to F_a(X)$.
- Given $a \in \mathbb{N}$, find lower bounds for the representation stability and character polynomiality, in the Church-Farb sense ([8]), of the family $\{S_m: H(\Delta_{\leq m-a} X^m)\}$.

In our approach to these problems, we used what we call 'the fundamental complex of X for $\Delta_{\leq \ell} X^m$'. This is a particular complex of graded S_m-modules
\[
0 \to H^{*-\ell+1}_c(\Delta_1 X^m) \to \cdots \to H^{*-1}_c(\Delta_{\ell-1} X^m) \to H^*_c(\Delta_{\ell} X^m) \to H^*_c(\Delta_{\leq \ell} X^m) \to 0,
\]
having the remarkable property of being exact whenever the 'interior' cohomology of X, i.e. the image of the natural map $H_c(X) \to H(X)$, vanishes. Moreover, these properties are equivalent when X is an oriented topological manifold (th. 3.2.3).

We call 'i-acyclic' any space with no interior cohomology. First examples of such are given by non-compact acyclic spaces, non-compact connected real Lie groups, and, more generally, if X is i-acyclic, by every open subset $U \subseteq X$, every quotient X/W by a finite group W, and every cartesian product $X \times Y$ for arbitrary Y.

An important part of this work is about what follows the fact that the fundamental complex is an S_m-module resolution for $H_c(\Delta_{\leq \ell} X^m)$, and thereafter, that ques-
tions about representation stability, character formulas and Betti numbers, may be tracked through recursive methods. Another important part, is devoted to the design of a special spectral sequence that creates a bridge from configuration spaces of i-acyclic spaces to those of general spaces allowing to undertake the generalization of results of the first category of spaces to the second one.

– For the character formula problem, we generalize Macdonald’s well-known formula for the cohomology of the cartesian product X^m ([27]), to the case of the usual configuration space $F_m(X)$.

Theorem (10.5.3). Let X be an i-acyclic space. If $\alpha \in S_m$, we have

$$\frac{\chi_c(F_m(X))(\alpha, T)}{T^m} = \prod_{d=1}^{m} d^{x_d} \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\mathcal{P}_c(X)(-T^e)}{dT^e} \right)^{x_d},$$

where $\chi_c(F_m)(\alpha, T) := \sum_{i \in \mathbb{Z}} \text{tr}(\alpha \cdot H_c^i(F_m))(-T)^i$, and $(1^{x_1}, 2^{x_2}, \ldots, m^{x_m}) \vdash m$ is the type of the permutation α, $\mu(_)$ is the Möbius function, $\mathcal{P}_c(_)$ is the Poincaré polynomial of $H_c(_)$, and $(_\downarrow)_\lambda$ denotes the falling factorial.

– For the Poincaré polynomial problem, we settled the case of $F_m(X)$ by a simple closed formula, almost immediate consequence of the i-acyclicity property, while for the quotients of $F_m(X)$ by finite subgroups of S_m, we use the previous character formula (10.5.3). As examples, we worked through the cases of the ‘cyclic’ configuration space $CF_m(X) := F_m(X)/C_m$, where $C_m := \{(1, \ldots, m)\} \subseteq S_m$, and of the ‘unordered’ configuration space $BF_m(X) := F_m(X)/S_m$.

Let $\mathcal{P}_c(_)$ denote the Poincaré polynomial of $H_c(_)$, $\phi(_)$ the Euler ϕ function, $\mu(_)$ the Möbius function, and $(_\downarrow)_\lambda$ the falling factorial. The following equalities hold whenever X is an i-acyclic space.

Theorem (4.2.1):

$$\frac{\mathcal{P}_c(F_m(X))(T)}{T^m} = \left(\frac{\mathcal{P}_c(X)(T)}{T} \right)^m.$$

Theorem (11.2.1):

$$\frac{\mathcal{P}_c(CF_m)(T)}{T^m} = \frac{1}{m!} \sum_{d|m} \phi(d) d^{m/d} \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\mathcal{P}_c(X)(-T^e)}{dT^e} \right)^{m/d}.$$

Theorem (11.3.1)

$$\frac{\mathcal{P}_c(BF_m(X))(T)}{T^m} = \frac{1}{m!} \sum_{\lambda=(1^{x_1}, \ldots, m^{x_m}) \vdash m} h_\lambda \prod_{d=1}^{m} d^{x_d} \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\mathcal{P}_c(X)(-T^e)}{dT^e} \right)^{x_d},$$

where h_λ is the cardinal of the set of permutations of S_m whose cycle decomposition is of type $\lambda := (1^{x_1}, \ldots, m^{x_m}) \vdash m$.

– The particularly simple form of the Poincaré polynomial of $F_m(X)$ suggested a sort of cohomological triviality for the projections $\pi_a : F_{b+a}(X) \to F_a(X)$ and consequently, the degeneration of the associated Leray spectral sequences. We show that this is indeed the case when X is i-acyclic and locally connected (Th. 12.4.9).

– For the representation stability problem, we prove the following theorem.
Theorem (9.3.15). Let M be a connected oriented pseudomanifold of dimension ≥ 2. For a, $i \in \mathbb{N}$, the family of representations $\{S_m : H_{BM}(\Delta_{m-a} M^m)\}_m$ is monitone and stationary for $m \geq 4i + 4a$, if $d_M = 2$, and for $m \geq 2i + 4a$, if $d_M \geq 3$. The corresponding families of characters and Betti numbers are (hence) polynomial and the family $\{\text{Betti}(\Delta_{m-a} M^m / S_m)\}_m$ is constant, within the same ranges of integers.

Proposition 11.6.1 states moreover, that the family $\{\text{Betti}(F_m(M) / S_m)\}_m$ is constant for $m \geq 2i$, if $d_M = 2$, and for $m \geq i$, if $d_M \geq 3$.

These theorems were proved by Church ([7], 2012) for smooth manifolds M and for the family $\{S_m : H_{BM}(F_m(M))\}_m$. Our methods are completely different from those of Church, who relies on the work of Totaro ([33]) on the Leray spectral sequence associated to the embedding $F_m(M) \hookrightarrow M^m$ when M is a smooth manifold.

We extended Church’s result in two directions, first by removing the regularity assumption in the space M, and secondly by incorporating the families of generalized configuration spaces $\{\Delta_{\leq m-a} M^m\}_m$ (singular even if M is smooth), for which there was no previous conjecture.

The strategy was to prove first the theorem when M is i-acyclic (9.2.3) using a combinatorial argument based on the exactness of the fundamental complexes, allowing the transfer of the stability and monotonicity questions to the spaces $\Delta_{\leq m} M^m = M^m$ for which the answer is immediate. The combinatorics make use of two induction functors in the category of FI-modules $I^a, \Theta^a : \text{Mod}(k[FI]) \to \text{Mod}(k[FI])$ (8.2) that shift from S_{m-a}-modules to S_m-modules, and for which we can control the way they modify the stability and monotony ranks (thm. 8.2.2).

After that, the statement for general pseudomanifolds is handled through the fact that any space M may be realized as a difference $M = M_{\geq 0} \setminus M_{\leq 0}$ where both $M_{\geq 0}$ and $M_{\leq 0}$ are i-acyclic. This naturally leads to a spectral sequence $(E_\sigma, (U)^m, d_\sigma)$ (6.5.2) converging to $H_{BM}(F_m(M))$ and such that the E_1 page only concerns configuration spaces for i-acyclic spaces. We have (9.3.13-(b)):

$$E_\sigma(U)^m, d_\sigma \cong \bigoplus_{r \in \mathcal{T}(p+1,m)} \text{ind}_{\mathcal{T}(r)}^\mathcal{T}(p+1,m) \sigma \otimes H_{BM}^Q(F_{p+1}(M_{>0})) \Rightarrow H_{BM}^1(F_m(M)).$$

with $Q := i-(m-(p+1))(d_M-1)$. We denote by $\mathcal{T}(p+1,m)$ the set of Young tableaux of m boxes with first column $(m-p, \ldots, m)$, and by $\mathcal{T}(r)$ the sabilizer of r in $S_{m-(p+1)} \times S_{p+1}$ acting on $H_r(F_{p+1}(M_{>0}))$ through the alternate representation σ of $S_{m-(p+1)}$. We call this spectral sequence ‘basic’. The construction makes it compatible with pull-backs and allows the estimation of the stability and monotonicity ranks of the family $\{H_{BM}(F_m(M))\}_m$ from those already known in the i-acyclic case of $\{H_{BM}(F_m(M_{>0}))\}_m$. The induction functor I^a is then used again to settle the case of $\{H_{BM}(\Delta_{m-a} M^m)\}$, and a decreasing induction based on long exact sequences handles the remaining case of $\{H_{BM}(\Delta_{\leq m-a} M^m)\}$.

We believe that even if there are many questions still to be settled, the utility of fundamental complexes as a combinatorial tool to approach them in the case of i-acyclic spaces, and the utility of basic spectral sequences to permeate the broader context of general pseudomanifolds, should be clear following this work.
8. Foncteurs d’induction dans $\text{Mod}(k[FI])$ 105
 8.1 Les foncteurs d’induction Ind_A et Ind_B 106
 8.2 Les foncteurs d’induction F^i, $I(a)$ et Θ_a 116

9. Stabilité des familles $\{S_m:H^i_{BM}(\Delta_{7m-a}X^m)\}_m$ 117
 9.1 Structure de FI-module de $\{H^i_{BM}(\Delta_{7m-a}M^m)\}_m$ 118
 9.2 Les familles de représentations $\{H^i_{BM}(\Delta_{7m-a}X^m)\}_m$ 120
 9.3 Stabilité des familles de représentations $\{H^i_{BM}(\Delta_{7m-a}M^m)\}_m$ 123

10. Calcul du caractère de S_m-module de $H_c(F_m(X))$ 136
 10.1 Série de caractères de S_m 136
 10.2 Séries de caractères de $F^q(X)$ 137
 10.3 Séries de traces pour un cycle m 137
 10.4 Séries des traces pour une puissance d’un cycle m 139
 10.5 Séries des traces pour une permutation générale 142
 10.6 Comparaison entre $\chi_c(F_m(X))$ et $\chi_c(F_m(X \setminus a))$ 144
 10.7 Comparaison entre $\chi_c(F_{b+a}(X))$ et $\chi_c(F_{b}(X \setminus a))$ 145

11. Quotients d’espaces de configuration généralisés 147
 11.1 Polynômes de Poincaré de $(\Delta_{7m}X^m)/H$ 147
 11.2 Espaces de configurations cycliques $CF_m(X)$ 148
 11.3 Espaces de configurations non-ordonnées $BF_m(X)$ 150
 11.4 Sur le rang de stabilité de la famille $\{\text{Betti}_{BM}(BF_m(M))\}_m$ 151
 11.5 Stabilité de $\{\text{Betti}_{BM}(BF_m(M))\}_m$, cas i-acyclique 154
 11.6 Stabilité de $\{\text{Betti}_{BM}(BF_m(M))\}_m$, cas général 161

12. Suites spectrales de Leray 164
 12.1 Cohomologie à support π-propre 164
 12.2 Localisation du théorème de scindage 167
 12.3 Constance des faisceaux de cohomologie à support π-propre 171
 12.4 Dégénérescence des suites spectrales de Leray 175

13. Questions diverses sur les espaces i-acycliques 183
 13.1 Espaces de configuration généralisés 183
 13.2 Variétés toriques affines 184
 13.3 Groupes de Lie non-compacts 185
 13.4 Ouverts i-acycliques de $F_n(R)$ 185
 13.5 Ouverts i-acycliques de $F_n(C)$ 185
 13.6 Ouverts non i-acycliques de $F_n(C)$ 188
 13.7 Courbes algébriques i-acycliques 188
 13.8 Bouquet d’espaces i-acycliques 190
 13.9 Sommes amalgamées d’espaces i-acycliques 190
 13.10 La bouteille de Klein épointée 193
 13.11 Revêtements non i-acycliques à base i-acyclique 195
 13.12 Fibrations non i-acycliques à fibre et base i-acycliques 196

14. Rappels sur les nombres de Stirling 198
 14.1 Factorielles croissantes et décroissantes 198
 14.2 Nombres de Stirling de première espèce 198
 14.3 Nombres de Stirling de deuxième espèce 199
 14.4 Nombres de Stirling non signés et cardinaux 201

Notations 204
0. Introduction

Ce travail a été motivé par les questions suivantes.

– La recherche d’une large classe d’espaces topologiques X pour lesquels le polynôme de Poincaré des espaces de configuration $F_m(X)$ et le caractère de la représentation du groupe symétrique S_m sur $H(F_m(X))$ sont donnés par une formule fermée ne dépendant que de m et du polynôme de Poincaré de X.

– L’étude de la dégénérescence de la suite spectrale de Leray associée aux projections $F_m(X) \to F_n(X)$ pour $m \geq n$.

– L’extension du théorème de Church (2012 [7]) sur la polynomialité de la famille des caractères des représentations $\{S_m:H(F_m(X))\}_m$ du cas où X est une variété différentiable au cas où X est une pseudovariété.

– L’étude de toutes ces questions pour les espaces de configuration généralisés $\Delta?X^m$ (cf. 0.2).

0.1. Polynômes de Poincaré. On suppose $m > 0$. Pour tout espace topologique X, le produit cartésien $X \times F_m(X)$ contient $F_{m+1}(X)$ comme partie ouverte. Son complémentaire est l’ensemble :

$$\Delta_m(X \times F_m(X)) = \{(x_0, x_1, \ldots, x_m) \in X \times F_m(X) \mid x_0 \in \{x_1, \ldots, x_m\}\},$$

réunion disjointe des sous-espaces fermés :

$$\Delta_{(0,i)}(X \times F_m(X)) = \{(x_0, x_1, \ldots, x_m) \in X \times F_m(X) \mid x_0 = x_i\},$$

où $i = 1, \ldots, m$, clairement homéomorphes à $F_m(X)$. On a donc

$$H_c(\Delta_m(X \times F_m(X))) \sim H_c(F_m(X))^m,$$

et la décomposition en parties respectivement ouverte et fermée

$$X \times F_m(X) = F_{m+1}(X) \sqcup \Delta_m(X \times F_m(X)),$$

donne lieu à la suite exacte longue de cohomologie (1) à support compact

$$\to H_c(F_{m+1}(X)) \xrightarrow{\iota} H_c(X \times F_m(X)) \xrightarrow{\rho} H_c(\Delta_m(X \times F_m(X))) \xrightarrow{\zeta} \cdots$$

dont on déduit la relation de récurrence entre caractéristiques d’Euler des cohomologies à support compact $\chi_c(F_{m+1}) = (\chi_c(X) - m) \cdot \chi_c(F_m)$ à l’origine de l’égalité

$$\chi_c(F_{m+1}(X)) = \chi_c(X)^{m+1},$$

où $(_)^{m+1}$ désigne la factorielle décroissante (14.1). Mais cette égalité ne nous renseigne pas sur la valeur de chaque nombre de Betti de $F_{m+1}(X)$ séparément, ce pour quoi il faudrait une certaine forme de scindage de la suite (*). Cela arrive, par exemple, lorsque X est un groupe de Lie G réel.
connexe et non compact. Dans ce cas, le morphisme de restriction

$$\rho : H_c(G \times F_m(G)) \rightarrow H_c(\Delta_m(G \times F_m(G)))$$

est nul et la suite courte

$$0 \rightarrow H_c(F_m(X))^m[-1] \rightarrow H_c(F_{m+1}(X)) \rightarrow H_c(X) \otimes H_c(F_m(X)) \rightarrow 0,$$

e extrait de (\ast) est exacte. En effet, le morphisme ρ est somme des restrictions

$$\rho_i : H_c(G \times F_m(G)) \rightarrow H_c(\Delta(0,i)(G \times F_m(G))),$$

et l’application $\varphi_i : G \times F_m(G) \rightarrow G \times F_m(G)$, $(g, \overline{x}) \mapsto (g^{-1} \cdot x, \overline{x})$, est un difféomorphisme qui échange les inclusions :

$$\left(\frac{G \times F_m(G)}{\Delta(0,i)(G \times F_m(G))} \right) \cong \left(\frac{G \times F_m(G)}{\{e\} \times F_m(G)} \right),$$

en particulier, l’annulation de ρ_i est équivalente à l’annulation du morphisme de restriction $H_c(G \times F_m(G)) = H_c(G) \otimes H_c(F_m(G)) \rightarrow H_c(\{e\} \otimes F_m(G)$, elle-même équivalente à l’annulation de la restriction $H_c(G) \rightarrow H_c(\{e\})$ et donc à la non compacité de G.

L’exactitude de la suite courte (\dagger) donne alors la relation de récurrence (\ddagger)

$$\mathcal{P}_c(F_{m+1}(G))(T) = (\mathcal{P}_c(G)(T) + mT) \cdot \mathcal{P}_c(F_m(G))(T),$$

dont on déduit

$$\mathcal{P}_c(F_{m+1}(G))(T) = \prod_{i=0}^{m} (\mathcal{P}_c(G)(T) + iT),$$

et, par dualité de Poincaré,

$$\mathcal{P}(F_{m+1}(G))(T) = \prod_{i=0}^{m} (\mathcal{P}(G)(T) + iT^{\dim G-1}),$$

ce qui est le type de formule fermée que nous avions en vue.

0.2. Les espaces de configuration généralisés. Dans nos recherches nous avons aussi été guidés par une autre nécessité : celle de trouver un cadre aussi symétrique que possible pour préserver l’action du groupe des permutations S_n sur les coordonnées de $F_m(X)$, ce qui n’est pas le cas de la décomposition (\diamond). Cela nous a conduit à nous intéresser aux espaces de configuration « généralisés » suivants. On pose, pour $0 \leq \ell \leq m \in \mathbb{N}$,

$$\Delta_{\ell}X^m := \{ (x_1, \ldots, x_m) \in X^m \mid \text{Card } \{x_1, \ldots, x_m\} \leq \ell \},$$

$$\Delta_{\ell}X^m := \Delta_{\ell}X^m \setminus \Delta_{\ell-1}X^m,$$

$F_m(X) := \Delta_mX^m$. La décomposition en parties S_m-stables respectivement ouverte et fermée :

$$\Delta_{\ell}X^m = \Delta_{\ell}X^m \sqcup \Delta_{\ell-1}X^m$$

On note $\mathcal{P}_c(M) := \sum_{i \in \mathbb{N}} \dim_q H^i(M) T^i$ (resp. $\mathcal{P}(M) := \sum_{i \in \mathbb{N}} \dim_q H^i(M) T^i$) le polynôme de Poincaré pour la cohomologie à support compact (resp. ordinaire) de M.

7
donne lieu à la suite courte de \(S_m \)-modules (à priori non exacte)
\[
0 \to H_c(\Delta_{\leq \ell - 1} X^m)[-1] \to H_c(\Delta_{\ell} X^m) \to H_c(\Delta_{\leq \ell} X^m) \to 0,
\]
extraite de la suite longue de cohomologie à support compact associée à (\(\infty \)).

En cherchant à montrer que cette suite était exacte lorsque \(X \) est un groupe de Lie non compact, nous avons trouvé que ce n’était pas tant le fait que \(X \) possédait une structure de groupe, mais plutôt que sa cohomologie intérieure était nulle, qui était la cause du phénomène. Le théorème « de scindage » dans 3.1.1 établit l’implication (A) \(\Rightarrow \) (B) des propriétés suivantes.

(A) La cohomologie « intérieure » de \(X \), i.e. l’image de l’application naturelle \(H_c(X) \to H(X) \), est nulle.
(B) Pour tous \(0 \leq \ell \leq m \), les suites courtes (†) et (‡) sont exactes.

Des propriétés qui sont même équivalentes lorsque \(X \) est une variété topologique orientable.

0.3. Les espaces \(i \)-acycliques. À partir du théorème de scindage, une partie importante de notre travail va se concentrer sur les espaces vérifiant la propriété (A), des espaces que nous qualifions de « \(i \)-acycliques ».

Il existe des familles assez grandes de tels espaces, par exemple :
- Les espaces acycliques (p.e. contractiles) non compacts.
- Les ouverts des espaces \(i \)-acycliques.
- Les groupes de Lie \(G \) tels que \(H^0_c(G) = 0 \).
- Tout produit \(X \times Y \), où \(X \) est \(i \)-acyclique et \(Y \) est quelconque.

0.4. Le complexe fondamental de \(X \) pour \(\Delta_{\leq \ell} X^m \). Dans 3.2.2, on concatène les suites (‡) pour construire le complexe de \(S_m \)-modules gradués
\[
0 \to H_c(1)[-\ell + 1] \to \cdots \to H_c(\ell - 1)[-1] \to H_c(\ell) \to H_c(\Delta_{\leq \ell} X^m) \to 0
\]
on où \(H_c(a) := H_c(\Delta_a X^m) \), que nous appelons « le complexe fondamental de \(X \) pour \(\Delta_{\leq \ell} X^m \) », son intérêt principal réside dans l’assertion (a) suivante. Théorème (3.2.3)

a) Les complexes fondamentaux d’un espace \(i \)-acyclique sont exacts.
b) Une variété topologique orientable est \(i \)-acyclique, si et seulement si, ses complexes fondamentaux sont exacts.

Les complexes fondamentaux sont donc des résolutions de \(S_m \)-modules et permettent, lorsque \(H_c(X) < \infty \), de réduire la détermination du polynôme de Poincaré et du caractère de la représentation de \(S_m \) sur \(H_c(\Delta_{\leq \ell} X^m) \) à ceux des espaces \(H_c(\Delta_a X^m) \) pour \(a \leq \ell \).

0.5. Les polynômes de Poincaré de \(\Delta_{\ell} X^m \) et de \(\Delta_{\leq \ell} X^m \). Les remarques des premiers paragraphes, basées sur le scindage de la suite (†), s’appliquent lorsque \(X \) est \(i \)-acyclique et donnent lieu à l’énoncé suivant.
Proposition (4.2.1). Si X est i-acyclique et que $H_c(X) < +\infty$, le polynôme de Poincaré $P_c(F_m(X))$ est le polynôme

\[
P_c(F_m(X))(T) = \prod_{i=0}^{m-1} (P_c(X) + i \cdot T).
\]

À partir de là, le passage de $F_m(X)$ à $\Delta_t X^m$ est assez simple dans la mesure où $\Delta_t X^m$ admet une décomposition ouverte en parties homéomorphes à $F_t(X)$, indexée par les partitions de l’intervalle $[1,m]$ en ℓ parties non vides. La proposition suivante établit alors que $P_c(\Delta_t X^m)$ seul dépend de $P_c(X)$, le lien étant donné par un certain polynôme « universel » de $\mathbb{Z}[P,T]$.

Proposition (4.2.5). Si X est i-acyclique et tel que $H_c(X) < +\infty$, le polynôme de Poincaré $P_c(\Delta_t X^m)$ s’obtient en évaluant en $P := P_c(X)$ le polynôme homogène de degré ℓ de $\mathbb{Z}[P,T]$

\[
Q^m(\ell,P,T) = |P_\ell(m)| \cdot \prod_{i=0}^{\ell-1} (P + i T).
\]

Ici, $P_\ell(m)$ désigne l’ensemble des partitions de $[1,m]$ en ℓ parties non vides.

Le polynôme de Poincaré de $P_c(\Delta_{\leq \ell} X^m)$ est ensuite obtenu comme somme alternée des $P(\Delta_a X^m)[a-\ell]$, grâce aux complexes fondamentaux.

Proposition (4.3.1). Soit X un espace i-acyclique. Le polynôme de Poincaré $P_c(\Delta_{\leq \ell} X^m)$ est le polynôme homogène de $\mathbb{Z}[P_c(X),T]$, de degré ℓ, donné par la somme alternée (cf. 2.3.3)

\[
P_c(\Delta_{\leq \ell} X^m) = \sum_{0 \leq a < \ell} (-1)^a \cdot |P_{\ell-a}(m)| \cdot P_c(F_{\ell-a}(X)) \cdot T^a.
\]

0.6. Le caractère de $H_c(\Delta_{\leq \ell} X^m)$. Pour tout $Z \subseteq X^m$ stable sous l’action de S_m et tel que $\dim H_c(Z) < +\infty$, on note $\chi_c(Z; i)$ le caractère du S_m-module $H^i_c(Z,\mathbb{Q})$. Les résolutions fondamentales donnent aussitôt le résultat suivant.

Théorème (5.3.3). Soit X un espace i-acyclique.

a) Le caractère $\chi_c(F_m(X); i)$ du S_m-module $H^i_c(F_m(X))$ vérifie

\[
\chi_c(F_m(X); i) = \chi_c(X^m; i) + \chi_c(\Delta_{\leq \ell-m} X^m; i).
\]

b) Le caractère $\chi_c(\Delta_{\leq \ell} X^m; i)$ du S_m-module $H^i_c(\Delta_{\leq \ell} X^m)$ vérifie

\[
\chi_c(\Delta_{\leq \ell} X^m; i) = \sum_{0 \leq a < \ell} \sum_{\lambda \in \mathcal{Y}_{\ell-a}(m)} (-1)^a \text{Ind}_{G_{\lambda}}^{S_m} \chi_c(F_{\ell-a}(X); i - a).
\]

où $\mathcal{Y}_{\ell-a}(m)$ est l’ensemble des décompositions de m en $\ell-a$ entiers positifs, et si $\lambda = (\lambda_1, \ldots, \lambda_{\ell-a}) = (d_1^\mu, \ldots, d_m^\mu)$, on a noté

\[
G_{\lambda} := N_{S_m}(P_\lambda)/P_\lambda = S_{\mu_1} \times \cdots \times S_{\mu_r}
\]

où $P_\lambda = S_{\lambda_1} \times \cdots \times S_{\lambda_{\ell-a}}$ est le fixateur de λ.

9
Le caractère $\chi_c(\Delta_{\leq \ell}X^m)$ apparaît ainsi comme combinaison des caractères $\chi_c(F_a(X))$ pour $a \leq \ell$. D’autre part, le caractère $\chi_c(F_a(X))$ est somme de $\chi_c(\Delta_{\leq a-1}X^m)$, avec (donc) $a - 1 < \ell$, et de $\chi_c(X^a) = \chi_{S_a}(H_c(X)^{S_a})$, caractère bien connu d’après Macdonald ([27]) (cf. 10.5.4). On a donc tous les ingrédients pour un algorithme de calcul des caractères de $H_c(F_m(X))$ et $H_c(\Delta_\gamma X^m)$, à partir uniquement de la connaissance de $\chi_c(X^\ell)$ pour $\ell \leq m$.

Cette observation nous a conduit à introduire certains opérateurs d’induction dans les groupes de Grothendieck des catégories de représentations des groupes symétriques

$$\Theta^m_\ell, I^m_\ell : K_0(\text{Mod}(k[S\ell])) \sim K_0(\text{Mod}(k[S_m]))$$

grâce auxquels on a :

Théorème 5.4.1-(a). Soit X un espace i-acyclique tel que $\dim H_c(X) < \infty$.

a) *Pour tout $m \geq \ell > 0$ et tout $i \in \mathbb{N}$, on a*

i) $\chi_c(F_m(X);i) = \sum_{0 \leq a < m} \Theta^m_{\ell-a}(\chi_c(X^{m-a};i-a))$

ii) $\chi_c(\Delta_{\leq \ell}X^m;i) = I^m_\ell \left(\sum_{0 \leq a < \ell} \Theta^m_{\ell-a}(\chi_c(X^{\ell-a};i-a)) \right)$

iii) $\chi_c(\Delta_{\leq \ell}X^m;i) = \sum_{0 \leq b < \ell} (-1)^b I^m_{\ell-b} \left(\sum_{0 \leq a < \ell-b} \Theta^m_{\ell-b-a}(\chi_c(X^{\ell-b-a};i-b-a)) \right)$

A partir de là nous avons deux voies de recherche, celle de l’étude de la polynomialité des familles de caractères $\{\chi(\Delta_{m-a}X^m,i)\}_m$ et celle de la détermination explicite des caractères $\chi_c(F_m(X))$. Nous avons consacré les sections 7–9 à la première question et la section 10 à la seconde.

0.7. Les familles de représentations $\{S_m:H^i(\Delta_{m-a}X^m)\}_m$. Dans les recherches sur les espaces de configuration, bien de questions concernent les familles dénombreables de tels espaces. Par exemple, le résultat pionnier d’Arnold (1970 [1]) qui établit que pour $i \in \mathbb{N}$, la suite $\{\text{Betti}^i(F_m(\mathbb{C})/S_m)\}_m$ est stationnaire, et, bien plus récemment, celui de Church (2012 [7]) qui généralise le résultat d’Arnold et qui montre que ce sont plutôt les multiplicités des composantes irréductibles des représentations dans les familles $\{S_m:H^i(F_m(X))\}_m$ qui sont stationnaires (7.4.1) lorsque X est une variété différentielle connexe orientable et que $d_X \geq 2$.

Les complexes fondamentaux sont particulièrement commodes pour aborder ces questions de nature qualitative. Ils nous indiquent aussi que la direction à suivre pour les généraliser doit concerner, pour $a \in \mathbb{N}$, les familles d’espaces de configuration généralisés $\{S_m:\Delta_{m-a}X^m\}_m$. Les cas traités dans [7] correspondent alors à $a = 0$. Les sections 7–9 sont consacrées à ces questions. Nous y rappelons la théorie des FI-modules de Church-Frab ([10]) et nous prouvons la généralisation suivante des résultats de Church.
Théorème (9.2.3). Soit X une pseudovariété i-acyclique, connexe orientable et de dimension $d_X \geq 2$. Pour $a, i \in \mathbb{N}$, la famille $\{S_m : H^i_{\text{BM}}(\Delta_{m-a}X^m)\}_m$ est monotone pour $m \geq i+a$ et est monotone et stable pour $m \geq 4i+4a$, si $d_X = 2$, et pour $m \geq 2i+4a$, si $d_X \geq 3$. Les familles des caractères et des nombres de Betti correspondantes sont (donc) polynomiales et la famille $\{\text{Betti}^i_{\text{BM}}(\Delta_{m-a}X^m/S_m)\}_m$ est constante, sur les mêmes intervalles.

L'idée pour y parvenir est la suivante. Pour chaque décomposition $\lambda \vdash 2a$ en parties non vides, et chaque $m \geq 2a$, nous notons λ/m la décomposition de m définie par λ et les $(m-2a)$ singletons de $[2a+1,m]$. Nous remarquons alors que lorsque m parcourt l'intervalle $[2a, +\infty]$ les foncteurs d'induction $\text{Ind}_{G_{\lambda/m}}^{S_m}$ de 5.3.3-(b) (p. 10) se recollent et définissent un foncteur « d'induction » dans la catégorie de FI-modules $\text{Ind}_\lambda : \text{Mod}(k[\text{FI}]) \rightarrow \text{Mod}(k[\text{FI}])_{\geq 2a}$.

La somme de ces foncteurs $I^a := \sum_{\lambda \vdash 2a} \text{Ind}_\lambda : \text{Mod}(k[\text{FI}]) \rightarrow \text{Mod}(k[\text{FI}])_{\geq 2a}$ a alors la propriété fondamentale d’associer à $\{S_{m-a} : H^i_c(F_{m-a}(X))\}_{m-a}$, la famille $\{S_m : H^i_c(\Delta_{m-a}X^m)\}_m$, mais ce qui est vraiment important à comprendre, c’est la manière dont I^a va modifier les « rangs de monotonie et stabilité » (cf. 7.4.1) d’un FI-module $\mathcal{V} := \{\phi_m : V_m \rightarrow V_{m+1}\}_m$. Notre principal résultat concernant le sup de ces rangs, noté $\text{rg}_{ms}(\mathcal{V})$, est le suivant.

Théorème (8.2.2)
a) Le foncteur $I^a : \text{Mod}(k[\text{FI}]) \rightarrow \text{Mod}(k[\text{FI}])_{\geq 2a}$ est covariant, additif, exact.
b) Si \mathcal{V} est (de type fini) engendré en degrés $\leq d$, le FI-module $I^a(\mathcal{V})$ est (de type fini) engendré en degrés $\leq \sup(d + a, 2a)$.
c) On a $\text{arg}_{ms}(I^a(\mathcal{V})) \leq \text{rg}_{ms}(\mathcal{V}) + 4a$ et $\text{rg}_{ms}(I^a(\mathcal{V})) \leq \text{rg}_{ms}(\mathcal{V}) + a$.

Le théorème 9.2.3 ci-dessus en est le corollaire premier.

0.8. Suites spectrales basiques. Dans le but d’étendre la portée du théorème 9.2.3 aux espaces non i-acycliques, nous avons introduit « les suites spectrales basiques ». Le chapitre 6 leur est consacré. Associée à un espace localement compact M de dimension finie, elle converge vers $H_{\text{BM}}(F_m(M))$ et a la propriété remarquable de ne faire intervenir que des espaces de configuration associés à l’espace i-acyclique $M_{>0} := M \times \mathbb{R}$.

Théorème (6.5.2, 9.3.13-(b)). Soit M une pseudovariété orientée de dimension d_M. La suite spectrale $E_{a}(U^m)$ converge en tant que suite spectrale de complexes de S_m-modules vers le S_m-module bi-gradué associé au S_m-module gradué filtré $H_{\text{BM}}(F_m(M))[1-m]$.

11
Pour $i \in \mathbb{Z}$, on a :

$$E_{d}(H^{m})^{p,q}_{1} = \bigoplus_{\tau \in \mathcal{T}(p+1,m)} \text{ind}_{\mathcal{H}_{\tau}}^{S_{m}} \sigma \otimes H_{B_{M}}^{Q}(F_{p+1}(M_{>0})) \Rightarrow H_{B_{M}}^{i}(F_{m}(M))$$

où $q = i + (m - (p+1))$ et $Q := i - (m - (p+1))(d_{M} - 1)$, où $\mathcal{T}(p+1,m)$ est l’ensemble des tableaux de Young à m boîtes et première colonne $(m - p, \ldots, m)$, et où \mathcal{H}_{τ} est le stabilisateur de τ dans $S_{m - (p+1)} \times S_{p+1}$ dont l’action sur $H_{e}(F_{p+1}(M_{>0}))$ est tordue par la signature σ de $S_{m - (p+1)}$.

Une propriété remarquable des suites spectrales basiques est qu’elles sont compatibles aux morphisme d’image-inverse (6.7.1), ce qui nous a permis d’étendre le théorème 9.2.3 (p. 11), et donc celui de Church, aux pseudovariétés, en particulier, aux variétés algébriques complexes. L’énoncé suivant ne diffère de 9.2.3 que par le fait que M n’est plus supposée i-acyclique et pas la perte du rang de monotonie.

Théorème (9.3.15). Soit M une pseudovariété connexe orientable de dimension $d_{M} \geq 2$. Pour $a, i \in \mathbb{N}$ fixés, la famille $\{S_{m}: H_{B_{M}}^{i}(\Delta_{m-n}^{M^{m}})\}_{m}$ est monotone et stable pour $m \geq 4i + 4a$, si $d_{M} = 2$, et pour $m \geq 2i + 4a$, si $d_{M} \geq 3$. Les familles des caractères et des nombres de Betti correspondantes sont (donc) polynomiales et la famille $\{\text{Betti}_{B_{M}}^{i}(\Delta_{m-n}^{M^{m}}/S_{m})\}_{m}$ est constante, sur les mêmes intervalles.

0.9. Le calcul explicite du caractère de $H_{e}(F_{m}(X))$. Dans la section 10, on revient sur les espaces i-acycliques généraux. On y considère suivant Macdonald ([27]), la « série des caractères » de $Z \subseteq X^{m}$ qui vaut

$$\chi_{e}(Z)(\alpha, T) := \sum_{i \in \mathbb{Z}} (-1)^{i} \text{tr}(\alpha: H_{e}^{i}(Z)) T^{i}, \quad \forall \alpha \in S_{m},$$

et on mène à terme le calcul des séries $\chi_{e}(F_{m}(X))(\alpha, T)$ grâce, notamment, à l’exactitude des complexes fondamentaux de X. On prouve le théorème suivant.

Théorème (10.5.3). Soit X un espace i-acyclique. Pour $\alpha \in S_{m}$, on a

$$\chi_{e}(F_{m}(X))(\alpha, T) = T^{m} \prod_{d=1}^{m} d^{x_{d}} \left(\sum_{e \mid d} \mu_{c}(X) \frac{\tau_{e}}{\tau_{e}} \right)^{x_{d}},$$

où $(1^{x_{1}}, 2^{x_{2}}, \ldots, m^{x_{m}}) \vdash m$ est le type de la permutation α, où $\mu(_)$ est la fonction de Möbius et où τ_{e} est la factorielle décroissante (cf. 14.1).

0.10. Les polynômes de Poincaré des espaces quotients $F_{m}(X)/H$. Le théorème précédent s’applique aussitôt pour donner les dimensions des sous-espaces invariants $H_{e}^{i}(F_{m}(X))^{H}$, quel que soit le sous-groupe $H \subseteq S_{m}$. Les polynômes de Poincaré des quotients $F_{m}(X)/H$ en résultent.
La section 11 illustre le procédé en déterminant le polynôme de Poincaré de l’espace des configurations « cycliques » $CF_m(X) := F_m(X)/C_m$, où $C_m := \langle (1, \ldots, m) \rangle \subseteq S_m$, et celui de l’espace des configurations « non ordonnées » $BF_m(X) := F_m(X)/S_m$. Pour X i-acyclique, on a les égalités suivantes.

- Théorème (11.2.1) :
 \[P_c(CF_m(-T)) = \frac{T^m}{m} \sum_{d|m} \phi(d) m^d \left(\sum_{e|d} \mu(d/e) \frac{P_c(X)(-T^e)}{dT^e} \right)^{m/d}. \]

- Théorème (11.3.1) :
 \[P_c(BF_m(X)(-T)) = \frac{T^m}{m!} \sum_{\lambda=(1^{x_1}, \ldots, m^{x_m}) \vdash m} h_\lambda \prod_{d=1}^{m} q_{x_d} \left(\sum_{e|d} \mu(d/e) \frac{P_c(X)(-T^e)}{dT^e} \right)^{x_d}, \]
 où h_λ est le cardinal de l’ensemble des permutations de S_m dont la décomposition en cycles disjoints est de type $\lambda := (1^{x_1}, \ldots, m^{x_m})$.

0.11. Rangs de stabilité des familles $\{\text{Betti}^i_{BM}(F_m(M))\}_m$. Les formules explicites de caractères 10.5.3 (p. 13) permettent aussi de raffiner la détermination des multiplicités de la représentation triviale dans $H_{BM}(F_m(X))$.

A ce sujet, on démontre :

Proposition (11.5.3). Soit M une pseudovariété i-acyclique de type fini de dimension $d_M \geq 1$ et telle que $\dim H_{BM}^i(M; \mathbb{Q}) \leq 1$. Alors, pour $i \in \mathbb{N}$ donné, la famille $\{\text{Betti}^i_{BM}(BF_m(M; \mathbb{Q}))\}_m$ pour la cohomologie de Borel-Moore est constante pour $m \geq i$.

Résultat qui s’étend au cas des pseudovariétés connexes orientées à l’aide des suites spectrales basiques et donne la proposition suivante qui termine la section sur les question de stabilité.

Proposition (11.6.1). Soit M est une pseudovariété connexe orientée. La famille $\{\text{Betti}^i_{BM}(F_m(M))\}_m$ est constante pour $m \geq 2i$, si $d_M = 2$, et pour $m \geq i$ si $d_M \geq 3$.

0.12. La dégénérescence des suites spectrales de Leray. Pour $a, b \in \mathbb{N}$, notons $\pi_a : X^{b+a} \to X^a$ la projection sur les a dernières coordonnées. Sa restriction à $F_{b+a}(X)$ est la fibration $\pi_a : F_{b+a}(X) \to F_a(X)$ (3) de fibres de la forme $X \setminus a$ où a désigne un sous-ensemble de X de cardinal a.

Lorsque X est i-acyclique et que $H_c(X) < +\infty$, l’expression du polynôme de Poincaré de la proposition 4.2.1 (p. 9) montre que l’on a

\[P_c(F_{b+a}(X)) = P_c(F_a(X)) \cdot P_c(F_b(X \setminus a)), \]

\[^3 \text{Généralement non localement triviale, sauf si } X \text{ est une variété topologique.} \]
ce qui suggère une certaine forme de trivialité cohomologique pour la fibration π_a. C'est en effet le cas et c'est le sujet de la section 12.

Notons, plus généralement $\Delta_{[a]}^{[a]}X^m$, pour $0 < a \leq \ell \leq m \in \mathbb{N}$, l'ouvert des m-uplets de $\Delta_{\ell}X^m$ dont les a dernières coordonnées sont deux à deux distinctes, soit :

$$\Delta_{[a]}^{[a]}X^m := \Delta_{\ell}X^m \cap (X^{m-a} \times F_a(X)).$$

La section 12.4 est consacrée à l'étude des suites spectrales de Leray associées à l'application $\pi_a : \Delta_{[a]}^{[a]}X^m \to F_a(X)$ dont la fibre au-dessus de $\bar{x} \in F_a(X)$ est $\Delta_{\ell}(X^{m-a} \times \bar{x})$. Cela nous a emmené à nous intéresser également à la cohomologie à support π_a-propre que nous notons $H_{\pi_!}(\Delta_{[a]}^{[a]}X^m)$, et aussi aux faisceaux de cohomologie à support π_a-propre :

$$\mathcal{H}_{\pi_!}^i(\Delta_{[a]}^{[a]}X^m) := \mathcal{H}^i\pi_!(\Delta_{[a]}^{[a]}X^m).$$

Le principal résultat concernant ces faisceaux est le suivant.

Théorème (12.3.2-(c)). Si X est i-acycliQue et localement connexe, les faisceaux $\mathcal{H}_{\pi_!}^i(\Delta_{[a]}^{[a]}X^m)$ sont constants sur les composantes connexes de $F_a(X)$.

À partir de là, l'étude des suites spectrales de Leray pour les cohomologies $H_c(\Delta_{[a]}^{[a]}X^m)$ et $H_{\pi_!}(\Delta_{[a]}^{[a]}X^m)$ se simplifie et nous montrons le théorème suivant.

Théorème (12.4.9). Soient $a \leq \ell \leq m \in \mathbb{N}$. Soit X un espace i-acycliQue localement connexe. Notons

$$(\mathcal{E}_r(\Delta_{[a]}^{[a]}X^m)_c, d_r)$$

et

$$(\mathcal{E}_r(\Delta_{[a]}^{[a]}X^m)_{\pi_!}, d_r)$$

les suites spectrales de Leray associées à $\pi_a : \Delta_{[a]}^{[a]}X^m \to F_a(X)$ qui convergent respectivement vers $H_c(\Delta_{[a]}^{[a]}X^m)$ et $H_{\pi_!}(\Delta_{[a]}^{[a]}X^m)$. On a :

$$\left\{\begin{array}{l}
\mathcal{E}_2(\Delta_{[a]}^{[a]}X^m)_c \sim H_c^p(F_a(X)) \otimes H^q_\pi(F) \Rightarrow H_c^{p+q}((\Delta_{[a]}^{[a]}X^m) \\
\mathcal{E}_2(\Delta_{[a]}^{[a]}X^m)_{\pi_!} \sim H^p(F_a(X)) \otimes H^q_\pi(F) \Rightarrow H_{\pi_!}^{p+q}((\Delta_{[a]}^{[a]}X^m)
\end{array}\right.$$

où F est une fibre quelconque de π_a. Les suites spectrales (\mathcal{E}_r) sont dégénérées, i.e. $d_r = 0$ pour $r \geq 2$.

0.13. Exemples et contre-exemples d'espaces i-acycliques. La section 13 est un appendice destiné à donner des exemples d'espaces i-acycliques et des contre-exemples à certaines propriétés les concernant.
1. Espaces \(i\)-acycliques

1.1. Généralités sur les espaces topologiques considérés

Dans ce travail, on entend par espace (topologique) tout espace \(X, Y, Z, \ldots\), métrisable, localement compact et dénombrable à l’infini. De tels espaces sont alors à base dénombrable, séparables et (totalement) paracompacts. Tout fermé et tout ouvert de \(X\) est alors également métrisable, localement compact et dénombrable à l’infini. Les pseudovariétés (dénombrables à l’infini), en particulier les variétés algébriques complexes, constituent une large famille d’exemples de tels espaces.

1.1.1. Cohomologies. On désignera par \(k\) un corps de caractéristique arbitraire sauf mention explicite du contraire. On note \(k_X\) le faisceau constant sur \(X\) de fibre \(k\), puis \(\text{Mod}(k_X)\) la catégorie des faisceaux de \(k\)-espaces vectoriels sur \(X\). Les espaces de cohomologie respectivement : ordinaire, à support compact et à support dans une partie localement fermée \(Z \subseteq X\), notés \(H^i(X; k), H^i_c(X; k), \) et \(H^i_Z(X; k)\), sont les foncteurs dérivés des foncteurs de sections globales \(\Gamma(X; -), \Gamma_c(X; -)\) et \(\Gamma_Z(X; -)\) : \(\text{Mod}(k_X) \to \text{Vec}(k)\).

On a donc
\[
H^i(X; k) := R^i \Gamma(X; k_X), \quad H^i_c(X; k) := R^i \Gamma_c(X; k_X), \quad H^i_Z(X; k) := R^i \Gamma_Z(X; k_X).
\]

1.1.2. Résolution \(\Phi\)-molle canonique. La résolution du faisceau constant \(k_X\) de référence sera celle des faisceaux de « germes de cochaînes d’Alexander-Spanier de \(X\) » (\(t\)), noté \((A^*(X; k), d_*)\). Les faisceaux \(A^i(X; k)\) sont \(\Phi\)-mous pour toute famille paracompactifiante \(\Phi\) (loc.cit.), ils sont donc \(\Gamma(X; -), \Gamma_c(X; -)\) et \(\Gamma_Z(X; -)\)-acycliques. Le complexe des cochaînes d’Alexander-Spanier
\[
0 \to k_X \to A^0(X; k) \xrightarrow{d_0} A^1(X; k) \xrightarrow{d_1} \cdots
\]
est une résolution \(\Phi\)-molle de \(k_X\) et l’on a
\[
H^i(X; k) := h^i(\Gamma(X; \mathcal{A}^\bullet(X; k))) \quad \text{et} \quad H^i_c(X; k) := h^i(\Gamma_c(X; \mathcal{A}^\bullet(X; k))), \quad H^i_Z(X; k) := h^i(\Gamma_Z(X; \mathcal{A}^\bullet(X; k))).
\]

1.1.3. Notons \((\mathcal{K}(X), \subseteq)\) la famille des parties compactes \(K \subseteq X\) munie de l’ordre d’inclusion. Le morphisme naturel en homologie singulière
\[
\lim_{K \in \mathcal{K}(X)} H_*(K; k) \xrightarrow{\sim} H_*(X; k)
\]
\[\footnote{[20], §2.5, exemple 2.5.2, p. 134, puis §3.7, exemple 3.7.1, p. 157.} \]
est un isomorphisme et induit (par dualité vectorielle) l’isomorphisme de cohomologies ordinaires

\[H^*(X, k) \xrightarrow{\cong} \lim_{K \in \mathcal{K}(X)} H^*(K, k), \]

qui fait correspondre à une classe de cohomologie \(\omega \in H^*(X, k) \) la famille de ses restrictions \(\{ \omega|_K \in H^*(K, k) \}_{K \in \mathcal{K}(X)} \).

De manière duale, nous disposons pour chaque \(K \in \mathcal{K}(X) \) d’un morphisme naturel en cohomologie \(H^*_K(X, k) \to H^*_c(X, k) \). La limite inductive de ces morphismes

\[\lim_{K \in \mathcal{K}(X, k)} H^*_K(X, k) \to H^*_c(X, k) \]

est alors aussi un isomorphisme.

1.1.4. Suite exacte longue de cohomologies à support compact. Si \(X = U \sqcup Z \) est une partition en parties respectivement ouverte et fermée, dont on note \(j : U \to X \) et \(i : Z \to X \) les inclusions, on dispose de la suite longue de cohomologie à support compact

\[H_c(U) \xrightarrow{j^*} H_c(X) \xrightarrow{i_*} H_c(Z) \to H_c(X) \]

où \(j^* \) est le « prolongement par zéro » et \(i_* \) est la « restriction ».

1.1.5. Isomorphismes de Künneth. Si \(p : X \times Y \to X \) et \(q : X \times Y \to Y \) sont les projections canoniques, les morphismes

\[\boxtimes : \bigwedge^a(X; k) \otimes \bigwedge^b(Y; k) \to \bigwedge^{a+b}(X \times Y; k) \]

induit par le cup-produit de cochaînes \(\boxtimes : \alpha \otimes \beta \mapsto \alpha \boxtimes \beta := p^*(\alpha) \cup q^*(\beta) \) induisent des isomorphismes gradués (5)

\[H(X \times Y) \simeq H(X) \otimes H(Y) \text{ et } H_c(X \times Y) \simeq H_c(X) \otimes H_c(Y). \]

Le cup-produit en cohomologie résulte alors du morphisme de restriction à la diagonale, soit des composées

\[\cup : H(X) \otimes H(X) \xrightarrow{\otimes} H(X \times X) \xrightarrow{\delta^X} H(\Delta X) \]

\[\cup : H_c(X) \otimes H_c(X) \xrightarrow{\otimes} H_c(X \times X) \xrightarrow{\delta^X} H_c(\Delta X) \]

1.2. Espaces \(i \)-acycliques et \(\cup \)-acycliques

1.2.1. \(i \)-acylicité. Pour tout espace \(X \), on notera \(\epsilon_X : H_c(X) \to H(X) \) le morphisme induit par l’inclusion \(\Gamma_c(X; _ _) \subseteq \Gamma(X; _ _) \). L’image de \(\epsilon_X \) dans

\[\text{L’isomorphisme de Künneth en cohomologie ordinaire exige une hypothèse de finitude de cohomologie sur l’un des deux espaces.} \]
\(H(X)\), notée \(H_1(X)\), est « la cohomologie intérieure de \(X\) », on pose donc
\[
H_1(X) := \text{im} (\epsilon_X : H_c(X) \to H(X)).
\]
On dira que \(X\) est « \(i\)-acyclique » lorsque \(H_1(X) = 0\).

1.2.2. (Totale) \(\cup\)-acyclicité. Le plongement diagonal \(\delta_X : \Delta_X \hookrightarrow X \times X\) induit des morphismes de restriction rendant commutatif le diagramme :
\[
\begin{array}{ccc}
H_c(X) \otimes H_c(X) & \xrightarrow{\epsilon_X \otimes \epsilon_X} & H_c(X \times X) \\
\downarrow & & \downarrow \\
H(X) \otimes H(X) & \xrightarrow{\epsilon_X \otimes \epsilon_X} & H(X \times X)
\end{array}
\]
\[
\delta_X^{-1} H_c(\Delta_X) \rightarrow H_c(\Delta_X)
\]

On dira que \(X\) est « \(\cup\)-acyclique » lorsque \(\delta_X^{-1} H_c(\Delta_X) = 0\) est nul, autrement dit, lorsque le cup-produit \(\cup : H_c(X) \otimes H_c(X) \to H_c(X)\) est nul. Plus généralement, \(X\) sera dit « totalement \(\cup\)-acyclique » lorsque le cup-produit \(\cup : H_c(X) \otimes H_c(U) \to H_c(U)\) est nul pour tout ouvert \(U \subseteq X\).

1.2.3. Premières propriétés d’espaces \(i\)-acycliques
La condition \(i\)-acyclique est une condition de non compacité, ainsi, son étude nous place d’emblée dans un cadre assez éloigné des espaces compacts.

1.2.4. Proposition
a) Un espace contractile non compact est \(i\)-acyclique.
b) \(i\)-acyclique \(\Rightarrow\) totalement \(\cup\)-acyclique.
c) Sur une variété topologique orientable, \(i\)-acyclique \(\Leftrightarrow\) \(\cup\)-acyclique (6).
d) Un ouvert \(U\) d’un espace \(i\)-acyclique \(X\), est \(i\)-acyclique. Et de même en remplaçant \(i\)-acyclique par totalement \(\cup\)-acyclique.
e) Un produit cartésien \(X \times Y\) est \(i\)-acyclique si et seulement si l’un des facteurs l’est.

Démonstration. (a) Comme \(X\) est contractile, \(H^i(X) = 0\) pour \(i > 0\) et comme \(X\) est connexe non-compacte \(H^0_c(X) = 0\), dans tous les cas \(H^1_i(X) = 0\).

(b) Si \(\omega\) et \(\varpi\) sont des cocycles à support compact d’un espace \(i\)-acyclique, on a \(\omega = d\alpha\) pour une certaine cochaîne \(\alpha\) (à support fermé), mais alors \(\omega \cup \varpi = d\alpha \cup \varpi = d(\alpha \cup \varpi)\) où \(\alpha \cup \varpi\) est clairement à support compact.

(c) Supposons que pour \(\omega \in H_c(X)\) on ait \(\epsilon_X(\omega) \neq 0\). Il existe alors, par dualité de Poincaré, une classe \(\varpi \in H_c(X)\) telle que \(\int_X \omega \cup \varpi = 1\), mais alors \(\omega \cup \varpi \neq 0\) dans \(H_c(X)\) et \(X\) n’est pas \(\cup\)-acyclique.

\(^6\)Voir 13.10, p. 193, pour un contre-exemple si la variété n’est pas orientable.
(d) Résulte du fait que $\epsilon_U : H_c(U) \to H(U)$ est la composée de

\[H_c(U) \xrightarrow{\epsilon_U} H(U) \]

\[H_c(U) \xrightarrow{r} H_c(X) \xrightarrow{\epsilon} H(X) \xrightarrow{r} H(U) \]

où r désigne le prolongement par zéro et r est le morphisme de restriction.

(e) La condition est suffisante d’après le factorisation de Künneth :

\[H_c(X \times Y) \xrightarrow{\epsilon_X \times \epsilon_Y} H(X \times Y) \xrightarrow{\kappa} H_c(X) \otimes H_c(Y) \xrightarrow{\epsilon_X \otimes \epsilon_Y} H(X) \otimes H(Y) \]

où $\kappa(\alpha \otimes \beta) = p_X^*(\alpha) \cup p_Y^*(\beta)$. La nécessité résulte de l’injectivité de κ. □

1.3. Caractérisations de la i-acylicité

1.3.1. Théorème. Pour un espace X, il y a équivalence entre

a) X est i-acyclique.

b) Pour tout espace Y et toute application continue $f : Y \to X$, le morphisme image-inverse $f^* : H_c(X) \to H(Y)$ est nul.

c) Pour tout espace compact K et toute application continue $f : K \to X$, le morphisme image-inverse $f^* : H_c(X) \to H(K)$ est nul.

d) Étant donnés Z et Y et une application continue $f : Z \to X \times Y$, notons $p_2 : X \times Y \to Y$, $(x, m) \mapsto m$, puis $f_2 := p_2 \circ f$. Soit $j : V \to Y$ un plongement ouvert, notons $f_1^{-1}(V) \to V$ la restriction de f_2, et considérons le diagramme commutatif suivant

\[f_2^{-1}(V) \xrightarrow{f} Z \xrightarrow{j} X \times Y \]

Alors, si f et f_1 sont propres et si $j : H_c(V) \to H_c(Y)$ est surjective, on a

\[(f^* : H_c(X \times Y) \to H_c(Z)) = 0. \]

Démonstration. (a\Rightarrowb) Évident. (a\Leftrightarrowc) Le morphisme $f^* : H_c(X) \to H(K)$ se factorise à travers ϵ_X puisque l’on a le diagramme commutatif

\[H_c(X) \xrightarrow{\epsilon_X} H_c(K) \]

\[H(X) \xrightarrow{\epsilon_X} H(K) \]

L’implication $a \Rightarrow c$ en résulte. Réciproquement, soit $(K(X), \subseteq)$ l’ensemble des parties compactes de X, ordonné par inclusion. La famille des morphismes

\[H_c(X) \xrightarrow{\epsilon_X} H(X) \xrightarrow{(_)} H(K) \]
avec $K \in \mathcal{K}(X)$ induit alors un morphisme sur la limite projective

$$H_c(X) \xrightarrow{\times} H(X) \xrightarrow{\lim(_)|_{K}} \lim_{\leftarrow K \in \mathcal{K}(X)} H(K)$$

dont la composée est nulle lorsque (b) est vérifié. L’espace X est donc i-acyclique puisque le morphisme $\lim(_)|_{K}$ est bijectif.

(a\Rightarrowd) Soient $p_1 : X \times Y \to X$ la projection canonique et $f_1 := p_1 \circ f$. Pour prouver (d), il suffit, par Künneth, de montrer que pour tous cocycles à support compact $\omega \in Z_c(X)$ et $\varpi \in Z_c(Y)$, le cocycle

$$f_1^* \omega \cup f_2^* \varpi \in Z_c(Z). \quad (*)$$

est la différentielle d’une cochaîne à support compact de Z.

Or, il existe par hypothèse $\tau \in Z_c(V)$ qui représente ϖ dans $H_c(Y)$. On peut donc remplacer dans $(*)$ $f_2^* \varpi$ par $f_2^* \tau$, et affirmer que $f_2^* \tau$ est à support compact dans $f_2^{-1}(V)$ donc dans Z.

Cela étant, comme X est i-acyclique, on a $f_1^* \omega = d\alpha$ pour une certaine cochaîne α de Z (à support non nécessairement compact), et alors

$$f_1^* \omega \cup f_2^* \tau = d(\alpha \cup f_2^* \tau),$$

où $\alpha \cup f_2^* \tau$ est une cochaîne à support compact de Z puisqu’il en est ainsi de $f_2^* \tau$. Par conséquent, $f^*(\omega \otimes \varpi) = 0 \in H_c(Z)$.

(d\Rightarrowc) Dans (d), on prend Z compact, $Y := \{pt\}$ et $V := Y$. \qed

1.3.2. Complémentaires des parties finies d’un espace i-acyclique. Pour $a \in \mathbb{N}$, la notation « $X \setminus a$ » sera un raccourci pour « X privé de a points ». On rappelle qu’en dehors du cas où X est une variété topologique connexe de dimension ≥ 1, le type d’homéomorphie de $X \setminus a$ dépend des points qu’on enlève. Cependant, lorsque $H^0_c(X) = 0$, p.e. si X est i-acyclique, la suite $0 \to H_c(F)[-1] \to H_c(X \setminus F) \to H_c(X) \to 0$ est exacte pour tout $F \subseteq X$ fini, et la famille $\{\text{Betti}_i^c(X \setminus F)\}_{i \in \mathbb{N}}$, et donc le polynôme de Poincaré $\mathcal{P}_c(X \setminus F)$ pour la cohomologie à support compact, seul dépendent de $\#F$.

1.3.3. Trivialité de la monodromie. Lorsque X est un espace i-acyclique localement connexe, la remarque précédente peut être raffinée pour montrer l’existence d’une action par monodromie de $\Pi_1(F_a(X), \pi)$ sur $H_c(\pi_a^{-1}(\pi))$ où $\pi_a : F_{a+1}(X) \to F_a(X)$ est la projection sur les a dernières coordonnées, et ce, même lorsque cette projection n’est pas localement triviale. Pour le voir, considérons dans un premier temps le cas où $a = 1$.

Notons $\mathcal{K}(C)$ la famille des parties compactes et connexes contenues dans une composante connexe C de X. Étant donnés $z \in Z \in \mathcal{K}(C)$, on dispose
du morphisme naturel de suites exactes courtes
\[
\begin{array}{ccccccc}
0 & \longrightarrow & H_c(Z)[-1] & \longrightarrow & H_c(X \setminus Z) & \longrightarrow & H_c(X) & \longrightarrow & 0 \\
\rho(Z)\downarrow & & \rho(Z)\downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & H_c(z)[-1] & \longrightarrow & H_c(X \setminus z) & \longrightarrow & H_c(X) & \longrightarrow & 0
\end{array}
\]
(o)

où le prolongement par zéro \(\rho(Z) \) est bijectif en degrés cohomologiques \(i \leq 1 \) et induit pour \(i \geq 2 \) l’isomorphisme canonique :
\[
\hat{\rho}(Z)_z : \frac{H^i_c(X \setminus Z)}{H^{i-1}_c(Z)} \cong H^i_c(X \setminus z), \quad \forall z \in Z.
\]
Cette construction est naturelle par rapport à l’inclusion de compacts et font de \(\mathcal{X}(C) \) un système inductif filtrant dont la réunion recouvre \(X \) tout entier. On en déduit un isomorphisme canonique
\[
\lim_{\leftarrow \substack{Z \in \mathcal{X}(C) \quad \text{dans } \mathcal{X}(C)}} \frac{H^i_c(X \setminus Z)}{H^{i-1}_c(Z)} \cong H^i_c(X \setminus x), \quad \forall x \in C,
\]
dont on conclut que l’isomorphisme
\[
\phi(Z)_{y,x} := (\hat{\rho}(Z)_y \circ \hat{\rho}(Z)^{-1}_x) : H_c(X \setminus x) \to H_c(X \setminus y)
\]
est indépendant du compact connexe \(K \supseteq \{x, y\} \subseteq C \). En particulier, une application continue \(\gamma : [0, 1] \to X \) détermine l’isomorphisme
\[
\phi_\gamma := \phi([0, 1])_{\gamma(1), \gamma(0)} = H_c(X \setminus \gamma(0)) \to H_c(X \setminus \gamma(1)) \quad (\circ\circ)
\]
qui seul dépend de extrémités de \(\gamma \). C’est l’action par « monodromie le long du chemin \(\gamma \) », et elle est clairement triviale lorsque \(\gamma(0) = \gamma(1) \).

Ces remarques se généralisent à tout \(a \in \mathbb{N} \).

1.3.4. Proposition. Pour \(a \in \mathbb{N} \), soit \(\pi_a : F_{1+a} (X) \rightarrow F_a (X) \) la projection sur les dernières a coordonnées. Lorsque \(X \) est i-acyclique, il existe pour tout \(\pi \in F_a (X) \) une action par monodromie de \(\Pi_1(F_a, \pi) \) sur \(H_c(\pi_a^{-1}(\pi)) \). Cette action est triviale.

Indication. Commençons par justifier l’existence de l’action par monodromie. Soit \(\gamma := (\gamma_1, \ldots, \gamma_a) : [0, 1] \to F_a (X) \) une application continue. Par compacité, il existe une famille finie \(\mathcal{I} := \{0 = t_0 < t_1, \ldots, t_r = 1\} \) telle que pour chaque \(0 \leq s < r \) la famille \(\{Z(s)_k := \gamma_k([t_s, t_{s+1}])\}_{1 \leq k \leq a} \) est constituée de parties compactes connexes deux à deux disjointes. Notons \(Z(s) := \bigcup_k Z(s)_k \) et reprenons le diagramme \((\circ) \) pour \(\pi := \{z_k \in Z(s)_k\}_k \), on a
\[
\begin{array}{ccccccc}
0 & \longrightarrow & H_c(Z(s))[-1] & \longrightarrow & H_c(X \setminus Z(s)) & \longrightarrow & H_c(X) & \longrightarrow & 0 \\
\rho(s)\downarrow & & \rho(s)\downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \bigoplus_k H_c(z_k)[-1] & \longrightarrow & H_c(X \setminus \pi) & \longrightarrow & H_c(X) & \longrightarrow & 0
\end{array}
\]
(\(\circ\circ \))
où le prolongement par zéro $\rho(s)$ est un isomorphisme en degrés ≤ 1 et induit pour $i \geq 2$ l’isomorphisme canonique :

$$\tilde{\rho}(s)_* : \frac{H_i^c(X \smallsetminus Z(s))}{H_i^{c-1}(Z(s))} \cong H_i^c(X \smallsetminus \Sigma), \quad \forall \Sigma \in Z(s)_1 \times \cdots \times Z(s)_a,$$

d’où l’isomorphisme

$$\phi_a := \rho(s)_{\tau(t_{i+1})} \circ \rho(s)_{\tau(t_a)}^{-1} : H_c(X \smallsetminus \tau(t_a)) \cong H_c(X \smallsetminus \tau(t_{a+1})).$$
La composée des ϕ_a est « l’action par monodromie le long du chemin τ »

$$\phi_\tau : H_c(X \smallsetminus \tau(0)) \to H_c(X \smallsetminus \tau(1)),$$
dont on vérifie aisément qu’il ne dépend que de τ et non pas de la famille $\{\tau\}$.

Montrons maintenant, par induction sur a, que ϕ_τ seul dépend des extrémités de τ. Lorsque $a = 1$, c’est l’indépendance ($\circ \circ$). Dans le cas où $a \geq 2$, notons $\tau' := (\gamma_1, \ldots, \gamma_{a-1})$ le chemin dans $F_{a-1}(X)$. La naturalité de la construction de l’action par monodromie donne lieu à un morphisme des suites courtes, extraites de suites longues de Mayer-Vietoris,

$$0 \to H_c(X \smallsetminus \tau(0)) \to H_c(X \smallsetminus \tau(0)) \oplus H_c(X \smallsetminus \gamma_a(0)) \to H_c(X) \to 0$$

$$\phi_\tau \downarrow \quad \phi_\tau \downarrow \quad \phi_\tau$$

$$0 \to H_c(X \smallsetminus \tau(1)) \to H_c(X \smallsetminus \tau(1)) \oplus H_c(X \smallsetminus \gamma_a(1)) \to H_c(X) \to 0$$
où les lignes sont exactes puisque X est i-acyclique. Comme ϕ_τ et ϕ_τ seul dépendent de leurs extrémités par hypothèse de récurrence, on conclut qu’il en est de même pour ϕ_τ. □

1.3.5. Commentaire. Nous verrons lors de l’étude des suites spectrales de Leray associées à l’application $\pi_a : F_{b+a}(X) \to F_a(X)$, que la trivialité de l’action par monodromie est vraie aussi pour $b > 1$ (cf. 12.3.3).

2. Espaces de configuration généralisés

2.1. Définitions et notations. Nous rappelons quelques notations habituelles et introduisons d’autres nouvelles.

N-1) Pour tout $\ell \in \mathbb{N}$ et pour tout sous-ensemble $Z \subseteq X^m$, « l’ensemble de configuration généralisé dans Z pour le cardinal $\leq \ell$ (resp. $= \ell$) », est

$$\Delta_{\ell} Z := \{(z_1, \ldots, z_m) \in Z \mid \text{Card}\{z_1, \ldots, z_m\} \leq \ell\},$$

$$\Delta_\ell Z := \{(z_1, \ldots, z_m) \in Z \mid \text{Card}\{z_1, \ldots, z_m\} = \ell\}.$$

▷ La notation Δ_ℓ désignera l’un quelconque de ces opérateurs.

▷ Si $m > 0$ on a $\Delta_0 X^m = \emptyset$, si $0 = \ell = m$ on a $\Delta_0 X^0 = \{\bullet\}$, et si $m \in \mathbb{N}$ et $\ell < 0$ on a $\Delta_\ell X^m = \emptyset$. 21
N-2) L’espace des configurations (ordonnées) de n éléments de X, traditionnellement noté \(F_m(X) \) est :
\[
F_m(X) := \Delta_m X^m, \text{ si } m > 0, \quad F_0(X) = \{ \text{pt} \}.
\]

N-3) Pour \(Z \subseteq X^m \) et \(0 < a \in \mathbb{N} \), on note
\[
Z^{[a]} := Z \cap (X^{m-a} \times F_a(X)) = \{ (z_1, \ldots, z_m) \in Z | \text{Card } \{z_{m-a+1}, \ldots, z_m\} = i \}.
\]

N-4) Pour \(0 < a \leq m \in \mathbb{N} \), on note
\[
\pi_a = X^m \rightarrow X^a, \quad \text{(resp. } p_a = X^m \rightarrow X^a)\]
là projection sur les a dernières coordonnées \(\pi_a(\overline{x}) := (x_{m-a+1}, \ldots, x_m) \) (resp. les a premières coordonnées \(\pi_a(\overline{x}) := (x_1, \ldots, x_a) \)). Les restrictions de \(\pi_a \) seront notées par abus de la même manière, par exemple dans l’écriture, pour tout \(Z \subseteq X^m \),
\[
\pi_a : Z^{[a]} \rightarrow F_a(X).
\]

2.1.1. Convention. Lorsque la référence à X sera superflue elle sera parfois omise et les notations \(\Delta_\ell X^m \) et \(F_m(X) \) seront abrégées en \(\Delta_\ell^m \) et \(F^m \).

2.1.2. Topologie et caractéristique d’Euler. Lorsque \(X \) est un espace topologique, \(X^m \) est muni de la topologie produit et tout \(Z \subseteq X^m \) de la topologie induite. Pour \(\ell, m \in \mathbb{N} \), et \(Z \subseteq X^m \), l’espace \(\Delta_\ell^m Z \) admet la décomposition en parties respectivement ouverte et fermée \(\Delta_\ell^m Z = \Delta_\ell Z \sqcup \Delta_{\ell-1} Z \), d’où la suite exacte longue de cohomologie à support compact que l’on rencontrera fréquemment dans ce travail
\[
\cdots \rightarrow H_c^*(\Delta_\ell Z) \rightarrow H_c^*(\Delta_{\ell-1} Z) \rightarrow H_c^*(\Delta_m(X)) \rightarrow \cdots.
\]
Dans le cas où \(Z = X \times F_{m-1}(X) \), on obtient
\[
\cdots \rightarrow H_c^*(F_m(X)) \rightarrow H_c^*(X \times F_{m-1}(X)) \rightarrow H_c^*(\Delta_m(X \times F_{m-1}(X))) \rightarrow \cdots.
\]
où \(\Delta_m(X \times F_{m-1}(X)) \) est la réunion disjointe de \(m-1 \) copies de \(F_{m-1}(X) \), ce qui permet une récurrence pour la détermination de la caractéristique d’Euler de \(F_m(X) \), la proposition suivante en découle aussitôt.

Proposition (4.2.1). Supposons que \(H_c(X) < +\infty \) et notons \(\chi_c(F_m(X)) \) la caractéristique d’Euler de la cohomologie à support compact de \(F_m(X) \). On a
\[
\chi_c(F_m(X)) = \prod_{i=0}^{m-1} \chi(X) - i.
\]
En particulier, on a la série génératrice
\[
\sum_{m \geq 0} \chi_c(F_m(X)) \frac{t^m}{m!} = (1 + t)^\chi(X).
\]
2.1.3. Remarque. On trouve cette série génératrice déjà dans Félix-Thomas ([15], 2000) pour la cohomologie ordinaire et lorsque X est une variété topologique orientable de dimension paire (cas auquel $\chi_c(X) = \chi(X)$).

2.2. Fibrations des espaces de configuration généralisés

Le contenu de cette section n’est pas indispensable au reste de ce travail. La proposition suivante généralise le théorème de trivialité locale de la projection $\pi_a : F_{b+a}(X) \to F_a(X)$ de Fadell et Neuwirth ([13]).

2.2.1. Proposition. Si X une variété topologique et $a \leq \ell \leq m$, l’application $\pi_a : \Delta^\ell \times X^m \to F_a(X)$ est une fibration localement triviale.

Démonstration. Soit G le groupe des homéomorphismes $\phi : X \to X$ dont le support $|\phi| := \{ x \in X \mid \phi(x) \neq x \}$ est compact. Soit $d_X : X \times X \to \mathbb{R}$ une distance. Munissons G de la distance $d_G(\phi, \phi') := \sup_{x \in X} d_X(\phi(x), \phi'(x))$. Le groupe G, muni de la topologie associée à d_G, est un groupe topologique et pour chaque $x \in X$, l’application d’évaluation $ev_x : G \to X$, $\phi \mapsto \phi(x)$ est continue.

Pour $x \in F_a$, notons $IB(x, \epsilon)$ le produit des boules ouvertes $\prod_{i=1}^a IB(x_i, \epsilon)$. Pour $\epsilon > 0$ assez petit, on a $IB(x, \epsilon) \subseteq F_a$ et l’application $\prod_{i=1}^a ev_{x_i} : G \to F_a$ admet des sections locales continues $\sigma : IB(x, \epsilon) \to G$, soit

$$\sigma(y)(x) = y, \quad IB(x, \epsilon) \xrightarrow{\sigma} G \xrightarrow{\prod_{i=1}^a ev_{x_i}} F_a$$

L’application

$$IB(x, \epsilon) \times \Delta^{\ell_a} \xrightarrow{\pi^{-1}(x)} \Delta^{\ell_a} \times X^m \subseteq \Delta^{\ell_a} \times X^m, \quad \sigma(y)(\bar{w})$$

avec $\bar{w} = (x, x_{a+1}, \ldots, x_m)$ et $\sigma(y)(\bar{w}) = (y, \sigma(y)(x_{a+1}), \ldots, \sigma(y)(x_m))$ est alors un homéomorphisme et une trivialisation de π_a au-dessus de $IB(x, \epsilon)$.

De manière entièrement analogue, l’application

$$IB(x, \epsilon) \times \Delta^{\ell_a} \xrightarrow{\pi^{-1}(x)} \Delta^{\ell_a} \times F_{b+a}(X), \quad \sigma(y)(\bar{w})$$

est une trivialisation locale de π_a. La fibre $\pi^{-1}_a(x)$ est canoniquement homéomorphe au sous-espace $F_b(X \setminus x) \subseteq X^b$. □
2.3.1. Partitions d’un ensemble. Si X est une variété topologique connexe de dimension > 1, il existe des homéomorphismes $\phi : X \to X$ tels que $\phi(\Delta) = \overline{\Delta}$, et les fibres de $\pi_a : \Delta_{\leq \ell} X^m \to F_a$ sont deux à deux homéomorphes (cf. 1.3.2). Par contre, si X n’est pas connexe, cette propriété peut être en défaut. Par exemple, si $X = U \sqcup V$ est une réunion disjointe d’ouverts non vides, les fibres de $\pi_2 : F_3(X) \to F_2(X)$ en $(x, y) \in F_2(X)$ sont de la forme :

$$U \setminus \{x, y\} \sqcup V, \quad U \sqcup V \setminus \{x, y\}, \quad U \setminus \{x\} \sqcup V \setminus \{y\}$$

suivant que $(x, y \in U)$, que $(x, y \in V)$, ou que $(x \in U$ et $y \in V)$.

Il est facile de trouver des exemples pour U et V tels que, non seulement il n’y a pas d’homéomorphisme entre ces trois types de fibres, mais il n’y a pas, non plus, d’isomorphisme entre leurs cohomologies. Lorsque X est i-acyclique de type fini (7), la situation change puisque les nombres de Betti des fibres sont constants (1.3.2). Par exemple, si $U = \mathbb{R}^2$ et $V = \mathbb{R} \times S^1$, on a $H_4(\pi_a^{-1}(u, v)) = k(0)^2 \oplus k(1)^3$ quel que soit (u, v).

Dans ce cas, les algèbres de cohomologie à support compact $H_*(\pi_a^{-1}(u, v))$ sont isomorphes, mais pas les algèbres de cohomologie ordinaire qui valent

$$\begin{align*}
H(U \setminus \{u, v\}) \oplus H(V) &= k[X, Y] \oplus k[Z] / (X, Y)^2 \\
H(U) \oplus H(V \setminus \{u, v\}) &= k \oplus k[X, Y, Z] / (X, Y, Z)^2
\end{align*}$$

et où l’on remarque que dans la première Annul$_{H^0}(H^1) = 0$, tandis que dans la seconde Annul$_{H^0}(H^1) = k \cdot (1, 0)$.

Tout ceci indique que même dans le cas où X est une variété topologique i-acyclique, les monodromies des systèmes locaux :

$$\begin{align*}
\mathcal{H}_{i!}(\Delta_{\leq \ell} X^m) &:= \mathbb{R}^i \pi_a! k \otimes \Delta_{\leq \ell} X^m \\
\mathcal{H}^i(\Delta_{\leq \ell} X^m) &:= \mathbb{R}^i \pi_a^* k \otimes \Delta_{\leq \ell} X^m
\end{align*}$$

de fibres respectives $H_c(\pi_a^{-1}\Delta)$ et $H(\pi_a^{-1}\Delta)$ (en dualité), ont peu de chances d’être triviales sur $F_a(X)$ tout entier. On verra dans la section 12.3, consacrée à leur étude, que ces faisceaux sont néanmoins constants sur toute composante connexe de $F_a(X)$ (cf. comm. 1.3.5 et th. 12.3.2-(c)).

2.3. Sous-espaces $F_p(X)$ et décomposition de $\Delta_{\leq \ell} X^m$

2.3.1. Partitions d’un ensemble. Pour tout ensemble E et tout $\ell \in \mathbb{N}$, on note $\mathfrak{P}_\ell(E)$ l’ensemble des partitions de E en ℓ parties non vides. On pose ensuite $\mathfrak{P}(E) = \bigcup_{\ell \in \mathbb{N}} \mathfrak{P}_\ell(E)$.

7 On dira que X est de type fini lorsque $H_c(X)$ et $H(X)$ sont de dimension finie.
Une partition \(p \in \mathfrak{P} \) définit une relation d’équivalence ‘\(\sim_p \)’ sur \(E \) par

\[
(x \sim_p y) \Leftrightarrow (\exists I \in p)(\{x, y\} \subseteq I).
\]

Pour tout \(m \in \mathbb{N} \), on note \(\mathfrak{P}_m(m) := \mathfrak{P}_m([1, m]) \).

2.3.2. Les sous-espaces \(F_p(X) \).

Si \(p \in \mathfrak{P}_m(m) \), on notera \(F_p(X) \) l’ensemble des \(m \)-uplets \((x_1, \ldots, x_m)\) tels que \((x_i = x_j) \Leftrightarrow (i \sim_p j)\). On a \(F_p(X) \sim F_m(X) \).

2.3.3. Proposition.

Pour \(0 \leq \ell \leq m \in \mathbb{N} \), on a la décomposition ouverte :

\[
\Delta_\ell X^m = \bigcap_{p \in \mathfrak{P}_\ell(m)} F_p(X) \tag{\ast}
\]

(cf. notation 2.1-(N-2)) où où \(F_p(X) \sim F_m(X) \). En particulier,

\[
H_\ell(\Delta_\ell X^m) = H_\ell(F_m(X))^{|\mathfrak{P}_\ell(m)|},
\]

où le nombre \(|\mathfrak{P}_\ell(m)|\) est le nombre de Stirling de seconde espèce (cf. 14.4) :

\[
|\mathfrak{P}_\ell(m)| = \binom{m}{\ell} := \frac{1}{\ell!} \sum_{j=0}^{\ell} (-1)^{\ell-j} \binom{\ell}{j} j^m.
\]

De plus,

a) Si \(\{C_\alpha\}_{\alpha \in \mathfrak{A}} \) est la famille des composantes connexes de \(X \). On a la décomposition en parties ouvertes

\[
F_\ell(X) = \bigcap_{e:[1, \ell] \to \mathfrak{A}} F(C_{e_1} \times \cdots \times C_{e_\ell}) = \bigcap_{e:[1, \ell] \to \mathfrak{A}} \bigcap_{\alpha \in \text{im}(e)} F(e^{-1}(\alpha), C_\alpha).
\]

b) Si \(X \) est une variété topologique connexe de dimension \(> 1 \), l’espace \(F_\ell(X) \) est connexe et la décomposition (\(\ast \)) est la décomposition de \(\Delta_\ell X^m \) en composantes connexes.

2.4. Sur la dimension cohomologique et la finitude de \(\Delta_{\ell, 1} X^m \)

2.4.1. Définition.

La « dimension cohomologique d’un espace \(X \) (sur \(k \))», notée \(d_X := \dim_{\text{ch}}(X) \), est la borne supérieure des \(d \in \mathbb{N} \) pour lesquels il existe un ouvert \(U \subseteq X \) tel que \(H^d(U; k) \neq 0 \) (cf. [4], V, prop. 1.16, p. 55).

2.4.2. Proposition.

Soient \(0 \leq \ell \leq m \in \mathbb{N} \). Si \(X \) est respectivement localement compact, localement connexe, contractile, il en est de même de \(\Delta_{\ell, 1} X^m \).

De plus,

a) Le sous-complexe \((\Omega^\bullet X, d_\bullet) := \tau_{\leq d_X}(A^\bullet(X; k))\) du complexe des germes de chaînes d’Alexander-Spanier, à savoir

\[
\Omega^{\leq d_X} = A^\ell(X; k), \quad \Omega^{d_X} := \ker(d_X), \quad \Omega^{> d_X} = 0,
\]

25
est une résolution c-molle de \(k_X \). Pour toute partie \(Y \subseteq X \) localement fermée, les complexes \(\Gamma(Y; (\Omega^*_{\mathcal{X}}, d_\bullet)) \) et \(\Gamma_c(Y; (\Omega^*_{\mathcal{X}}, d_\bullet)) \) calculent respectivement \(H(Y; k) \) et \(H_c(Y; k) \).

b) On a \(\dimch(\Delta_{\leq \ell} X^m) = \ell d_X \).

c) Si \(\dim_k H_c(X; k) < +\infty \), on a \(\dim_k H_c(\Delta_{\leq \ell} X^m; k) < +\infty \).

(b) Par induction sur \(m \). Le cas \(m = 1 \) étant trivial, supposons l’assertion établie pour tous \(\ell \leq m' \) où \(m' \leq m \). Si \(\ell < m + 1 \), la description de \(\Delta_{\leq \ell} X^{m+1} \) en termes de \(F_\ell(X) \) (2.3.3), donne aussi \(\dimch(\Delta_{\leq \ell} X^{m+1}) = \ell d_X \). Supposons maintenant que \(\dimch(\Delta_{\leq \ell} X^m) = (\ell-1) d_X \) et prouvons que l’on a \(\dimch(\Delta_{\leq \ell} X^{m+1}) = \ell d_X \). Pour tout ouvert \(U \subseteq \Delta_{\leq \ell} X^m \), on a la suite exacte longue

\[\cdots \rightarrow H^1_c(U \cap \Delta_{\leq \ell - 1} X^{m+1}) \rightarrow H^d_c(U \cap \Delta_{\leq \ell} X^{m+1}) \rightarrow H^d_c(U) \rightarrow \cdots \quad (\ast) \]

Alors,

- si \(\ell < m + 1 \), on a \(H^d_c(U) = 0 \) pour tout \(d > \ell d_X \) et tout ouvert \(U \), de sorte que \(\dimch(\Delta_{\leq \ell} X^{m+1}) \leq \ell d_X \). D’autre part, on a aussi \(\ell d_X = \dimch(\Delta_{\leq \ell} X^{m+1}) \leq \dimch(\Delta_{\leq \ell} X^{m+1}) \), et l’égalité annoncée s’ensuit.

- si \(\ell = m + 1 \), on a \(\Delta_{\leq m+1} X^{m+1} = X^{m+1} \) et \(\dimch(X^{m+1}) = (m+1) d_X \).

Ce résultat reporté dans (\ast) donne l’égalité \(\dimch(\Delta_{m+1} X^{m+1}) = m+1 \).

(c) On raisonne par induction sur \(\ell \). Si \(\ell \leq 1 \), l’assertion est claire, quel que soit \(m \in \mathbb{N} \). Dans le cas général, on suppose la proposition établie pour \(\ell - 1 \) et tout \(m \in \mathbb{N} \). Par la suite exacte longue (2.1.2)

\[\rightarrow H^*_{c}(\Delta_{\leq \ell} X^{m}) \rightarrow H^*_{c}(\Delta_{\leq \ell} X^{m}) \rightarrow H^*_{c}(\Delta_{\leq \ell - 1} X^{m}) \rightarrow, \]

on a \(\dim H_c(\Delta_{\leq \ell} X^{m}) < +\infty \), si et seulement si, \(\dim H_c(\Delta_{\leq \ell} X^{m}) < +\infty \), donc, si et seulement si \(\dim H_c(F_{\ell}(X)) < +\infty \) (2.3.3). Or, l’utilisation de la suite exacte longue

\[\rightarrow H^*_{c}(F_{\ell}(X)) \rightarrow H^*_{c}(X)^{\otimes \ell} \rightarrow H^*_{c}(\Delta_{\leq \ell - 1} X^{\ell}) \rightarrow, \]

associée à la décomposition \(X^{\ell} = F_{\ell}(X) \sqcup \Delta_{\leq \ell - 1} X^{\ell} \), montre qu’une condition suffisante pour \(\dim H_c(F_{\ell}(X)) < +\infty \) est que \(\dim H_c(\Delta_{\leq \ell - 1} X^{\ell}) < +\infty \), ce qui fait partie de l’hypothèse inductive. \(\Box \)

\section*{3. Théorèmes de scindage et complexes fondamentaux}

\subsection*{3.1. Théorème de scindage pour \(\Delta_{\leq \ell} X^{m} \)}

Dans ce travail, en parlant d’une suite exacte longue, on dira qu’elle est « scindée » lorsque un morphisme sur trois est nul. La suite exacte longue se
Le théorème suivant donne les deux résultats de scindage de suites longues de cohomologie à support compact qui ont motivé notre intérêt pour les espaces i-acycliques. Nous verrons que lorsque X est localement connexe, un tel scindage est intimement lié à la dégénérescence des suites spectrales de Leray (cf. 12.3.2) associées aux fibrations $\pi_a : \Delta_a ^{[m]} \to F_a (X)$ de 2.2.

3.1.1. Théorème de scindage pour $\Delta_{\leq \ell} X^m$

a) Pour $m \in \mathbb{N}$, si X est i-acylique, le morphisme de restriction

$$H_c (X \times F_m (X)) \to H_c (\Delta_{\leq m} (X \times F_m (X)))$$

est nul. La suite exacte longue de cohomologie associée à la décomposition $X \times F_m = (F_{m+1} (X)) \sqcup (\Delta_{\leq m} (X \times F_m))$ est scindée et la suite extraite :

$$0 \to H_c (F_m (X)) [-1]^m \to H_c (F_{m+1} (X)) \to H_c (X \times F_m (X)) \to 0,$$

est exacte.

b) Pour $0 < \ell \leq m \in \mathbb{N}$, si X est i-acylique, le morphisme de restriction

$$H_c (\Delta_{\leq \ell} X^m) \to H_c (\Delta_{\leq \ell-1} X^m)$$

est nul. La suite exacte longue de cohomologie associée à la décomposition $(\Delta_{\leq \ell} X^m) = ((\Delta_{\leq \ell} X^m)) \sqcup (\Delta_{\leq \ell-1} X^m)$ est scindée et la suite extraite :

$$0 \to H_c (\Delta_{\leq \ell-1} X^m) [-1] \to H_c (\Delta_{\leq \ell} X^m) \to H_c (\Delta_{\leq \ell} X^m) \to 0,$$

est exacte.

c) Si X est une variété topologique orientable, la i-acylicité de X est une propriété équivalente à celle de l’annulation des morphismes (\dagger) et $(\ddagger\ddagger)$.

Démonstration. (a) L’ensemble $\Delta_{\leq m} (X \times F_m)$ est celui des $(m+1)$-uplets d’éléments de X de la forme (y, x_1, \ldots, x_m) avec $x_i \neq x_j$ si $i \neq j$ et où $y \in \{x_1, \ldots, x_m\}$. On comprend donc que dans le diagramme commutatif

$$\Delta_{\leq m} (X \times F_m) \underbrace{\longrightarrow}_{\text{f}_2} X \times F_m \underbrace{\longrightarrow}_{p_2} F_m$$

où f est l’inclusion fermée, l’application $f_2 := p_2 \circ f$ est un revêtement trivial à m nappes. Les hypothèses de 1.3.1-(d) sont clairement vérifiées et le morphisme (\dagger) est bien nul.
(b) Si $\ell = 1$, on a $\Delta_{\leq 1}X^m \simeq X$ et $\Delta_{\leq 0}X^m = \{\text{pt}\}$, donc $(\ddagger\ddagger)$ est immédiate. Nous sommes ainsi réduits aux cas où $\ell > 1$. On raisonne par récurrence pour $m \geq 2$. Supposons l’assertion établie pour $(m-1)$, et soit $1 < \ell \leq m$. Par la factorisation : $\Delta_{\leq \ell-1}^m \subseteq X \times \Delta_{\leq \ell-1}^{m-1} \subseteq \Delta_{\leq \ell}^m$, l’assertion résulte de montrer que le morphisme de restriction $H_c(X \times \Delta_{\leq \ell-1}^{m-1}) \to H_c(\Delta_{\leq \ell-1}^m)$ est nul. On considère pour cela le diagramme commutatif

$$
\begin{align*}
\xymatrix{ f_2^{-1}(\Delta_{\ell-1}^{m-1}) \ar[r]_{\iota} & \Delta_{\leq \ell-1}^m \ar[r]^f & X \times \Delta_{\leq \ell-1}^{m-1} \\
\Delta_{\ell-1}^{m-1} \ar[r]_{j} & \Delta_{\leq \ell-1}^m
}
\end{align*}
$$

où f est l’inclusion (fermée) et j l’inclusion (ouverte).

La restriction f_2' de $f_2 := p_2 \circ f$ est propre. En effet, $f_2'^{-1}(\Delta_{\ell-1}^{m-1})$ est l’ensemble des m-uplets $(y,x_1,\ldots,x_{m-1}) \in \Delta_{\ell-1}^m$ tels que $\#\{x_1,\ldots,x_{m-1}\} = \ell-1$ et $y \in \{x_1,\ldots,x_{m-1}\}$, de sorte que f_2' est une fibration trivial à $\ell-1$ nappes au-dessus de chaque composante ouverte F_p de $\Delta_{\ell-1}^{m-1}$ (2.3.3-(b)). Comme $\ell-1 \geq 1$ le morphisme $j_! : H_c(\Delta_{\ell-1}^{m-1}) \to H_c(\Delta_{\leq \ell-1}^m)$ est surjectif par hypothèse de récurrence. Ainsi, toutes les conditions d’application de 1.3.1-(d) sont vérifiées et $f^* = 0$. Le morphisme $(\ddagger\ddagger)$ est donc bien nul.

(c) En prenant $m = 1$ dans (a), ou $m = \ell = 2$ dans (b), l’espace X est \cup-acyclique donc i-acyclique d’après 1.2.4-(c). □

3.1.2. Remarques sur le théorème de scindage

a) Les preuves des assertions 3.1.1-(a,b) montrent aussi l’exactitude des suites courtes

$$
\begin{align*}
0 & \to H_c(\Delta_mZ)[-1]^m \to H_c(\Delta_{m+1}(X \times \Delta_mZ)) \to H_c(X \times \Delta_mZ) \to 0 \\
0 & \to H_c(\Delta_{\leq \ell-1}Z)[-1] \longrightarrow H_c(\Delta_{\ell}Z) \longrightarrow H_c(\Delta_{\leq \ell}Z) \to 0,
\end{align*}
$$

où $Z \subseteq X^m$ est de la forme $Y_1 \times \cdots \times Y_m$ où l’ensemble $\{Y_1,\ldots,Y_m\}$ est totalement ordonné par la relation d’inclusion et où les Y_i sont des sous-espaces i-acycliques de X.

b) Dans (b), l’hypothèse $\ell \leq m$ est nécessaire. En effet, lorsque $\ell > m$, on a $\Delta_{\leq \ell-1}X^m = \Delta_{\leq \ell}X^m = X^m$ et le morphisme $(\ddagger\ddagger)$ est l’identité. Dans un tel cas, on a aussi $\Delta_{\ell-1}^{m-1} = \emptyset$ et l’argument à la fin de la démonstration précédente, basé sur la surjectivité de $j_!$, ne s’applique pas. (Cette remarque est un rapport avec la remarque 3.3.2.)

3.1.3. Remarque et corollaire. Notons \hat{X} le complémentaire dans X d’un singleton $\{\bullet\}$. Lorsque X est i-acyclique, il en est de même de \hat{X} et nous
avons grâce à 3.1.1-(a) un morphisme de suites exactes courtes

\[0 \to H_c(F_m(\hat{X}))[-1]^m \to H_c(F_{m+1}(\hat{X})) \to H_c(\hat{X}) \otimes H_c(F_m(\hat{X})) \to 0 \]

qui permet de montrer, par induction sur \(m \geq 1 \), que le prolongement par zéro \(H_c(F_m(\hat{X})) \to H_c(F_m(X)) \) est un morphisme surjectif.

Notons aussi que

\[F_m(X) \setminus F_m(\hat{X}) := \bigsqcup_{i=1}^m F_{m-1}(\hat{X}) \]

où \(F_{m-1}(\hat{X}) \) désigne l’ensemble des \(x \in F_m(X) \) avec \(x_i = \bullet \). On a une identification évidente \(F_{m-1}(\hat{X}) = F_m(F_{m-1}(\hat{X})) \) et \(F_m(X) \setminus F_m(\hat{X}) \) se voit comme réunion disjointe fermée de \(m \) copies de \(F_{m-1}(\hat{X}) \). On a ainsi montré le corollaire suivant (utilisé dans 10.6.1).

Corollaire. Si \(X \) est \(i \)-acyclique, la suite de \(S_m \)-modules gradués

\[0 \to H_c(F_m(X))[-1] \to H_c(F_m(X)) \to H_c(F_m(X)) \to 0 \]

est exacte.

3.1.4. **Commentaire à propos des hypothèses d’acyclicité.** Dans le théorème de scindage 3.1.1, l’hypothèse d’\(i \)-acyclicité n’est pas optimale même lorsque \(X \) est une variété topologique. En effet, nous verrons dans 13.10 que la bouteille de Klein épointée vérifie les assertions (a) et (b) alors qu’elle n’est pas \(i \)-acyclique. On y montre aussi qu’elle n’est pas totalement \(\cup \)-acyclique (1.2), mais qu’elle est \(\cup \)-acyclique. En somme, la \(i \)-acyclicité est une condition suffisante et la \(\cup \)-acyclicité est une condition nécessaire, mais en dehors du cas où \(X \) est une variété topologique orientable, nous ne connaissons pas de condition sur \(X \) qui soit à la fois nécessaire et suffisante pour avoir le théorème de scindage. Nous verrons cependant, plus loin, que la condition de \(i \)-acyclicité est bien nécessaire et suffisante pour la localisation des scindages en question (12.2.4), ce qui conforte l’idée que la \(i \)-acyclicité est la bonne hypothèse de travail.

3.2. **Complexe fondamental de \(X \) pour \(\Delta_{\leq \ell} X^m \)**

3.2.1. **Action du groupe symétrique.** L’espace \(X^m \) est muni de l’action du groupe symétrique \(S_m \) par permutation des coordonnées. On pourra noter cette action par \(\delta_m : X^m \), et de même pour celles induites sur des sous-espaces \(S_m \)-stables \(Z \subseteq X^m \), leurs cohomologies \(\delta_m : H_1^i(Z) \), \(\delta_m : H^1(Z) \), etc... Les espaces de configuration généralisés \(\Delta_{\leq \ell} X^m \) et leurs cohomologies sont munis de cette action de \(S_m \).
3.2.2. Définition. Pour \(\ell \leq m \in \mathbb{N} \), le complexe fondamental de \(X \) pour \(\Delta_{\leq \ell}X^m \) est, par définition, la suite des morphismes de \(S_m \)-modules gradués
\[
0 \to H_c(1)[−\ell + 1] \to \cdots \to H_c(\ell−1)[−1] \to H_c(\ell) \to H_c(\Delta_{\leq \ell}X^m) \to 0 \quad (\ast)
\]
avec \(H_c(a) := H_c(\Delta_aX^m) \), où le morphisme \(H_c(a−1)[−1] \to H_c(a) \) est la composée des morphismes
\[
H_c(\Delta_{a−1}^m)[−1] \xrightarrow{\iota_{a−1}[−1]} H_c(\Delta_{\leq a−1}^m)[−1] \xrightarrow{c_a} H_c(\Delta_a^m),
\]
 où \(\iota \) est le prolongement par zéro et \(c \) est le morphisme de liaison de la suite longue de cohomologie à support compact associée à la décomposition \(S_m \)-stable \(\Delta_{\leq a}^m = \Delta_a^m \sqcup \Delta_{\leq a−1}^m \) (2.1.2).

La suite (\(\ast \)) est un complexe puisque, par construction, \(\iota_a \circ c_a = 0 \).

3.2.3. Théorème
\(a) \) Les complexes fondamentaux d’un espace \(i \)-acyclique sont exacts.
\(b) \) Une variété topologique orientable est \(i \)-acyclique, si et seulement si, ses complexes fondamentaux sont exacts.

Démonstration. (a) Immédiat d’après 3.1.1-(b), et (b) s’ensuit par 3.1.1-(c).□

3.3. Le théorème de scindage pour \(\Delta_{\leq \ell}F^\lambda(X) \)

Nous étendons dans cette section le théorème de scindage 3.1.1-(b) à d’autres espaces que \(X^m \), à savoir : aux produits \(F^\lambda := F_{\lambda_1} \times \cdots \times F_{\lambda_r} \), et aux espaces \(F^q \subseteq X^m \) où \(q \) est une partition de \([1,m]\) (cf. 3.4).

Ces généralisations seront utilisées dans la section 10 pour la détermination du caractère de la représentation de \(S_m : H_c(F_m(X)) \), notamment pour expliciter la trace de l’action sur \(H_c(F_m(X)) \) d’une permutation \(\alpha \in S_m \) dont la décomposition en produit cycles disjoints est de type \(\lambda \) (cf. 10.5.3).

On considère les suites (peut-être vides) de nombres entiers \(\lambda = (\lambda_1, \ldots, \lambda_r) \) avec \(\lambda_i > 0 \) et \(r \geq 0 \). Lorsque \(r > 0 \), on note \(|\lambda| := \sum \lambda_i \) et on pose
\[
F^\lambda(X) := F_{\lambda_1}(X) \times \cdots \times F_{\lambda_r}(X).
\]
Lorsque \(\lambda \) est la suite vide (), on conviendra que \(|()| = 0 \) et que \(F^()(X) = \{pt\} \).

Par cette convention, l’opération de concaténation des suites est compatible au produit d’espaces, i.e. \(F_{\lambda \vee \lambda'} = F_{\lambda} \times F_{\lambda'} \). On remarquera, pour \(m = |\lambda| > 0 \), les égalités évidentes
\[
F^{(1,\ldots,1)}(X) = X^m, \quad F^{(m)}(X) = F_m(X) = \Delta_m F^{(1,\ldots,1)}(X).
\]
3.3.1. Théorème de scindage. Soit X un espace i-acyclique.

a) Pour tout $a \geq 0$ et tout $\ell \in \mathbb{N}$, la décomposition en parties respectivement ouverte et fermée

$$\Delta_\ell (X \times F_a \times F^\lambda) = \Delta_\ell (F_{1+a} \times F^\lambda) \sqcup \Delta_\ell (\Delta_a (X \times F_a) \times F^\lambda)$$

donne lieu à une suite exacte longue de cohomologie dont la suite courte extraite

$$0 \to H_c(\Delta_\ell (F_{1+a} \times F^\lambda)) \to H_c(\Delta_\ell (X \times F_a \times F^\lambda)) \to$$

$$H_c(\Delta_\ell (\Delta_a (X \times F_a) \times F^\lambda)) \to 0$$
est exacte.

b) Pour tout $\ell \leq |\lambda|$, le morphisme de restriction

$$H_c(\Delta_{<\ell}(F^\lambda)) \to H_c(\Delta_{<\ell-1}(F^\lambda))$$
est nul. La suite exacte longue de cohomologie associée à la décomposition en parties respectivement ouverte et fermée

$$\Delta_{<\ell}(F^\lambda) = \Delta_\ell (F^\lambda) \sqcup \Delta_{<\ell-1}(F^\lambda)$$
est scindée et les suites courtes extraites :

$$0 \to H_c(\Delta_{<\ell-1}(F^\lambda))[-1] \to H_c(\Delta_\ell (F^\lambda)) \to H_c(\Delta_{<\ell}(F^\lambda)) \to 0,$$
sont exactes.

Démonstration. L’assertion (a) est évidente si $a = 0$. Pour $a > 0$, notons $m := 1 + a + |\lambda|$ et considérons l’inclusion

$$X \times F_a \times F^\lambda \subseteq X \times X^a \times X^{|\lambda|} = X^m.$$
Comme $m > 0$, le cas $\ell = 0$ est immédiat, on peut donc supposer que $\ell > 0$.
Nous avons montré dans 2.3.3 que $\Delta_\ell X^m$ se décompose en réunion disjointe des sous-espaces ouverts $F_p(X)$ où $p := \{I_1, I_2, \ldots, I_r\}$ désigne une partition de $[1, m]$ en ℓ parties non vides. Une telle partition p définit sur $[1, \ell]$ une relation d’équivalence en posant $(i \sim j)$ (cf. 2.3.1). L’ensemble F_p est alors l’ensemble des (x_1, \ldots, x_m) tels que $(x_i = x_j) \iff (i \sim j)$. Il s’ensuit que $X \times F_a \times F_{\lambda_1} \times \cdots \times F_{\lambda_r}$ est la réunion des F_p tels que la relation $(i \sim j)$ *n’est pas vérifiée* lorsque i, j sont des coordonnées correspondantes à une même composante F_a ou F_{λ_i}. On obtient ainsi une partition de $\Delta_\ell (X \times F_a \times F^\lambda)$ en sous-espaces ouverts et fermés de $\Delta_\ell X^m$. Ces mêmes remarques s’appliquent clairement à $\Delta_\ell (F_{1+a} \times F^\lambda)$ qui est alors aussi un sous-espace ouvert et fermé de $\Delta_\ell X^m$, de même donc qu’à son complémentaire $\Delta_\ell (\Delta_a(X \times F_a) \times F^\lambda)$. On en déduit la décomposition directe

$$H_c(\Delta_\ell (X \times F_a \times F^\lambda)) = H_c(\Delta_\ell (F_{1+a} \times F^\lambda)) \oplus H_c(\Delta_\ell (\Delta_a(X \times F_a) \times F^\lambda)),$$
qui implique aussitôt (a).
(b) Remarque préliminaire. Montrons que si $Z \subseteq X^m$ est telle que

$$(H_c(\Delta_{\leq\ell}Z) \rightarrow H_c(\Delta_{\leq\ell-1}Z)) = 0, \quad \forall \ell \leq m,$$

alors, on a aussi

$$(H_c(\Delta_{\leq\ell}(X \times Z)) \rightarrow H_c(\Delta_{\leq\ell-1}(X \times Z))) = 0, \quad \forall \ell \leq m + 1. \quad (**)$$

On peut supposer $\ell - 1 > 0$. L’inclusion $\Delta_{\leq\ell-1}(X \times Z) \subseteq \Delta_{\leq\ell}(X \times Z)$ se factorise en

$$\Delta_{\leq\ell-1}(X \times Z) \xrightarrow{f} X \times \Delta_{\leq\ell-1}Z \xrightarrow{f} \Delta_{\leq\ell}(X \times Z),$$

et l’on a le diagramme commutatif

$$f_2^{-1}(\Delta_{\leq\ell-1}Z) \xrightarrow{f} X \times \Delta_{\leq\ell-1}Z \xrightarrow{f} X \times \Delta_{\leq\ell-1}Z$$

où $f_2 := p_2 \circ f$. On raisonne alors comme dans la preuve de 3.1.1-(b). L’application $j_1 : H_c(\Delta_{\leq\ell-1}Z) \rightarrow H_c(\Delta_{\leq\ell-1}Z)$ est surjective par l’hypothèse (\ast). Si $\Delta_{\leq\ell-1}Z = \emptyset$, on déduit aussitôt que $H_c(X \times \Delta_{\leq\ell-1}Z) = 0$ et alors $f^* = 0$. Autrement, la restriction f_2^* de f_2 est propre ($\ell - 1 > 0$), les hypothèses de 1.3.1-(d) sont donc vérifiées et $f^* = 0$. Tout ceci implique (**).

Prouvons (b) par induction sur le nombre r des termes de $\lambda = (\lambda_1, \ldots, \lambda_r)$.

$r \leq 1$. Si $r = 0$, on a $\ell \leq 0$ et donc $\Delta_{\leq\ell-1}(_) = \emptyset$. Si $r = 1$, F^λ est de la forme F_a, mais alors $\ell \leq a$ et $\Delta_{\leq\ell}F_a \neq \emptyset$ seulement si $\ell = a$, auquel cas $\Delta_{\leq\ell-1}F_a = \emptyset$.

$r > 1$. Supposons (b) établie pour toute suite λ comportant $r \geq 1$ termes. Soit $\lambda = (\lambda_1, \ldots, \lambda_r)$ et montrons, par induction sur l’entier a, que $F_a \times F^\lambda$ vérifie également (b).

Le cas $a = 1$ était l’objet de la remarque préliminaire. Supposons maintenant que $F_a \times F^\lambda$ vérifie (b) et montrons qu’il en est de même de $F_{1+a} \times F^\lambda$.

Pour $\ell \leq 1 + a + |\lambda|$, on considère le diagramme commutatif (\mathcal{D}_ℓ) suivant où l’on a omis d’écrire le symbole $H_c(_)$ pour gagner de la place. On y a noté aF_a, l’espace qui consiste en a copies de l’espace F_a, ce qui correspond très exactement à $\Delta_{\leq a}(X \times F_a)$. Le diagramme (\mathcal{D}_ℓ) se prolonge indéfiniment par ses quatre côtés via les suites longues de cohomologie à support compact. Dans ce prolongement, le nombre ℓ reste bien sûr constant et seuls les degrés cohomologiques changent. Les quatre flèches marquées ‘\circledast’ y sont nulles. Cela résulte, pour la colonne et la ligne centrales, respectivement par l’assertion (a) et par la remarque préliminaire.

Lorsque $\ell \leq a + |\lambda|$, l’hypothèse inductive s’applique et les flèches ‘\circledast’ sont nulles. Le morphisme β et surjectif et on en déduit la surjectivité de α. Les flèches ‘\circledast’ sont donc nulles. Comme ces propriétés sont également vérifiées sur le diagramme $(\mathcal{D}_{\ell-1})$ et que les flèches ‘\circledast’ de $(\mathcal{D}_{\ell-1})$ sont les flèches ‘\circledast’ de (\mathcal{D}_ℓ), on conclut que ces dernières sont nulles. À partir de là, une chasse
3.3.2. Remarque. On prendra garde du fait que l’analogue de 3.3.1-(a) à la récurrence par rapport au nombre
ce qui prouve l’assertion (b) pour l’espace
(n’est pas vrai pour

\[
\begin{align*}
\otimes &\rightarrow \Delta_{\leq \ell-1}(F_{1+a} \times F^\lambda)[-1] \rightarrow \Delta_\ell(F_{1+a} \times F^\lambda) \rightarrow \Delta_{\leq \ell}(F_{1+a} \times F^\lambda) \rightarrow \otimes \\
\begin{array}{c}
\downarrow \\
\otimes \rightarrow \Delta_{\leq \ell-1}(X \times F_a \times F^\lambda)[-1] \rightarrow \Delta_\ell(X \times F_a \times F^\lambda) \rightarrow \Delta_{\leq \ell}(X \times F_a \times F^\lambda) \rightarrow \otimes \\
\begin{array}{c}
\downarrow \\
\otimes \rightarrow \Delta_{\leq \ell-1}(aF_a \times F^\lambda)[-1] \rightarrow \Delta_\ell(aF_a \times F^\lambda) \rightarrow \Delta_{\leq \ell}(aF_a \times F^\lambda) \rightarrow \otimes \\
\end{array}
\end{array}
\end{align*}
\]

Diagramme \(\mathcal{D}_\ell\)

au diagramme élémentaire montre que les flèches ‘\(\otimes\)’ sont également nulles, ce qui prouve l’assertion (b) pour l’espace \(F_{1+a} \times F^\lambda\) et pour \(\ell \leq a + |\lambda|\).

Soit maintenant \(\ell = 1 + a + |\lambda|\). Les flèches de la première colonne de \((\mathcal{D}_{1+a+|\lambda|})\) marquées ‘\(\otimes\)’ sont nulles puisqu’elles coïncident avec les flèches ‘\(\otimes\)’ du diagramme \((\mathcal{D}_{a+|\lambda|})\) dont la nullité a déjà été établie. On en déduit l’injectivité de \(\gamma\), et donc la nullité des flèches ‘\(\otimes\)’. Ceci prouve l’assertion (b) pour l’espace \(F_{1+a} \times F^\lambda\) et pour \(\ell = 1 + a + |\lambda|\).

La récurrence par rapport à \(a\) est terminée et l’assertion (b) est vérifiée par \(F_a \times F^\lambda\) pour tout \(a \in \mathbb{N}\) et pour tout \(\ell \leq a + |\lambda|\). Ceci à son tour termine la récurrence par rapport au nombre \(r\) dans \(\lambda = (\lambda_1, \ldots, \lambda_r)\). L’assertion (b) est par conséquent vérifiée par \(F^\lambda\) pour tout \(\lambda = (\lambda_1, \ldots, \lambda_r)\), pour tout \(r \in \mathbb{N}\) et pour tout \(\ell \leq |\lambda|\). C.Q.F.D

3.3.2. Remarque. On prendra garde du fait que l’analoge de 3.3.1-(a) pour l’opérateur \(\Delta_{\leq \ell}\), i.e. l’exactitude des suites

\[
0 \rightarrow H_c(\Delta_{\leq \ell}(F_{1+a} \times F^\lambda)) \rightarrow H_c(\Delta_\ell(X \times F_a \times F^\lambda)) \rightarrow H_c(\Delta_{\leq \ell}(\Delta_a(X \times F_a) \times F^\lambda)) \rightarrow 0,
\]

n’est pas vrai pour \(\ell = 1 + a + |\lambda|\), cas auquel on peut effacer \(\Delta_{\leq \ell}(_)_\) dans le cas, le morphisme de droite est la restriction \(H_c(X \times F_a \times F^\lambda) \rightarrow H_c(aF_a \times F^\lambda)\) qui est nulle d’après 3.1.1-(a), alors que le morphisme de gauche n’est généralement pas injectif. On remarquera que la démonstration du théorème prouve cependant que la suite en question est bien exacte pour \(\ell \leq a + |\lambda|\).

3.4. Sous-espaces \(F^q(X)\) et sous-groupes \(S^q \subseteq S_m\)

3.4.1. Les sous-espaces \(F^q(X)\). Soit \(q = \{I_1, \ldots, I_r\}\) une partition de \([1,m]\) en parties non vides, notons \(\lambda_i := |I_i|\) et \(\lambda := (\lambda_1, \ldots, \lambda_r)\). Pour chaque \(i = 1, \ldots, r\), fixons arbitrairement une bijection \(\varphi_i : I_i \rightarrow [1,\lambda_i]\). Notons
ensuite $\varphi : [1,m] \to [1,m]$ la bijection
\[t \in I_i \mapsto \varphi(t) = \sum_{j<i} \lambda_j + \varphi_i(t), \]
et soit $\Phi : X^m \to X^m$ l'homéomorphisme $(x_1, \ldots, x_m) \mapsto (x_{\varphi(1)}, \ldots, x_{\varphi(m)})$. L'ensemble
\[F^q(X) := \Phi^{-1}(F^\lambda(X)) = \Phi^{-1}(F_{\lambda_1} \times \cdots \times F_{\lambda_m}), \]
est indépendant de l'indexation des parties $I_i \in q$ et des choix des bijections φ_i, il dépend uniquement de la partition q.

3.4.2. Commentaire à propos des notations.
Il convient de souligner la différence entre les notation $F_p(X)$ et $F^q(X)$. Dans les deux cas, p et q désignent des partitions de $[1,m]$ et nous avons (8)
\[
(x_1, \ldots, x_m) \in F_p(X) \iff_{\text{def}} (\forall i \neq j)(i \sim_p j) \iff (x_i = x_j)
\]
\[
(x_1, \ldots, x_m) \in F^q(X) \iff_{\text{def}} (\forall i \neq j)(i \sim_q j) \Rightarrow (x_i \neq x_j)
\]

3.4.3. Sous-groupe $S^q \subseteq S_m$.
Pour toute partie $I \subseteq [1,m]$, notons
\[S_I := \text{Fix}_{S_m}([1,m] \setminus I) = \{ \alpha \in S_m | \alpha(j) = j \ \forall j \notin I \}, \]
puis, si $q = \{I_1, \ldots, I_r\}$ est une partition de $[1,m]$, posons
\[S^q := S_{I_1} \times \cdots \times S_{I_r}. \]
On a $S_I \sim S_{|I|}$ et $S^q \sim S_{|I_1|} \times \cdots \times S_{|I_r|}$.
L'action de S^q sur X^m laisse clairement stables les sous-espaces $\Delta_\ell(F^q)$, quel que soit ℓ. La section suivante 3.5 étend les résultats de la section 3.2 qui concernaient les S_m-espaces $\Delta_\ell X^m$, au cas des S^q-espaces $\Delta_\ell F^q(X)$.

3.4.4. Définition.
Deux partitions $p, q \in \mathcal{P}([1,m])$ sont dites « transverses », et l'on note, $p \pitchfork q$, si l'on a $(\forall i \neq j)(i \sim_p j \Rightarrow i \neq_q j)$ (cf. 3.4.2). On note
\[q^\pitchfork := \{ p \in \mathcal{P}([1,m]) | p \pitchfork q \}. \]
La relation de transversalité est une relation symétrique.

3.4.5. Proposition
\begin{enumerate}
\item[a)] Pour $q \in \mathcal{P}(m)$, on a $F^q(X) := \bigsqcup_{p \pitchfork q} F_p(X)$.
\item[b)] Le sous-groupe $S^q \subseteq S_m$ (3.4.3) fixe q et laisse stable q^\pitchfork.
\end{enumerate}

*On rappelle que si p est une partition de $[1,m]$, on écrit $(i \sim_p j)$, si et seulement si, il existe $I \in p$ tel que $\{i,j\} \subseteq I$.

34
Démonstration. (a) On rappelle que l'on a, par définition (3.4.2),

\[
\begin{align*}
((x_1, \ldots, x_m) \in F_p) & \iff (\forall i \neq j ((i \not\sim_p j) \iff (x_i = x_j))), \\
((x_1, \ldots, x_m) \in F_q) & \iff (\forall i \neq j ((i \not\sim_q j) \implies (x_i \neq x_j))).
\end{align*}
\]

L'inclusion \(F_p \subseteq F_q \) est alors immédiate si \(p \leq q \). Réciproquement, un élément \(\bar{x} \in F_q \) défini la partition \(p_{\bar{x}} \) qui regroupe dans une même partie les indices des coordonnées identiques, i.e. \((i \sim_{p_{\bar{x}}} j) \iff (x_i = x_j)\), or \((x_i = x_j) \implies (i \not\sim_q j)\).

Par conséquent, \(p_{\bar{x}} \leq q \) et \(\bar{x} \in F_{p_{\bar{x}}} \subseteq F_q \).

(b) Pour tout \(\alpha \in S_m \), si \(p \leq q \), on a \(\alpha \cdot p \leq q \). D'autre part, si \(\alpha \in S_q \), l'égalité \(\alpha \cdot q = q \) est évidente.

3.5. Complexe fondamental de \(X \) pour \(\Delta_{\leq \ell} F_q(X) \)

3.5.1. Le théorème de scindage pour \(\Delta_{\leq \ell} F_q(X) \). Compte tenu de l'homéomorphisme \(F_{F_{\lambda}} \sim F_q \) de 3.4.1, le corollaire suivant de 3.3.1 est immédiat.

3.5.2. Corollaire. Soit \(X \) un espace \(i \)-acyclique. Pour toute partition \(q \) de \([1, m]\) et pour tout \(\ell \leq m \), le morphisme de restriction

\[H_c(\Delta_{\leq \ell}(F_q)) \to H_c(\Delta_{\leq \ell-1}(F_q)) \]

est nul. La suite exacte longue de cohomologie associée à la décomposition en parties respectivement ouvert et fermée

\[\Delta_{\leq \ell}(F_q) = \Delta_\ell(F_q) \sqcup \Delta_{\leq \ell-1}(F_q) \]

est scindée et les suites courtes extraites :

\[0 \to H_c(\Delta_{\leq \ell-1}(F_q))[-1] \to H_c(\Delta_\ell(F_q)) \to H_c(\Delta_{\leq \ell}(F_q)) \to 0, \]

sont exactes.

3.5.3. Définition. Soit \(q \) une partition de \([1, m]\) et soit \(\ell \leq m \). Le complexe fondamental de \(X \) associé à \(\Delta_{\leq \ell}(F_q) \) est le complexe de \(S_q \)-modules gradués

\[0 \to H_c(1)[-\ell+1] \to \cdots \to H_c(\ell-1)[-1] \to H_c(\ell) \to H_c(\Delta_{\leq \ell}(F_q(X))) \to 0 \]

avec \(H_c(a) := H_c(\Delta_a(F_q)) \), obtenu par concaténation des suites courtes du corollaire 3.5.2 (cf. 3.2.2).

3.5.4. Théorème. Soit \(X \) un espace \(i \)-acyclique. Le complexe fondamental de \(\Delta_{\leq \ell}(F_q) \) est un complexe de \(S_q \)-modules gradués exact.

Démonstration. Conséquence du corollaire 3.5.2.
4. Cohomologie des espaces de configuration, cas i-acyclique

4.1. Généralités sur le polynôme de Poincaré

4.1.1. Polynôme de Poincaré d’un espace vectoriel gradué

Le polynôme de Poincaré d’un k-espace vectoriel gradué $V := \bigoplus_{i \in \mathbb{Z}} V^i$ de dimension finie est le polynôme $P(V) \in \mathbb{Z}[T, 1/T]$

$$P(V^*)(T) := \sum_{i \in \mathbb{Z}} \dim_k(V^i) T^i.$$

4.1.2. Lemme

a) Si $0 \to V_1 \to V_2 \to V_3 \to 0$ est une suite exacte courte d’espaces vectoriels gradués, on a $P(V_2) = P(V_1) + P(V_3)$.

b) $P(V[-1])(T) = T \cdot P(V)$ \footnote{On rappelle que $V[-1]^i := V^{i-1}$, par convention.}.

c) $P(V_1 \otimes_k V_2) = P(V_1) \cdot P(V_2)$.

d) $P(\text{Homgr}_k(V_1, V_2))(T) = P(V_1)(1/T) \cdot P(V_2)(T)$.

4.1.3. Polynômes de Poincaré d’un espace topologique

Les polynômes de Poincaré pour la cohomologie ordinaire et à support compact d’un espace topologique X de type fini (7) sont notés $P(X, k)(t) := P(H(X, k))$ et $P_c(X, k)(t) := P(H_c(X, k))$.

Le corps k sera omis de ces notations lorsque son indication sera superflue.

4.1.4. Remarque et notation. Comme nous l’avons déjà signalé dans la remarque 1.3.2, lorsque $H^0_c(X) = 0$, le polynôme de Poincaré pour la cohomologie à support compact de $X \setminus F$ seul dépend du cardinal $a := \#F$ de la partie finie $F \subseteq X$. C’est le sens de la notation $P_c(X \setminus a)$, p.e. dans l’assertion (c) du lemme suivant.

4.1.5. Lemme. Si X et Y sont des espaces topologiques de type fini, on a

a) $P(X \times Y) = P(X) \cdot P(Y)$ et $P_c(X \times Y) = P_c(X) \cdot P_c(Y)$.

b) (Dualité de Poincaré) Si de plus X est une variété topologique orientable, de dimension d_X et de type fini, on a

$$P(X)(T) = P_c(X)(1/T) \cdot T^{d_X}.$$

c) Si $H^0_c(X) = 0$ (p.e. si X est i-acyclique), on a

$$P_c(X \setminus a)(T) = P_c(X)(T) + a \cdot T,$$

et donc

$$\frac{\prod_{i=0}^{n-1} P_c(X \setminus i)(T)}{T^m} = \left(\frac{P_c(X)(T)}{T} \right)^m.$$
4.2. Polynômes de Poincaré de $F_m(X)$ et de $\Delta_{<m-1}X^m$

La proposition suivante est une application immédiate du théorème de scindage 3.1.1-(a). Elle donne une formule fermée pour les polynômes de Poincaré de deux espaces de configuration.

Avertissement. La donnée d’un espace i-acyclique X présupposera que $\dim H_c(X) < \infty$.

4.2.1. Proposition. Soit X un espace i-acyclique.

a) Le polynôme de Poincaré $P_c(F_m(X))$ est le polynôme

$$P_c(F_m(X))(T) = \prod_{i=0}^{m-1} P_c(X \setminus i)(T) = \prod_{i=0}^{m-1} \left(P_c(X)(T) + i \cdot T \right),$$

soit,

$$P_c(F_m(X))(T) = T^m \left(\frac{P_c(X)(T)}{T} \right)^m.$$

b) L’espace $\Delta_{<m-1}X^m$ est «la diagonale épaisse de X^m», son polynôme de Poincaré est le polynôme $P_c(\Delta_{<m-1}X^m)$ homogène de degré $m-1$ dans l’anneau $\mathbb{Z}[P_c(X), T]$, vérifiant :

$$\frac{P_c(\Delta_{<m-1}X^m)(T)}{T^{m-1}} = \left(\frac{P_c(X)(T)}{T} \right)^m - \left(\frac{P_c(X)(T)}{T} \right)^{m-1}.$$

Démonstration. (a) La suite exacte courte de 3.1.1-(a) et les lemmes 4.1.2 et 4.1.5 donnent aussitôt la relation de récurrence :

$$P_c(F_{m+1}) = P_c(X) \cdot P_c(F_m) + m \cdot T \cdot P_c(F_m)$$

$$= (P_c(X) + m \cdot T) \cdot P_c(F_m) = P_c(X \setminus m) \cdot P_c(F_m)$$

qui permet de conclure.

(b) Montrons la surjectivité du morphisme de prolongement par zéro

$$H_c(F_m) \to H_c(X^m).$$

Immédiat si $m = 1$, on raisonne par induction. Si $H_c(F_m) \to H_c(X^{m-1})$ est surjectif, le morphisme $H_c(X \times F_{m-1}) \to H(X \times X^{m-1})$ est aussi (par Künneth), et, composé à $H_c(F_m) \to H_c(X \times F_{m-1})$, surjectif d’après 3.1.1-(a), on conclut que (*) l’est aussi.

Maintenant, le complémentaire de l’ouvert F_m dans X^m est la diagonale épaisse $\Delta_{<m-1}X^m$, et la suite longue de cohomologie à support compact associée à la décomposition $X^m = F_m \sqcup \Delta_{<m-1}X^m$ est scindée au niveau du prolongement par zéro (*). On a donc la suite exacte courte :

$$0 \to H_c(\Delta_{<m-1}X^m)[-1] \to H_c(F_m) \to H_c(X^m) \to 0,$$

donc résulte l’assertion (b). □
4.2.2. Remarque. Dans cette proposition, si X est en plus une variété topologique orientable et de dimension d_X, l’ouvert $F_m \subseteq X^m$ (de dimension md_X) l’est également et la dualité de Poincaré (4.1.5-(b)) s’applique pour donner l’égalité analogue à 4.2.1-(a) :

$$\mathcal{P}(F_m(X))(T) = \prod_{i=0}^{m-1} \mathcal{P}(X \smallsetminus i)(T) = \prod_{i=0}^{m-1} \mathcal{P}(X)(T) + i \cdot T^{d_X-1}$$

$$= T^{(d_X-1)m} \left(\frac{\mathcal{P}(X)(T)}{T^{d_X-1}} \right)^m.$$

4.2.3. Remarque. Soient $1 \leq a \leq m \in \mathbb{N}$ et $\pi_a : F_m \to F_a$ la projection sur les a dernières coordonnées. Pour tout ouvert $U \subseteq F_a$, notons $UF_m := \pi_a^{-1}(U)$. La même preuve de 3.1.1-(a) (cf. rem. 3.1.2-(a)) montre que la suite

$$0 \to H_c(UF_m)[-1]^m \to H_c(UF_{m+1}) \to H_c(X \times UF_m) \to 0,$$

est exacte. On en déduit, comme pour 4.2.1-(a), que l’on a

$$\mathcal{P}_c(UF_{b+a}) = \mathcal{P}_c(UF_{b-1+a}) \cdot (\mathcal{P}_c(X) + (b - 1 + a)T)$$

et par itération (cf. 12.2.8) :

$$\mathcal{P}_c(UF_{b+a}(X)) = \mathcal{P}_c(U) \cdot \mathcal{P}_c(F_b(X \smallsetminus a)).$$

Il est intéressant d’observer qu’une condition nécessaire pour l’exactitude des suites (\circ) pour tout $U \subseteq X$, est que X soit totalement \cup-acyclique. En effet, dans un tel cas et si $m = 1$, le morphisme $H_c(X) \otimes H_c(U) \to H_c(U)$ doit être nul. On ignore si la totale \cup-acylicité suffit à l’exactitude des suites (\circ) lorsque, par exemple, X est une variété topologique non orientable.

4.2.4. Remarque. Les fibres des applications $\pi_a : F_{b+a}(X) \to F_a(X)$ sont de la forme $F_b(X \smallsetminus a)$ et, d’autre part, ce qui précède montre que l’on a

$$\mathcal{P}_c(\pi_a^{-1}C) = \mathcal{P}_c(C) \cdot \mathcal{P}_c(F_b(X \smallsetminus a)),$$

pour toute composante connexe C de F_a. Cette observation qui suggère l’existence d’une forme de trivialité cohomologique pour les applications π_a, est à l’origine de l’étude de la section 12.4 destinée à prouver la dégénérescence des suites spectrales de Leray associées à π_a lorsque X est i-acyclique et localement connexe (mais pas forcément de type fini). Plus précisément, on y montre que si C est une composante connexe de $F_a(X)$ et si $\pi \in C$, le terme E_2 de la suite spectrale de Leray pour la cohomologie à support compact de la fibration $\pi_a : \pi_a^{-1}C \to C$ est

$$E_2 = H_c(C) \otimes H_c(\pi_a^{-1}\pi) \Rightarrow H_c(\pi_a^{-1}C).$$

On observera déjà à ce niveau que lorsque X est de type fini, l’égalité (\ast) force l’annulation des différentielles de la suite spectrale en question (E_r, d_r) pour $r \geq 2$, car autrement $\dim(E_\infty) < \dim(E_2)$, ce qui n’est pas le cas.
4.2.5. Corollaire. Soit X un espace i-acyclique. Le polynôme de Poincaré $P_c(\Delta_\ell X^m)$ s’obtient en évaluant en $P := P_c(X)$ le polynôme homogène $Q^m_\ell (P, T) \in \mathbb{Z}[P, T]$, de degré ℓ:

$$Q^m_\ell (P, T) = T^\ell \cdot |\Psi_\ell(m)| \cdot \left(\frac{P}{T}\right)^{\ell}.$$

Démonstration. Clair d’après 2.3.3 et 4.2.1-(a). □

4.2.6. Commentaire. Notre approche des polynômes de Poincaré de $F_m(X)$ pour variété topologique orientable X repose sur l’annulation du morphisme de restriction $\delta_X : H_c(X \times X) \to H_c(X)$ (1.2.4-(c)). Cela restreint considérablement la portée de la méthode, mais n’exclut qu’elle puisse être appliquée à d’autres cas, et même pour X compact. Par exemple, lorsque X est un groupe de Lie compact connexe K de dimension d_K, il est avantageux de profiter de l’action diagonale libre de K sur $F_m(X)$. Notons $\hat{K} = K \setminus \{e\}$.

On a la bijection

$$\Psi : F_{m-1}(\hat{K}) \times K \to F(n, K), \quad (x, g) \mapsto (x_1g, \ldots, x_{n-1}g, g),$$

et ceci donne aussitôt l’égalité $H_c(F_m(K)) = H_c(F_{m-1}(\hat{K})) \otimes H_c(K)$, où \hat{K} n’est plus compact. On peut alors se demander si \hat{K} est \cup-acyclique.

Comme K est compact, le prolongement par zéro $H_c(\hat{K}) \to H(K)$ identifie $H_c(\hat{K})$ à $H^+(K)$ et nous avons le diagramme commutatif

$$\begin{array}{ccc}
H_c(\hat{K}) \otimes H_c(\hat{K}) & -\rho_{\hat{K}} & \to H_c(\Delta_{\hat{K}}) \\
\downarrow & & \downarrow \\
H(K) \otimes H(K) & -\rho_K & \to H(\Delta_K)
\end{array}$$

où ρ_K est le cap-produit. Si $\rho_{\hat{K}} = 0$, nous devons avoir

$$H^+(K) \wedge H^+(K) = 0,$$

mais ceci n’est possible, par dualité de Poincaré, que si le groupe de Lie K à la même homologie qu’une sphère. Lorsque le corps des coefficients est \mathbb{Q}, cela arrive seulement dans trois cas $K = S^0$, $K = S^1$ et $K = S^3 \cong SU(2) = Sp(1)$. Dans ces cas la proposition 4.2.1-(a) s’applique et on trouve :

$$P_c(F_m(K)) = P_c(K) \cdot P_c(F_{m-1}(\hat{K})) = P_c(K) \cdot T^{m-1} \cdot (P_c(\hat{K})/T)^{m-1} = (T^{d_K} + 1) \cdot T^{m-1} \cdot (T^{d_K-1})^{m-1}.$$

4.3. Polynômes de Poincaré de $\Delta_{\ell}X^m$

Une application immédiate de l’exactitude du complexe fondamental est la détermination du polynôme de Poincaré $P_c(\Delta_{\ell}X^m)$ lorsque X est de type fini. L’assertion suivante généralise la proposition 4.2.1.
4.3.1. Corollaire. Soit X un espace i-acyclique. Le polynôme de Poincaré $P_c(\Delta_{\leqslant \ell}X^m)$ est le polynôme homogène de $\mathbb{Z}[P_c(X), T]$, de degré ℓ, donné par la somme alternée (cf. 2.3.3)

$$P_c(\Delta_{\leqslant \ell}X^m) = \sum_{0 \leqslant a < \ell} (-1)^a \cdot |P_{\ell-a}(m)| \cdot P_c(F_{\ell-a}(X)) \cdot T^a,$$

avec comme termes de plus bas et plus haut degrés en T :

$$P_c(\Delta_{\leqslant \ell}X^m) = |P_\ell(m)| \cdot P_c(X)^\ell \cdot T^0 + \cdots + \sum_{0 \leqslant a < \ell} (-1)^a \cdot |P_{\ell-a}(m)| \cdot (\ell - a - 1)! \cdot P_c(X) \cdot T^{\ell-a-1}.$$

Démonstration. Résulte d’appliquer le théorème 3.2.3, l’explicitation du corollaire 4.2.5 et le fait que le terme de plus haut degré en T de $P_c(F_{\ell-a}(X))$ est $(\ell - a - 1)! \cdot P_c(X) \cdot T^{\ell-a-1}$ d’après 4.2.1-(a). □

4.4. Polynôme universel pour $\Delta_{\leqslant \ell}X^m$

Le corollaire 4.3.1 montre que le polynôme de Poincaré $H_c(\Delta_{\leqslant \ell}X^m)$ s’obtient en évaluant un certain polynôme homogène de l’anneau $\mathbb{Z}[P, T]$, degré ℓ, en $P = P_c(X)$. Ce polynôme est indépendant de X et il est unique.

Définition. Le « polynôme universel pour la cohomologie à support compact des espaces $\Delta_{\leqslant m}$ », noté $Q_{\leqslant \ell}^m(P, T)$, est le polynôme de $\mathbb{Z}[P, T]$, homogène de degré total ℓ, donné par

$$Q_{\leqslant \ell}^m(P, T) := T^\ell \sum_{a=1, \ldots, \ell} (-1)^{\ell-a} \cdot |P_a(m)| \cdot \left(\frac{P}{T}\right)^a,$$

où $|P_a(m)| := \frac{1}{\ell!} \sum_{j=0}^{\ell} (-1)^{\ell-j} \cdot \binom{\ell}{j} \cdot j^m$. (Cf. 2.3.3.)

4.4.1. Remarque. Il peut y avoir beaucoup de simplifications dans l’expression donnant ces polynômes. Par exemple, sachant que $\Delta_{\leqslant m}X^m = X^m$, on peut anticiper l’égalité $Q_{\leqslant \ell}^m(P, T) = P^m$, ce qui est loin d’être une évidence uniquement à partir de la définition de $Q_{\leqslant \ell}^m$.

4.4.2. Un exemple de polynômes universels

Voici les six polynômes universels pour $m = 6$.

- $Q_{\leqslant 1,6}^1(P, T) = P^0$
- $Q_{\leqslant 2,6}^1(P, T) = 31 P^2 T^0 + 30 P T$
- $Q_{\leqslant 3,6}^1(P, T) = 90 P^3 T^0 + 239 P^2 T + 150 P T^2$
- $Q_{\leqslant 4,6}^1(P, T) = 65 P^4 T^0 + 300 P^3 T + 476 P^2 T^2 + 240 P T^3$
- $Q_{\leqslant 5,6}^1(P, T) = 15 P^5 T^0 + 85 P^4 T + 225 P^3 T^2 + 274 P^2 T^3 + 120 PT^4$
- $Q_{\leqslant 6,6}^1(P, T) = P^6 T^0$.

40
5. Représentations du groupe symétrique

Dans 3.2.2 nous avons muni les espaces $\Delta_{2\ell}X^m$ de l'action de S_m. Nous allons maintenant explorer en détail la structure de S_m-espace de $\Delta_{2\ell}X^m$.

5.1. Notations pour le décompositions et les diagrammes de Young

– Une « décomposition » λ d’un entier $m \geq 0$, notée $\lambda \vdash m$, est la donnée d’une suite décroissante d’entiers positifs $\lambda := (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0)$ telle que $m = \lambda_1 + \lambda_2 + \cdots + \lambda_\ell$. On note $|\lambda| = m$ et $\ell(\lambda) := \ell$.

– Étant données une famille d’entiers naturels $\{X_1, \ldots, X_m\}$, telle que $m = \sum_i X_i$, on notera de manière équivalente

\[
\begin{pmatrix}
(m, \ldots, m, m-1, \ldots, m-1, \ldots, 1, \ldots, 1) = (1^{X_1}, 2^{X_2}, \ldots, m^{X_m})
\end{pmatrix}
\]

– Un « diagramme de Young » est un empilement vertical de juxtapositions horizontales de boîtes dont le nombre, λ_i, décroît. La suite $\lambda := (\lambda_1, \ldots, \lambda_\ell)$ est une décomposition de $m := |\lambda|$. On identifie ainsi décompositions et diagrammes. On note $Y_\ell(m)$ l’ensemble des diagrammes à m boîtes et à ℓ lignes, soit donc

\[
Y_\ell(m) := \{ (\lambda \vdash m) & (\ell(\lambda) = \ell) \}.
\]

– Un « tableau de Young standard » est un diagramme de Young λ dont on remplit les boîtes par les entiers $1, 2, \ldots, |\lambda|$. On note $\tau(\lambda)$ le tableau obtenu par une numérotation successive, de gauche à droite et de haut en bas, tel qu’indiqué dans la figure ci-contre.

– Si $\lambda \in Y_\ell(m)$, on note P_λ le sous-groupe de S_m des permutations qui conservent les lignes de $\tau(\lambda)$. On a

\[
P_\lambda = S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}.
\]

– Un diagramme $\lambda \in Y_\ell(m)$ décompose l’intervalle $[1, m]$ suivant les ℓ sous-intervalles définis par les lignes de $\tau(\lambda)$. On note $p_\lambda \in P_\ell(|\lambda|)$ la partition ainsi déterminée. Le sous-groupe

\[
S_\lambda := \mathsf{N}_S_{\lambda m} P_\lambda
\]

où $\mathsf{N}_S_{\lambda m} (P_\lambda)$ désigne le normalisateur de P_λ dans S_m, est le sous-groupe des éléments de S_m qui fixent la partition p_λ. 41
5.1.1. **Lemme.** On fait agir S_m sur $\mathcal{P}_l(m)$ par son action naturelle. Pour toute partition $p \in \mathcal{P}$, on note S_p le sous-groupe de S_m qui fixe p. Chaque orbite de S_m rencontre une unique partition de la forme $p \lambda$. On a
\[\mathcal{P}_r(m) = \prod_{\lambda \in \mathcal{Y}_r(m)} S_m \cdot p_\lambda \simeq \prod_{\lambda \in \mathcal{Y}_r(m)} S_m / S_\lambda, \]
où λ parcourt l’ensemble $\mathcal{Y}_r(m)$ des décompositions de m en ℓ entiers $\neq 0$.

a) Si $\lambda = (\lambda_1, \ldots, \lambda_\ell) = ((\lambda_1)^{x_1}, \ldots, (\lambda_\ell)^{x_\ell})$, on a
\[S_\lambda = S_{p_\lambda} = N_{S_m}(p_\lambda) \quad \text{et} \quad G_\lambda := S_\lambda / p_\lambda \simeq S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}. \]
b) Le groupe G_λ s’identifie au sous-groupe $S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \subseteq S_\lambda$ et l’on a
\[S_\lambda = (S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}) \rtimes p_\lambda. \]

5.2. **Décomposition ouverte de S_m-stable de $\Delta_\ell X^m$**

Par le lemme 5.1.1 la décomposition ouverte de Δ_ℓ de 2.3.3 s’écrit
\[\Delta_\ell X^m = \prod_{\lambda \in \mathcal{Y}_r(m)} S_m \cdot F_{p_\lambda}(X). \]

La proposition suivante est alors immédiate.

5.2.1. **Proposition.** Soit $\lambda = (\lambda_1, \ldots, \lambda_\ell) = (1^{x_1}, \ldots, m^{x_m}) \in \mathcal{Y}_r(m)$.

a) Le groupe $p_\lambda = S_{\lambda_1} \times \cdots \times S_{\lambda_\ell}$ est le sous-groupe de S_m des permutations qui agissent comme l’identité sur $F_{p_\lambda}(X)$. Son normalisateur S_λ est le sous-groupe de S_m qui laisse stable $F_{p_\lambda}(X)$.

Soit maintenant la surjection canonique de groupes
\[\nu_\lambda : S_\lambda \twoheadrightarrow G_\lambda := S_\lambda / p_\lambda \simeq S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \subseteq S_\ell, \]
et considérons $F_{p_\lambda}(X)$ muni de sa structure de G_λ-espace.

b) L’application $\phi_\lambda : F_{p_\lambda}(X) \twoheadrightarrow F_\ell(X)$, $\phi_\lambda : (x_1, \ldots, x_m) \mapsto (y_1, \ldots, y_\ell)$ avec
\[y_k := x_{\lambda_1 + \cdots + \lambda_k}, \]
est un isomorphisme de G_λ-espaces.

c) L’application
\[\Psi_\lambda : S_m \times S_\lambda F_\ell(X) \to S_m \cdot F_{p_\lambda}(X) \subseteq X^m, \quad (\alpha, \xi) \mapsto \alpha \cdot \phi^{-1}(\xi), \]
est un isomorphisme de S_m-espaces.

5.2.2. **Caractères de S_m associés à $\Delta_\ell X^m$**

Pour toute partie $Z \subseteq X^m$, de type fini et stable sous l’action de S_m, les espaces $H^i_c(Z, k)$ et de $H^i(Z, k)$ sont les S_m-modules de dimension finie, leurs les caractères seront respectivement notés :
\[\begin{cases} \chi_c(Z; i) : S_m \to k, & \chi_c(Z; i)(\alpha) := \text{tr}(\alpha \cdot H^i_c(Z; k)) \\ \chi(Z; i) : S_m \to k, & \chi(Z; i)(\alpha) := \text{tr}(\alpha \cdot H^i(Z; k)). \end{cases} \]
5.2.3. Commentaire. Si \(X \) est une variété topologique orientable de dimension \(d_X \), l’ouvert \(F_m \subseteq X^m \), de dimension \(\ell d_X \), est une variété topologique orientable, \(H^\ell(F_m) \) et \(H^\ell_{md_X}(F_m) \) sont des \(S_m \)-modules en dualité et \(\chi_c(F_m,*) \) détermine \(\chi(F_m,*) \) (cf. 6.2.4-(b)). En dehors de ce cas, nos méthodes ne s’appliquent pas à l’étude de la cohomologie ordinaire \(H(\Delta_\ell X^m) \), ni en tant qu’espace vectoriel ni, à fortiori, en tant que \(S_m \)-module. Elles s’appliqueront par contre à la cohomologie de Borel-Moore \(H_{BM}(\Delta_\ell X^m) \) (6.1).

Avertissement. Dans toutes les sections concernant les représentations des groupes symétriques on suppose \(\text{car}(k) = 0 \) (cf. 7.3.3).

5.3. Foncteurs d’induction \(\text{Ind}_{G_\lambda}^{S_m} \) et \(I^m_\ell \)

Pour \(0 < \ell \leq m \), et tout \(\lambda \in \mathcal{Y}_\ell(m) \), on note

\[
\text{Ind}_{G_\lambda}^{S_m} : \text{Mod}(k[S_\ell]) \hookrightarrow \text{Mod}(k[S_{\lambda}])
\]

le foncteur \(\text{ind}_{S_\lambda}^{S_m} \circ \text{Res}_{G_\lambda}^{S_m} \) où \(S_{\lambda} \) agit à travers de la surjection \(\nu_\lambda : S_\lambda \twoheadrightarrow G_\lambda \) de 5.2.1-(a). On considère ensuite le foncteur

\[
I^m_\ell := \sum_{\lambda \in \mathcal{Y}_\ell(m)} \text{Ind}_{G_\lambda}^{S_m} : \text{Mod}(k[S_\ell]) \hookrightarrow \text{Mod}(k[S_m])
\]

(Remarquer que l’on a \(I^m_1 = \text{id} \).) On notera par la même notation l’opérateur linéaire d’induction \(I^m_\ell : k_c[S_\ell] \to k_c[S_m] \) défini sur les fonctions centrales.

5.3.1. Proposition. Pour \(0 < \ell \leq m \), on a un isomorphisme de \(S_m \) espaces :

\[
\Delta_\ell X^m \cong \prod_{\lambda \in \mathcal{Y}_\ell(m)} S_m \times_{S_\lambda} F_\ell(X).
\]

En particulier, on a

\[
\chi_c(\Delta_\ell X^m;i) = I^m_\ell(\chi_c(F_\ell(X);i)) \quad \text{et} \quad \chi(\Delta_\ell X^m;i) = I^m_\ell(\chi(F_\ell(X);i)).
\]

Démonstration. Corollaire immédiat de 5.1.1 et 5.2.1-(c).

5.3.2. Présentation de \(S_m \)-module de \(H^i_c(\Delta_{\leq \ell} X^m) \). Nous pouvons à présent rassembler les résultats précédents pour donner une présentation de la représentation de \(S_m \) sur \(H^i_c(\Delta_{\leq \ell} X^m) \) lorsque \(X \) est \(i \)-acyclique.

5.3.3. Théorème. Soit \(X \) un espace \(i \)-acyclique tel que \(\dim H_c(X) < \infty \).

a) Le caractère du \(S_m \)-module \(H^i_c(F_m(X)) \) vérifie

\[
\chi_c(F_m(X);i) = \chi_c(X^m;i) + \chi_c(\Delta_{\leq m-1} X^m;i).
\]

b) Pour \(0 < \ell \leq m \), le caractère du \(S_m \)-module \(H^i_c(\Delta_{\leq \ell} X^m) \) vérifie

\[
\chi_c(\Delta_{\leq \ell} X^m;i) = \sum_{0 \leq a < \ell} (-1)^a I^m_{\ell-a}(\chi_c(F_{\ell-a}(X);i-a)).
\]
Démonstration. Par 3.2.3, la suite de S_m-modules
\[0 \to H_c^{-\ell+1}(\Delta^m_1) \to \cdots \to H_c^{-1}(\Delta^m_{\ell-1}) \to H_c^\ell(\Delta^m_\ell) \to H_c^\ell(\Delta^m_\ell) \to 0 \]
est exacte. On a donc l'égalité $\chi_c(\Delta^m_{\ell-a}; i) = \sum_{0 \leq a \leq \ell} (-1)^a \chi_c(\Delta^m_{\ell-a}; i - a)$ à laquelle on applique la proposition 5.3.1.
\[\square\]

5.3.4. Expression de $\chi_c(\Delta_{\ell\ell}X^m; \ast)$ en termes de $\chi_c(X^\ell; \ast)$. Le théorème 5.3.3 est la base d’un algorithme de calcul pour $\chi_c(\Delta_{\ell\ell}X^m; i)$. En effet, l'égalité (b) l’exprime comme combinaison des induits des $\chi_c(F_{\ell'}(X), i')$ pour $\ell' \leq \ell$ et $i' \leq i$, et l'égalité (a) exprime chaque $\chi_c(F_{\ell'}(X), i')$ comme la somme de $\chi_c(X^{m'}, i')$, caractère calculé par Macdonald [27] (cf. aussi 10.5.4), et de $\chi_c(\Delta_{\ell'\ell-1}X^{m'}, i')$, avec (dond) $\ell' - 1 < \ell$.

La section suivante précisera davantage cette idée.

5.4. Opérateurs d’inductions itérées $I(\sigma)$ et Θ^m_{ℓ}

Pour toute suite d’entiers positifs $\sigma = (m_0 > m_1 > \cdots > m_{t-1} > m_t)$ strictement décroissante, on pose $|\sigma| := t$ et
\[
\begin{cases}
\text{si } |\sigma| = 0, & I((m_0)) := \text{id} : k_c[S_{m_0}] \to k_c[S_{m_0}] \\
\text{si } |\sigma| > 0, & I(\sigma) := I_{m_1}^m \circ \cdots \circ I_{m_t}^m : k_c[S_{m_t}] \to k_c[S_{m_0}]
\end{cases}
\]
et l’on définit pour $\ell \leq m$, l’opérateur d’inductions itérées:
\[
\Theta^m_{\ell} := (-1)^{m-\ell} \sum_{\sigma : |\sigma| \leq \ell} (-1)^{|\sigma| - 1} I(\sigma) : k_c[S_{\ell}] \to k_c[S_{m}]
\]
 où la sommation est indexée par l’ensemble des suites strictement décroissantes qui partent de m et aboutissent à ℓ.

On remarquera que l’on a $\Theta^m_m = \text{id}$.

5.4.1. Théorème Soit X un espace i-acyclique tel que $\dim H_c(X) < \infty$.

a) Pour tous $0 < \ell \leq m$ et tout $i \in \mathbb{N}$, on a
i) $\chi_c(F_{m}(X); i) = \sum_{0 \leq a < m} \Theta^m_{m-a}(\chi_c(X^{m-a}; i - a))$

ii) $\chi_c(\Delta_{\ell\ell}X^m; i) = I^m_{\ell} \left(\sum_{0 \leq a < \ell} \Theta^m_{\ell-a}(\chi_c(X^{\ell-a}; i - a)) \right)$

iii) $\chi_c(\Delta_{\ell\ell}X^m; i) = \sum_{0 \leq b < \ell} (-1)^b I^m_{\ell-b} \left(\sum_{0 \leq a < \ell-b} \Theta^m_{\ell-b-a}(\chi_c(X^{\ell-b-a}; i - b - a)) \right)$

b) Soient X et Y des espaces i-acycliques à cohomologies à support compact de dimensions finies. On a
\[(\chi_c(\Delta_{\ell\ell}X^m, \ast) = \chi_c(\Delta_{\ell\ell}Y^m, \ast)) \iff (P_c(X) = P_c(Y)).
\]
Démonstration. (a-i) On procède par récurrence sur m. Lorsque $m = 1$, on a $F_1(X) = X$, $a = 0$, la somme est réduite à un seul terme et l’égalité est immédiate. Dans le cas général, l’égalité du théorème 5.3.3-(b) pour $\ell = m$ donne l’égalité :

$$\chi_c(F_m; i) = \chi_c(X^m; i) - \sum_{m > m-a > 0} (-1)^a I_{m-a}^m (\chi_c(F_{m-a}; i-a))$$

où l’on peut remplacer, par hypothèse inductive,

$$\chi_c(F_{m-a}; i-a) = \chi_c(X^{m-a}; i-a) + \sum_{m-a > m-a-b > 0} \Theta_{m-a-b}^{m-a} (\chi_c(X^{m-a-b}; i-a-b)).$$

On exprime ainsi $\chi_c(F_m; i)$ comme somme de deux termes.

$$\begin{cases}
A := \chi_c(X^m; i) + \sum_{m > m-a > 0} (-1)^{a+1} I_{m-a}^m (\chi_c(X^{m-a}; i-a)) \\
B := \sum_{m > m-a > 0} (-1)^{a+1} I_{m-a}^m \sum_{m-a > m-a-b > 0} \Theta_{m-a-b}^{m-a} (\chi_c(X^{m-a-b}; i-a-b))
\end{cases}$$

Le terme A contient $\Theta_m^m = I((m))$ et les opérateurs $(-1)^{a+1} I((m, m-a))$ qui interviennent dans le développement de Θ_m^m pour $a > 0$. Le terme B, quant à lui, contient exactement tous les opérateurs qui manquent encore pour reconstruire le second membre de (a-i). En effet,

$$\sum_{m > m-a > 0} (-1)^{a+1} I_{m-a}^m \sum_{m-a > m-a-b > 0} \Theta_{m-a-b}^{m-a} = \sum_{a > 0 \land \sigma : m-a \subseteq m-a-b > 0} (-1)^{a+1} I_{m-a}^m (-1)^{b-1} |\sigma|-1 I(\sigma)$$

$$= (-1)^{a+b} \sum_{\sigma : m \setminus (m-a+b) \land |\sigma| \geq 3} (-1)^{|\sigma|} I(\sigma).$$

Ceci termine la preuve de l’égalité (a-i). La formule (a-ii) en découle aussitôt puisque $\chi_c(\Delta_t X^m; i) = I_{\ell}^m (\chi_c(F_\ell(X); i))$ (5.3.1), et (a-iii) en résulte par application directe de 5.3.3-(b).

(b) L’implication \Rightarrow est immédiate en prenant $m = \ell = 1$. Pour la réciproque, il suffit, grâce à (a), de montrer que les caractères $\chi_c(X^m; i)$ sont déterminés par $P_c(X)$. Or, ceci est clair d’après le travail de Macdonald [27] (eq. 4.5) (cf. aussi 10.5.4 pour la formule explicite).

6. Cohomologie des espaces de configuration, cas général

cohérence de $F_m := F_m(X)$ suivant les tours de projections

$$
\cdots \xlongleftarrow{p_m} F_{m+1} \xlongleftarrow{p_m} F_m \xlongleftarrow{p_m} F_{m-1} \xlongleftarrow{p_m} \cdots
$$

où $p_m : F_{m+1} \to F_m$ désigne la projection sur les m premières coordonnées, autrement dit, pour l’étude des tours de représentations des groupes symétriques : les « FI-modules » (cf. 9.2)

$$
\cdots \xrightarrow{p_m} H(F_{m-1}) \xrightarrow{p_m} H(F_m) \xrightarrow{p_m} H(F_{m+1}) \xrightarrow{p_m} \cdots \quad (*)
$$

Lorsque X est une variété topologique orientée, la dualité de Poincaré établit un isomorphisme canonique entre la suite $(*)$ et la suite

$$
\cdots \xrightarrow{p_m} H_c(F_{m-1}) \xrightarrow{p_m} H_c(F_m) \xrightarrow{p_m} H_c(F_{m+1}) \xrightarrow{p_m} \cdots \quad (**)
$$

où $p_m! : H_c(F_{m+1}) \to H_c(F_m)[-d_X]$ est l’intégration sur les fibres, de sorte que si X est en plus i-acyclique, nos méthodes pourront s’appliquer. Or, la suite $(**)$ a encore un sens dans le cas plus général où X est une pseudovariété orientée, par exemple une variété algébrique complexe. Ainsi, dans le but d’inclure ces espaces dans nos énoncés, nous sommes conduits à remplacer dans $(*)$ la cohomologie ordinaire par la « cohomologie de Borel-Moore ».

6.1.1. L’« homologie de Borel-Moore » $H^{BM}_*(M)$ d’un espace localement compact M, est le dual de sa cohomologie à support compact. Lorsque M est de dimension cohomologique finie d_M (2.4.1), nous définissons sa « cohomologie de Borel-Moore » par l’égalité

$$
H^{BM}_i(M) := H^i_c(M; k)^\lor
$$

6.1.2. Fonctorialité de la cohomologie de Borel-Moore. La fonctorialité de la cohomologie de Borel-Moore est liée à celle de la cohomologie à support compact et cela impose certaines limitations. Par exemple, si $f : N \to M$ est une application continue et propre, l’image-inverse des cochaines d’Alexander-Spanier induit bien un morphisme en cohomologie à support compact $f^* : H_c(M) \to H_c(N)$ et, par dualité, un morphisme

$$
f! : H_{BM}(N) \to H_{BM}(M)[d_M-d_N]
$$

qui étend le morphisme de Thom-Gysin en cohomologie ordinaire. La cohomologie de Borel-Moore est alors fonctorielle sur la catégorie des espaces localement compacts de dimension finie et des application continues et propres.

En dehors de ce cas, les applications continues n’induisent pas toujours de morphisme en cohomologie de Borel-Moore, ce pour quoi il faut une approche au cas par cas qui est le but de la section suivante.
6.2. Quelques morphismes en cohomologie de Borel-Moore

On donne des analogues à l'image-inverse de la cohomologie ordinaire dans le contexte de la cohomologie de Borel-Moore dans des cas qui intéressent dans les espaces de configuration, notamment : l'action de S_m sur $H_{bm}(F_m(M))$ et la projection $p_m : F_{m+1}(M) \to F_m(M)$.

6.2.1. Rappel du cas des variétés topologiques. Supposons M et N des variétés topologiques orientées de dimensions respectives d_M et d_N. Notons $\langle \cdot, \cdot \rangle_M$ l'accouplement de la dualité de Poincaré sur M (resp. N), à savoir

$$\langle \cdot, \cdot \rangle_M : H_c(M) \times H_c(M) \to k, \quad \langle \nu, \mu \rangle_M := \int_M \nu \wedge \mu.$$

Pour toute application $f : M \to N$ continue, notons $f_! : H_c(M) \to H_c(N)[-d_M + d_N]$ l'adjoint pour la dualité de Poincaré de l'image-inverse $f^* : H(N) \to H(M)$, il est caractérisé par l'égalité

$$\langle f^*(\nu), \mu \rangle_M = \langle \nu, f_!(\mu) \rangle_N, \quad \forall \nu \in H(N), \quad \forall \mu \in H_c(M).$$

On dira alors que le couple $(f^*, f_!)$ est un « couple adjoint ».

On a quatre cas essentiels pour la suite.

[ad-1] L’application $\iota : N \subseteq M$ est l’inclusion d’une sous-variété fermée orientée. Alors, si $\iota : H(N) \to H(M)[-d_M + d_N]$ est la multiplication par la classe de Thom de $N \subseteq M$, le couple (ι, ι^*) est un couple adjoint.

[ad-2] L’application $j : U \subseteq M$ est une inclusion ouverte et U est muni de l’orientation induite. Alors, $j_! : H_c(U) \to H_c(M)$ est le morphisme de prolongement par zéro et l’on a $(j^*, j_!)$ est un couple adjoint.

[ad-3] L’application $f : M \to N$ est localement triviale de fibre F, et M est munie d’une orientation compatible à celles de N et de F. L’opération $f_!$ coïncide alors à l’« intégration sur les fibres » ([5] p. 61) et l’on a toujours : $(f^*, f_!)$ est un couple adjoint.

[ad-4] L’application $f : M \to M$ est un homéomorphisme. Alors

$$f_! : H_c(M) \to H_c(M)$$

est induit par l’image-directe des cochaînes à support compact.

Soit $M = \coprod_{a \in \Pi_0(M)} M_a$ la décomposition en composantes connexes. On note par $f : \Pi_0(M) \to \Pi_0(M)$ la bijection induite et $f_a : M_a \to M_{f(a)}$ la restriction de f. Chaque f_a est un homéomorphisme de pseudo-variétés.
connexes et orientées. On note $\sigma_M(f_a)$ le scalaire défini par l’action de f_a sur la classe fondamentale $[M_a]$ de M_a, i.e. tel que :

$$f_!(([M_a]) = \sigma_{M_a}(f) \cdot [M_{f(a)}].$$

On a alors

$$\langle f^*(\nu), \mu \rangle_M = \sum_a \int_{M_a} f^*(\nu_{f(a)} \wedge f_!(\mu_a)) \, d([M_a])$$

$$= \sum_a \int_{M_a} f^*(\nu_{f(a)} \wedge f_!(\mu_a)) \, \sigma_M(f_a) \, d(f_a![M_{f(a)}])$$

$$= \sum_a \langle \nu_{f(a)}, \sigma_M(f_a) f_!(\mu_a) \rangle_{M_{f(a)}}$$

Par conséquent,

$$\left(f^*, \sum_a \sigma_M(f_a) \cdot f_a! \right) \text{ est un couple adjoint.}$$

Lorsque M est connexe la somme est réduite à un seul terme et l’adjoint à droite de f^* est juste $\sigma_M(f) \cdot f_!$.

6.2.2. Suite exacte longue de cohomologie de Borel Moore. Soit M un espace localement compact de dimension cohomologique finie d_M. Soit $j : U \subseteq M$ une inclusion ouverte où $d_U = d_M$ et notons $i : N \subseteq M$ l’inclusion du fermé complémentaire $N := M \setminus U$. En dualisant la suite exacte longue de cohomologie à support compact associée à la décomposition $M = U \sqcup N$, on obtient « la suite exacte longue de cohomologie de Borel-Moore » :

$$\rightarrow H_{\text{sh}}(N)[d_N - d_M] \xrightarrow{i^*} H_{\text{sh}}(M) \xrightarrow{j^*} H_{\text{sh}}(U) \rightarrow .$$

Lorsque M et N sont des variétés topologiques orientées, j^* est la restriction et $i^!$ est multiplication par la classe de Thom de $N \subseteq M$.

6.2.3. Le cas des pseudovariétés orientées. Pour un espace localement compact M de dimension cohomologique finie, la substitution de la cohomologie ordinaire $H(M)$ par la cohomologie de Borel-Moore $H_{\text{sh}}(M)$ conduit à substituer l’accouplement \langle , \rangle_M par l’accouplement $\langle , \rangle : V^\vee \times V \to k$, $(\alpha, v) := \alpha(v)$. Les adjonctions $(\text{ad}2,3,4)$ servent alors à définir les analogues de l’image-inverse en cohomologie de Borel-Moore de telle sorte qu’ils coïncident avec l’image-inverse en cohomologie ordinaire pour les variétés topologiques orientées. Dans le cas particulier des espaces de configuration, on est conduit aux définitions suivantes.

6.2.4. Définitions. Soit M une pseudovariété orientée $(^{10})$.

a) Image-inverse associée aux projections $p_b : F_{b+a}(M) \to F_b(M)$

L’application $p_b : F_{b+a}(M) \to F_b(M)$, $p_b(x_1, \ldots, x_{b+a}) = (x_1, \ldots, x_b)$, est composée de l’inclusion ouverte $i : F_{b+a}(M) \subseteq F_b(M) \times M^a$ et de la

10 C’est-à-dire, munie d’une section globale nulle part nulle, sur la partie régulière de M, du faisceau $H^{-a} \left(\mathcal{E}_M^* \right)$, où $\mathcal{E}_M^*(k)$ est le complexe dualisant de M. 48
projection \(p(\vec{x}, \vec{y}) := \vec{x} \)

\[
\begin{array}{ccc}
F_{b+a}(M) & \overset{\iota}{\longrightarrow} & F_b(M) \times M^a \\
p_b \downarrow & & \downarrow p \\
F_b(M) & &
\end{array}
\]

L’analogue de l’opération « d’intégration sur les fibres » de [ad-3] \((11)\)

\[p_{b*} : H_c(F_{b+a}(M)) \to H_c(F_b(M))[-a \, d_M] \]

vérifie l’égalité

\[p_{b*} := p_n \circ \iota \]

où \(\iota : H_c(F_{b+a}(M)) \to H_c(F_b(M) \times M^a) \) est le prolongement par zéro, et \(p_n : H_c(F_b(M)) \otimes H_c(M^a) \to H_c(F_b(M))[-a \, d_M], \omega \otimes \varpi \mapsto \omega \int_M \varpi. \)

L’opérateur « image-inverse » pour la cohomologie de Borel-Moore et alors défini, suite à [ad-3], comme le dual vectoriel de \(p_{b*} \), donc par :

\[p_b^* := p_b^\# : H_{\text{BM}}(F_b(M)) \to H_{\text{BM}}(F_{b+a}(M)). \]

b) Action de \(S_m \) sur \(H_{\text{BM}}(\Delta \gamma_m M^m) \). L’action de \(g \in S_m \) par image-inverse sur \(H_{\text{BM}}(F_m(M)) \) est donnée par l’égalité \((\dagger)\) dans 6.2.1-[ad-4].

L’espace \(F_m(M) \) est un ouvert de \(M^m \) et l’action de \(S_m \) est la restriction de son action sur \(M^m \), le scalaire \(\sigma_{F_m(M)}(g_b) \), qui coïncide avec \(\sigma_{M^m}(g_b) \) pour une certaine \(b \in \Pi_b(M^m) \), est indépendant de \(b \). En effet, on a \(\sigma_{M^m}(g_b) = \text{sgn}(g)^\text{dim}_M \), où \(\text{sgn}(_) \) est la signature. On pose alors,

\[\sigma_{M^m}(g) := \text{sgn}(g)^\text{dim}_M \]

de sorte que \(g^* : H_{\text{BM}}(F_m(M)) \to H_{\text{BM}}(F_m(M)) \) est donnée par

\[g^* = \sigma_{M^m}(g) \cdot (g)^\text{\dagger}, \]

où \(g : H_c(F_m(M)) \to H_c(F_m(M)) \) est l’image-directe et où \((_)^\text{\dagger} \) désigne l’adjoint pour la dualité vectorielle. Le lemme suivant est immédiat.

6.2.5. Lemme. L’application \(S_m \ni g \mapsto \sigma_{M^m}(g) \) est un caractère multiplicatif. Pour tout \(g \in S_m \), on a

\[\sigma_{X^m}(g) = \sigma_{M^m}(g) \cdot \sigma_X(g). \]

6.2.6. Commentaires
a) Si \(M \) est lisse et orientée, on a \(H^i(F_m(M)) \simeq H_{\text{BM}}^i(F_m(M)) \) par dualité de Poincaré, et les définitions d’image-inverse concordent.

b) L’opérateur \(p_{b*} \) est défini même si la projection \(p_b : F_{b+a}(M) \to F_b(M) \) n’est pas localement triviale, donc même lorsque \(M \) n’est pas lisse. Par contre, l’hypothèse d’orientabilité sur \(M \) est indispensable.

\(^{11}\)C’est pour cette unique raison que nous avons été contraints de nous limiter aux pseudo-variétés orientables.
6.2.7. Ingérence de la signature dans $H_{BM}(F_m)$. Dans 6.2.4-(b) nous avons défini l’action de S_m sur $H_{BM}(M^m)$ de sorte qu’elle coïncide avec l’action par image-inverse en cohomologie ordinaire $H(M^m)$ lorsque M est lisse. Cette action n’est pas l’action duale de l’action de S_m sur $H_c(M^m)$. La proposition suivante précise la différence entre les deux action dans une situation importante pour la suite de cette section 6.

6.2.8. Proposition et notation. Soient M et X deux pseudovariétés orientées et connexes. Pour $x \in X$, posons $M_X := M \times X$ et $M_x := M \times \{x\}$. Le morphisme dual de la restriction $\rho : H_c(F_m(M_X)) \to H_c(F_m(M_x))$ est le morphisme de S_m-modules

$$\rho^\vee(_ \otimes 1 : H_{BM}(F_m(M_x)) \to H_{BM}(F_m(M_X)) \otimes (\sigma_m)^{\otimes \dim X},$$

où σ_m est la « représentation par signature » de S_m et où $H_{BM}(M_x)$ et $H_{BM}(M_X)$ sont munis des structures de S_m-modules de 6.2.4-(b).

Démonstration. Par définition, la représentation de S_m sur $H_{BM}(F_m(M_X))$ est la représentation duale de celle de $H_c(F_m(M_X))$ tordue par le caractère $\sigma_{(M \times X)^m} = \sigma_{M^m} \cdot \sigma_{X^m}$ (6.2.5) tandis que pour celle de $H_{BM}(F_m(M_x))$, il faut tordre par σ_{M^m}. La différence est donc le caractère σ_{X^m} qui est trivial si $\dim X$ est paire et qui est le caractère signature autrement. □

6.3. Approche de $H_{BM}(F_m(M))$ à l’aide d’espaces i-acycliques

Dans les sections 3 et 4 (resp. la section 10), les méthodes pour la détermination du polynôme de Poincaré (resp. du caractère de S_m-module) de $H_c(F_m(M))$ s’appliquent lorsque M est i-acyclique (4.2.1, 4.2.2), mais pas lorsque M est général, ce pour quoi il faut une nouvelle idée, comme par exemple, celle que nous donnons à continuation qui permet d’approcher $H_{BM}(F_m(M))$, où M est un espace localement compact quelconque, à l’aide d’une suite spectrale dont les termes sont de la forme $H_{BM}(F_\ell(X))$ avec $\ell \leq m$, et, surtout, où X est i-acyclique, suite qu’on appellera « la suite spectrale basique pour $H_{BM}(F_m(M))$ » (cf. thm. 6.5.2).

6.3.1. L’idée est basée sur le fait que :

† Tout espace localement compact M peut être réalisé comme fermé dans un espace i-acyclique, de complémentaire (donc) également i-acyclique.
En effet, si X est i-acyclique et si $x \in X$, l’espace M s’identifie au fermé $M_x := M \times \{x\}$ de l’espace i-acyclique $M_X := M \times X$ (1.2.4-(e)). On note alors $V := X - x$ et $M_V := M \times V$ et l’on remarque que dans la suite longue de cohomologie à support compact :
\[
\rightarrow H_c(\Delta_m(M^m_X \setminus M^m_x)) \xrightarrow{\iota} H_c(F_m(M_X)) \xrightarrow{\rho} H_c(F_m(M_x)) \rightarrow ,
\]
on a $\rho = 0$. En effet, le prolongement par zéro $H_c(M_V) \to H_c(M_X)$ est surjectif, les arguments de la remarque 3.1.3 s’appliquent et établissent la surjectivité du prolongement par zéro $\iota : H_c(F_m(M_V)) \to H_c(F_m(M_X))$. La surjectivité de ι en résulte, car $\text{im}(\iota) \supseteq \text{im}(\iota')$, et la nullité de ρ s’ensuit.

Ces arguments et la proposition 6.2.8 prouvent la proposition suivante.

6.3.2. Proposition. Soient M et X des espaces localement compacts. On suppose que X est i-acyclique et l’on fixe $x \in X$.

a) La suite courte de S_m-modules
\[
0 \to H_c(F_m(M_x))[-1] \to H_c(\Delta_m(M^m_X \setminus M^m_x)) \to H_c(F_m(M_X)) \to 0
\]
extraite de la suite longue de cohomologie à support compact, est exacte.

b) On suppose M et X des pseudovariétés orientées de dimensions cohomologiques finies d_M et d_X. La suite courte de S_m-modules (12)
\[
0 \to H_{bm}(F_m(M_X))[md_X-1] \to H_{bm}(\Delta_m(M^m_X \setminus M^m_x))[md_X-1] \to H_{bm}(F_m(M_x)) \otimes (\sigma_m)^{\dim X} \to 0
\]
extraite de la suite longue de cohomologie de Borel-Moore, est exacte.

Le polynôme de Poincaré de $H_{bm}(F_m(M))$ est donc déterminé par celui de $H_{bm}(F_m(M_X))$, déjà connu, et par celui de $H_{bm}(\Delta_m(M^m_X \setminus M^m_x))$, qui fera l’objet d’étude des sections suivantes.

6.4. Une suite spectrale pour $H_{bm}(\Delta_m(M^m_X \setminus M^m_x))$

6.4.1. Rappel : cochaînes simpliciales, ordonnées et alternées. Étant donné une famille finie d’ouverts $\mathcal{U} = \{U_1, \ldots, U_m\}$ d’un espace topologique X, on rappelle que l’on dispose classiquement de trois notions de p-cochaînes de Čech pour le foncteur des section locales. A savoir,

- Le groupe des « p-cochaînes simpliciales (non ordonnées) »
\[
\check{C}^p(\mathcal{U}, -) := \bigoplus_{(i_0, \ldots, i_p)} F(U_{i_0, \ldots, i_p}, -)
\]
où (i_0, \ldots, i_p) est un suite d’éléments deux à deux distincts de $[1, m]$.

\[\text{L’énoncé est valable plus généralement pour les espaces localement compacts de dimensions cohomologiques finies (2.4.1), sauf pour ce qui est des structures de S_m-modules que nous n’avons pas définies dans cette généralité.}\]
Le groupe des « p-cochaînes (simpliciales) ordonnées »

\[\tilde{\mathcal{C}}^p_c(U, _):= \bigoplus_{1 \leq i_0 \leq \cdots \leq i_p \leq m} \Gamma(U_{i_0 \ldots i_p}, _). \]

Le groupe des « p-cochaînes (simpliciales) alternées » \(\tilde{\mathcal{C}}^p_c(U, _) \). C'est le sous-groupe des p-cochaînes \(\omega \in \mathcal{C}^p(U, _) \) vérifiant pour \(\alpha \in \delta([0, p]) \):

\[\omega_{i_0 \ldots i_p} = \text{sgn}(\alpha) \omega_{\alpha(i_0) \ldots \alpha(i_p)}. \]

Remarquons en passant que l'application « d'antisymétrisation »

\[\varepsilon_p : \tilde{\mathcal{C}}^p_c(U, _) \rightarrow \tilde{\mathcal{C}}^p_c(U, _) \]

définie, suivant la même égalité (*), par \(\varepsilon_p(\omega)_{i_0(i_0) \ldots i_p(i_p)} := \text{sgn}(\omega) \omega_{i_0 \ldots i_p} \), est un isomorphisme de complexes. L'assertion suivante est classique (cf. [20], §I.3.8, p. 58.).

Dans les trois cas, l'opérateur cobord \(\delta_p : \tilde{\mathcal{C}}^p_c(U, _) \rightarrow \tilde{\mathcal{C}}^{p+1}_c(U, _) \)

\[(\delta \omega)_{i_0 \ldots i_{p+1}} := \sum_{k=0}^{p+1} (-1)^k \omega_{i_0 \ldots \hat{i}_k \ldots i_p} \mid_{U_{i_0 \ldots i_p}} \]
a un sens et respecte chaque type de cochaîne. L'antisymétrisation

\[\varepsilon_* : (\tilde{\mathcal{C}}^*_c(U, _), \delta_*) \rightarrow (\tilde{\mathcal{C}}^*_c(U, _), \delta_*) \]

est alors un isomorphisme de complexes. L'assertion suivante est classique (cf. [20], §I.3.8, p. 58.).

6.4.2. Proposition. Les inclusions de complexes

\[(\tilde{\mathcal{C}}^*_c(U, _), \delta_*) \subseteq (\mathcal{C}^*_c(U, _), \delta_*) \supseteq (\tilde{\mathcal{C}}^*_c(U, _), \delta_*) \]

sont des quasi-isomorphismes.

Les complexes (\(\diamond \)) sont donc interchangeables pour les besoins du calcul de la cohomologie de Čech.

6.4.3. Faisceaux et complexes de Čech \(S_m \)-équivariants

Revenons sur le cas de l'espace \(\Delta_m(M_X^m \setminus M_X^m) \) de 6.3.2. Munissons-le du recouvrement \(U^m = \{ U_1^m, \ldots, U_m^m \} \), où :

\[U_i^m := \Delta_m(M_X \times \cdots \times \hat{M}_i^m \times \cdots \times M_X) \subseteq \mathcal{F}_m(M_X), \]

avec \(V := X - x \). Notons ensuite

\[U_i^m := U_{i_1}^m \cup \cdots \cup U_{i_m}^m, \quad U_{i_0 \ldots i_p}^m := U_{i_0}^m \cap \cdots \cap U_{i_p}^m, \]

et même \(U_{(i_0 \ldots i_p)}^m \) : une copie de \(U_{i_0 \ldots i_p}^m \) paramétrée par l'uplet \((i_0, \ldots, i_p) \).

Le groupe \(S_m \) agit sur \(U^m \) par permutation des coordonnées, nous avons donc \(g \cdot U_{i_0 \ldots i_p}^m = U_{g(i_0) \ldots g(i_p)}^m \), pour tout \(g \in S_m \).

52
Définition. Un faisceau \mathcal{G} sur U^m est dit « S_m-équivariant » s’il est muni d’une famille d’isomorphismes $\{ \phi_{g,V} : \Gamma(gV; \mathcal{G}) \to \Gamma(V; \mathcal{G}) \}_{(g,V)}$, indexée par les couples (g,V) où $g \in S_m$ et V est un ouvert de U^m, telle que la relation cocyclique $\phi_{h,gV} \circ \phi_{g,V} = \phi_{hg,V}$ est satisfaite pour $h, g \in S_m$ et tout ouvert V de U^m. Les définitions de morphisme S_m-équivariant entre faisceaux S_m-équivariants et de catégorie des faisceaux S_m-équivariants s’ensuivent.

Les faisceaux des germes de cochaînes de Borel-Moore Ω^i_{BM,U^m} sur U^m, que nous allons introduire dans 6.4.5, constituent le principal exemple dans ce travail de faisceau S_m-équivariant. Définis comme duals des cofaisceaux des cochaînes d’Alexander-Spanier à support compact $\Omega^i(U^m; \mathbb{R})$, les faisceaux Ω^i_{BM,U^m} héritent naturellement de l’action duale de l’action de S_m sur Ω_{BM,U^m}.

6.4.4. Proposition. Munissons $U^m_{m-p,...,m} = \Delta_m(M_{X}^{m-(p+1)} \times M_{Y}^{p+1})$ de l’action de $S_{m-(p+1)} \times S_{p+1}$ par permutation de coordonnées.

a) L’application
\[\phi_p : S_m \times U^m_{m-p,...,m} \to U^m \]
\[(g, x) \mapsto g(x) \in U^m_{(g(m-p),...,g(m))} \]
où (i_0, \ldots, i_p) est une suite d’éléments deux à deux distincts de $[1,m]$, est un homéomorphisme.

Soit maintenant \mathcal{G} un faisceau S_m-équivariant sur U^m. On note $\sigma \mapsto g \star \sigma$ l’action de $g \in S_m$ sur une section locale $\sigma \in \mathcal{G}$.

b) Le morphisme image-directe défini par l’homéomorphisme ϕ_p, à savoir
\[\phi_{p!} : \text{ind}_{\text{BM}}\Gamma(U^m_{m-p,...,m}; \mathcal{G}) \to \check{\mathcal{C}}^p(U^m; \mathcal{G}) = \bigoplus_{(i_0,\ldots,i_p)} \Gamma(U^m_{(i_0,\ldots,i_p)}; \mathcal{G}) \]
\[(g,\sigma) \mapsto g \star \sigma \in \Gamma(U^m_{(g(m-p),...,g(m))}; \mathcal{G}) \],
est un isomorphisme. Il induit sur $\check{\mathcal{C}}^p(U^m; \mathcal{G})$ l’action $\omega \mapsto g \star \omega$ de S_m :
\[(h \circ \omega)_{i_0,\ldots,i_p} := h \star (\omega_{h^{-1}(i_0),\ldots,h^{-1}(i_p)}) \].
Cette action est compatible au cobord des cochaînes simpliciales et le complexe de Čech augmenté :
\[0 \to \Gamma(U^m; \mathcal{G}) \xrightarrow{\epsilon} \check{\mathcal{C}}^0(U^m; \mathcal{G}) \xrightarrow{\delta_0} \check{\mathcal{C}}^1(U^m; \mathcal{G}) \xrightarrow{\delta_1} \cdots \]est un complexe de S_m-modules.

c) Le complexe des cochaînes alternées ($\check{\mathcal{C}}^*_{\epsilon}(U^m; \mathcal{G})$, δ_*) est un sous-complexe de S_m-modules du complexe des cochaînes simpliciales ($\check{\mathcal{C}}^*(U^m; \mathcal{G})$, δ_*). L’antisymétrisation $\varepsilon : (\check{\mathcal{C}}^*_{\epsilon}(U^m; \mathcal{G}), \delta_*) \to (\check{\mathcal{C}}^*_{\epsilon}(U^m; \mathcal{G}), \delta_*)$ transmet cette structure et munit chaque groupe $\check{\mathcal{C}}^p_{\epsilon}(U^m; \mathcal{G})$ de l’action $\omega \mapsto g \star \omega$ de S_m.

53
En particulier, le complexe de cochaînes ordonnées de Čech augmenté :

\[0 \to \Gamma(U^m; \mathcal{G}) \xrightarrow{\varepsilon} \dot{C}_0^p(U; \mathcal{G}) \xrightarrow{\delta_0} \dot{C}_1^p(U; \mathcal{G}) \xrightarrow{\delta_1} \cdots \]

est un complexe de \(S_m \)-modules. De plus, l’application

\[\Psi_p : \text{ind} \dot{S}_m \Gamma(U_{m-p+1}^m; \mathcal{G}) \otimes \sigma_{p+1} \to \dot{C}_p^p(U^m; \mathcal{G}) = \bigoplus_{1 \leq i_0 < \ldots < i_p \leq m} \Gamma(U^m_{i_0}, \ldots, i_p; \mathcal{G}) \]

où ‘\(\otimes \)' désigne l’action ‘\(\ast \)' de \(S_{m-(p+1)} \times \mathbb{S}_{p+1} \) tordue par le caractère signature \(\sigma_{p+1} \) de \(\mathbb{S}_{p+1} \), est un isomorphisme de \(S_m \)-modules.

Démonstration. (a) L’application \(\Phi_p \) est définie sur la réunion disjointe de copies de \(U_{m-p+1}^m \) indexées par les éléments \(\mathfrak{g} \in S_m / S_{m-(p+1)} \). Pour chaque \(g \in S_m \), la restriction de \(\Phi_p \) à \((\mathfrak{g}, U_{m-p+1}^m) \) est un homéomorphisme sur \(U_{m-p+1}^m \). On conlue que \(\Phi_p \) est bijective en remarquant que le cardinal \(|S_m / S_{m-(p+1)}| \) est précisément celui de l’ensemble des \((p+1) \)-uplets \((i_0, \ldots, i_p) \) d’éléments deux à deux distincts de \([1, m] \).

(b) résulte de (a) et des identités :

\[\delta(h \circ \omega)_{i_0, \ldots, i_{p+1}} = \sum_{j=0}^{p+1} (h \circ \omega)_{i_0, \ldots, i_j, \ldots, i_{p+1}} |U^m_{i_0, \ldots, i_{p+1}}| \]

\[= \sum_{j=0}^{p+1} (h \ast (\omega_{h^{-1}(i_0, \ldots, i_j, \ldots, i_{p+1})}) |U^m_{i_0, \ldots, i_{p+1}}| \]

\[= h \ast \left(\sum_{j=0}^{p+1} \omega_{h^{-1}(i_0, \ldots, i_j, \ldots, i_{p+1})} |U^m_{h^{-1}(i_0, \ldots, i_{p+1})}| \right) \]

\[= (h \circ \delta \omega)_{i_0, \ldots, i_{p+1}} \]

(c) Soit \(\omega \in \dot{C}_p^p(U^m; \mathcal{G}) \). Pour \(\alpha \in S_{1, p} \) et \(h \in S_m \), on a :

\[(h \circ \omega)_{i_0(0), \ldots, i_0(p)} = h \ast (\omega_{h^{-1}(i_0(0), \ldots, h^{-1}(i_0(p)))} \]

\[= \text{sgn}(\alpha) h \ast (\omega_{h^{-1}(i_0), \ldots, h^{-1}(i_p)}) \]

et \(\dot{C}_p^p(U^m; \mathcal{G}) \) est bien un sous-\(S_m \)-module de \(\dot{C}_p^p(U^m; \mathcal{G}) \).

Le sous-espace \(\varepsilon_p(\Gamma(U_{m-p+1}^m; \mathcal{G})) \) est stable sous \(S_{m-(p+1)} \times \mathbb{S}_{p+1} \) dont l’action est tordue par le caractère signature de \(\mathbb{S}_{p+1} \). Le morphisme de \(S_m \)-modules \(\Psi_p \) est donc bien défini et il est surjectif puisque \(\varepsilon_p(\Gamma(U_{m-p+1}^m; \mathcal{G})) \) engendre clairement \(\dot{C}_p^p(U^m; \mathcal{G}) \) en tant que \(S_m \)-module. Le fait que \(\Psi_p \) est bijectif résulte alors du fait que \(|S_m / (S_{m-(p+1)} \times \mathbb{S}_{p+1})| \) est également le cardinal de l’ensemble des parties \(I \subseteq [1, m] \) telles que \(|I| = p+1 \). \(\square \)

Faisceaux de germes de cochaînes de Borel-Moore

Soit M un espace localement compact de dimension cohomologique d_M muni de l’action d’un groupe fini G. Dans 2.4.2-(a) nous avons introduit la résolution c-molle

$$0 \rightarrow k_M \longleftarrow \Omega^0_M \xrightarrow{d_0} \Omega^1_M \xrightarrow{d_1} \cdots \xrightarrow{d_{d_M-1}} \Omega^{d_M}_M \rightarrow 0$$

qui est une résolution dans la catégorie des faisceaux G-équivariants (6.4.3). Pour tout ouvert $U \subseteq M$, le complexe des « cochaînes à support compact »

$$(\Omega^*_c(U), d) := \Gamma_c(U; (\Omega^*_M, d_*))$$

calcula la cohomologie à support compact $H^*_c(U)$, et si U est en plus stable sous l’action de G, c’est aussi un complexe de G-modules pour l’action d’image-directe topologique.

Si $\iota_{V \subseteq U} : V \subseteq U$ est une inclusion ouverte, le prolongement par zéro

$$\iota_{V \subseteq U} : (\Omega^*_c(V), d_*) \rightarrow (\Omega^*_c(U), d_*)$$

est une inclusion de complexes et la correspondance

$$\begin{array}{ccc}
U & \xrightarrow{\iota_{V \subseteq U}} & (\Omega^*_c(U), d_*) \\
\uparrow & & \uparrow \\
V & \xrightarrow{\iota_{V \subseteq U}} & (\Omega^*_c(V), d_*)
\end{array}$$

définit un complexe (Ω^*_M, c, d_*) de pré-cofaisceaux flasques sur M qui sont en fait des cofaisceau puisque les Ω^i_M sont c-mous (cf. [6] V.1.6, p. 282).

Pour tout ouvert $U \subseteq M$, le « complexe des cochaînes de Borel-Moore sur U » est défini par dualité et décalage : (13)

$$(\Omega^*_BM(U), d_*) := ((\Omega^*_c(U), d_*)^\vee)[-d_M].$$

Lorsque U est G-stable, chaque $\Omega^*_BM(U)$ est à priori muni de l’action de G duale de son action par image-directe sur $\Omega^*_c(U)$, mais cette action ne correspond pas à l’action de G par image-inverse lorsque M est une variété topologique orientée, ce pour quoi il faut tordre l’action duale par le caractère σ_M tel qu’expliqué dans 6.2.4-(b). Plus généralement, si M est une pseudo-variété orientée, on notera ‘\star’ l’action duale de G sur $\Omega^*_c(U)$ tordue par σ_M. Dans tous les cas, le complexe (13) ci-dessus est un complexe de G-modules.

13 On remarquera l’abus de notation qui consiste à noter de la même manière les différentielles des deux complexes $(\Omega^*_c(U), d_*)$ et $(\Omega^*_BM(U), d_*)$.

55
Le complexe \((\Omega_{\text{BM}}^* (U), d_*)\) calcule la cohomologie de Borel-Moore \(H_{\text{BM}}^* (U)\) et la correspondance

\[
U \rightsquigarrow (\Omega_{\text{BM}}^* (U), d_*)
\]

\[
V \rightsquigarrow (\Omega_{\text{BM}}^* (V), d_*)
\]
où \(\iota_{V \subseteq U}\) est le dual de \(\iota_{V \subseteq U!}\), est le complexe \((\Omega_{\text{BM}}^* (\cup \cdots \cup M), d_*)\) des « faisceaux (flasques) de germes de chaînes de Borel-Moore » sur \(M\). C’est un complexe de faisceaux \(G\)-équivariants.

Bicomplexe de chaînes Čech-Borel-Moore

Soit \(\mathcal{U}_m = \{U_1^m, \ldots, U_m^m\}\) une famille \(G\)-stable d’ouverts de \(M\), c’est à dire telle qu’il existe une action de \(G\) sur \([1,m]\) vérifiant \(g(U_1^m) = U_{g(i)}^m\). On pose

\[
U^m := U_1^m \cup \cdots \cup U_m^m, \quad U_{i_0 \cdots i_p}^m := U_{i_0}^m \cap \cdots \cap U_{i_p}^m,
\]
et l’on considère le bicomplexe \((\hat{\mathcal{C}}(U^m)_c, \partial_*, d_*) :\)

\[
\begin{array}{ccccccc}
0 & \longrightarrow & \hat{C}_1(U^m, \Omega^0_{\text{BM},c}) & \longrightarrow & \hat{C}_1(U^m, \Omega^1_{\text{BM},c}) & \longrightarrow & \hat{C}_1(U^m, \Omega^2_{\text{BM},c}) & \longrightarrow & 0 \\
\delta_0 & & \partial_0 & & \partial_0 & & \partial_0 & & \\
0 & \longrightarrow & \hat{C}_0(U^m, \Omega^0_{\text{BM},c}) & \longrightarrow & \hat{C}_0(U^m, \Omega^1_{\text{BM},c}) & \longrightarrow & \hat{C}_0(U^m, \Omega^2_{\text{BM},c}) & \longrightarrow & 0 \\
\epsilon & & \epsilon & & \epsilon & & \epsilon & & \\
0 & \longrightarrow & \Omega^0_{\text{BM},c}(U^m) & \longrightarrow & \Omega^1_{\text{BM},c}(U^m) & \longrightarrow & \Omega^2_{\text{BM},c}(U^m) & \longrightarrow & 0
\end{array}
\]

(\(\hat{\mathcal{C}}_c\))

dont les colonnes sont les complexes de « chaînes de Čech à valeurs dans un cofaisceau » et sont exactes puisque les cofaisceaux \(\Omega^i_{\text{BM},c}\) sont flasques (\(^{14}\)). En dualisant, on obtient un bicomplexe de colonnes exactes

\[
\begin{array}{ccccccc}
0 & \longrightarrow & \hat{C}^1(U^m, \Omega^0_{\text{BM},c}) & \longrightarrow & \hat{C}^1(U^m, \Omega^1_{\text{BM},c}) & \longrightarrow & \hat{C}^1(U^m, \Omega^2_{\text{BM},c}) & \longrightarrow & 0 \\
\delta_0 & & \delta_0 & & \delta_0 & & \delta_0 & & \\
0 & \longrightarrow & \hat{C}^0(U^m, \Omega^0_{\text{BM},c}) & \longrightarrow & \hat{C}^0(U^m, \Omega^1_{\text{BM},c}) & \longrightarrow & \hat{C}^0(U^m, \Omega^2_{\text{BM},c}) & \longrightarrow & 0 \\
\epsilon & & \epsilon & & \epsilon & & \epsilon & & \\
0 & \longrightarrow & \Omega^0_{\text{BM},c}(U^m) & \longrightarrow & \Omega^1_{\text{BM},c}(U^m) & \longrightarrow & \Omega^2_{\text{BM},c}(U^m) & \longrightarrow & 0
\end{array}
\]

(\(\hat{\mathcal{C}}_{\text{BM}}\))

qui est un bicomplexe de \(G\)-modules puisque l’analogue du théorème 6.4.4 est vérifié pour les données en cours.

On appellera « bicomplexe de cochaînes de Čech-Borel-Moore de U^m », le bicomplexe du premier quadrant

$$\check{C}(U^m)_{\text{BM}}^{\bullet,*} := \left(\check{C}^{\bullet}(U^m;\Omega^{\bullet}_{\text{BM}}^*),\delta_*,d_*\right).$$

Filtration régulière de $H^*_{\text{BM}}(U^m)$ et suite spectrale

En raison de l’exactitude des colonnes de (\check{C}_{BM}), le morphisme d’augmentation ϵ induit un quasi-isomorphisme de complexes de G-modules

$$\epsilon : (\Omega^*_{\text{BM}}(U^m),d_*) \to \text{tot}^*(\check{C}(U^m)_{\text{BM}}^{\bullet,*})$$

où ‘tot’ désigne le complexe simple associé. On a donc un isomorphisme de G-modules

$$h^i(\epsilon_*) : H^i_{\text{BM}}(U^m) \simeq h^i(\text{tot}^*(\check{C}(U^m)_{\text{BM}}^{\bullet,*}))$$

pour tout $i \in \mathbb{Z}$.

Pour $k \in \mathbb{N}$, notons $\check{C}(U^m)_{\text{BM},k}^{\bullet,*}$ le sous-bicomplexe de $\check{C}(U^m)_{\text{BM}}^{\bullet,*}$ défini par

$$\begin{cases}
\check{C}(U^m)_{\text{BM},k}^{i,*} = 0, & \text{si } i < k, \\
\check{C}(U^m)_{\text{BM},k}^{i,*} = \check{C}(U^m)_{\text{BM}}^{i,*}, & \text{si } k \leq i \leq m - 1.
\end{cases}$$

On a la filtration décroissante de bicomplexes de G-modules

$$\check{C}(U^m)_{\text{BM}}^{\bullet,*} = \check{C}(U^m)_{\text{BM},0}^{\bullet,*} \geq \check{C}(U^m)_{\text{BM},1}^{\bullet,*} \geq \check{C}(U^m)_{\text{BM},2}^{\bullet,*} \geq \cdots$$

induisant une filtration positivement graduée décroissante et régulière du complexe $\text{tot}^*(\check{C}(U^m)_{\text{BM}}^{\bullet,*})$ de même donc que pour $H^*_{\text{BM}}(U^m)$ pour lequel on pose

$$H^*_\text{BM}(U^m)_k := h(\epsilon_*)^{-1}\left(h^*(\text{tot}^*(\check{C}(U^m)_{\text{BM},k}^{\bullet,*}))\right).$$

On notera $\mathbf{F}H^*_\text{BM}(U^m)$ et $\mathbf{F}\text{tot}^*(\check{C}(U^m)_{\text{BM}}^{\bullet,*})$ ces objets filtrés.

6.4.6. Remarque. Dans ce qui précède nous aurions tout aussi bien pu considérer les cochaînes de Čech ordonnées ou alternées, ce qui aurait fourni les bicomplexes de G-modules $\check{C}_c(U^m)_{\text{BM}}^{\bullet,*}$ et $\check{C}_c(U^m)_{\text{BM}}^{\bullet,*}$.

La proposition suivante est bien connue (15).

6.4.7. Proposition. La suite spectrale de G-modules $\mathbf{E}(U^m) := (\mathbf{E}(U^m)_r,d_r)$ associée au complexe de G-modules gradué filtré $\mathbf{F}\text{tot}^*(\check{C}_c(U^m)_{\text{BM}}^{\bullet,*})$ converge vers le bigradué de $\mathbf{F}H^*_\text{BM}(U^m)$. On a

$$\mathbf{E}(U^m)_{1}^{p,q} := \check{C}_c^p(U^m,\mathcal{H}^q_{\text{BM}}(_))$$

et

$$\mathbf{E}(U^m)_{2}^{p,q} := \check{H}^p(U^m,\mathcal{H}^q_{\text{BM}}(_)) \Longrightarrow \mathbf{Gr}^{p,q}(\mathbf{F}H^*_\text{BM}(U^m)). \quad (\mathbf{E})$$

Le théorème suivant est maintenant corollaire immédiat de 6.4.7 et de 6.4.4.

6.4.8. Théorème. Soient \(M \) et \(X \) des espaces localement compacts de dimensions cohomologiques finies. Le \(S_m \)-module \(H_{abm}(\Delta_m(M_X^0 \sim M_x^0)) \) est l'aboutissement de la suite spectrale \(E(U^m) \) de 6.4.7 pour le recouvrement \(U^m := \{U_1^m, \ldots, U_m^m\} \), où

\[
U_i^m := \Delta_m(M_X \times \cdots \times \widehat{M_X}^i \times \cdots \times M_X) \subseteq F_m(M_X).
\]

L'identification de 6.4.4-(c) pour le groupe des \(\text{trale de complexes de } C(U^m) \)

6.4.9. Remarque. Le même énoncé est valable pour le complexe des co-châînes non ordonnées \(\widetilde{C}^p(U^m, _ , _ , _) \) d'une structure de complexe de \(S_m \)-modules. Les termes \((E(U^m), d_r) \) de la suite spectrale \(E(U^m) \) héritent d'une structure de complexe de \(S_m \)-modules et la suite spectrale converge au sens de suite spectrale de complexes de \(S_m \)-modules vers le \(S_m \)-module bi-gradué associé au \(S_m \)-module gradué \(H_{abm}(\Delta_m(M_X^0 \sim M_x^0)) \) muni de filtration régulière de la proposition 6.4.7. Dans le cas particulier où \(r = 1 \), on a

\[
E(U^m)^{p,q}_1 = \text{ind}^S_m \left(H_{abm}^{p,q}(U^m_{m-p-\ldots,m}) \otimes \sigma_{p+1} \right),
\]

et \(d_1 : E(U^m)^{p-1,q}_1 \to E(U^m)^{p,q}_1 \) un morphisme de \(S_m \)-modules.

6.4.9. Remarque. Le même énoncé est valable pour le complexe des co-châînes non ordonnées \((\widetilde{C}^p(U^m, _ , _ , _)) \), auquel cas on a

\[
E(U^m)^{p,q}_1 = \text{ind}^S_m \left(H_{abm}^{p,q}(U^m_{m-p-\ldots,m}) \right),
\]

en raison de l'égalité \(\widetilde{C}^p(U^m, _) = \text{ind}^S_m \left(\Gamma(U^m_{m-p-\ldots,m}) \right) \) de 6.4.4-(b).

6.5. La suite spectrale « basique » pour \(H_{abm}(F_m(M)) \)

Nous nous restreignons maintenant à une situation qui simplifie remarquablement les considérations précédentes. C'est le cas où l'espace \(X \) est l'espace \(\mathbb{R}_{\geq 0} := [0, +\infty] \), puis \(x := 0 \) et \(V := \mathbb{R}_{\geq 0} \). Dans la suite, \(M \) sera localement compact de dimension cohomologique finie \(d_M \) (2.4.1), et l'on notera

\[
M_{\geq 0} := M \times \mathbb{R}_{\geq 0}, \quad M_0 := M \times \{0\}, \quad M_{\geq 0} := M \times \mathbb{R}_{\geq 0}.
\]

Les espaces \(M_{\geq 0} \) et \(M_{\geq 0} \) sont \(i \)-acycliques et l'on a

\[
M \simeq M_0 = (M_{\geq 0} \setminus M_{\geq 0}).
\]

On aura remarqué que ces choix renferment l'égalité \(H_c(\mathbb{R}_{\geq 0}) = 0 \), et donc le fait que l'on aura (4.2.1-(a))

\[
H_c(F_m(M_{\geq 0})) = 0, \quad \forall m \geq 1.
\]

58
La proposition 6.3.2 se simplifie et donne des isomorphismes de S_m-modules

$$H_c(F_m(M)) \simeq H_c(\Delta_m(M_{\geq 0}^m, M_0^m))[1],$$

et lorsque M est une pseudovariété orientée (*16*)

$$H_{BM}(F_m(M)) \simeq H_{BM}(\Delta_m(M_{\geq 0}^m, M_0^m))[m-1] \otimes \sigma_m$$

où l’apparition du caractère signature a été justifiée dans 6.2.8.

Avec ces données, la suite spectrale de 6.4.8 convenablement modifiée par le caractère σ_m, converge vers $H_{BM}(F_m(M))[1-m]$, on l’appellera « la suite spectrale basique pour $H_{BM}(F_m(M))$ ».

6.5.2. Théorème (des suites spectrales basiques)

Soit M une pseudovariété orientée de dimension d_M (*17*). La suite $E_{\sigma}(U^m) := E(U^m) \otimes \sigma_m$ converge, en tant que suite spectrale de complexes de S_m-modules, vers le S_m-module bi-gradué associé au S_m-module gradué $H_{BM}(F_m(M))[1-m]$ muni de filtration régulière induite par l’isomorphisme $(\circ\circ)$ ci-dessus. De plus,

a) Pour tout $i \in \mathbb{Z}$, on a

$$E_{\sigma}(U^m)^{p,q} = \text{ind}^{S_m} \sigma_{m-(p+1)} \otimes H^q_{BM}(U^m_{m-p,\ldots,m}) \Rightarrow H^q_{BM}(F_m(M))$$

avec $q = i + (m-(p+1))$. Dans cette écriture, le groupe $S_{m-(p+1)} \times S_{p+1}$ opère sur $H_{BM}(U^m_{m-p,\ldots,m})$ par image-inverse (6.2.4-(b)) et le caractère $\sigma_{m-(p+1)}$ affecte uniquement l’action du sous-groupe $S_{m-(p+1)} \times 1$.

b) On a une décomposition canonique d’espaces vectoriels

$$\Xi_{p+1}^m : H^q_{BM}(U^m_{m-p,\ldots,m}) \simeq \bigoplus_{f \in \mathcal{F}(p+1,m)} H^q_{BM}(F_{p(f)}(M_{>0}))$$

où $\mathcal{F}(p+1,m)$ est l’ensemble des applications $f : [1,m] \to [1,m]$ telles que $x < f(x)$ si $x < m-p$, et $f(x) = x$ sinon. On a $|\mathcal{F}(p+1,m)| = (m-1)!/p!$.

La paramétrisation associée à $f \in \mathcal{F}(p+1,m)$ le sous-espace $F_{p(f)}(M_{>0}) \subseteq \Delta_{p+1}(M_{>0}) \otimes F_{p+1}(M_{>0})$ où $p(f)$ est la partition de $[1,m]$ définie par les fibres de f (cf. 2.3.2).

c) Pour avoir $E_{\sigma}(U^m)^{p,q} \neq 0$, il faut que $(m-(p+1))d_M \leq q \leq m d_M$.

d) Pour $i \in \mathbb{N}$ donné, les termes de $E_{\sigma}(U^m)^{p,q}$, pour $r \geq 1$, qui contribuent à $H^q_{BM}(F_m(M))$ sont ceux pour lesquels on a $(m-(p+1))(d_M-1) \leq i$.

16 Dans le cas général où M n’est pas une pseudovariété, on a toujours un isomorphisme d’espaces vectoriels, mais on perd l’aspect représentation de S_m (cf. note (*12*)).

17 Comme dans la note précédente, si l’on néglige l’aspect représentations, l’énoncé est valable plus généralement pour les espaces localement compacts de dimension finie.
Indications. (a) Le foncteur $\bigotimes \sigma_m$ étant exact, la convergence de $E_p(U^m)$ vers $H_{BM}(U^m) \otimes \sigma_m$ est assurée. Ensuite, l’égalité classique (18)

$$\left(\text{ind}_{b}^{s} \right) \times \left(\text{Res}_{b}^{s} \right) \times \left(H_{BM}(U^{m-p,...,m}) \otimes \sigma_{p+1} \right) \otimes \sigma_m = \text{ind}_{b}^{s} \left(H_{BM}(U^{m-p,...,m}) \otimes \sigma_{p+1} \otimes \text{Res}_{b}^{s} \sigma_m \right)$$

explique le changement de σ_{p+1} en $\sigma_{m-(p+1)}$ dans l’énoncé 6.4.8. L’égalité $p + q = i + (m-1)$ découle quant à elle de 6.5.1-(∞).

(b) On remarque que dans la mesure où $H_c(F_m(M_{>0})) = 0$, le morphisme de liaison dans la suite longue de cohomologie à support compact 2.1.2 pour $Z := M_{>0} \times \Delta_{a-1+b}(M_{>0}^{a-1} \times M_{>0}^b)$, à savoir

$$H_c(\Delta_{a-1+b}(M_{>0} \times \Delta_{a-1+b}(M_{>0}^{a-1} \times M_{>0}^b))) \rightarrow H_c(\Delta_{a+b}(M_{>0}^a \times M_{>0}^b)),$$

est un isomorphisme. Comme d’autre part, la projection sur les dernières coordonnées

$$\pi_{a-b} : \Delta_{a-1+b}(M_{>0} \times \Delta_{a-1+b}(M_{>0}^{a-1} \times M_{>0}^b)) \rightarrow \Delta_{a-1+b}(M_{>0}^{a-1} \times M_{>0}^b).$$

est un revêtement trivial à $(a-1+b)$ nappes paramétrées par les applications de $\mathcal{F}(a+b, a-1+b)$, on a un isomorphisme canonique

$$\Delta_{a-1+b}(M_{>0}^{a-1} \times M_{>0}^b)^{a-1+b} [-1] \simeq \Delta_{a+b}(M_{>0}^{a} \times M_{>0}^b)^{a+b},$$

et par induction

$$H_c(F_\mathcal{F}(M_{>0}))(a+b-1)!(b-1)![-a] \simeq H_c(\Delta_{a+b}(M_{>0}^{a} \times M_{>0}^b))$$

où $(a+b-1)!(b-1)! = |\mathcal{F}(a+b)|$.

Par conséquent,

$$H_c(U^{m-p,...,m}) = H_c(\Delta_{m}(M_{>0}^{m-(p+1)} \times M_{>0}^{p+1}))$$

$$= \bigoplus \mathcal{F}(p+1,m) H_c(F_{p+1}(M_{>0}))[-(m-(p+1))],$$

et par dualité, l’isomorphisme annoncé dans (b)

$$H_{BM}(U^{m-p,...,m}) \simeq \bigoplus \mathcal{F}(p+1,m) H_{BM}(F_{p+1}(M_{>0}))[-(m-(p+1)) d_M].$$

(c) Comme on a $H_{BM}^i(F_{p+1}(M_{>0})) = 0$ pour tout $i \notin [(0,(p+1)d_M)]$, puisque $H^i_c(F_{p+1}(M_{>0})) = 0$ si $i < p+1$ (4.2.1-(a)), on comprend par (f) que pour si $H_{BM}^q(U^{m-p,...,m}) \neq 0$, alors $q \in [[(m-(p+1)) d_M, md_M]]$, d’où (c). À partir de là, si l’on fixe $i \in \mathbb{N}$, la majoration (d) résulte de l’égalité $q = i + m-(p+1)$.□

18 Étant donnée une inclusion de groupes $H \subseteq G$, un H-module V et un G-module W, on a $\text{ind}_H^G V \otimes_k W \cong \text{ind}_H^G (V \otimes_k \text{res}_H^G W)$.

60
6.5.3. Termes non nuls de la suite spectrale basique. La figure suivante illustre les assertions 6.5.2-(c,d). Les termes $IE_\sigma(U_m)^{p,q}$ non nuls pour $r \geq 1$ sont dans la région hachurée, et, pour chaque $i \in \mathbb{N}$ fixé, ceux qui contribuent à $H^i_{\text{bM}}(F_m(M))$ sont dans la région à la fois hachurée et grisee.

Le petit tableau à gauche rappelle que l’action de $S_{m-(p+1)} \times S_{p+1}$ par image-inverse sur les termes de la ligne p est tordue par le caractère $\sigma_{m-(p+1)}$.

6.6. Naturalité de la suite spectrale basique pour $H_{\text{bM}}(F_m(M))$

6.6.1. On rappelle que l’on note $p_m : F_{m+1}(M) \to F_m(M)$ la projection sur les m premières coordonnées. Nous supposerons que M est une pseudovariété orientée de dimension finie $d_M^{(19)}$ de sorte que le morphisme d’intégration sur les fibres $p_m^* : H^*_c(F_{m+1}) \to H^*_c(F_m)$ est défini, ainsi que son dual, le morphisme d’image-inverse $p_m^* : H_{\text{bM}}(F_m) \to H_{\text{bM}}(F_{m+1})$ (cf. 6.2.4-(a)).

Dans cette partie nous préparons le terrain pour l’étude ultérieure en 9.2 de certaines propriétés asymptotiques des familles des morphismes d’image-inverse en cohomologie de Borel-Moore

$\{ H^i_{\text{bM}}(F_m(M)) \xrightarrow{p_m^*} H^i_{\text{bM}}(F_{m+1}(M)) \}_{m \in \mathbb{N}}$.

Notre but est la construction d’un morphisme de suites spectrales (cf. 6.6.7)

$IE_\sigma(q_m^*) : (IE_\sigma(U^m)_r, d_r) \to (IE_\sigma(U^{m+1})_r, d_r)$,

induisant par passage à la limite, les bi-gradués des morphismes p_m^* pour les filtrations du théorème 6.5.2, but qui sera atteint dans le théorème 6.7.1.

\footnote{Si dans les précédentes sections cette hypothèse n’était pas vraiment indispensable, maintenant elle l’est car autrement nous ne voyons pas comment donner un sens au morphisme d’image-inverse en cohomologie de Borel-Moore.}
6.6.2. Compatibilité des opérations d’intégration sur les fibres. En accord avec les notations de 6.4.3, où nous avons introduit l’ouvert

\[U^{m+1} := F_{m+1}(M^{>0}) \setminus F_{m+1}(M_0) \]

et son recouvrement \(U^{m+1} := \{U_1^{m+1}, \ldots, U_{m+1}^{m+1}\} \), on note maintenant

\[W^{m+1} := (F_m(M^{>0}) \times M^{>0}) \setminus (F_m(M_0) \times M_0) \]

et son recouvrement \(W^{m+1} := \{W_1^{m+1}, \ldots, W_{m+1}^{m+1}\} \), avec

\[
\begin{align*}
W_i^{m+1} &:= U_i^m \times M^{>0}, \text{ si } i \leq m, \\
W_{m+1}^{m+1} &:= F_m(M^{>0}) \times M_0.
\end{align*}
\]

On a donc :

\[U^{m+1} = W^{m+1} \cap U^{m+1} := \{W_i^{m+1} \cap U_i^{m+1} = U_i^{m+1}\} \]

Le diagramme suivant, où les flèches verticales désignent les morphismes de prolongement par zéro, est un morphisme de suites exactes longues :

\[
\begin{array}{cccc}
\rightarrow & H_c(U^{m+1}) & \rightarrow & H_c(F_{m+1}(M^{>0})) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\rightarrow & H_c(W^{m+1}) & \rightarrow & H_c(F_m(M^{>0}) \times M^{>0}) \\
\end{array}
\]

et comme la colonne centrale est nulle, il en résulte le diagramme commutatif où les flèches horizontales sont des isomorphismes :

\[
\begin{align*}
H_c(F_{m+1}(M_0)) &\xrightarrow{\epsilon_{m+1}} H_c(U^{m+1})[1] \quad (\dagger) \\
H_c(F_m(M_0) \times M_0) &\xrightarrow{\epsilon_{m+1}} H_c(W^{m+1})[1] \quad (\ddagger)
\end{align*}
\]

D’autre part, pour \(m \geq 1 \), l’ouvert \(W^{m+1} \subseteq F_m(M^{>0}) \times M^{>0} \) est réunion de deux ouverts \(H_c(_)-acycliques \)

\[W^{m+1} = W_U^{m+1} \cup W_F^{m+1} \quad \text{avec} \quad \begin{cases}
W_U^{m+1} := (U^m \times M^{>0}) \\
W_F^{m+1} := (F_m(M^{>0}) \times M^{>0})
\end{cases} \quad (\ddagger\ddagger)
\]

Le morphisme de liaison dans la suite de Mayer-Vietoris pour la cohomologie à support compact relative à \(\{W_U^{m+1}, W_F^{m+1}\} \) est donc un isomorphisme :

\[H_c(W^{m+1}) \xrightarrow{\text{CMV}} H_c(U^m \times M^{>0})[1] \]

Pour tout $m \geq 1$, le diagramme suivant où les flèches horizontales sont des isomorphismes, est commutatif au signe près.

$$
\begin{array}{c}
H_c(F_{m+1}(M_0)) \xrightarrow{c_{m+1}^l} H_c(U^{m+1})[1] \\
\downarrow \text{id} \\
H_c(F_m(M_0)) \otimes H_c(M_0) \xrightarrow{c_m^l} H_c(W^{m+1})[1] \xrightarrow{c_{MV}} H_c(U^m) \otimes H_c(M_{>0})[2] \\
\downarrow \text{id} \otimes f_{M_0} \\
H_c(F_m(M_0))[-d_M] \xrightarrow{c_m[-d_M]} H_c(U^m)[1][-d_M]
\end{array}
$$

Plus précisément, (I) et commutatif et dans (II) on a

$$
\int_{M_{>0}} (c_{MV} \circ c_{m+1}^l)(\alpha \otimes \beta) = (-1)^{|\alpha|+|\beta|} c_m \left(\int_{M_0} \alpha \otimes \beta \right)
$$

Démonstration. La commutativité de (I) a été justifiée dans (†). Pour le sous-diagramme (II), on utilise le fait que les cofaisceaux $\Omega_{\cdot}(\cdot)$ sont flasques. Quitte à prendre des recouvrements assez fins, un cocycle $\omega \in \Omega_c(F_m(M_0)) \otimes \Omega_c(M_0)$ s'exprime comme la restriction $\sum_i \alpha_i \otimes \beta_i$ de

$$
\tilde{\omega} = \sum_i \tilde{\alpha}_i \otimes \tilde{\beta}_i, \quad \text{avec } \tilde{\alpha}_i \in \Omega_c(F_m(M_{>0})), \quad \tilde{\beta}_i \in \Omega_c(M_{>0}).
$$

On a donc $c_{m+1}^l \left(\sum_i \alpha_i \otimes \beta_i \right) = \sum_i d\tilde{\alpha}_i \otimes \tilde{\beta}_i + \sum_i (-1)^{|\alpha_i|} \tilde{\alpha}_i \otimes d\tilde{\beta}_i$, avec $d\tilde{\alpha}_i \otimes \tilde{\beta}_i \in \Omega_c(W_U^{m+1})$ et $\tilde{\alpha}_i \otimes d\tilde{\beta}_i \in \Omega_c(W_U^{m+1})$. Et alors, par le morphisme de liaison de Mayer-Vietoris c_{MV} relatif à $\{W_U^{m+1}, W_U^{m+1}\}$, on a

$$(c_{MV} \circ c_{m+1}^l)(\sum_i \alpha_i \otimes \beta_i) = \sum_i (-1)^{|\alpha_i|} d\tilde{\alpha}_i \otimes d\tilde{\beta}_i \in \Omega_c(U) \otimes \Omega_c(M_{>0})$$

de sorte que

$$
\int_{M_{>0}} (c_{MV} \circ c_{m+1}^l)(\sum_i \alpha_i \otimes \beta_i) = \sum_i (-1)^{|\alpha_i|+|\beta_i|} d\tilde{\alpha}_i \int_{M_0} \beta_i,
$$

puisque, avec les conventions en cours, $\int_{M_{>0}} d\tilde{\beta} = (-1)^{|\beta|} \int_{M_0} \beta$.

On conclut par le fait que si $\alpha \in Z_c(F_m(M_0))$, on a $c_m(\alpha) = d\tilde{\alpha}$. \hfill \square

6.6.4. Remarque pour le cas $m = 0$. L'énoncé de 6.6.3 doit être modifié, puisqu'alors les morphismes c_{MV} et c_m sont nuls. En effet, dans ce cas $F_m(M_{>0}) = F_m(M_0) = \{\text{pt}\}$, et alors $U^m = \emptyset$. Donc, $c_m = 0$ et le premier terme de l'égalité (‡) est vide, ce qui entraîne la nullité de c_{MV}. On a aussi $\iota_F = \text{id}$, $\iota_U = \text{id}$ et $c_{m+1} = c_{m+1}^l$. Le diagramme de la proposition devient

$$
\begin{array}{c}
H_c(M_0)) \xrightarrow{c_1^l} H_c(M_{>0})[1] \\
\downarrow \text{id} \\
H_c(\text{pt})[-d_M] \xrightarrow{c_m[-d_M]} H_c(U^m)[1][-d_M]
\end{array}
$$

où $\int_{M_{>0}} c_1(\beta) = (-1)^{|\beta|} \int_{M_0} \beta$. 63
6.6.5. Renormalisation des morphismes de liaison. Sur le sous-diagramme suivant de la proposition 6.6.3

\[
\begin{array}{c}
H_c(F_{m+1}(M_0)) \xrightarrow{\gamma_{m+1}} H_c(U^{m+1})[1] \\
\downarrow f_{M_0} \downarrow \\
H_c(W^{m+1})[1] \xrightarrow{cMV} H_c(U^m) \otimes H_c(M_{>0})[2]
\end{array}
\]

on a noté, pour \(m \geq 1\),

\[q_m! : H_c(U^{m+1}) \rightarrow H_c(U^m)[-d_M], \quad q_m! := \left(\text{id} \otimes \int_{M_{>0}} \right) \circ cMV \circ iU! , \]

et nous avons remplacé \(c_m : H_c(F_m(M_0)) \rightarrow H_c(U^m)[1]\) par

\[\gamma_m : H_c(F_m(M_0)) \rightarrow H_c(U^{m+1})[1], \quad \gamma_m(\omega) = (-1)^{\omega|m+\frac{m(m-1)}{2}d_M} c_m(\omega). \]

6.6.6. Proposition. Soit \(M\) une pseudovariété orientée de dimension \(d_M\).

a) Pour \(m \geq 1\), le diagramme suivant de morphismes compatibles aux actions des groupes symétriques par image-directe, est un diagramme commutatif,

\[
\begin{array}{c}
H_c(F_{m+1}(M_0)) \xrightarrow{\gamma_{m+1}} H_c(U^{m+1})[1] \\
p_m! \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
H_c(F_m(M_0)) \xrightarrow{\gamma_m} H_c(U^m)[1].
\end{array}
\]

b) Le diagramme suivant obtenu en dualisant et concaténant les diagrammes de (a) et où l’on a noté \(F_i\) pour \(F_i(M_0)\), est un diagramme commutatif,

\[
\begin{array}{c}
H^{BM}(F_1) \xrightarrow{p_1^*} H^{BM}(F_2) \xrightarrow{p_2^*} \cdots \xrightarrow{p_m^*} H^{BM}(F_m) \xrightarrow{p_m^*} H^{BM}(F_m+1) \\
\gamma^*_1[0] \downarrow \gamma^*_2[-1] \downarrow \gamma^*_m[1-m] \downarrow \gamma^*_{m+1}[-m] \\
H^{BM}(U^1) \xrightarrow{q_1^*} H^{BM}(U^2)[1] \xrightarrow{q_2^*} \cdots \xrightarrow{q_m^*} H^{BM}(U^m)[m-1] \xrightarrow{q_m^*} H^{BM}(U^{m+1})[m] \rightarrow
\end{array}
\]

Les morphismes \(\gamma\) sont compatibles aux actions des groupes symétriques lorsque l’on tord \(H^{BM}(U^m)\) par \(\sigma_m\) (cf. 6.5.1-(∞)). Les suites horizontales sont alors des FI-modules (cf. 7.2.1) et la famille \(\{\gamma^*_m[1-m]\}\) est un isomorphisme de FI-modules.

64
Démonstration. (a) Notons $Q(m) = \frac{m(m-1)}{2}d_M$. Compte tenu de l'égalité (\circ) de 6.6.3, on a

\[(q_m! \circ \gamma_{m+1})(\omega) = (-1)^{\omega|m+Q(m+1)} c_m(p_m!(\omega)) = (-1)^{\omega|-d_M|+Q(m)} c_m(p_m!(\omega)) = (\gamma_m \circ p_m!)(\omega)\]

La compatibilité par rapport aux actions des groupes symétriques est claire.

(b) On verra dans 7.2.1 que la condition pour que les suites horizontales soient des F1-modules est que pour tous $m < n$, on ait

\[(p_{n-1}^* \circ \cdots \circ p_m^*)(H_{\text{BM}}(F_m(M_0))) \subseteq H_{\text{BM}}(F_n(M_0))^{1_m \times S_{n-m}}\]

de même pour la deuxième ligne. C'est évident pour la première ligne, et donc aussi pour la seconde qui en est isomorphe. □

6.6.7. L’image-inverse sur les suites spectrales basiques. Nous allons relever le morphisme $q_m^*: H_{\text{BM}}(U^m) \rightarrow H_{\text{BM}}(U^{m+1})[1]$, pour $m \geq 1$, de 6.6.6 en un morphisme $E(q_m^*): E(U^m) \rightarrow E(U^{m+1})[1,0]$ de suites spectrales basiques, de sorte que nous aurons le diagramme commutatif

\[
\begin{array}{ccc}
H_{\text{BM}}(U^m) & \longrightarrow & H_{\text{BM}}(U^{m+1})[1] \\
\text{id} & \downarrow & \downarrow \\
E(U^m) & \longrightarrow & E(U^{m+1})[1,0]
\end{array}
\]

répondant ainsi à la principale motivation de cette section 6.6 (cf. 6.6.1).

Les morphismes q_m^* sont les duaux des morphisme $q_m!$ qui ont été définis comme la composée de trois morphismes

\[
\begin{array}{ccc}
H_c(U^m) & \longrightarrow & H_c(U^m \times M_{>0})[1] \\
\gamma_m^V & \downarrow & \downarrow p_m!:=f_{M>0} \\
H_c(U^{m+1}) & \longrightarrow & H_c(U^m)[-d_M]
\end{array}
\]

Dans ce qui suit, nous montrerons que le dual de chacun de ces morphismes admet un relèvement spectral. Rappelons maintenant quelques notations.

- L’ouvert $U^{m+1} \subseteq F_{m+1}(M_{>0})$ est muni du recouvrement (6.4.3)

\[U^{m+1} = \{U_1^{m+1}, \ldots, U_{m+1}^{m+1}\} \quad \text{où} \quad (x \in U_i^{m+1} \leftrightarrow x_i \notin M_0).\]

- L’ouvert $W^{m+1} \subseteq F_m(M_{>0}) \times M_{>0}$ est muni du recouvrement (6.6.2)

\[W^{m+1} := \{W_1^{m+1}, \ldots, W_{m+1}^{m+1}\} \quad \text{où} \quad \begin{cases}
W_i^{m+1} := U_i^m \times M_{>0}, & \text{si } i \leq m, \\
W_{m+1}^{m+1} := F_m(M_{>0}) \times M_{>0}.
\end{cases}\]

On décompose W^{m+1} en réunion de deux ouverts $H_c(_)-acycliques

\[W^{m+1} = W_U^{m+1} \cup W_F^{m+1} \quad \text{avec} \quad \begin{cases}
W_U^{m+1} := (U^m \times M_{>0}) \\
W_F^{m+1} := (F_m(M_{>0}) \times M_{>0}).
\end{cases}\]
Relèvement spectral de ι_U^*. Comme le recouvrement U^{m+1} est la trace sur U^{m+1} du recouvrement \mathcal{W}^{m+1}, i.e.

$$U^{m+1} = \mathcal{W}^{m+1} \cap U^{m+1} := \{ W_i^{m+1} \cap U^{m+1} = U_i^{m+1} \},$$

la naturalité de bicomplexes de cochaînes de Čech-Borel-Moore vis-à-vis des restrictions ouvertes, induit un morphisme de bicomplexes de degré $(0,0)$

$$(\iota_U^*)_{\bullet,\bullet} : \check{C}_<(\mathcal{W}^{m+1})_{\mathrm{BM}}^\bullet,\bullet \to \check{C}_<(U^{m+1})_{\mathrm{BM}}^\bullet,\bullet$$

et donc un morphisme de suites spectrales

$$(\iota_U^*)_r : (\mathcal{E}(\mathcal{W}^{m+1})_r, d_r) \to (\mathcal{E}(U^{m+1})_r, d_r).$$

Proposition A (relèvement de ι_U^*). Le morphisme

$$\mathcal{E}(\mathcal{W}^{m+1})_{1}^{p,q} \xrightarrow{\iota_U^*_{\bullet,\bullet}} \mathcal{E}(U^{m+1})_{1}^{p,q} \cong \check{C}_{p}(\mathcal{W}; \mathcal{H}_{\mathrm{BM}}^q(_)),$$

en fonction de $p \geq 0$ et de $1 \leq i_0 < \cdots < i_p \leq m+1$, prend les valeurs suivantes.

- Si $p = 0$, on a $(\iota_U^*)_{0,q} = 0$ puisque les W_i^{m+1} sont $H_{\mathrm{BM}}(_)-$acycliques.

- Si $p > 0$ et $i_p < m+1$, on a aussi $(\iota_U^*)_{p,q} = 0$ puisque

$$W_{i_0,\ldots,i_p}^{m+1} = U_{i_0,\ldots,i_p}^{m} \times M_{\geq 0}$$

est $H_{\mathrm{BM}}(_)-$acyclique.

- Si $p > 0$ et $i_p = m+1$, on a

$$W_{i_0,\ldots,i_p}^{m+1} = U_{i_0,\ldots,i_{p-1}}^{m} \times M_{\geq 0},$$

et $\iota_U^*_{\bullet,1}$ s’identifie à la restriction de $(U_{i_0,\ldots,i_{p-1}}^{m} \times M_{\geq 0})$ à $U_{i_0,\ldots,i_{p-1},m+1}^{m+1}$

$$(\mathcal{E}(\mathcal{W}^{m+1})_{1}^{p,q})_{i_0,\ldots,i_p=m+1} \xrightarrow{(\iota_U^*)_{p,q}} (\mathcal{E}(U^{m+1})_{1}^{p,q})_{i_0,\ldots,i_p=m+1}$$

et $H_{\mathrm{BM}}^q(U_{i_0,\ldots,i_{p-1}}^{m} \times M_{\geq 0})$ de restriction $H_{\mathrm{BM}}^q(U_{i_0,\ldots,i_{p-1},m+1}^{m+1})$
Relèvement spectral de c_{MV}^\ast. On commence par un scholie sur les bi-complexes $\tilde{C}_{<\ast}^\ast(U; \Omega_{\text{BM}}^\ast)$ de chaînes de Čech ordonnées, relatives à un recouvrement $U = \{U_1, \ldots, U_{m+1}\}$ et à valeurs dans le complexe de faisceaux de chaînes de Borel-moore $(\Omega_{\text{BM}}^\ast, d_\ast)$ (6.4.5), ce que nous notons

$$\tilde{C}_{<\ast}^\ast(U) := \tilde{C}_{<\ast}^\ast(U; \Omega_{\text{BM}}^\ast).$$

Soient $U' := \{U_1, \ldots, U_m\}$ et $U'' := \{U_{m+1}\}$ dont on remarquera tout de suite que $\tilde{C}^p(U') = 0$ si $p \geq m$, et $\tilde{C}^p(U'') = 0$ si $p \geq 1$.

Définissons les restrictions de chaînes de Čech ρ', ρ''

$$\rho : \tilde{C}^\ast(U) \longrightarrow \tilde{C}^\ast(U') \oplus \tilde{C}^\ast(U'')$$

par

$$\rho' (\omega)_{i_0, \ldots, i_p} = \omega_{i_0, \ldots, i_p} \in \Omega^\ast (U_{i_0, \ldots, i_p}), \quad \text{où} \ 1 \leq i_0, \ldots, i_p \leq m,$$

$$\rho'' (\omega)_{0} = \omega_{m+1} \in \Omega^\ast (U_{m+1}).$$

Posons ensuite $U''' := \{U_1 \cap U_{m+1}, \ldots, U_m \cap U_{m+1}\}$, et définissons

$$c : \tilde{C}^\ast (U''') \longrightarrow \tilde{C}^{\ast+1}(U)$$

par

$$c(\omega)_{i_0, \ldots, i_p} = \begin{cases} \omega_{i_0, \ldots, i_{p-1}}, & \text{si} \ i_p = m + 1, \\ 0, & \text{sinon.} \end{cases}$$

Proposition. La suite

$$0 \rightarrow \tilde{C}^\ast (U''') \xrightarrow{c} \tilde{C}^{\ast+1}(U) \xrightarrow{\rho'} \tilde{C}^{\ast+1}(U') \oplus \tilde{C}^{\ast+1}(U'') \rightarrow 0$$

est une suite exacte courte de morphismes de bicomplexes. Les morphismes qu’elle induit sur les cohomologies des complexes simples associés coïncident alors avec les morphismes de la suite exacte longue de Mayer-Vietoris pour le recouvrement $U = (\cup U') \cup (\cup U'')$, soit

$$\rightarrow H_{\text{BM}}^{\ast}(U''') \xrightarrow{\text{BM}} H_{\text{BM}}^{\ast+1}(U') \oplus H_{\text{BM}}^{\ast+1}(U'') \rightarrow H_{\text{BM}}^{\ast+1}((\cup U') \cup (\cup U'')) \rightarrow$$

En particulier, le morphisme de liaison c_{MV} est l’aboutissement du morphisme des suites spectrales $(c_r) : (E(U'''))_{d_r} \rightarrow (E(U'''))_{[1, 0], d_r}$ induit par le morphisme de bicomplexes \circ et dont la restriction aux termes E_1 est

$$E(U''')_{1}^{p+1, q} = \bigoplus_{i_0 < \ldots < i_p} H_{\text{BM}}^{q}(U_{i_0, \ldots, i_p} \cap U_{m+1})$$

où, si $\omega \in (E(U'''))_{1}^{p+1, q}$, on a

$$((c_1)_{p,q}(\omega))_{i_0, \ldots, i_p} = \begin{cases} \omega, & \text{si} \ (k_0, \ldots, k_{p+1}) = (i_0, \ldots, i_p, m + 1) \\ 0, & \text{sinon.} \end{cases}$$
Démonstration. Le fait que ρ est un morphisme de bicomplexes surjectif de bidegré $(0,0)$ est immédiat. Son noyau $\ker^{\bullet}(\rho)$ est le sous-bicomplexe de $\tilde{C}^{\bullet}(\mathcal{U})$ vérifiant

$$\ker^{0}(\rho) = 0 \quad \text{et} \quad (\forall p > 0) (\omega \in \ker^{p}(\rho) \Leftrightarrow \omega_{i_{0},\ldots,i_{p}} = 0, \text{si } i_{p} \leq m),$$

où l’on reconnait l’image de $c : \tilde{C}^{\bullet-1}(U'') \to \tilde{C}^{\bullet}(\mathcal{U})$. La suite (\dagger) est donc bien une suite exacte courte de bicomplexes.

Notons

$$U := \cup U, \quad U' := \cup U', \quad U'' := \cup U'', \quad U''' := \cup U'''.$$

La suite courte de Mayer-Vietoris de bicomplexes

$$0 \to \tilde{C}^{\bullet}(\mathcal{U}) \xrightarrow{\alpha} \tilde{C}^{\bullet}(\mathcal{U} \cap U') \oplus \tilde{C}^{\bullet}(\mathcal{U} \cap U'') \xrightarrow{\beta} \tilde{C}^{\bullet}(\mathcal{U} \cap U''') \to 0$$

est exacte puisque le faisceau $\Omega^{\bullet}_{\text{tot}}$ est flasque. Comme on a $\mathcal{U} \cap U' \supseteq U'$ et $\mathcal{U} \cap U'' \supseteq U''$, on dispose de morphismes de restriction de chaînes de Čech r', r'' et du diagramme commutatif

$$0 \to \tilde{C}^{\bullet-1}(U'') \xrightarrow{\zeta} \tilde{C}^{\bullet}(\mathcal{U}) \xrightarrow{\rho} \tilde{C}^{\bullet}(U') \oplus \tilde{C}^{\bullet}(U'') \to 0,$$

où r' et r'' induisent des quasi-isomorphismes au niveau des complexes simples associés.

Il en résulte un isomorphisme canonique en cohomologie

$$\xi_{*} : h^{*} \text{ tot } (\tilde{C}^{\bullet,*}(\mathcal{U} \cap U''')) \to h^{*} \text{ tot } (\tilde{C}^{\bullet,*}(U'''))$$

rendant commutatif le diagramme

$$h^{*-1} \text{ tot } (\tilde{C}^{\bullet,*}(\mathcal{U} \cap U''')) \xrightarrow{\gamma} h^{*} \text{ tot } (\tilde{C}^{\bullet,*}(\mathcal{U}))$$

rendant commutatif le diagramme

$$0 \to \tilde{C}^{\bullet}(\mathcal{U}) \xrightarrow{\alpha} \tilde{C}^{\bullet}(\mathcal{U} \cap U') \oplus \tilde{C}^{\bullet}(\mathcal{U} \cap U'') \xrightarrow{\beta} \tilde{C}^{\bullet}(\mathcal{U} \cap U''') \to 0$$

où γ correspond au morphisme de liaison $c_{\text{MV}} : H_{\text{BM}}(U''') \to H_{\text{BM}}(U)[1]$ de la suite longue de Mayer-Vietoris pour le recouvrement $U = U' \cup U''$. A partir de là la suite de la proposition est claire.

Cette proposition, appliquée au recouvrement W^{m+1}, fournit le relèvement spectral du morphisme de liaison $c_{\text{MV}}^{*} : H_{\text{BM}}(U'' \times M_{>0}) \to H_{\text{BM}}(W^{m+1})[1]$
Proposition B (relèvement de \(c^{\ast}_{MV} \)). On munit \(W^{m+1} \) du recouvrement \(W^{m+1} \), et \(U^{m} \times M_{>0} \) du recouvrement \(U^{m} \times M_{>0} \) et l'on note \((\mathcal{E}(W^{m+1}), d_r) \) et \((\mathcal{E}(U^{m} \times M_{>0}), d_r) \) les suites spectrales correspondantes. Alors, il existe un morphisme de suites spectrales

\[
(c^{\ast}_{MV,r}) : (\mathcal{E}(U^{m} \times M_{>0}), d_r) \to (\mathcal{E}(W^{m+1}), d_r))[1,0]
\]
convergant vers le bigradué du morphisme de liaison

\[
c^{\ast}_{MV} : H_{bM}(U^{m} \times M_{>0}) \to H_{bM}(W^{m+1})[1].
\]

L'action de \((c^{\ast}_{MV,r}) \) sur \(\mathcal{E}_1 \) est donnée par le plongement canonique

\[
\mathcal{E}(U^{m} \times M_{>0})_{1}^{p,q} \leftarrow \bigoplus_{1 \leq i_0 < \ldots < i_p \leq m} H^q_{bM}(U^{m}_{i_0}, \ldots, i_p \times M_{>0})
\]

\[
\mathcal{E}(W^{m+1})_{1}^{p+1,q} \leftarrow \bigoplus_{1 \leq i_0 < \ldots < i_p \leq m} H^q_{bM}(W^{m+1}_{i_0}, \ldots, i_p, m+1)
\]

Relèvement spectral de \((\int_{M>0})^{\ast} \). On commence par rappeler que le morphisme d'intégration sur les fibres a un sens déjà au niveau des complexes de cochaines à support compact :

\[
p_{m!} = \int_{M>0} : \Omega_{c}(_ \otimes \Omega_{c}(M_{>0}) \to \Omega_{c}(_)[-d_{M}-1]
\]

et c'est un morphisme compatible à l'opération de cobord. Par dualité et naturalité vis-à-vis des inclusions ouvertes, on obtient le morphisme de bicomplexes de cochaines de Čech-Borel-Moore de degré \([0,0]\)

\[
(p_{m})^{\ast} : \tilde{C}(U^{m})^{\ast}_{bM} \to \tilde{C}(U^{m} \times M_{>0})^{\ast}_{bM}.
\]

Le théorème suivant et immédiat.

Proposition C (relèvement de \(p^{\ast}_{m} \)). Par passage aux complexes simples associés, le morphisme de bicomplexes \((\tilde{_})\) induit le morphisme image-inverse

\[
p^{\ast}_{m} : H_{bM}(U^{m}) \to H_{bM}(U^{m} \times M_{>0}).
\]

Il induit également un morphisme de suites spectrales

\[
(p^{\ast}_{m,r}) : (\mathcal{E}(U^{m}), d_r) \to (\mathcal{E}(U^{m} \times M_{>0}), d_r).
\]

L'action de \((p^{\ast}_{m,r}) \) sur \(\mathcal{E}_1 \) est donnée par les morphismes image-inverse :

\[
\mathcal{E}(U^{m})^{p,q}_{1} \leftarrow \bigoplus_{1 \leq i_0 < \ldots < i_p \leq m} H^q_{bM}(U^{m}_{i_0}, \ldots, i_p)
\]

\[
\mathcal{E}(U^{m} \times M_{>0})^{p,q}_{1} \leftarrow \bigoplus_{1 \leq i_0 < \ldots < i_p \leq m} H^q_{bM}(U^{m}_{i_0}, \ldots, i_p \times M_{>0}).
\]
Conclusion. La composition des morphismes des suites spectrales des propositions ABC donne le morphisme de suites spectrales annoncé dans 6.6.7

\[\mathcal{E}(q_m^*) : (\mathcal{E}(U^m)_r, d_r) \to (\mathcal{E}(U^{m+1})_r, d_r)[1, 0]. \]

Le diagramme commutatif suivant traque sa valeur sur les termes \(\mathcal{E}_1 \)

\[
\begin{array}{c}
\mathcal{E}(U^m)^{p,q}_1 \quad \oplus \quad H^q_{BM}(U^m_{i_0, \ldots, i_p}) \\
\downarrow (p^*_{m,1})_{p,q} \quad \downarrow p^*_m
\end{array}
\]

\[
\begin{array}{c}
\mathcal{E}(U^m \times M_{>0})^{p,q}_1 \quad \oplus \quad H^q_{BM}(U^m_{i_0, \ldots, i_p} \times M_{>0}) \\
\downarrow (c_{MV,1})_{p,q} \quad \downarrow p^*_m
\end{array}
\]

\[
\begin{array}{c}
\mathcal{E}(W^{m+1})^{p+1,q}_1 \quad \oplus \quad H^q_{BM}(W^{m+1}_{i_0, \ldots, i_p, m+1}) \\
\downarrow (\iota_{U,1})_{p,q} \quad \downarrow \iota^*_U
\end{array}
\]

\[
\begin{array}{c}
\mathcal{E}(U^{m+1})^{p+1,q}_1 \quad \oplus \quad H^q_{BM}(U^{m+1}_{i_0, \ldots, i_p, m+1}) \\
\downarrow \oplus \quad \downarrow \oplus
\end{array}
\]

\[
\begin{array}{c}
1 \leq i_0 < \cdots < i_p \leq m \\
1 \leq i_0 < \cdots < i_p \leq m
\end{array}
\]

Toutes ces observations conduisent à l’énoncé suivant.

6.6.8. Proposition. Soit \(M \) une pseudovariété orientée de dimension \(d_M \).

Il existe un morphisme de suites spectrales basiques

\[\mathcal{E}(q_m^*) : (\mathcal{E}(U^m)_r, d_r) \to (\mathcal{E}(U^{m+1})_r, d_r)[1, 0], \]

qui est compatible aux actions des groupes symétriques et qui rend le diagramme suivant commutatif \(^{20}\).

\[
\begin{array}{c}
H^p_{BM}(U^m) \quad q_m^* \quad \mathcal{E}(U^m) \\
\downarrow \quad \downarrow \\
\mathcal{E}(U^m) \quad \mathcal{E}(q_m^*) \quad \mathcal{E}(U^{m+1})[1, 0]
\end{array}
\]

De plus, l’action de \(\mathcal{E}(q_m^*) \) sur les termes \(\mathcal{E}(_)_1 \) est donnée par

\[
\begin{array}{c}
\mathcal{E}(U^m)^{p,q}_1 \quad \mathcal{E}(q_m^*)^{p,q}_1 \quad \mathcal{E}(U^{m+1})^{p+1,q}_1 \\
\oplus H^q_{BM}(U^m_{i_0, \ldots, i_p}) \quad \oplus \quad H^q_{BM}(U^{m+1}_{i_0, \ldots, i_p, m+1}) \\
\downarrow 1 \leq i_0 < \cdots < i_p \leq m \\
\downarrow 1 \leq i_0 < \cdots < i_p \leq m
\end{array}
\]

\(^{20}\) On rappelle que \(\gamma_m^* \) est la renormalisation donnée dans 6.6.5 du morphisme de liaison \(c_m^* : H_{BM}(U^m) \to H_{BM}(F_m(M_0))[1-m]. \) On a \(\gamma_m(\omega) = (-1)^{|\omega|+m \cdot \frac{m(m-1)}{2} d_M} c_m(\omega). \)
6.7. Relèvement spectral de $p_m^* : H^i_{BM}(F_m(M)) \to H^i_{BM}(F_{m+1}(M))$

Si nous combinons la proposition précédente 6.6.8 aux théorèmes 6.6.6 et 6.5.2, nous obtenons les suites de représentations de groupes symétriques

$$H_{BM}(F_1) \xrightarrow{p_1^*} H_{BM}(F_2) \xrightarrow{} \cdots \xrightarrow{} H_{BM}(F_m) \xrightarrow{p_m^*} H_{BM}(F_{m+1}) \xrightarrow{\gamma_1 \simeq [0]} \xrightarrow{\gamma_2 \simeq [-1]} \cdots \xrightarrow{} H_{BM}(F_{m-1}) \xrightarrow{\gamma_m \simeq [1-m]} H_{BM}(F_m)$$

$$H_{BM}(U^1) \xrightarrow{q_1^*} H_{BM}(U^2)[1] \xrightarrow{} \cdots \xrightarrow{} H_{BM}(U^m)[m-1] \xrightarrow{q_m^*} H_{BM}(U^{m+1})[m]$$

où la ligne centrale doit être tordue par les caractères σ_m correspondants. L’énoncé suivant est alors corollaire de 6.6.8 et 6.5.2.

6.7.1. Théorème. Soit M une pseudovariété orientée de dimension d_M.

a) Le morphisme de suites spectrales basiques

$$E(q_m^*) : (E(U^m), d_r) \to (E(U^{m+1}), d_r)[1,0],$$

definit, pour chaque $i \in \mathbb{N}$, chaque couple (p, q) tel que $q = i + m - (p+1)$ et chaque $r \geq 1$, une suite indexée par $m \in \mathbb{N}$

$$E\sigma(q_m^*)^p_q : E\sigma(U^m)_{1}^p_q \to E\sigma(U^{m+1})_{1}^{p+1,q},$$

qui est un \mathbf{FI}-module. La somme de ces suites pour chaque $r \geq 1$ converge vers le bi-gradué du morphisme de S_{m}-modules

$$p_m^* : H^i_{BM}(F_m(M)) \to H^i_{BM}(F_{m+1}(M))$$

pour les filtrations régulières induites par les isomorphismes γ_m^* et γ_{m+1}^*.

b) Sur la page $E\sigma(U^m)$ les \mathbf{FI}-modules en question, sont naturellement isomorphes aux \mathbf{FI}-modules définis par les morphismes

$$E\sigma(q_m^*)^p_q = \text{ind}_{S_{m-(p+1)} \times S_{p+1}}^{S_m}(p_m^*)$$

qui rendent commutatif le diagramme suivant.

$$\begin{array}{c}
E\sigma(U^m)_{1}^p_q = \text{ind}_{S_{m-(p+1)} \times S_{p+1}}^{S_m}(p_m^*) & \xrightarrow{\sigma} & H^i_{BM}(U_{m-p,\ldots,m}) \xrightarrow{} H^i_{BM}(F_m(M)) \\
E\sigma(q_m^*)_{1}^p_q & \xrightarrow{\text{ind}(p_m^*)} & p_m^* \\
E\sigma(U^{m+1})_{1}^p_{q+1} = \text{ind}_{S_{m-(p+1)} \times S_{p+2}}^{S_{m+1}}(p_m^*) & \xrightarrow{\sigma} & H^i_{BM}(U_{m-p,\ldots,m+1}) \xrightarrow{} H^i_{BM}(F_{m+1}(M))
\end{array}$$

où σ indique que l’action de $S_{m-(p+1)} \times 1$ est tordue $\sigma_{m-(p+1)}$.

71
c) Modulo les isomorphismes Ξ de 6.5.2-(b), on a le diagramme commutatif d’espaces vectoriels

\[H_{\text{dim}}^q(U_{m-p-\ldots,m}) \xrightarrow{\varpi_{m+1}} H_{\text{dim}}^q(U_{m-p-\ldots,m+1}) \]

\[\bigoplus_{f \in \mathcal{F}(p+1,m)} H_{\text{dim}}^q(F_p(f)(M_{>0})) \xrightarrow{\bigoplus p_{m+1}} \bigoplus_{f^* \in \mathcal{F}^*(p+2,m+1)} H_{\text{dim}}^q(F_p(f^*)(M_{>0})) \]

où nous avons noté
- \(Q := q - (m-(p+1))d_M = i - (m-(p+1))(d_M-1) \).
- \(\mathcal{F}(p+1,m) := \text{ensemble des applications } f : \llbracket 1, m \rrbracket \text{ telles que } \)
 \((x < f(x), \text{ si } x < m-p) \) et \((f(x) = x, \text{ autrement}) \).
- \(\mathcal{F}^*(p+2,m+1) := \text{ensemble des applications } f : \llbracket 1, m+1 \rrbracket \text{ telles que } \)
 \((x < f(x) < m+1, \text{ si } x < m-p) \) et \((f(x) = x, \text{ autrement}) \).
- \(p(f) \) est la partition de \(\llbracket 1, m \rrbracket \) définie par les fibres de \(f \) et la fonction \(f^* : \llbracket 1, m+1 \rrbracket \) est le prolongement de \(f \) qui vérifie \(f^*(m+1) = m+1 \).

Démonstration. (a,b) L’identification des morphismes \(E_\sigma(q^*_m)^{p,q} \) comme morphismes induits résulte de 6.5.2 qui montre que l’on a

\[E_\sigma(U^{m \times p,q})_1 = \text{ind}_{S_m}^{S_{m-(p+1)}} \sigma_{m-(p+1)} \otimes H_{\text{dim}}^q(U_{m-p-\ldots,m}) \],

et comme \(E_\sigma(q^*_m)^{p,q} \) est un morphisme de \(S_m \)-modules (6.6.8), il est déterminé par sa restriction à \(\sigma_{m-(p+1)} \otimes H_{\text{dim}}^q(U_{m-p-\ldots,m}) \) qui n’est autre que \(\text{id} \otimes p_m^* \) où \(\text{id} \) désigne l’identité sur \(\sigma_{m-(p+1)} \). Le fait que l’on obtienne ainsi un \(\mathbf{FI} \)-module est alors immédiat. À partir de là, on conclut grâce à la compatibilité des différentielles \(d_r \) avec les actions des groupes symétriques et au fait que la catégorie des \(\mathbf{FI} \)-modules est abélienne (7.2).

(c) Compte tenu de 6.5.2-(b), nous avons seulement à justifier la dernière ligne (\(\diamond \)) du diagramme, somme directe des duaux des morphismes d’intégration sur les fibres

\[p_{m!} : H_c(U_{m-p-\ldots,m+1}^{-m \times p+1}) \rightarrow H_c(U_{m-p-\ldots,m})[-d_{M_{>0}}] \]

où, en notant \(F_{p+2} := F_{p+2}(M_{>0}) \) pour simplifier,

\[U_{m-p-\ldots,m+1}^{-m \times p+1} = \Delta_{m+1}(M_{>0}^{m-(p+1)} \times F_{p+2}) \].

Avertissement. Dans un souci d’allégement de notations, nous allons omettre d’écrire ‘\(H_c(____) \)’ autour des termes des diagrammes qui vont suivre.

Pour tous \(a, b \in \mathbb{N} \), le morphisme d’intégration sur la dernière coordonnée

\[p^! : \Delta_{a+b+1}(M_{>0}^a \times F_{b+1}) \rightarrow \Delta_{a+b}(M_{>0}^a \times F_b) \]

(\(\dagger \)
est défini dans 6.2.4-(a) à travers l’inclusion ouverte

\[
\Delta_{a+b+1}(M_{\geq 0}^a \times F_{b+1}) \xrightarrow{\iota} \Delta_{a+b}(M_{\geq 0}^a \times F_b) \times M_{> 0} \xrightarrow{p_t} \Delta_{a+b}(M_{\geq 0}^a \times F_b)[-d_{M>0}]
\]

et lorsque \(a > 0 \), on est conduit à considérer le diagramme suivant

\[
\begin{array}{c}
\Delta_{a+b+1}(M_{\geq 0}^a \times F_{b+1}) \\
\downarrow j \\
M_{\geq 0} \times \Delta_{a+b}(M_{\geq 0}^{a-1} \times F_{b+1}) \\
\downarrow \rho \\
\prod_{T(a+b,a+b+1)} \Delta_{a+b}(M_{\geq 0}^{a-1} \times F_{b+1}) \xrightarrow{\iota''} \prod_{T(a+b-1,a+b)} \Delta_{a+b-1}(M_{\geq 0}^{a-1} \times F_b) \times M_{> 0} \xrightarrow{f_{M>0}}
\end{array}
\]

où les colonnes sont les suites exactes longues de cohomologie à support compact habituelles dans nos théorèmes de scindage (3.1.1). Les termes de la deuxième ligne sont nuls puisque \(M_{\geq 0} \) apparaît en facteur, les flèches de liaison \(c \) sont donc des isomorphismes et la question que nous cherchons à comprendre concerne l’interprétation de \(p_t \) dans (†) en termes de la dernière ligne du diagramme. Or, la flèche en pointillé n’est pas tout à fait bien définie. En effet, les composantes du fermé \(\prod_{T(a+b,a+b+1)} \Delta_{a+b}(M_{\geq 0}^{a-1} \times F_{b+1}) \) sont bien les traces des composantes de \(\prod_{T(a+b-1,a+b)} \Delta_{a+b-1}(M_{\geq 0}^{a-1} \times F_b) \times M_{> 0} \) sur l’ouvert \(M_{\geq 0} \times \Delta_{a+b}(M_{\geq 0}^{a-1} \times F_{b+1}) \), que l’on va noter \(U \) dans la suite, à l’exception près de celle indexée par la fonction \(f_0 : [a+b+1] \) définie par \(f_0(1) = a + b + 1 \), composante, par ailleurs, clairement fermée dans l’ouvert \(\Delta_{a+b}(M_{\geq 0}^a \times F_b) \times M_{> 0} \) que l’on va noter \(V \) dans la suite.

On a donc l’inclusion fermée

\[
(M_{\geq 0} \times \Delta_{a+b}(M_{\geq 0}^{a-1} \times F_{b+1}))_{f_0} \subseteq U \cap V
\]
et tout cocycle \(\omega \) d’Alexander-Spanier (faisceau \(c \)-mou) à support compact de cette composante se prolonge en une cochaîne \(\varpi \) à support compact de \(U \cap V \). Le morphisme de liaison donne alors \(c(\omega) = d\varpi \), ce qui est un cocycle à support compact dans \(\Delta_{a+b+1}(M_{\geq 0}^a \times F_{b+1}) \). Or,

\[
p_t(c(\omega)) = \int_{M_{\geq 0}} \iota(c(\omega)) = \int_{M_{> 0}} d\varpi = 0,
\]
puisque \(\varpi \in Z_c(V) \) et que \(V \) est le domaine de définition de \(f_{M>0} \).
Ces remarques prouvent la commutativité du diagramme

\[
\prod_{\mathcal{F}(a+b,a+b+1)} \Delta_{a+b}(M^{a-1}_{\geq 0} \times F_{b+1})[-1] \xrightarrow{\epsilon''} \prod_{\mathcal{F}(a+b-1,a+b)} \Delta_{a+b-1}(M^{a-1}_{\geq 0} \times F_{b})[-dM_{\geq 0}][-1] \\
\downarrow \cong \quad \downarrow \cong \\
\Delta_{a+b+1}(M^{a}_{\geq 0} \times F_{b+1}) \xrightarrow{p} \Delta_{a+b}(M^{a}_{\geq 0} \times F_{b})[-dM_{\geq 0}]
\]

où maintenant \(\epsilon''\) est bien définie. Sa valeur, qui dépend des composantes, vaut

\[
\epsilon'' = \begin{cases}
0 & \text{sur } (M^{a}_{\geq 0} \times \Delta_{a+b}(M^{a-1}_{\geq 0} \times F_{b+1}))_{f_0}, \\
p_1 : \Delta_{a+b}(M^{a-1}_{\geq 0} \times F_{b+1}) \to \Delta_{a+b-1}(M^{a-1}_{\geq 0} \times F_{b}), & \text{autrement.}
\end{cases}
\]

L’itération de ces idées conduit au diagramme commutatif

\[
\prod_{\mathcal{F}(b+1,a+b+1)} F_{b+1}[-a] \xrightarrow{\epsilon''''} \prod_{\mathcal{F}(b,a+b)} F_{b}[-dM_{\geq 0}][-a] \\
\downarrow \cong \quad \downarrow \cong \\
\Delta_{a+b+1}(M^{a}_{\geq 0} \times F_{b+1}) \xrightarrow{p} \Delta_{a+b}(M^{a}_{\geq 0} \times F_{b})[-dM_{\geq 0}]
\]

où \(\epsilon'''\) = 0 sur les composantes indexées par les fonctions \(f : [1,a+b+1]\) telles que \(|f^{-1}(a+b+1)| > 1\), et c’est l’intégration sur les fibres autrement.

En dualisant, on obtient la description de la ligne (0) du diagramme du théorème pour la cohomologie de Borel-Moore.

\[\square\]

7. Stabilité des familles de représentations

7.1. Motivations

Le comportement lorsque \(m \to \infty\) des invariants associés aux espaces \(F_m(X)\), notamment leurs groupes d’homotopie, leurs nombres de Betti, les caractères de leurs cohomologies en tant que \(\pi_m\)-module, ont fait l’objet de très nombreux travaux. Un des résultats pionniers dans ces questions est dû à V.I. Arnold (circa 1970) et concerne la détermination de la cohomologie des groupes de tresses d’E. Artin (1925) à un moment où l’on savait, grâce aux travaux de Fadel-Fox-Neuwirth ([13,16], 1962), que les espaces \(F_m(\mathbb{C})\) et \(BF_m(\mathbb{C}) := F_m(\mathbb{C})/\mathcal{S}_m\) étaient asphériques, de groupes fondamentaux \(\Pi_1 F_m(\mathbb{C}) = F_m : \text{« le groupe des tresses colorées à m brins »}\), et \(\Pi_1 BF_m(\mathbb{C}) = B_m : \text{« le groupe des tresses non colorées à m brins »}\), et donc que les cohomologies des espaces \(F_m(\mathbb{C})\) et \(BF_m(\mathbb{C})\) étaient canoniquement isomorphes à celles des groupes de tresses. C’est ainsi que Arnold procède dans [1,2] où il énonce son « théorème de stabilité », théorème qui établit que, pour chaque \(i \in \mathbb{N}\) fixé, le morphisme naturel \(H^i(BF_m(\mathbb{C}); \mathbb{Z}) \to H^i(BF_{m+1}(\mathbb{C}); \mathbb{Z})\) est bijectif pour \(m \geq 2i - 2\). C’est un résultat remarquable que ne révèle pas la connaissance explicite du polynôme de Poincaré.
de $F_m(X)$ (voir thm. 11.3.1). Parallèlement, le même phénomène de stabilité pour l’espace $F_m(X)$ ne se produit pour ainsi dire jamais, déjà si nous appliquons la formule de la remarque 4.2.2 pour $X = C$, nous voyons que

$$P(F_m(C))(T) = (1 + T)(1 + 2T) \cdots (1 + (m-1)T)$$

d'où $Betti_1(F_m(C)) = m^2$ (polynomiale en m tout de même!).

Il faut attendre les années 2011 pour comprendre le lien entre ces deux phénomènes grâce aux travaux de T. Church et B. Farb ([7,8]). En s’intéressant, non pas à la famille $\{Betti^i(BF_m(C))\}_m$, mais à la famille des représentations $\{S_m : H^i(F_m(C))\}_m$, Church et Farb se livrent à des calculs explicites en s’appuyant sur les recherches de Lehrer ([25], 1987) qui donnaient déjà la « polynomialité » des caractères de cette famille (7.3.1), et sont conduits à conjecturer que les multiplicités des composantes irréductibles des représentations $\{S_m : H^i(F_m(X))\}_m$ sont stationnaires (dans un sens qui sera précisé dans 7.4.1), de sorte que lorsque X est en plus de type fini, la polynomialité des caractères en découle moyennant un résultat classique de Macdonald (cf. 7.3.6, 1995). Church et Farb développent alors la théorie de « FI-modules » (7.2) et remarquent que le phénomène de multiplicités stationnaires pouvait s’expliquer comme conséquence de ce qu’ils ont appelé la « stabilité » (7.4.1) de la famille de morphismes $\{p^*_m : H^i(F_m(X)) \rightarrow H^i(F_{m+1}(X))\}_m$, ce qui s’avéra être effectivement le cas.

Théorème (Church [7], 2012). Soit X une variété topologique, connexe et orientable. Pour $i \in \mathbb{N}$ fixé, la famille $\{p^*_m : H^i(F_m(X)) \rightarrow H^i(F_{m+1}(X))\}_m$ est stable pour $m \geq 2i$ si $\dim X \geq 3$, et pour $m \geq 4i$ si $\dim X = 2$. Les familles des caractères et des nombres de Betti correspondantes sont polynomiales et la famille $\{Betti^i(F_m(X)/S_m)\}_m$ est constante, sur les mêmes rangs.

Le théorème de stabilité d’Arnold apparaît de lors comme le fait que la famille des sous-représentations triviales $\{H^i(F_m(C))/S_m\}_m$ est stationnaire.

Les paragraphes qui suivent sont destinés à rappeler les bases de la théorie de FI-modules ([10]) qui a servi à prouver le théorème de Church. Nous introduisons ensuite certains foncteurs d’induction dans la catégorie des FI-modules qui vont nous permettre de généraliser le théorème de Church aux familles $\{S_m : \Delta_{m-a} X^a\}_m$ où X est une pseudovariété orientable. On procédera dans un premier temps en supposant que X est i-acyclique (thm. 9.2.3), puis, dans un deuxième temps, sans cette hypothèse (thm. 9.3.15) mais à l’aide d’un nouvel instrument : les suites spectrales basiques (6.5.2).

7.2. Catégorie des FI-modules

Suivant [10], on note FI la catégorie dont les objets sont les ensembles finis, et dont les morphismes sont les applications injectives. Si A est un anneau, on note $\text{Mod}(A[FI])$ la catégorie dont les objets, les $A[FI]$-modules (et même simplement FI-modules lorsque A est sous-entendu), sont les fonc-
teurs covariants $\mathcal{V} : \textbf{FI} \rightsquigarrow \text{Mod}(A)$ et dont les morphismes sont les transformations naturelles entre ces foncteurs. Si \mathcal{V} et \mathcal{W} sont des \textbf{FI}-modules, on note $\text{Hom}_{\textbf{FI}}(\mathcal{V}, \mathcal{W})$ l’ensemble des morphismes de \mathcal{V} vers \mathcal{W}.

Conventions et notations. Dans ce qui suit, on identifie pour tous $b \geq 0$

$$S_m = \text{Fix}_{S_{m+b}}[m+1,m+b] \quad \text{et} \quad I_m \times \mathbb{S}_b = \text{Fix}_{S_{m+b}}[1,m],$$

ce qui donne le sens à l’inclusion $S_m \times \mathbb{S}_b \subseteq S_{m+b}$.

Dans une notation $V_m \otimes A_b$, on désigne par V_m un S_m-module et par A_b la représentation triviale de \mathbb{S}_b dans A. Le produit tensoriel en question est alors le $S_m \times \mathbb{S}_b$-module défini par $(\alpha, \beta) \otimes (v \otimes w) := (\alpha \cdot v, \beta \cdot w)$.

7.2.1. Une équivalence de catégories. La restriction d’un \textbf{FI}-module à la sous-catégorie pleine des intervalles de la forme $[1,m] \subseteq \mathbb{N}$ est une équivalence de catégories entre $\text{Mod}(A[\textbf{FI}])$ et la catégorie des familles dénombrables $\mathcal{V} = \{\phi_m : V_m \rightarrow V_{m+1}\}_{m}$, où les V_m sont des $A[S_m]$-modules et où les ϕ_m sont des morphismes de $A[S_m]$-modules dont les composées

$$\phi_{m+b,m} := \phi_{m+b} \circ \cdots \circ \phi_{m+1} \circ \phi_{m}, \quad \forall b \in \mathbb{N}, \quad (\ddagger)$$

vérifient

$$\phi_{m+b,m}(V_m) \subseteq (V_{m+b})^{I_m \times \mathbb{S}_b}, \quad \forall m, b \in \mathbb{N}. \quad (\circ)$$

Les morphismes $\phi_{m+b,m}$ sont les « les morphismes de transition de \mathcal{V} », ils se factorisent suivant le diagramme

$$\begin{array}{ccc}
V_m & \xrightarrow{\phi_{m+b,m}} & V_{m+b} \\
\downarrow \iota & \nearrow & \downarrow \phi_{m+b,m} \\
\text{ind}_{S_{m+b}}^{S_m \times \mathbb{S}_b}(V_m \otimes A_b) & \xrightarrow{\phi_{m+b,m}} & V_{m+b}
\end{array} \quad (\circ \circ)$$

où $\iota : V_m \rightarrow V_m \otimes A$ est le plongement $v \mapsto v \otimes 1_A$ et où $\phi_{m+b,m}$ est le morphisme de $A[S_{m+b}]$-modules induit (\ddagger).

Dans cette équivalence, un morphisme $f : \mathcal{V} \rightarrow \mathcal{W}$ de \textbf{FI}-modules se voit comme une famille $\{f_m : V_m \rightarrow W_m\}_m$ de morphismes de $A[S_m]$-modules vérifiant $\phi_m \circ f_m = f_{m+1} \circ \phi_m$. Les familles $\{\ker(f_m)\}_m$ et $\{\coker(f_m)\}_m$

$$\begin{array}{ccc}
\ker(f_m) & \xrightarrow{\phi_m} & V_m \\
\downarrow & & \downarrow f_m \\
\ker(f_{m+1}) & \xrightarrow{\phi_m} & V_{m+1}
\end{array} \quad \begin{array}{ccc}
V_m & \xrightarrow{f_m} & W_m \\
\downarrow & \oplus & \downarrow \\
V_{m+1} & \xrightarrow{f_{m+1}} & W_{m+1}
\end{array} \quad \begin{array}{ccc}
\ker(f_m) & \xrightarrow{\phi_m} & \coker(f_m) \\
\downarrow & & \downarrow \\
\ker(f_{m+1}) & \xrightarrow{\phi_m} & \coker(f_{m+1})
\end{array}$$

munies des morphismes de transition induits sont des \textbf{FI}-modules et font de $\text{Mod}(A[\textbf{FI}])$ une catégorie abélienne $(\ddagger \ddagger)$.

(\ddagger \ddagger) La condition (\circ) qui porte sur les $S_m \times \mathbb{S}_b$-invariants est vide pour $b = 1$ et n’est donc pas transitive, il suffit par contre qu’elle soit vérifiée pour $b = 2$ et tout $m \in \mathbb{N}$.

(\ddagger \ddagger \ddagger) Dans [31], Sam et Snowden donnent une équivalence de catégories explicite entre $\text{Mod}(A[\textbf{FI}])$ et une catégorie de modules sur un anneau.
7.2.2. Troncatures de FI-modules. Soit $q \in \mathbb{N}$. Pour tout FI-module $\mathcal{V} = \{ \phi_m : V_m \rightarrow V_{m+1} \}$, on notera $\mathcal{V}_{\geq q} = \{ W_m \rightarrow W_{m+1} \}$ le sous-FI-module de \mathcal{V} avec $W_m := 0$ si $m \leq q-1$, et $W_m := V_m$ autrement.

On pose ensuite $\mathcal{V}_{\leq q-1} := \mathcal{V}/\mathcal{V}_{\geq q}$, d'où la suite exacte courte de FI-modules

$$
\begin{array}{c}
\mathcal{V}_{\geq q} & \longrightarrow & 0 & \longrightarrow & V_q & \rightarrow & V_{q+1} & \rightarrow & V_{q+2} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\mathcal{V} & \longrightarrow & V_{q-2} & \rightarrow & V_{q-1} & \rightarrow & V_q & \rightarrow & V_{q+1} & \rightarrow & V_{q+2} \\
\downarrow & & \downarrow \\
\mathcal{V}_{\leq q-1} & \longrightarrow & V_{q-2} & \rightarrow & V_{q-1} & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 \\
\end{array}
$$

On notera $\text{Mod}(\mathcal{A}[\text{FI}])_{\geq q}$ (resp. $\text{Mod}(\mathcal{A}[\text{FI}])_{\leq q}$) la sous catégorie pleine de $\text{Mod}(\mathcal{A}[\text{FI}])$ dont les objets sont les FI-modules tronqués $\mathcal{V}_{\geq q}$ (resp. $\mathcal{V}_{\leq q}$).

Les correspondances $\mathcal{V} \rightsquigarrow \mathcal{V}_{\geq q}$ et $\mathcal{V} \rightsquigarrow \mathcal{V}_{\leq q}$ sont clairement fonctorielles covariantes et exactes.

7.2.3. Les FI-modules $\mathcal{M}(a)$. Pour $0 < a \in \mathbb{N}$, on note $a := [1,a]$, et ensuite $\mathcal{M}(a) :=$ le foncteur covariant représenté par a, soit

$$
\mathcal{M}(a) : \mathcal{V} \rightsquigarrow \text{Mod}(\mathcal{A})
$$

$$
S \rightsquigarrow \mathcal{M}(a)_S := \mathcal{A}[[\mathcal{M}(a), S]]
$$

La famille $\{ \phi_m : \mathcal{M}(a)_m \rightarrow \mathcal{M}(a)_{m+1} \}_m$ est alors caractérisée par

$$
\begin{array}{ll}
\text{si } b < 0, & \mathcal{M}(a)_{a+b} = 0 \\
\text{si } b \geq 0, & \mathcal{M}(a)_{a+b} = \text{ind}_{S_a \times S_b} A[S_a] \otimes A_b,
\end{array}
$$

et le morphisme de transition $\phi_{a+b} : \mathcal{M}(a)_{a+b} \rightarrow \mathcal{M}(a)_{a+b+1}$ est celui induit à partir de l’identification de $S_a \times S_b$-modules $k[S_a] \otimes A_b = k[S_a] \otimes A_{b+1}$,

$$
\begin{array}{c}
k[S_a] \otimes A_b \longrightarrow k[S_a] \otimes A_{b+1} \\
\downarrow \\
\text{ind}_{S_a \times S_b} A[S_a] \otimes A_b \phi_{a+b} \longrightarrow \text{ind}_{S_a \times S_{b+1}} A[S_a] \otimes A_{b+1}
\end{array}
$$

où les flèches verticales désignent les inclusions canoniques.

7.2.4. Par le lemme de Yoneda, pour tout FI-module \mathcal{V} l’application

$$
Y : \text{Hom}_{\text{FI}}(\mathcal{M}(a), \mathcal{V}) \rightarrow V_a, \quad Y(f) = f(id_a),
$$

77
est bijective. Si \(v \in V_a \), on note \(\text{ev}_a(v) := Y^{-1}(v) \), il s'agit du morphisme de foncteurs dont les valeurs \(\text{ev}_a(v)_{a+b} : \mathcal{M}(a)_{a+b} \rightarrow V_{a+b} \) sont

\[
\begin{cases}
 \text{si } b < 0, & \text{ev}_a(v)_{a+b} = 0 \\
 \text{si } b = 0, & \text{ev}_a(v) : A[S_a] \rightarrow V_a, \text{ ev}_a(v)(\alpha) = \alpha \cdot v \\
 \text{si } b > 0, & \text{ev}_a(v)_{a+b} \text{ est la composée :}
\end{cases}
\]

\[
\text{ind}_{S_a \times S_b}^a A[S_a] \boxtimes A_b \xrightarrow{\text{ind}(\text{ev}_a(v))} \text{ind}_{S_a \times S_b}^a V_a \boxtimes A_b \xrightarrow{\phi_{a+b,a}} V_{a+b}
\]

7.2.5. Sous-\(\text{FI}\)-modules et \(\text{FI}\)-modules quotients.

On appelle « sous-\(\text{FI}\)-module » d'un \(\text{FI}\)-module \(V \) tout sous-foncteur \(W \subseteq V \). En termes des familles dénombrables \(V = \{ \phi_m : V_m \rightarrow V_{m+1} \}_{m} \) (7.2.1), l'inclusion \(W \subseteq V \) équivalait à la donnée d'une famille de sous-\(\mathcal{S}_m\)-modules \(W_m \subseteq V_m \) vérifiant \(\phi_m(W_m) \subseteq W_{m+1} \), auquel cas \(W := \{ \phi_m|_{W_m} : W_m \rightarrow W_{m+1} \} \).

L'intersection d'une famille de sous-\(\text{FI}\)-modules est un sous-\(\text{FI}\)-module.

On définit dualement la notion de « \(\text{FI}\)-module quotient ».

7.2.6. Systèmes générateurs de \(\text{FI}\)-modules.

Soit \(V \) un \(\text{FI}\)-module. Pour tout sous-ensemble \(\Sigma \subseteq \coprod_m V_m \), on appelle « sous-\(\text{FI}\)-module engendré par \(\Sigma\) » et on le note \(\langle \Sigma \rangle \), l’intersection de la famille des sous-\(\text{FI}\)-modules \(W \) de \(V \) tels que \(\Sigma \subseteq \coprod_m W_m \).

Pour \(a \in \mathbb{N} \), notons \(\Sigma_a := \Sigma \cap V_a \). D’après 7.2.3, chaque \(s \in \Sigma_a \) détermine un et un unique morphisme de \(\text{FI}\)-modules

\[
\text{ev}_a(s) : \mathcal{M}(a) \rightarrow V, \quad \text{ev}_a(s)(\text{id}_a) = s.
\]

Le lemme suivant est alors immédiat.

Lemme ([10] 2.3.2). Le sous-\(\text{FI}\)-module \(\langle \Sigma \rangle \subseteq V \) est l'image du morphisme

\[
\prod_{0 < a \in \mathbb{N}, s \in \Sigma_a} \text{ev}_a(s) : \bigoplus_{0 < a, s \in \Sigma_a} \mathcal{M}(a) \rightarrow V,
\]

7.2.7. \(\text{FI}\)-modules de type fini.

Soit \(V \) un \(\text{FI}\)-module.

a) \(V \) est dit « engendré en degrés \(\leq d \) » si \(V = \langle \Sigma \rangle \) avec \(\Sigma \subseteq \coprod_{a \leq d} V_a \).

b) \(V \) est dit « de type fini » si \(V = \langle \Sigma \rangle \) avec \(\Sigma\) fini.

7.2.8. Proposition ([10] Finitude et noethériannité)

a) Un \(\text{FI}\)-module \(V \) est de type fini si et seulement si, il admet une surjection \(\bigoplus_{a} \mathcal{M}(a) \rightarrow V \) pour une certaine famille finie \(\{a_i\} \).

b) Un quotient d'un \(\text{FI}\)-module de type fini est de type fini.

c) Si l'anneau \(A \) des coefficients est noethérien, tout sous-\(\text{FI}\)-module d'un \(\text{FI}\)-module de type fini est encore de type fini. \(^{23}\)

7.3. Caractères polynomiaux et stabilité des FI-modules

L’anneau A est un corps k de caractéristique nulle.

7.3.1. Caractères (éventuellement) polynomiaux. Si $W := \{ W_m \}_{m}$ est une famille de représentations de dimensions finies, on note $\chi(W) := \{ \chi_{S_m}(W_m) \}_{m}$ la famille de leurs caractères. Pour chaque m, il existe un polynôme $P_m \in k[x_1, \ldots, x_m]$ tel que pour $\alpha \in S_m$, on a

$$\chi_{S_m}(W_m)(\alpha) = P_m(x_1, \ldots, x_m)(\alpha),$$

où $x_i(\alpha)$ est le nombre des cycles de longueur i dans la décomposition de α en produit de cycles disjoints. La famille $\chi(W)$ peut ainsi être décrite par des familles $\{ P_m \}_{m}$ de polynômes de l’algèbre $k[X] = k[x_1, x_2, \ldots]$.

Définition. La famille de représentations W est dite « à caractère éventuellement polynomial » s’il existe $N, r \in \mathbb{N}$ et $P \in k[x_1, \ldots, x_r]$ tels que

$$\chi_{S_m}(W_m)(\alpha) = P(x_1, \ldots, x_r)(\alpha), \quad \forall m \geq N, \forall \alpha \in S_m.$$

(∗)

On dit alors que $\chi(W)$ « est polynomiale pour $m \geq N$ ».

7.3.2. Remarques

a) Un caractère du groupe S_m admet plusieurs écritures dans $k[x_1, \ldots, x_m]$ (cf. 11.4.3), par contre, lorsque la condition (∗) est satisfaite, le polynôme P est unique (cf. (37), p. 154).

b) Notons $\dim_k(W) := \{ \dim_k W_m \}_{m}$. Lorsque $\chi(W)$ est éventuellement polynomiale, on a, pour m assez grand,

$$\dim_k W_m = P(x_1, x_2, \ldots, x_r)(I_m) = P(m, 0, \ldots, 0)$$

et la suite $\dim_k(W)$ est éventuellement polynomiale en m.

7.3.3. Représentations irréductibles $V(\lambda)_m$. Sous l’hypothèse en cours de $\text{car}(k) = 0$, les représentations des groupes symétriques sont semi-simples et définies sur \mathbb{Q}. Les décompositions en composantes irréductibles sont alors “indépendantes” de $k \supseteq \mathbb{Q}$.

7.3.4. Reparamétrisation des représentations irréductibles

Pour $0 < a \in \mathbb{N}$, les représentations irréductibles de S_a sur k sont paramétrées par les décompositions $\lambda \vdash a$. On note V_{λ} la représentation irréductible de S_a correspondante à $\lambda \vdash a$.

Définition. Soit $\lambda = (\lambda_1 \geq \cdots \geq \lambda_\ell) \vdash a$. Pour tout $m \geq |\lambda| + \lambda_1$, on note $\lambda[m] \vdash m$ la décomposition $(m - |\lambda|, \lambda_1, \ldots, \lambda_\ell)$

$$\lambda = \{ \begin{array}{c} \cdots \end{array} \} \quad \mapsto \quad \lambda[m] := \{ \begin{array}{c} \cdots \end{array} \},$$
Pour $m \geq |\lambda| + \lambda_1$, on note $V(\lambda)_m$ la représentation irréductible de S_m correspondante à $\lambda[m]$, on pose donc :

$$V(\lambda)_m := V_{\lambda[m]}$$

Les notations $V(0)_m$ et $V(1)_m = V(\square)_m$ désignent ainsi respectivement la représentation triviale et la représentation standard de dimension $m-1$ de S_m.

7.3.5. Remarques

a) Une décomposition $\mu \vdash m$ s’écrit d’une et d’une unique manière sous la forme $\mu = \lambda[m]$. Si $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_\ell)$ et $\lambda \vdash a := m - \lambda_1$ (y compris $a = 0$).

b) Dans la notation ‘$\lambda[m]$’, le nombre ‘m’, qui vérifie $m \geq |\lambda| + \lambda_1$, indique la taille finale du diagramme. On a

$$\ell(\lambda[m]) = \ell(\lambda) + 1,$$

et si $m \leq n$, on a $(\lambda[m])[n] \neq \lambda[n]$.

c) Si $\lambda[m] \in \mathcal{Y}_\ell(m)$, on a $|\lambda| \leq m - \left\lceil \frac{m}{\ell} \right\rceil$. (24)

7.3.6. Les familles $\{V(\lambda)_m\}_m$ apparaissaient déjà dans le livre de Macdonald [28] comme exemple de famille de représentations à caractère polynomial. L’auteur y établit par un calcul explicite le fait suivant (ex. I.7.14, p. 122).

Proposition ([28]). Pour $\lambda \vdash a$, il existe $P_\lambda \in k[X]$ tel que, pour tout $m \geq |\lambda| + \lambda_1$, on a

$$P_\lambda(\alpha) = \chi_{S_m}(V(\lambda)_m)(\alpha), \quad \forall \alpha \in S_m.$$

7.4. Monotonie et stabilité des FI-modules

7.4.1. Stabilité.

Suivant [10], un FI-module $V = \{\phi_m : V_m \to V_{m+1}\}$ est dit « (uniformément) stationnaire », s’il existe $N \in \mathbb{N}$ tel que les conditions suivantes sont satisfaites pour $m \geq N$.

a) **Injectivité.** Les applications $\phi_m : V_m \to V_{m+1}$ sont injectives.

b) **Surjectivité.** V_{m+1} est engendré en tant que S_{m+1}-module par $\text{im}(\phi_m)$.

c) **Multiplicités.** (25) Dans la décomposition en représentations irréductibles

$$V_m = \bigoplus_\lambda c(\lambda)_m V(\lambda)_m,$$

les multiplicités $c(\lambda)_m$ ne dépendent pas de m.

24 On désigne par $[x] \in \mathbb{Z}$ la partie entière par excès de $x \in \mathbb{R}$, i.e. $[x] - 1 < x \leq [x]$. Dans (c), le terme $[m/\ell]$ représente le plus petit nombre de colonnes d’un diagramme de Young de taille m possédant ℓ lignes, il faudrait donc convenir que $[0/0] = 0$.

25 L’adverbe “uniformément” est utilisé dans [10] pour distinguer du cas où la condition de stabilité de multiplicités (c) est demandée séparément pour chaque λ. 80
Lorsque ces conditions sont satisfaites, on dit que V est un FI-module « stable pour $m \geq N$ ». Le « rang de stabilité de V », noté $rg_s(V)$, est la borne inférieure de tels N, et si V n’est pas stationnaire, on pose $rg_s(V) = +\infty$.

Fait : la famille de caractères $\chi(V)$ est polynomiale pour $m \geq rg_{ms}(V)$ (7.3.6).

7.4.2. **Monotonie.** Suivant la terminologie de Church ([7]), un FI-module $V = \{\phi_m : V_m \rightarrow V_{m+1}\}_m$ est dit « monotone pour $m \geq N$ » lorsque pour tout $m \geq N$ et tout $W_m \subseteq V_m$ isomorphe à $V(\lambda)^{\oplus k}_m$ pour certain λ et k, le sous-S_{m+1}-module $S_{m+1} \cdot \phi_m(W) \subseteq V_{m+1}$ contient un sous-module isomorphe à $V(\lambda)^{\oplus k}_{m+1}$. On notera $rg_m(V)$ le plus petit des ces N.

Fait : les morphismes de transition de V sont injectifs pour $m \geq rg_m(V)$.

7.4.3. **Lemme et définition.** On appellera « rang de monotonie et stabilité » d’un FI-module V, le nombre

$$rg_{ms}(V) := \sup\{rg_m(V), rg_s(V)\}$$

Pour tout FI-module V et tout $s \in \mathbb{N}$, on a $rg_{ms}(V) \subseteq \sup\{rg_{ms}(V)_{\geq s}, s\}$, et pour $rg_{ms}(V)_{\geq s}$, seul deux cas sont possibles

i) $rg_{ms}(V)_{\geq s} = \sup\{rg_{ms}(V), s\}$, ou bien

ii) $rg_{ms}(V)_{\geq s} = 0$, auquel cas $V_{\geq rg_{ms}(V)} = 0$ et $s \geq rg_{ms}(V)$.

Démonstration. Notons $r := rg_{ms}(V)$. L’assertion (a) est claire et immédiate lorsque $V_{\geq r} \neq 0$ et aussi lorsque $V_{\geq r} = 0$ et que $s < r$. Le cas restant est celui où $V_{\geq r} = 0$ et que $s \geq r$, cas auquel $V_{\geq s} = 0$ et donc $rg_{ms}(V)_{\geq s} = 0$. □

7.4.4. **Proposition.** Dans les énoncés qui suivent, ‘monotone’ est un raccourci pour ‘monotone pour $m \geq N$’, et de même pour ‘monotone-stable’.

a) Un sous-FI-module d’un FI-module monotone est monotone.

b) Tout quotient monotone Q d’un FI-module monotone-stable V est monotone-stable ainsi que le noyau de la surjection canonique $\nu : V \rightarrow Q$.

c) Soit $W \rightarrow V \rightarrow Q \rightarrow 0$ une suite exacte de FI-modules où W est monotone-stable. Alors, si V est monotone (resp. monotone-stable), Q l’est aussi.

d) Soit $0 \rightarrow K \rightarrow V \rightarrow Q \rightarrow 0$ une suite exacte de FI-modules. Alors Si K et Q sont monotones (resp. monotones-stables), V l’est aussi.

e) Soit $\cdots \rightarrow V_{-1} \overset{d_{-1}}{\rightarrow} V_0 \overset{d_0}{\rightarrow} V_1 \rightarrow \cdots$ un complexe de FI-modules. Alors

i) Si V_{-1} est monotone-stable et V_0 est monotone, $H^0(V_*)$ est monotone.

ii) Si V_{-1} et V_0 sont monotones-stables et V_1 est monotone, $H^0(V_*)$ est monotone-stable.
Démonstration. (a) Immédiat d’après la définition de monotonie.

(b) Le noyau \(\mathcal{K} := \ker(\nu) \) est monotone d’après (a). La monotonie assure la condition d’injectivité 7.4.1-(a) pour \(\mathcal{K}, \mathcal{V} \) et \(\mathcal{Q} \), mais aussi le fait que les multiplicités \(c(\lambda)_m \) pour \(K_m, V_m \) et \(Q_m \) sont non décroissantes pour \(m \geq N \). Il s’ensuit que si \(\mathcal{V} \) est monotone-stable, les familles de multiplicités sont constantes et la condition de multiplicités 7.4.1-(c) est satisfaite. Enfin, la condition de surjectivité 7.4.1-(b) est une conséquence logique des propriétés de monotonie et de multiplicités constantes.

(c) Pour la monotonie, il suffit, pour \(\lambda \) et \(n \geq N \) donnés, de se restreindre au sous-\(\textbf{FI} \)-module \(\mathcal{Q}' \subseteq \mathcal{Q} \) engendré par \(V(\lambda)^\otimes_k \subseteq Q_n \). On note \(\mathcal{V}' \) le sous-\(\textbf{FI} \)-module de \(\mathcal{V} \) défini par \(V'_m = \pi_m^1(Q'_m) \), d’où la suite exacte \(\mathcal{W} \rightarrow \mathcal{V}' \rightarrow \mathcal{Q}' \rightarrow 0 \) avec \(\mathcal{V}' \) monotone d’après (a). On considère ensuite le diagramme des morphismes de transition restreint aux composantes \(\lambda \)-isotypiques en \(n \)

\[
\begin{array}{ccc}
\mathcal{K} & \xrightarrow{\phi_n} & K''_n \subseteq K_{n+1} \\
\downarrow & & \downarrow \\
\mathcal{V}' & \xrightarrow{\phi_n} & V''_n \subseteq V_{n+1} \\
\downarrow & & \downarrow \\
\mathcal{Q}' & \xrightarrow{\phi_n} & Q''_n \subseteq Q_{n+1}
\end{array}
\]

La composante \(\lambda \)-isotypique de \(Q''_n := \mathcal{S}_{n+1} \cdot \phi_n(\mathcal{V}(\lambda)^\otimes_k) \subseteq Q'_{n+1} \) est celle de \(V''_n := \mathcal{S}_{n+1} \cdot \phi_n(\mathcal{V}(\lambda)^\otimes_{k+l}) \) modulo celle de \(K''_n := \mathcal{S}_{n+1} \cdot \phi_n(\mathcal{V}(\lambda)^\otimes_l) \). Or, cette dernière est de multiplicité exactement \(l \) puisque \(\mathcal{K} \) est supposé monotone-stable, tandis que celle en \(V''_n \) est de multiplicité \(\geq k+l \) puisque \(\mathcal{V}' \) est supposée (seulement) monotone. Par conséquent \(\mathcal{Q} \) vérifie la condition de monotonie pour \(\lambda \) en \(n \). Cette conclusion étant valable pour tout \(n \geq N \) et tout \(\lambda \), le \(\textbf{FI} \)-module \(\mathcal{Q} \) est bien monotone.

Maintenant, si l’on suppose \(\mathcal{V} \) monotone et stable, \(\mathcal{Q} \) est monotone d’après ce qui précède et, donc, monotone-stable par (b).

(d) Mêmes raisonnements que pour (c).

(e) (i) Si \(\mathcal{V}_0 \) est monotone, \(\ker(d_0) \) est monotone par (a), \(\text{im}(d_{-1}) \) est monotone-stable par (b), et on applique (c) à \(\text{im}(d_{-1}) \rightarrow \ker(d_0) \rightarrow H^0(\mathcal{V}_*) \).
(ii) Si \(\mathcal{V}_0 \) est monotone-stable et que \(\mathcal{V}_1 \) est monotone, \(\ker(d_0) \) est monotone-stable par (a) et \(H^0(\mathcal{V}_*) \) est monotone-stable à nouveau par (c). \(\square \)

La proposition suivante est une reformulation des résultats de Church concernant les concepts de monotonie et de stabilité (loc. cit. prop. 2.5, p. 475).

7.4.5. Corollaire

a) La sous-catégorie pleine \(\text{Mod}_{\text{rg}m \leq N}(k[\textbf{FI}]) \) des \(\textbf{FI} \)-modules monotones pour \(m \geq N \), est stable par extensions dans \(\text{Mod}(k[\textbf{FI}]) \).

82
b) La sous-catégorie pleine $\text{Mod}_{\text{rgms} \leq N}(k[FI])$ des FI-modules monotones et stables pour $m \geq N$, est une sous-catégorie abélienne et stable par extensions dans $\text{Mod}(k[FI])$. En particulier,

i) Si (V_*,d_*) est un complexe de $\text{Mod}_{\text{rgms} \leq N}(k[FI])$, ses FI-modules de cohomologie $h^i(V_*,d_*)$ vérifient aussi $\text{rgms}(h^i(V_*,d_*)) \leq N$.

ii) Dans le groupe $K_0(\text{Mod}(k[FI]))$, un FI-module V appartient au sous-groupe $K_0(\text{Mod}_{\text{rgms} \leq N}(k[FI]))$, si et seulement si $\text{rgms}(V) \leq N$.

7.4.6. Commentaire. Un théorème important de la théorie de Church et Farb établit l’équivalence pour un FI-module entre le fait d’être de type fini et être éventuellement monotone et stable, mais ce type d’affirmation, de nature uniquement qualitative, ne renseigne pas sur les valeurs des rangs concernés. Les notions de « poids » et de « degré de stabilité » d’un FI-module ont été introduites dans le but de préciser cette question (cf. 7.9.8). Les sections 7.5–7.9 qui vont suivre rappellent ces notions.

7.5. Poids d’un FI-module

7.5.1. Règles de branchement pour les représentations de S_m. Elles expliquent les manipulations à effectuer sur le diagramme de Young μ correspondant à une représentation simple V_μ d’un groupe symétrique, pour décrire les composantes irréductibles de ses induits et ses restrictions. Le lemme suivant rappelle ces règles ([10], lemma 3.2.3). (26)

7.5.2. Lemme. Le corps k est de caractéristique nulle.

a) [Règle de Pieri] Soit V_ν la représentation irréductible de S_a correspondante à un diagramme de Young $\nu \vdash a$. On a :

$$\text{ind}^S_{S_b \times S_b} k_b \otimes V_\nu \sim \text{ind}^S_{S_a \times S_b} V_\nu \otimes k_b = \bigoplus_{\mu \vdash a+b} V_\mu,$$

où les diagrammes $\mu \vdash a+b$ sont ceux qui s’obtiennent en rajoutant une boîte sur b colonnes distinctes du diagramme ν.

b) Soit V_μ la représentation irréductible de S_{a+b} correspondante à un diagramme de Young $\mu \vdash a+b$. On a :

$$\text{Res}^S_{S_{a+b} \times S_b} V_\mu)_{S_b} = \bigoplus_{\nu \vdash a} V_\nu,$$

où les diagrammes $\nu \vdash a$ sont ceux qui s’obtiennent en enlevant une boîte sur b colonnes distinctes du diagramme μ.

7.5.3. Définitions

- Soit $m > 0$. Le « poids » d’un S_m-module W, noté $\mathcal{P}(W)$, est le plus grand des $|\lambda|$ tels que $V_{\lambda|m}$ est facteur irréductible de W. Si $W = 0$, on pose $\mathcal{P}(W) := 0$. On a toujours $\mathcal{P}(W) < m$ (7.3.5(c)).

- Le « poids » d’un FI-module $V = \{V_m\}$, noté $\mathcal{P}(V)$, est la borne supérieure de l’ensemble $\{\mathcal{P}(V_m)\}$ dans $\mathbb{N} \cup \{+\infty\}$.

7.5.4. Proposition. Pour $\ell, a \in \mathbb{N}$, soit $\lambda = (\lambda_1 \geq \cdots \geq \lambda_\ell) \vdash \ell + a$ et notons $\ell_\lambda := \#\{i \mid \lambda_i > 1\}$. Pour tout S_ℓ-module W, on a

$$\mathcal{P} \left(\text{Ind}^{S_\ell+a}_{G_\lambda} W \right) \leq \mathcal{P}(W) + \ell + a$$

Démonstration. On a

$$\mathcal{P}_\lambda \leq (S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \times S_{\ell-\ell_\lambda}) \leq (1) \ N_{S_{\lambda_1}} \mathcal{P}_\lambda = S_\lambda, \quad (\dagger)$$

d’où une surjection de S_λ-modules

$$M := \text{ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \times S_{\ell-\ell_\lambda}} W \twoheadrightarrow \text{ind}_{G_\lambda} S_\lambda W. \quad (\ddagger)$$

(C’est même un isomorphisme lorsque $(\lambda_1, \ldots, \lambda_\ell)$ est strictement décroissante, car, dans ce cas, l’inclusion $\leq (1)$ dans (\dagger) est une égalité.) On remarque alors que le terme de gauche de (\ddagger) n’est autre que le $S_{\ell+a}$-module

$$M = \text{ind}_{S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \times S_{\ell-\ell}} k_{\lambda_1} \otimes \cdots \otimes k_{\lambda_\ell} \otimes \text{Res}_{S_{\ell-\ell}}^{S_\lambda} W,$$

puisque dans l’action de $S_{\lambda_1} \times \cdots \times S_{\lambda_\ell} \times S_{\ell-\ell_\lambda}$ à travers G_λ, les S_{λ_i} agissent trivialement sur W. L’itération de la règle de Pieri 7.5.2-(a) conduit alors à la majoration

$$\mathcal{P}(M) \leq \lambda_1 + \cdots + \lambda_\ell + \mathcal{P}(\text{Res}_{S_{\ell-\ell}}^{S_\ell} W),$$

avec $\lambda_1 + \cdots + \lambda_\ell = \ell + a$ et où

$$\mathcal{P}(\text{Res}_{S_{\ell-\ell}}^{S_\ell} W) \leq \mathcal{P}(W). \quad (\circ)$$

En effet, un cas particulier de 7.5.2-(b) dit que $\mathcal{P}(\text{Res}_{S_{1+n}}^{S_1} M) \leq \mathcal{P}(M)$, pour tout $n \in \mathbb{N}$ et tout S_{1+n}-module M, ce qui conduit à (\circ) par itération. On a donc montré que $\mathcal{P}(M) \leq \mathcal{P}(W) + \ell + a$ et la proposition résulte puisque $\mathcal{P}(M)$ majore le poids des quotients de M, en particulier (\ddagger).

7.5.5. Remarque. Dans 7.5.4, l’égalité $\mathcal{P} \left(\text{ind}_{G_\lambda}^{S_\ell} W \right) = \mathcal{P}(W) + \ell + a$ peut être atteinte. En effet, soit $W = V(\nu)_{\ell}$. Par la règle 7.5.2-(b), $V(\nu)_{\ell}$ est facteur de $\text{Res}_{S_{\ell-\ell}}^{S_\ell} V(\nu)_{\ell}$ si et seulement si

$$\ell - \ell_\lambda - |\nu| \geq \nu_1, \quad (\ast)$$

auquel cas $\mathcal{P} \left(\text{Res}_{S_{\ell-\ell}}^{S_\ell} V(\nu)_{\ell} \right) = |\nu|$ est le plus grand poids possible.
Notons \(M := \text{ind}_{\mathcal{S}_{\lambda_1} \times \ldots \times \mathcal{S}_{\lambda_k} \times \mathcal{S}_\ell} V(\nu)_\ell \). Par ce qui précède et par itération de la règle de Pieri 7.5.2-(a), on aura \(\mathcal{P}(M) = |\nu| + \ell + a \), si et seulement si \(\ell - |\nu| \geq \sup \{ \lambda_1, \lambda_2 \} \). Or, cette condition est vérifiée si \(\lambda = (\nu_1, \nu_1 - 1, \nu_1 - 2, \ldots, 1, \ldots, 1) \), auquel cas \(\ell = \nu_1 - 1 \) et (*) est vérifiée dès que \(\ell \geq |\nu| + 2\nu_1 - 1 \). Enfin, pour un tel \(\lambda \), on a bien \(\mathcal{S}_\lambda = \mathcal{P}_\lambda \) et donc \(\text{ind}_{\mathcal{G}_\lambda} V(\nu)_\ell = M \).

7.5.6. Scindage d’un \(\mathbf{FI} \)-module par le poids. Soit

\[
W_m = \bigoplus_{|\mu| < m} c(\mu)_m V(\mu)
\]

la décomposition en facteurs irréductibles d’un \(\mathcal{S}_m \)-module \(W_m \).

Pour \(t \in \mathbb{N} \), on pose

\[
W_m^{(>t)} := \bigoplus_{|\mu| \geq t} c(\mu)_m V(\mu),
\]

et \(\text{mutatis mutandis} \) pour \(W_m^{(<t)}, W_m^{(\leq t)} \) et \(W_m^{(= t)} \), aussi noté \(W_m^{(t)} \).

7.5.7. Proposition et définitions. Soit \(\mathcal{W} := \{ \phi_m : W_m \to W_{m+1} \}_m \) un \(\mathbf{FI} \)-module.

a) On a \(\phi_m(W_m^{>t}) \subseteq W_m^{>t} \) pour tout \(t \in \mathbb{N} \). On définit alors

i) le sous-\(\mathbf{FI} \)-module \(\mathcal{W}^{(>t)} \subseteq \mathcal{W} \) déterminé par les restrictions \(\phi_m^{(>t)} \) des morphismes de transition \(\phi_m \) aux sous-modules \(W_m^{(>t)} \), soit

\[
\mathcal{W}^{(>t)} := \{ \phi_m^{(>t)} : W_m^{(>t)} \to W_{m+1}^{(>t)} \}_m ;
\]

ii) le \(\mathbf{FI} \)-module quotient \(\mathcal{W}^{(>t)} \)

\[
\mathcal{W}^{(\leq t)} := \{ \phi_m^{(\leq t)} : W_m^{(\leq t)} \to W_{m+1}^{(\leq t)} \}_m := \frac{\mathcal{W}}{\mathcal{W}^{(>t)}} ;
\]

iii) le \(\mathbf{FI} \)-module \(\mathcal{W}^{(t)} \) sous-quotient de \(\mathcal{W} \) « de poids unique \(t \) »

\[
\mathcal{W}^{(t)} := \{ \phi_m^{(t)} : W_m^{(t)} \to W_{m+1}^{(t)} \}_m := \frac{\mathcal{W}^{(\leq t)}}{\mathcal{W}^{(>t)}} ;
\]

(Dans tous les cas, on aura remarqué l’abus de notation pour les morphismes de transition induits…)

b) Un \(\mathbf{FI} \)-module \(\mathcal{W} \) tel que \(\mathcal{P}(\mathcal{W}) < +\infty \), est extension successive de ses \(\mathbf{FI} \)-modules à poids unique \(\mathcal{W}^{(t)} \), \(t \leq \mathcal{P}(\mathcal{W}) \).

c) On a \(\text{rg}_{\text{gms}}(\mathcal{W}) = \sup \{ \text{rg}_{\text{gms}}(\mathcal{W}^{(>t)}), \text{rg}_{\text{gms}}(\mathcal{W}^{(\leq t)}) \} \), \(\forall t \in \mathbb{N} \). En particulier

\[
\text{rg}_{\text{gms}}(\mathcal{W}) = \sup \{ \text{rg}_{\text{gms}}(\mathcal{W}^{(t)}) \mid t \in \mathbb{N} \} ;
\]

Et de même avec \(\text{rg}_{\text{gms}} \) à la place de \(\text{rg}_{\text{gms}} \).

85
Démonstration. (a) Si $V(\mu)_m$ est un facteur irréductible de W_m, le sous-
S_{m+1}-module engendré par $\phi_m(V(\mu)_m)$ est un quotient de $\text{ind}\ S_{m+1}^\mu V(\mu)_m$.
Or, la règle de Pieri 7.5.2-(a) stipule que les composantes irréductibles de
$\text{ind}\ S_{m+1}^\mu V(\mu)_m$ sont les $V(\nu)_{m+1}$ dont le diagramme de Young est obtenu en
rajoutant une boîte sur une colonne du diagramme de $V(\mu)_m$. Ces compo-
santes sont donc de multiplicité 1 et de poids $|\nu| \geq |\mu|$, (avec égalité $|\nu| = |\mu|
$ si et seulement si $\mu = \nu$). Ceci établit l’inclusion $\phi_m(W_{>t}^m) \subseteq W_{>t+1}^{m+1}$. La suite
de (a) est alors immédiate.

(b) Lorsque $t := \mathcal{P}(W) < +\infty$, on a $\mathcal{W}^{(\geq t)} \neq 0$ et $\mathcal{W}^{(>t)} = 0$ auquel cas
$\mathcal{W}^{(>t)} = \mathcal{W}^{(t)}$. On donc la suite exacte courte de FI-modules
$$0 \rightarrow \mathcal{W}^{(t)} \rightarrow \mathcal{W} \rightarrow \mathcal{W}^{(\leq t)} = \mathcal{W}/\mathcal{W}^{\geq t} \rightarrow 0$$
où, par construction, $\mathcal{P}(\mathcal{W}^{(\leq t)}) < t$. Un raisonnement par induction sur le
poids termine la preuve.

(c) On a $\text{rg}_{ms}(W) = \sup \{ \text{rg}_{ms}(\mathcal{W}^{(>t)}), \text{rg}_{ms}(\mathcal{W}^{(\leq t)}) \}$ par la définition même
de rg_{ms}. L’égalité $\text{rg}_{ms}(W) = \sup \{ \text{rg}_{ms}(\mathcal{W}^{(t)}) \mid t \in \mathbb{N} \}$ s’ensuit par (b) et par
la stabilité par extensions de $\text{Mod}_{\text{rg}_{ms} \leq \mathcal{N}}(k[\text{FI}])$ (7.4.5-b). La preuve du cas
rg_{m} à la place de rg_{ms} est essentiellement la même moyennant 7.4.5-(a). □

7.6. Les FI-modules $\mathcal{M}_a^H(W)$. Pour tout $0 < a \in \mathbb{N}$ et tout sous-groupe
$H \subseteq S_a$, on définit le foncteur
$$\mathcal{M}_a^H : \text{Mod}(k[H]) \rightarrow \text{Mod}(k[\text{FI}])_{\geq a}$$
par
$$\mathcal{M}_a^H(W)_{a+b} = \begin{cases} 0, & \text{si } b < 0, \\ \text{ind}_{H \times S_b}^{S_{a+b}} W \otimes k_b, & \text{si } b \geq 0. \end{cases}$$

Pour tous $0 \leq b_1 \leq b_2$, l’égalité $W \otimes k_{b_1} = W \otimes k_{b_2}$ induit le morphisme de
$H \times S_{b_1}$-modules de $W \otimes k_{b_1} \rightarrow \text{ind}_{H \times S_{b_1}}^{S_{a+b}} W \otimes k_{b_2}$, d’où le morphisme (canonique) de transition
$$\phi_{a+b_2,a+b_1} : \text{ind}_{H \times S_{b_1}}^{S_{a+b_1}} W \otimes k_{b_1} \rightarrow \text{ind}_{H \times S_{b_2}}^{S_{a+b_2}} W \otimes k_{b_2}$$
dont l’image est clairement invariante sous l’action de $1_{a+b_1} \times S_{b_2-b_1}$. La
famille $\mathcal{M}_a^H(W) : \{ \phi_{m+1,m} : \mathcal{M}_a^H(W)_m \rightarrow \mathcal{M}_a^H(W)_{m+1} \}$ définit donc bien un
FI-module.

L’action du foncteur \mathcal{M}_a^H sur les morphismes suit le même principe d’in-
duction et ne sera pas détaillée.

7.6.1. Les FI-modules $\mathcal{M}_{a}^{S_{a}}(k[S_{a}])$ et $\mathcal{M}(a)$ de 7.2.3 sont les mêmes. Dans
la suite on notera $\mathcal{M}_a := \mathcal{M}_a^{S_{a}}$.

86
7.6.2. Proposition ([10])

a) Le foncteur $M^H_a : \text{Mod}(k[H]) \to \text{Mod}(k[FI])_{\geq a}$ est additif, exact et fidèle. Il est aussi l’adjoint à gauche du foncteur « d’évaluation en a », i.e. pour tout H-module W et tout FI-module V, on a :

$$\text{Hom}_{FI}(M_a(W), V) = \text{Hom}_{H}(W, V_a).$$

En particulier, le FI-module $M_a(W)$ est un objet projectif de $\text{Mod}(k[FI])$.

b) Le foncteur $M_a := M^S_a$ est pleinement fidèle.

c) $M^H_a(W)$ est un FI-module de type fini si et seulement si, $\dim_k W < \infty$.

d) (27) Pour tout S_a-module W, on a $P(M_a(W)) = a$.

e) (28) Pour tout S_a-module W, le FI-module $M^H_a(W)$ est éventuellement monotone et stationnaire. On a

$$\text{rg}_m(M^H_a(W)) \leq a \quad \text{et} \quad \text{rg}_s(M^H_a(W)) \leq 2a.$$

En particulier, si $\dim_k W < +\infty$, la famille de caractères $\chi(M^H_a(W))$ est polynomiale à partir de $m = 2a$.

Indications. (a,b,c) sont immédiates. (d,e) résultent d’une étude fine des règles de branchement 7.5.2 par Church ([loc.cit.]). Lorsque $W = V_\lambda$ on a même $\text{rg}_s(M_a(V_\lambda)) = |\lambda| + \lambda_1$. La dernière partie de (e) découle du calcul de Macdonald 7.3.6. \square

7.7. Catégorie des FB-modules. L’article [10] s’intéresse également aux représentations de la sous-catégorie pleine $FB \subseteq FI$ des ensembles finis et leurs bijections. Un $k[FB]$-module est alors, par définition, un foncteur covariant $R : FB \to \text{Vec}(k)$, ce qui équivaut à la donnée d’une famille de représentations de groupes finis $R := \{\rho_m : S_m \to \text{Gl}_k(W_m)\}_m$. On a donc

$$\text{Mod}(k[FB]) = \prod_{m \in \mathbb{N}} \text{Mod}(k[S_m]).$$

Dans $\text{Mod}(k[FB])$, la notion de FB-module de type fini est inintéressante car équivalente à la donnée d’une famille de représentations $\{W_m\}_m$ de dimensions finies presque toutes nulles. Par contre, la notion de « stabilité des multiplicités des représentations $V(\lambda)_m$ » (7.4.1-(c)) garde tout son intérêt.

Définition. On dit que un FB-module est « (éventuellement) stationnaire » lorsque la condition 7.4.1-(c) est satisfaite pour un certain $N \in \mathbb{N}$.

7.8. Le FI-modules $\mathcal{M}(\lambda)$ et $\mathcal{V}(\lambda)$. On introduit un certain quotient $\mathcal{V}(\lambda)_m = \{\phi_m : V(\lambda)_m \to V(\lambda)_{m+1}\}_m$ du FI-module $\mathcal{M}_{|\lambda|+\lambda_1}(V(\lambda)_{|\lambda|+\lambda_1})$

27 [10], prop. 3.2.4.
(7.6) qui rassemble les représentations \(V(\lambda)_m \). La proposition 7.8.2 donne ses principales propriétés, notamment pour la description des catégories \(\text{Mod}_{\text{rg}m\leq s}(k[\FI]) \) et \(\text{Mod}_{\text{rg}m\leq s}(k[\FI]) \).

7.8.1. Définition. Étant donnée une décomposition \(\lambda \), notons le \(\FI \)-module \(\mathcal{M}_{\lambda}(V\lambda) \) de 7.6 plus simplement par

\[
\mathcal{M}(\lambda) := \{ \phi_m : M(\lambda)_m \to M(\lambda)_{m+1} \}_m .
\]

D’après les règles de Pieri 7.5.2-(a), pour \(m \geq |\lambda| \), la multiplicité \(c(\mu)_m \) de \(V(\mu)_m \) dans la décomposition en facteurs irréductibles

\[
M(\lambda)_m := \text{ind}_{S_m \times S_{m-n}}^S V(\lambda)_a \otimes k = \bigoplus_{\mu} c(\mu)_m V(\mu)_m ,
\]

est le nombre de fois que l’on peut obtenir le diagramme \(\mu[m] \) en rajoutant une boîte sur \(m-|\lambda| \) colonnes distinctes de \(\lambda \). On a

\[
c(\mu)_m > 0 \Rightarrow (|\lambda| \leq |\mu| \leq |\lambda| + \lambda_1) ,
\]

et le \(\FI \)-module \(\mathcal{M}(\lambda)_{(|\lambda|)} \) (le sous-quotient de \(\mathcal{M}(\lambda) \) à poids unique \(|\lambda| \) (7.5.7-(a))), est un quotient de \(\mathcal{M}(\lambda) \). D’autre part, on a \(c(\lambda)_m = 1 \) pour \(m \geq |\lambda| + \lambda_1 \), puisque \(|\mu| = |\lambda| \) équivaut à \(\mu = \lambda \). Ceci implique que la composée \(\nu \circ \phi_m \circ \iota \) ci-contre, où \(\nu \) est la surjection canonique, est une injection dont l’image engendre \(V(\lambda)_{m+1} \). On note alors

\[
\mathcal{M}(\lambda) := \{ \phi_m : V(\lambda)_m \to V(\lambda)_{m+1} \}_m := \mathcal{M}(\lambda)_{(|\lambda|+1)} : \mathcal{M}(\lambda)_{(|\lambda|+1)} \to V(\lambda)_{m+1} .
\]

7.8.2. Proposition

a) Pour toute décomposition \(\lambda \), on a

\[
\mathcal{P}(\mathcal{V}(\lambda)) = |\lambda| \quad \text{et} \quad \text{rg}_{\text{ms}}(\mathcal{V}(\lambda)) = 0 \quad \text{et} \quad \text{rg}_{\text{s}}(\mathcal{V}(\lambda)) = |\lambda| + \lambda_1 .
\]

b) Soit \(W = \{ \phi_m : W_m \to W_{m+1} \}_m \) un \(\FI \)-module à poids unique \(t \). Pour \(n \in \mathbb{N} \), si \(W_n = \bigoplus_{|\mu|=t} c(\mu)_n V(\mu)_n \) est la décomposition en composantes irréductibles, on note

\[
\mathcal{V}(W, n) := \bigoplus_{|\mu|=t} c(\mu)_n V(\mu)_{\geq n} .
\]

i) Pour tout \(\lambda \) et tout \(n \geq |\lambda| + \lambda_1 \), l’application canonique

\[
\text{Hom}_{\text{FI}}(\mathcal{V}(\lambda)_{\geq n}, W) \to \text{Hom}_{S_n}(\mathcal{V}(\lambda)_n, W_n)
\]

est bijective. Dans la suite, on notera \(\mathcal{T}(n) : \mathcal{V}(W, n) \to W \) le morphisme de \(\FI \)-modules correspondant à l’identité en degré \(n \).

ii) \(\text{rg}_{\text{ms}}(W) \leq s \), si et seulement si, \(\mathcal{T}(s) : \mathcal{V}(W, s) \to W_{\geq s} \) est bijectif.
iii) $\phi_m(\mathcal{W}) < s$, si et seulement si, $\mathcal{Y}(n) : \mathcal{V}(\mathcal{W}, n) \rightarrow \mathcal{W}$ est injectif $\forall n \geq s$.

En particulier, si $\phi_m(\mathcal{W}) < s$ et si $W_m \sim V(\lambda)_m$ pour tout $m \geq s$, on a $W_{\geq s} \simeq \mathcal{V}(\lambda)_{\geq s}$.

c) Si \mathcal{W} est tel que $s := \phi_m(\mathcal{W}) < +\infty$, le $\mathbf{F I}$-module $W_{\geq s}$ est extension de $\mathbf{F I}$-modules de la forme $\mathcal{V}(\mu)_{\geq s}$ où $|\mu| + \mu_1 \leq s$.

d) Un $\mathbf{F B}$-module $\mathcal{W} = \{W_m\}_m$ est stable pour $m \geq N$, si et seulement si, il existe un $\mathbf{F I}$-module $\mathcal{Z} = \{\phi_m : Z_m \rightarrow Z_{m+1}\}_m$ monotone et stable pour $m \geq N$, tel que $W_m = Z_m$ pour tout $m \geq N$.

Démonstration. (a) est implicite dans la définition 7.8.1

(b) Pour $m \in \mathbb{N}$, si nous considérons $\mathcal{V}(\mu)_{m+1}$ comme S_m-module, la règle de Pieri 7.5.2-(a), nous dit qu’il contient une et une seule composante irréductible de poids $|\mu|$, à savoir $V(\mu)_m$ et que sa multiplicité est égale à 1. Il s’ensuit que la restriction $\phi(\mu)_m$ du morphisme de transition de \mathcal{W},

$$\phi_m : \left(W_m = \bigoplus_{|\mu| = t} c(\mu)_m V(\mu)_m \right) \rightarrow \left(W_{m+1} = \bigoplus_{|\mu| = t} c(\mu)_{m+1} V(\mu)_{m+1} \right),$$

à $c(\mu)_m V(\mu)_m$ est à valeurs dans $c(\mu)_{m+1} V(\mu)_{m+1}$. Les sous-familles

$$\mathcal{V}(\mu) := \{\phi(\mu)_m : c(\mu)_m V(\mu)_m \rightarrow c(\mu)_{m+1} V(\mu)_{m+1}\}_m$$

sont donc des sous-$\mathbf{F I}$-modules de \mathcal{W} et nous avons la décomposition

$$\mathcal{W} = \bigoplus_{|\mu| = t} \mathcal{W}(\mu).$$

Chaque morphisme $\phi(\mu)_m$ se factorise suivant le diagramme

$$c(\mu)_m V(\mu)_m \xrightarrow{\phi(\mu)_m} c(\mu)_{m+1} V(\mu)_{m+1} \xrightarrow{c(\mu)_{m+1}} c(\mu)_m ind_{S_m} S_{m+1} V(\mu)_m \xrightarrow{\pi(\mu)_m} c(\mu)_m V(\mu)_{m+1}$$

où $\phi(\mu)_m = \Phi(\mathcal{V})(\mu)_m \circ c(\mu)_m$ est la factorisation standard (7.2.1-(∞)), où $\pi(\mu)_m : ind_{S_m} S_{m+1} V(\mu)_m \rightarrow V(\mu)_{m+1}$ est la surjection canonique sur l’unique composante irréductible de $ind_{S_m} S_{m+1} V(\mu)_m$ de poids $|\mu|$, et où $\Psi(\mu)_m$ est le morphisme induit par $\Phi(\mu)_m$.

En additionnant, on obtient la factorisation de $\phi_m = \sum_{\mu} \phi(\mu)_m$:

$$W_m \xrightarrow{\Phi(\mathcal{V})} ind_{S_m} S_{m+1} W_m \xrightarrow{\pi_m} \left[ind_{S_m} S_{m+1} W_m \right] \xrightarrow{\Psi(\mathcal{V})_{m+1}} W_{m+1}$$

où on a noté $[M]_t$ la somme des composantes irréductibles de poids t d’un S_{m+1}-module M.

La même démarche pour le $\mathbf{F I}$-module $\mathcal{U} := \mathcal{V}(\mathcal{W}, n)$ conduit au même type de factorisation $(*)$ (à ceci près que $\Psi(\mathcal{U})_{m+1}$ un isomorphisme). La
naturalité de cette factorisation permet de construire, à partir de la donnée
d’un morphisme \(f_n : U_n \rightarrow W_n \), une famille (unique) de morphismes \(\{ f_m : U_m \rightarrow W_m \}_{m \geq n} \) qui constitue un morphisme de \(\mathbf{FI} \)-modules \(f : \mathcal{U} \rightarrow \mathcal{W} \).

En effet, fixons \(f_n : U_n \rightarrow W_n \) et supposons avoir défini \(f_{n+1}, \ldots, f_z \) de manière compatible aux morphismes de transition de \(\mathcal{U} \) et \(\mathcal{W} \). On a alors le morphisme de factorisations (*)

\[
\begin{array}{c}
U_z \xleftarrow{f_z} \text{ind}_{\text{sg}_{\text{s}}^1} U_z \xrightarrow{\pi_z} \left[\text{ind}_{\text{sg}_{\text{s}}^1} U_z \right]_t \xrightarrow{\Psi(U)_{t+1}} U_{z+1} \\
\downarrow \quad \text{(I)} \quad \downarrow \quad \text{ind}^{\text{sg}_{\text{s}}^1} f_z \quad \text{(II)} \quad \downarrow \quad \text{ind}^{\text{sg}_{\text{s}}^1} f_z \quad \\
W_z \xleftarrow{f_z} \text{ind}_{\text{sg}_{\text{s}}^1} W_z \xrightarrow{\pi_z} \left[\text{ind}_{\text{sg}_{\text{s}}^1} W_z \right]_t \xrightarrow{\Psi(W)_{t+1}} W_{z+1}
\end{array}
\]

où les flèches en pointillé sont induites par \(f_z \) et sont uniques à rendre commutatifs les sous-diagrammes (I) et (II). Enfin, comme \(\Psi(U)_{z+1} \) est bijectif, l’existence et unicité de \(f_{z+1} \) sont claires, ce qui termine la preuve de (b-i).

On remarque alors que lorsque \(f_z \) est un isomorphisme, \(f_{z+1} \) est un isomorphisme, si et seulement si, \(\Psi(W)_{z+1} \) l’est. Or cette dernière condition est une condition de monotonie et stabilité sur \(\mathcal{W} \), de sorte que si \(s := \text{rg}_{\text{ms}}(W) \), le morphisme \(\Upsilon(s) : \mathcal{V}(W, s) \rightarrow \mathcal{W}_{\geq s} \) est un isomorphisme, d’où (b-ii).

De manière analogue, lorsque \(f_z \) est une injection, on note \(W'_z := \text{im}(f_z) \), et on fixe une décomposition \(W_z = W'_z \oplus N_z \). La dernière ligne de (**) se décompose alors en somme directe de deux lignes, ce qui permet de voir que \(f_{z+1} \) est injective, si et seulement si, la restriction de \(\Psi(W)_{z+1} \) à \(\left[\text{ind}^{\text{sg}_{\text{s}}^1} W'_z \right]_t \) l’est. Or, ceci est très précisément la condition de monotonicité en \(z \) pour \(\mathcal{W} \), et l’assertion (b-iii) s’ensuit.

(c) Résulte de (b) et de 7.5.7-(b,c).

(d) Il suffit de prendre \(Z := \mathcal{V}(W, N) \). □

7.9. Monotonie, stabilité et co-invariants

7.9.1. Co-invariants. Dans [10] (§3.1), on introduit, pour \(0 \leq t \leq m \), le foncteur des « \(S_{m-t} \)-co-invariants » (pour l’inclusion \(S_t \times S_{m-t} \subseteq S_m \))

\[
(___)_{S_{m-t}} : \text{Mod}(S_m) \rightsquigarrow \text{Mod}(S_t)
\]

\[
W \rightsquigarrow W_{S_{m-t}} := k \otimes_k (S_{m-t}) W.
\]

Pour tout \(\mathbf{FI} \)-module \(W = \{ \phi_m : W_m \rightarrow W_{m+1} \} \) et tout \(m \geq t \), notons \(\nu_m : W_m \rightarrow (W_m)_{S_{m-t}} \) la surjection \(w \mapsto 1 \otimes w \). La composée

\[
W_m \xrightarrow{\phi_m} W_{m+1} \xrightarrow{\nu_{m+1}} (W_{m+1})_{S_{m+1-t}}
\]
se factorise à travers \(\nu_m : W_m \to (W_m)_{S_{m-t}} \) en un unique morphisme de \(S_t \)-modules \((\phi_m) : (W_m)_{S_{m-t}} \to (W_{m+1})_{S_{m+1-t}} \) rendant les diagrammes suivants commutatifs

\[
\begin{array}{ccc}
W_m & \xrightarrow{\phi_m} & W_{m+1} \\
\downarrow{\nu_m} & & \downarrow{\nu_{m+1}} \\
(W_m)_{S_{m-t}} & \xrightarrow{(\phi_m)} & (W_{m+1})_{S_{m+1-t}}
\end{array}
\]

7.9.2. Le foncteur \(\Phi_t \). Pour \(t \in \mathbb{N} \), on note dans [10] (déf. 3.1.2)

\[\Phi_t : \text{Mod}(k[FI]) \rightsquigarrow \text{Mod}^N(k[S_t][T]), \]

le foncteur qui fait correspondre à \(\mathcal{W} = \{ \phi_m : W_m \to W_{m+1} \}_m \) le \(S_t \)-module positivement gradué \(\Phi_t(\mathcal{W}) \) défini par

\[\Phi_t(\mathcal{W})^{m-t} := (W_m)_{S_{m-t}}, \quad \forall m \geq t. \]

muni de l’action de degré +1 de \(T \) qui vaut \((\phi_m) \) sur \((W_m)_{S_{m-t}} \).

7.9.2.1. A propos des notations. Le foncteur de co-invariants \((_-)_{S_{m-t}} : \text{Mod}(S_m) \rightsquigarrow \text{Mod}(S_t) \) sera parfois aussi noté \(\Phi_t(_-) : \text{Mod}(S_m) \rightsquigarrow \text{Mod}(S_t) \). En particulier, on pourra écrire \(\Phi_t(\mathcal{W})^{m-t} = \Phi_t(W_m) \) et \((\phi_m) = \Phi_t(\phi_m) \).

7.9.3. Lemme. Soit \(\mathcal{V}(\lambda) = \{ \phi_m : V(\lambda)_m \to V(\lambda)_{m+1} \} \) le \(FI \)-module de 7.8. Pour tout \(m \geq t \), le morphisme de \(S_t \)-modules

\[\Phi_t(\phi_m) : \Phi_t(V(\lambda)_m) \to \Phi_t(V(\lambda)_{m+1}) \]

est injectif, et il est bijectif si \(t < |\lambda| \) ou si \(m \geq t + \lambda_1 \).

En particulier, si \(\mathcal{W} = \bigoplus_{\lambda} c(\lambda) V(\lambda) = \{ \phi_m : W_m \to W_{m+1} \} \). Le morphisme \(\Phi_t(\phi_m) \) est injectif pour tout \(m \geq t \).

Démonstration. Pour \(m \geq |\lambda| + \lambda_1 \) numérotions le diagramme de Young de \(\lambda|m| \) de haut en bas et de gauche à droite comme dans le tableau :

\[
\begin{array}{ccccccc}
\tau_{\lambda}(m) := & 1 & 5 & 8 & 10 & \cdots & m \\
& 2 & 6 & 9 & 11 & \cdots & \end{array}
\]

| 1 | 2 | 3 | 7 |
|---|---|---|
Notons (suivant [18] §4.1) \(L_\lambda(m), P_\lambda \) et \(Q_\lambda \) les sous-groupes de \(S_m \) qui laissent respectivement stables, la première ligne, les autres lignes et les colonnes du diagramme sous-jacent à \(\tau_{\lambda}(m) \). Notons ensuite, dans \(k[S_m] \),

\[l_\lambda(m) := \sum_{\alpha \in L_\lambda(m)} \alpha, \quad a_\lambda := \sum_{\alpha \in P_\lambda} \alpha, \quad b_\lambda := \sum_{\alpha \in Q_\lambda} \text{sgn}(\alpha) \alpha. \]

Le « symétriseur de Young » associé à \(\tau_{\lambda}(m) \) est l’élément de \(k[S_m] \)

\[c_\lambda(m) := l_\lambda(m) \cdot a_\lambda \cdot b_\lambda, \]

91
et le sous-S_m-module à gauche $k[S_m] \cdot c_\lambda(m) \subseteq k[S_m]$ est isomorphe à la représentation irréductible $V(\lambda)_m$. On a aussi (loc. cit. ex. 4.4)

$$k[S_m] \cdot c_\lambda(m) = k[S_m] \cdot b_\lambda \cdot a_\lambda \cdot I_\lambda(m).$$

Soient maintenant $|\lambda| + \lambda_1 \leq m \leq n$. D’après le choix du schéma de numérotations des tableaux, il est clair que par le plongement $S_m \subseteq S_n$ on a

$$I_\lambda(m) \cdot I_\lambda(n) = (m - |\lambda|)! I_\lambda(n).$$

La multiplication à droite par $I_\lambda(n)$ définit par conséquent un morphisme de S_m-modules à gauche injectif :

$$\phi_{n,m} : k[S_m] \cdot b_\lambda \cdot a_\lambda \cdot I_\lambda(m) \overset{(_)-I_\lambda(n)}{\longrightarrow} k[S_n] \cdot b_\lambda \cdot a_\lambda \cdot I_\lambda(n).$$

On remarque ensuite que toute permutation $\alpha \in I_m \times S_{n-m}$ fixe l’image de $\phi_{n,m}$ puisque, d’une part, α commute à $k[S_m]$ donc à $k[S_m] \cdot b_\lambda \cdot a_\lambda$ et, d’autre part, on a $\alpha \cdot I_\lambda(n) = I_\lambda(n)$ parce que $I_m \times S_{n-m} \subseteq I(n)$.

Si nous notons maintenant $\phi_m = \phi_{m+1,m}$, l’injection $\phi_{n,m}$ est multiple de la composée $\phi_{n-1} \circ \cdots \circ \phi_m$ et la famille $W(\lambda)$ dont les termes W_m sont nuls pour $m < |\lambda| + \lambda_1$ et qui, pour $m \geq |\lambda| + \lambda_1$, coïncide avec

$$\{ \phi_m : k[S_m] \cdot c_\lambda(m) \rightarrow k[S_{m+1}] \cdot c_\lambda(m+1) \}_m$$

est un FI-module canoniquement isomorphe à $V(\lambda)$ d’après 7.8.2-(b-iii).

Ce qui précède justifie l’égalité

$$\Phi_t(V(\lambda)_m) = k[S_{m-t} \setminus S_m] \cdot I_\lambda(m) \cdot a_\lambda \cdot b_\lambda,$$

et $\Phi_t(\phi_m)$ sera injective si et seulement si le morphisme induit par la multiplication à droite par $I_\lambda(m+1)$:

$$k[S_{m-t} \setminus S_m] \cdot I_\lambda(m) \rightarrow k[S_{m+1-t} \setminus S_{m+1}] \cdot I_\lambda(m+1)$$

est injectif. Or, ceci revient à montrer que l’application naturelle

$$S_{m-t} \setminus S_m/L_\lambda(m) \longrightarrow S_{m+1-t} \setminus S_{m+1}/L_\lambda(m+1)$$

est injective, ce qui résulte d’une analyse élémentaire.

Maintenant, du fait de l’injectivité de $\Phi_t(\phi_m)$, sa bijectivité résulte du décompte des composantes irréductibles de $\Phi_t(V(\lambda)_m)$ en tant que S_t-module. La règle de branchement 7.5.2-(b) nous dit que ce nombre est le nombre des manières d’enlever $m+1-t$ boîtes de colonnes différentes de $\lambda[m+1]$. Il s’ensuit que si $m+1-t > \lambda_1$, on est obligé d’enlever la dernière boîte de la première ligne de $\lambda[m+1]$ et l’on retrouve alors le nombre des composantes irréductibles de $\Phi_t(V(\lambda)_m)$ par la même règle de branchement.

Le assertion concernant $W = \bigoplus_\lambda c(\lambda) V(\lambda)$ est conséquence immédiate du cas où la somme et les multiplicités sont finies, ce qui est clair d’après la première assertion. □
7.9.4. Définitions. Le « degré de stabilité (resp. d’injectivité) en $t \in \mathbb{N}$ » d’un FI-module \mathcal{W}, noté $\text{deg-stab}_t(\mathcal{W})$ (resp. $\text{deg-inj}_t(\mathcal{W})$), est le plus petit $d \in \mathbb{N} \cup \{+\infty\}$ tel que l’application $T : \Phi_t(\mathcal{W})^n \rightarrow \Phi_t(\mathcal{W})^{n+1}$ est bijective (resp. injective) pour tout $n \geq d$.

7.9.5. Proposition. On fixe $t \in \mathbb{N}$.

a) Le foncteur $\Phi_t : \text{Mod}(k[\text{FI}]) \to \text{Mod}^\text{FIL}(k[\mathbb{S}_t][T])$ est covariant et exact.

b) Soit λ une partition. Pour tous $m \geq t$, notons $\mathcal{J}_t(V(\lambda)_m)$ la famille des partitions $\nu \vdash t$ telles que V_ν soit un facteur irréductible de $\Phi_t(V(\lambda)_m)$, répétées autant de fois que leurs multiplicités. Alors, on a des inclusions
$$\mathcal{J}_t(V(\lambda)_m) \subseteq \mathcal{J}_t(V(\lambda)_{m+1}), \quad \forall m \geq t,$$
et ces inclusions sont des égalités si et seulement si $m \geq t + \lambda_1$.

c) Soit λ une partition et soit $\mathcal{V}(\lambda)$ le FI-module de 7.8.2. Alors,

i) Pour tout $t \in \mathbb{N}$, $\text{deg-inj}_t(\mathcal{V}(\lambda) \geq s) = 0$, $\forall s \in \mathbb{N}$.

ii) $t < |\lambda| \Leftrightarrow \Phi_t(\mathcal{V}(\lambda)) = 0$. Dans ces cas,
$$\text{deg-stab}_t(\mathcal{V}(\lambda) \geq s) = 0, \quad \forall s \in \mathbb{N}.$$iii) $t = |\lambda| \Leftrightarrow \Phi_t(\mathcal{V}(\lambda))^{m-t} = V_\lambda$ et $T = \text{id}$. Dans ces cas,
$$\text{deg-stab}_t|\lambda|(\mathcal{V}(\lambda) \geq s) = \sup\{\lambda_1, s - |\lambda|\}, \quad \forall s \in \mathbb{N}.$$iv) Si $t \geq |\lambda|$ et $m \geq t + \lambda_1$, on a $\Phi_t(\mathcal{V}(\lambda))^{m-t} \simeq \text{ind}^\text{S}_t_{|\lambda|} \times \mathbb{S}_t - |\lambda| \mathcal{V}_\lambda \boxtimes k$, et
$$T : \Phi_t(\mathcal{V}(\lambda))^{m-t} \rightarrow \Phi_t(\mathcal{V}(\lambda))^{m+1-t} \text{ est bijective. Dans ces cas,}$$
$$\text{deg-stab}_t(\mathcal{V}(\lambda) \geq s) = \sup\{\lambda_1, s - t\}, \quad \forall s \in \mathbb{N}.$$Démonstration. (a) est immédiat.

(b) et (c-i) par l’injectivité de (ϕ_m) du lemme 7.9.3.

(c-ii)-(c-iv) c’est le lemme 3.2.7 de [10], qui résulte également du lemme 7.9.3 et de la règle de branchemen 7.5.2-(b). Nous omettons les détails. □

7.9.6. Suite du commentaire 7.4.6. L’intérêt du poids et du degré de stabilité d’un FI-module \mathcal{W} apparaît dans la proposition 3.3.3 de [10] qui établit la majoration $\text{rg}_t(\mathcal{W}) \leq \mathcal{P}(\mathcal{W}) + \text{deg-stab}(\mathcal{W})$ (29). Un outil important dans notre travail est le foncteur d’induction $\text{Ind}_\lambda : \text{Mod}(k[\text{FI}]) \to \text{Mod}(k[\text{FI}])$ qui sera introduit dans la section 8. Ce foncteur est un ‘recollément’ des foncteurs $\text{Ind}^\text{S}_t_{|\lambda|,m}$ de 5.3.3-(b) et lorsqu’il est appliqué à un FI-module \mathcal{W}, il est crucial de comprendre le rapport entre les rangs de \mathcal{W} et ceux de $\text{Ind}_\lambda(\mathcal{W})$. En ce sens, la proposition 3.3.3 loc.cit. était à priori intéressante dans la mesure où nous avons un meilleur contrôle de la perturba-

\[29\] Le « degré de stabilité » de \mathcal{W} y est défini par $\text{deg-stab}(\mathcal{W}) := \sup_{t \in \mathbb{N}}\{\text{deg-stab}_t(\mathcal{W})\}$. Il ne sera pas utilisé dans ce travail.
tion de $\mathcal{P}(W)$ et de deg-stab(W) lors de ces inductions (cf. 7.5.4). Cela n’a pourtant pas suffi et nous avons été emmenés à caractériser autrement les rangs de W. La suite décrit cette nouvelle approche. Elle conduira au théorème 8.1.5 qui donne les majorations $\text{rg}_{\text{ms}}(\text{Ind}_t(W)) \leq \text{rg}_{\text{ms}}(W) + 2|\Delta|$ et $\text{rg}_m(\text{Ind}_t(W)) \leq \text{rg}_m(W) + |\Delta|$.

7.9.7. Rangs étendus

Les « rangs étendus » de $W = \{\phi_m : W_m \to W_{m+1}\}_m$ sont les nombres

\[
\begin{aligned}
\text{rg}_{\text{rms}}^e(W) &:= \inf \{ s \in \mathbb{N} \mid \Phi_t(\phi_m) \text{ est bijective } \forall m \geq s, \forall t \leq \mathcal{P}(W) \leq m \} \\
\text{rg}_m^e(W) &:= \inf \{ s \in \mathbb{N} \mid \Phi_t(\phi_m) \text{ est injective } \forall m \geq s, \forall t \leq m \}
\end{aligned}
\]

7.9.8. Proposition. Pour tout FI-module W, on a

$$\text{rg}_m(W) = \text{rg}_{\text{rms}}^e(W) \quad \text{et} \quad \text{rg}_{\text{ms}}(W) = \text{rg}_{\text{rms}}^e(W)$$

La démonstration résultera du lemme suivant.

Lemme

a) Soit $\text{rg}^e \in \{\text{rg}_m^e, \text{rg}_{\text{rms}}^e\}$.

i) Si $0 \to X \to W \to Y \to 0$ est une suite exacte de FI-modules, on a

$$\text{rg}^e(W) \leq \sup \{\text{rg}^e(X), \text{rg}^e(Y)\}.$$

ii) Si $\{W^{(t)}\}$ est la famille des sous-quotients à poids unique de W, on a

$$\text{rg}^e(W) = \sup \{\text{rg}^e(W^{(t)})\}.$$

b) Si W est à poids unique (7.5.7-(a-iii)), on a

$$\text{rg}_m(W) = \text{rg}_m^e(W) \quad \text{et} \quad \text{rg}_{\text{ms}}(W) = \text{rg}_{\text{rms}}^e(W).$$

Preuve du lemme. (a-i) Pour chaque $t \in \mathbb{N}$, la suite de $k[S_t][T]$-modules gradués $0 \to \Phi_t(X) \to \Phi_t(W) \to \Phi_t(Y) \to 0$ est exacte (7.9.5-(ii)), auquel cas deg-stab$(t)(W) \leq \sup \{\text{deg-stab}(t)(X), \text{deg-stab}(t)(Y)\}$, et de même pour deg-inj.t.

94
(a-ii) On suppose $\mathcal{P}(W) < +\infty$. Montrons que pour le plus petit entier a tel que $\mathcal{W}^{(a)} \neq 0$, on a
\[
\text{rg}^a(W) = \sup\{\text{rg}^a(W^{(a)}), \text{rg}^a(W^{(a)})\}.
\]
En effet, (a-i) donne déjà l’inégalité ‘\leq’. Ensuite, $\text{rg}^a(W) \geq \text{rg}^a(W^{(a)})$ vient de ce que si $t \leq a$, on a $\Phi_t(W^{(a)}) = 0$ et alors $\Phi_t(W) \sim \Phi_t(W^a)$. Il nous reste
\[
\text{rg}^a(W) \geq \text{rg}^a(W^{(a)}).
\]

Le cas où $\text{rg}^a = \text{rg}^a_{\text{sm}}$ est clair puisque $\Phi_t(W^{(a)})$ est un sous-$k[S_t][T]$-module de $\Phi_t(W^{(a)})$. Le cas $\text{rg}^e = \text{rg}^e_{\text{sm}}$, résulte de se placer dans la situation où $a < t \leq \mathcal{P} \leq \text{rg}^e_{\text{sm}}(W) \leq m$ et de considérer le diagramme de colonnes exactes
\[
\begin{array}{ccc}
\Phi_t(W^{(a)}_m) & \xrightarrow{(\phi_m^a)} & \Phi_t(W^{(a)}_{m+1}) \\
\downarrow & & \downarrow \\
\Phi_t(W_m) & \xrightarrow{(\phi_m)} & \Phi_t(W_{m+1}) \\
\downarrow & & \downarrow \\
\Phi_t(W^{(a)}_m) & \xrightarrow{(\phi_m^a)} & \Phi_t(W^{(a)}_{m+1})
\end{array}
\]
ôù (ϕ_m^a) est bijective, car injective d'après 7.9.5-(c-i) et surjective d'après les autres flèches. On en déduit la bijectivité de (ϕ_m^a) d’où (2) et donc (1).

À partir de là, l’assertion (a-ii) résulte par un argument inductif qui affirme que $W^{(a)}$ la vérifie.

(b)pour $\text{rg}_{\text{m}}(W)$. On a tout de suite que
\[
\Phi_t(\phi_m) \text{ est injectif, } \forall t < \mathcal{P}(W), \forall m,
\]
tout simplement parce que $\Phi_t(W) = 0$ pour tout $t < \mathcal{P}(W)$ (7.9.5-(c-ii)).

Pour étudier les cas où $t \geq \mathcal{P}(W)$, on rappelle que d’après 7.8.2-(b-iii), $\text{rg}_{\text{m}}(W)$ est le plus petit des $s \in \mathbb{N}$ tel que
\[
\mathcal{T}(n) : V(W, n) \to W \text{ est injectif } \forall n \geq s.
\]
Si nous appliquons, pour $\mathcal{P}(W) \leq t \leq n$, le foncteur $\Phi_t(_)$ au diagramme
\[
\begin{array}{ccc}
V(W, n) & \xrightarrow{\phi_{n,n'}} & V(W, n', n) \\
\downarrow^{\mathcal{T}(n)} & & \downarrow^{\mathcal{T}(n)} \\
W & \xrightarrow{\phi_W} & W, n
\end{array}
\]
on obtient
\[
\begin{array}{ccc}
\Phi_t(V(W, n)) & \xrightarrow{\phi_{n,n'}} & \Phi_t(V(W, n', n')) \\
\downarrow^{\Phi_t(\mathcal{T}(n))} & & \downarrow^{\Phi_t(\mathcal{T}(n))} \\
\Phi_t(W) & \xrightarrow{\phi_W} & \Phi_t(W', n')
\end{array}
\]
ôù clairement $\Phi_t(\phi_{n',n})$ est injective. Par conséquent, et compte tenu de (3),
on conclut que l’on a
\[\rg_m^e(W) \leq \rg_m(W). \]
Maintenant, si cette inégalité était stricte, il y aurait un certain \(m > \mathcal{P}(W) \) tel que \(\phi_m : W_m \to W_{m+1} \) n’est pas monotone alors que \(\Phi_t(\phi_m) \) serait injective pour tout \(t \leq \mathcal{P}(W) \), ce qui est clairement impossible déjà pour \(t = \mathcal{P}(W) \). L’inégalité (5) est donc une égalité.

(b) pour \(\rg_{ms}(W) \). On procède pareillement en remarquant cette fois que dans (5) le morphisme \(\Phi_t(\phi_{m'}n) \) est bijectif pour \(n \geq \rg_{ms}(W) \) et \(t = \mathcal{P}(W) \) auquel cas, \(\Phi_t(\phi_{m'}W) \) est bijective si et seulement si, \(\mathcal{T}(n) : V(W, n) \to W_{\geq n} \) l’est. On conclut ensuite en appliquant 7.8.2-(b-ii).

\[\square \]

\textit{Preuve de la proposition 7.9.8.} Le cas non trivial est celui où \(\mathcal{P} := \mathcal{P}(W) < +\infty \). Dans ce cas, si \(\{W(t)\} \) est la famille des sous-quotients à poids unique de \(W \), on a vu dans (a-ii) du lemme et dans 7.5.7-(c) que l’on a
\[\rg^e(W) = \sup_{t \leq \mathcal{P}} \{ \rg^e W(t) \} \quad \text{et} \quad \rg(W) = \sup_{t \leq \mathcal{P}} \{ \rg W(t) \} \]
avec \(\rg \in \{\rg_m, \rg_{ms}\} \). La proposition résulte alors de l’assertion (b) du lemme qui établit les égalités \(\rg_m(W(t)) = \rg_m(W(t)) \) et \(\rg_{ms}(W(t)) = \rg_{ms}(W(t)) \).

\[\square \]

8. Foncteurs d’induction dans \(\text{Mod}(k[FI]) \)

Nous introduisons certains foncteurs d’« induction » dans \(\text{Mod}(k[FI]) \) qui « recollent » naturellement les foncteurs \(\text{Ind}_{\Delta}^{S_{\lambda}} \), \(I_m^{m+a} \) et \(\Theta_m^{m+a} \) des sections 5.3 et 5.4. Nous étudions ensuite la perturbation du rang de monotonie et stabilité des \(FI \)-modules sous l’influence de ces foncteurs (cf. 8.1.5-(d)).

8.1. Les foncteurs d’induction \(\text{Ind}_{\lambda} \) et \(\text{Ind}_{\rho,\lambda} \)

8.1.1. Lemme et définition. Pour \(\lambda = (x_1, x_2, \ldots, x_m) \vdash m \) et \(n \geq m \), on définit \(\lambda \setminus n := (1^{(n-m)} + x_1, 2^{x_2}, \ldots, m^{x_m}) \vdash n \). Alors, pour tous \(a \in \mathbb{N} \) et \(n \geq m, n \in \mathbb{N} \), l’application

\[\mathcal{Y}_{m-a}(m) \xrightarrow{\lambda} \mathcal{Y}_{n-a}(n) \]

est bijective dès que \(m \geq 2a \). On a donc \(|\mathcal{Y}_a(2a)| = |\mathcal{Y}_{m-a}(m)| \).

96
Démonstration. En effet, les décompositions de $\lambda \vdash m$ vérifient l’inégalité
\[
m = X_1 + 2X_2 + \cdots, mX_m \geq X_1 + 2(X_2 + \cdots + X_m) = X_1 + 2(m - a - X_1),
\]
dont on déduit que $X_1 \geq m - 2a$. Il en résulte que si $m \geq 2a$ toute décompositions $\lambda \vdash m$ comporte au moins $m - 2a$ singletons, le fait de les enlever ou de les rajouter établit la bijection entre $Y_{m-a}(m)$ et $Y_{a}(2a)$.

8.1.2. Remarques et notations

a) Dans la notation '$\lambda \setminus n$', le nombre 'n', qui vérifie $n \geq |\lambda|$, indique la taille finale du diagramme. On a (comparer à 7.3.5-(b)) :
\[
\ell(\lambda \setminus n) = \ell(\lambda) + (n - |\lambda|),
\]
et si $n \leq n'$
\[
(\lambda \setminus n) \setminus n' = \lambda \setminus n'.
\]
b) Étant donné $\lambda = (1^{X_1}, 2^{X_2}, 3^{X_3}, \ldots) \in Y_{\ell}((\ell + a)$, on pose
\[
\ell := \ell - X_1 \quad \text{et} \quad A = (1^0, 2^{X_2}, 3^{X_3}, \ldots) \in Y_{\ell}((\ell + a).
\]
Les données suivantes sont associées au diagramme $\lambda \setminus m$:
\[
\begin{array}{c}
(\lambda) \setminus m \\
\{X_1\} \setminus m - |\lambda|
\end{array}
\]
\[
\ell := \ell - X_1
\]
\[
|\lambda| = \ell + a \quad \text{et} \quad |\lambda| = |\lambda| - X_1 \leq 2a
\]
\[
\#\{\square\} = a
\]

On a en particulier : $\lambda \setminus m = A \setminus m, \forall m \geq |\lambda|$, ce qui nous conduit à étendre la portée des notations en posant
\[
\lambda \setminus m := A \setminus m, \quad \forall m \geq |\lambda| = |\lambda| - X_1.
\]

8.1.3. Le foncteur Ind_λ sur $\text{Mod}(k[\text{FB}])$. Pour $\lambda \in Y_{\ell}((\ell + a)$ donné,
\[
\text{Ind}_\lambda : \text{Mod}(k[\text{FB}]) \rightsquigarrow \text{Mod}(k[\text{FB}])_{\geq |\lambda|}
\]
est le foncteur qui fait correspondre à un S_{m-a}-module V_{m-a}, le S_m-module
\[
W_m := \begin{cases} 0, & \text{si } m < |\lambda|, \\
\text{Ind}_{G_m \setminus \lambda} V_{m-a}, & \text{si } m \geq |\lambda|.
\end{cases}
\]
et qui fait correspondre à un morphisme de FI-modules $f : \mathcal{V} \to \mathcal{W}$, la famille de morphismes :
\[
\text{Ind}_\lambda(f) := \left\{ \text{Ind}_{G_m \setminus \lambda} \left(f_{m-a} \right) : \text{Ind}_{G_m \setminus \lambda} V_{m-a} \to \text{Ind}_{G_m \setminus \lambda} W_{m-a} \right\}_{m \geq |\lambda|}.
\]
La proposition suivante étend la définition de \(\text{Ind}_\lambda \) à la catégorie des \(\mathcal{F}\mathcal{I} \)-modules. Le théorème 8.1.5 établit ensuite le fait que le foncteur est exact et respecte la finitude des \(\mathcal{F}\mathcal{I} \)-modules. Le théorème décrit également son influence sur le rang de monotonie et stabilité des \(\mathcal{F}\mathcal{I} \)-modules.

8.1.4. Proposition et définition de \(\text{Ind}_\lambda \) sur \(\text{Mod}(k[\mathcal{F}\mathcal{I}]) \)

Soit \(\lambda \in \mathcal{Y}_l(\ell + a) \) et soient \(0 \leq |\lambda| \leq m \leq n \).

a) L’inclusion \(S_m \subseteq S_n \) induit des inclusions (voir 5.1, 5.1.1)

\[\mathcal{P}_\lambda \setminus m \subseteq \mathcal{P}_\lambda \setminus n, \quad S_{\lambda \setminus m} \subseteq S_{\lambda \setminus n}, \quad G_{\lambda \setminus m} \subseteq G_{\lambda \setminus n}, \]

b) Une application \(k \)-linéaire \(\phi_{n,m} : V_{m-a} \rightarrow V_{n-a} \) d’un \(S_{m-a} \)-module \(V_{m-a} \) vers un \(S_{n-a} \)-module \(V_{n-a} \), compatible à l’action de \(S_{m-a} \) et telle que \(\text{im}(\phi_{n,m}) \subseteq V_{n-a} \), admet un unique prolongement en une application \(k \)-linéaire compatible à l’action de \(S_m \)

\[\text{Ind}_\lambda(\phi_{n,m}) : \text{Ind}_{G_{\lambda \setminus m}}^{S_m} V_{m-a} \rightarrow \text{Ind}_{G_{\lambda \setminus n}}^{S_n} V_{n-a} \]

De plus,

\[\text{im}(\text{Ind}_\lambda(\phi_{n,m})) \subseteq (\text{Ind}_{G_{\lambda \setminus n}}^{S_n} V_{n-a})^{S_m} \times S_{n-m} \cdot \]

c) Dans (b), si l’on suppose en plus que \(k[S_{n-a}] \cdot \text{im}(\phi_{n,m}) = V_{n-a} \), on a

\[k[S_n] \cdot \text{im}(\text{Ind}_\lambda(\phi_{n,m})) = \text{Ind}_\lambda V_{n-a} \cdot \]

d) Pour tout \(\mathcal{F}\mathcal{I} \)-module \(\mathcal{V} = \{ \phi_m : V_m \rightarrow V_{m+1} \} \), le \(\mathcal{F}\mathcal{B} \)-module \(\text{Ind}_\lambda(\mathcal{V}) \) muni de la famille de morphismes \(\text{Ind}_\lambda(\phi_m) \) est un \(\mathcal{F}\mathcal{I} \)-module qui sera par ailleurs noté. De plus, si \(f : \mathcal{V} \rightarrow \mathcal{W} \) est un morphisme de \(\mathcal{F}\mathcal{I} \)-modules, les morphismes des familles \(\text{Ind}_\lambda(\phi_\mathcal{V}) \) et \(\text{Ind}_\lambda(\phi_\mathcal{W}) \) commutent à ceux de la famille \(\text{Ind}_\lambda(f) \) de 8.1.3. Les correspondances \(\mathcal{V} \rightarrow \text{Ind}_\lambda(\mathcal{V}) \), \(f \rightarrow \text{Ind}_\lambda(f) \) définissent un foncteur

\[\text{Ind}_\lambda : \text{Mod}(k[\mathcal{F}\mathcal{I}]) \rightarrow \text{Mod}(k[\mathcal{F}\mathcal{I}])_{|\lambda|} \]

Démonstration. (a) Résulte de remarquer que \(\mathcal{P}_\lambda \setminus m = \mathcal{P}_\lambda \setminus 1 \times S_{m-|\lambda|} \), ce qui implique que si \(x_r \) est le nombre des \(\lambda_i = r \), on a \(G_{\lambda} = S_{x_{\lambda_1}} \times \cdots \times S_{x_{\lambda_r}} \times S_{x_{\lambda_i}} \) alors

\[G_{\lambda \setminus m} = S_{x_{\lambda_1}} \times \cdots \times S_{x_{\lambda_2}} \times S_{x_{\lambda_1+1}} \cdot S_{n-m-|\lambda|} \cdot \]

(b) Compte tenu de (a), le prolongement \(\text{Ind}_\lambda(\phi) \) annoncé est bien défini et est unique. L'image de \(\text{Ind}_\lambda \phi \) est alors le sous-\(S_m \)-module de \(\text{Ind}_{G_{\lambda \setminus n}}^{S_n} V_{n-a} \) engendré par \(\text{im}(\phi) \), et le fait que \(\text{im}(\text{Ind}_\lambda \phi) \) est invariant sous l’action du groupe \(\mathbb{I}_m \times S_{n-m} \) résulte de ce que ce groupe commute à l’action de \(S_m \subseteq S_n \), qu’il est contenu dans \(S_{\lambda \setminus n} \), et que, par la surjection \(S_{\lambda \setminus n} \rightarrow G_{\lambda \setminus n} \), il est en bijection avec \(\mathbb{I}_{n-a} \times S_{n-m} \) et que, par la surjection \(S_{\lambda \setminus n} \rightarrow G_{\lambda \setminus n} \), il est en bijection avec \(\mathbb{I}_{n-a} \times S_{n-m} \) qui, lui, fixe \(\text{im}(\phi) \) par hypothèse.

(c,d) Clairs.

□

98
8.1.5. Théorème. Soit $\lambda \in \mathcal{Y}(\ell + a)$. Notons $\ell := \ell(\lambda)$.

a) Le foncteur $\text{Ind}_\lambda : \text{Mod}(k[FI]) \to \text{Mod}(k[FI]_{\geq |\lambda|})$ de 8.1.4-(d), est covariant, additif et exact. Il est fidèle sur la sous-catégorie $\text{Mod}(k[FI]_{\geq \ell})$.

b) Si \mathcal{V} est (de type fini) engendré en degrés $\leq d$, le FI-module $\text{Ind}_\lambda(\mathcal{V})$ est (de type fini) engendré en degrés $\leq \sup(d + a, |\lambda|)$. En appliquant 7.4.5-(b) si les extrémités vérifient cette majoration.

c) On a $\mathcal{P}(\text{Ind}_\lambda \mathcal{V}) \leq \mathcal{P}(\mathcal{V}) + |\lambda|$.

d) On a $\text{rgms}(\text{Ind}_\lambda \mathcal{V}) \leq 2|\lambda|$ et $\text{rgm}(\text{Ind}_\lambda \mathcal{V}) \leq \text{rgm}(\mathcal{V}) + a$.

Démonstration. (a) Clair. (b) Un FI-module $\mathcal{V} = \{\phi_m : V_m \to V_{m+1}\}_{m}$ est engendré en degrés $\leq d$, si et seulement si, $k[\delta_{d+n}] \cdot \text{im}(\phi_{d+n,d}) = V_{d+n}$, pour tout $d \geq 0$. L’assertion 8.1.4-(c) montre alors que $\text{Ind}_\lambda \mathcal{V}$ est bien engendré en degrés $\leq \sup(\ell,d) + a$. La deuxième partie de (b) résulte de même, puisque \mathcal{V} est de type fini, si et seulement si, il est engendré en degrés $\leq d$ (pour d assez grand), et $\dim_k V_m < +\infty$ pour tout $m \leq d$. (c) est établi dans 7.5.4.

(d) pour $\text{rgms}(\text{Ind}_\lambda \mathcal{V})$.

Si $\text{rgms}(\mathcal{V}) = +\infty$ on n’a rien à prouver, on suppose donc $\text{rgms}(\mathcal{V}) < +\infty$.

(A) Réduction au cas $\mathcal{V} := \mathcal{V}(\mu)$.

Soit \mathcal{V} un FI-module et notons pour simplifier

$$\mathcal{P} := \mathcal{P}(\mathcal{V}) \quad \text{et} \quad s := \text{rgms}(\mathcal{V}).$$

Par 7.8.2-(c), $\mathcal{V}_{\geq s}$ est extension de FI-modules $\mathcal{V}(\mu)_{\geq s}$ où $|\mu| + \mu_1 \leq s$. Maintenant, tout extension de deux tels FI-modules

$$0 \to \mathcal{V}(\mu)_{\geq s} \to \mathcal{W} \to \mathcal{V}(\mu')_{\geq s} \to 0,$$

la suite

$$0 \to \text{Ind}_\lambda(\mathcal{V}(\mu)_{\geq s}) \to \text{Ind}_\lambda \mathcal{W} \to \text{Ind}_\lambda(\mathcal{V}(\mu')_{\geq s}) \to 0$$

est exacte et on aura

$$\text{rgms}(\text{Ind}_\lambda \mathcal{W}) \leq s + 2|\lambda|, \quad (1)$$

en appliquant 7.4.5-(b) si les extrémités vérifient cette majoration.

Or, on a $\text{Ind}_\lambda(\mathcal{V}(\mu')_{\geq s}) = \text{Ind}_\lambda(\mathcal{V}(\mu))_{\geq s+a}$ et

$$\text{rgms}(\text{Ind}_\lambda(\mathcal{V}(\mu))_{\geq s+a}) \leq \sup\{\text{rgms}(\text{Ind}_\lambda(\mathcal{V}(\mu)), s + a)\} = \sup\{|\mu| + \mu_1 + 2|\lambda|, s + a\} \leq s + 2|\lambda|,$$

et de même pour le terme en μ', en supposant (d) vérifiée pour les extrémités.

En itérant l’idée, la majoration (1) est vérifiée pour toute extension finie de FI-modules $\mathcal{V}(\mu)_{\geq s}$, donc par $\mathcal{V}_{\geq s}$. On considère alors la suite exacte

$$0 \to \text{Ind}_\lambda(\mathcal{V}_{\geq s}) \to \text{Ind}_\lambda \mathcal{V} \to \text{Ind}_\lambda(\mathcal{V}_{< s}) \to 0,$$
où $\text{Ind}_\lambda(V_{<s})_m = 0$ pour tout $m \geq s+a$. On a donc bien

$$\text{rg}_{\text{ms}}(\text{Ind}_\lambda,V) = \text{rg}_{\text{ms}}(\text{Ind}_\lambda(V_{\geq s})) \leq \text{rg}_{\text{ms}}(V) + 2|\lambda|.$$

(B) Le cas $V = V(\mu)$. Nous devons prouver la majoration :

$$\text{rg}_{\text{ms}}(\text{Ind}_\lambda(V(\mu))) \leq |\mu| + |\lambda| + 2|\lambda|,$$

ce pour quoi, il suffira de prouver que l’on a

$$\sup_{0 \leq t \leq |\mu| + |\lambda|} \left\{ t + \text{deg-stab}_t(\lambda) \right\} \leq |\mu| + |\lambda| + 2|\lambda|, \quad (2)$$

par 7.9.8-(b) et puisque $\mathcal{P}(\text{Ind}_\lambda(V(\mu))) \leq |\mu| + |\lambda|$ par (c).

Dans ces questions il sera important de savoir à partir de quel $m \in \mathbb{N}$ le poids de $\text{Ind}_\lambda(V(\mu))$ est atteint. Les idées de la remarque 7.5.5 montrent que pour avoir $\mathcal{P}(\text{Ind}_\lambda(V(\mu))) \leq |\mu| + |\lambda|$, il faut $\mu[m-a] \geq t + \sup\{\lambda_1, \mu_1\}$

$$\mu[m-a] := \begin{cases} \mu & \text{si } (m-a) [\mu] > t + \sup\{\lambda_1, \mu_1\} \\ \lambda & \text{autrement dit, il faudra que} \\ m \geq |\mu| + |\lambda| + \sup\{\mu_1, \lambda_1\} \end{cases} \quad (3)$$

cé que nous supposons désormais.

La preuve de (2) demande plusieurs étapes.

(B1) Réduction de $\text{Ind}_{G_{\lambda} \setminus m}^S V(\mu)[m-a]$ à $\text{Ind}_{G_1 \setminus |\lambda| \times S_m \setminus |\lambda|}^S V(\mu)[m-a]$.

D’après 8.1.4, on a $S_{\lambda \setminus m} = S_{\lambda} \times S_{m-|\lambda|}$, d’où

$$G_{\lambda \setminus m} \simeq G_\lambda \times G_{m-|\lambda|} \subset S_{m-a}.$$

On considère alors le morphisme surjectif de S_m-modules

$$\text{Ind}_{G_{\lambda} \setminus m}^S V_{m-a} \longrightarrow \text{Ind}_{G_{\lambda} \setminus m}^S V_{m-a}$$

$$\text{Ind}_{G_1 \setminus |\lambda| \times S_m \setminus |\lambda|}^S V_{m-a} \longrightarrow \text{Ind}_{G_1 \setminus |\lambda| \times S_m \setminus |\lambda|}^S V_{m-a} \quad (4)$$

On remarque ensuite que la surjection (4) établit un isomorphisme de S_m-modules à gauche entre

$$\left(k[S_m] \otimes V_{m-a} \right)_{G_\lambda} \simeq \left(k[S_m] \otimes V_{m-a} \right)_{G_{|\lambda|} \times S_{m-|\lambda|}} \quad (5)$$
où le groupe \(G_{\lambda} \) agit à droite sur le terme de gauche par

\[(P \otimes v) \cdot \alpha := P\alpha \otimes \alpha^{-1}(v).\]

Maintenant, si \(\phi_{m-a} : V(\mu)_{m-a} \rightarrow V(\mu)_{m+1-a} \) est un morphisme de transition de \(V(\mu) \), le morphisme induit

\[k[S_m] \otimes_{S_{m-|\lambda|}} V_{m-a} \xrightarrow{id \otimes \phi_{m-a}} k[S_{m+1}] \otimes_{S_{m+1-|\lambda|}} V_{m+1-a}\]

est un morphisme de \(S_m \times G_{\lambda} \)-bimodules. Il suffira par conséquent que le morphisme de transition de co-invariants

\[\Psi_{m,t} : \left(k[S_m] \otimes_{S_{m-|\lambda|}} V_{m-a} \right) \xrightarrow{(id \otimes \phi_{m-a})} \left(k[S_{m+1}] \otimes_{S_{m+1-|\lambda|}} V_{m+1-a} \right)_{S_{m+1-t}} \tag{6}\]

soit un isomorphisme de \(S_t \)-modules (à gauche) pour qu’il soit aussi un isomorphisme de \(G_{\lambda} \)-modules à droite et donc pour qu’il induise aussi un isomorphisme sur le sous-\(S_t \)-module des \(G_{\lambda} \)-invariants à droite, autrement dit, pour que le morphisme de transition induit

\[\left(\text{Ind}_{G_{\lambda}^{\Delta}}^{S_m} V(\mu)_{m-a} \right) \xrightarrow{(\text{Ind}_{G_{\lambda}^{\Delta}}^{S_{m+1}} V(\mu)_{m+1-a})} \left(\text{Ind}_{G_{\lambda}^{\Delta}(m+1)}^{S_{m+1}} V(\mu)_{m+1-a} \right)_{S_{m+1-t}}\]

soit un isomorphisme \((30)\).

\(B_2)\) Équivalences dans la description du morphisme \(\Psi_{m,t} \) dans (6).

Pour tout \(m \in \mathbb{N} \) et tout \(L \subseteq [1,m] \), identifions le groupe \(S_L \) des bijections de \(L \), au sous-groupe de \(S_m \) qui fixe \(i \notin L \). Le centralisateur de \(S_L \) dans \(S_m \) est le sous-groupe \(S_{[1,m]} \setminus L \) qui fixe \(i \in L \). Tout comme dans 7.9.1, le foncteur des \(S_L \)-co-invariants est le foncteur

\[(_-)_{S_L} : \text{Mod}(S_m) \leadsto \text{Mod}(S_{[1,m]} \setminus L) \]

\[W \leadsto W_{S_L} := k \otimes k[S_L] W. \]

On note ensuite \(L' := L \sqcup \{m+1\} \subseteq [1,m+1] \). Pour tout \(FI \)-module \(W \), le morphisme de transition \(\phi_m : W_m \rightarrow W_{m+1} \) passe aux co-invariants où il définit le morphisme de \(S_{[1,m]} \setminus L \)-modules

\[(\phi_m) : (W_m)_{S_L} \rightarrow (W_{m+1})_{S_{L'}}.\]

Maintenant, pour \(t \leq m \) fixés, notons

\[L := [[t+1,m]] \quad \text{et} \quad A := \| \lambda \| + 1, m \| \].

\(^{30}\)La réciproque n’est à priori pas vraie, et nos estimations pour les degrés de stabilité ne seront donc pas toujours optimales, elles le seront lorsque l’action de \(G_{\lambda} \) sur \(V(\mu)_m \) est triviale, par exemple si la suite \(\lambda = (\lambda_1, \lambda_2, \ldots) \) est strictement décroissante.
L'étude de $\Psi_{m,t}$ se ramène alors à l'étude du morphisme de $S_t \times G \Delta$-bimodules

\[k \otimes_{S_L} k[S_m] \otimes_{S_A} V(\mu)_{m-a} \xrightarrow{\Psi_{m,t}} k \otimes_{S_{L'}} k[S_{m+1}] \otimes_{S_{A'}} V(\mu)_{m+1-a}. \]

(7)

\[\text{Lemme 1. } \text{On a des identifications de } S_{A}-modules à droite} \]

\[k \otimes_{S_L} k[S_m] = k[S_L \setminus S_m] = \bigoplus_{\pi \in (S_A \setminus S_{m/L})} k[S_A \setminus S_{m/L}], \]

d'où un isomorphisme canonique de foncteurs sur $\text{Mod}(k[S_{m-a}])$

\[(\text{ind}_{S_A}^{S_m} (_{-}))[S_m] \simeq \bigoplus_{\pi \in (S_A \setminus S_{m/L})} (-)[S_{A \cap \alpha L}]. \]

\[\text{Indication. Les représentations en question ont les mêmes caractères.} \]

Grâce à ce lemme, le morphisme (7) se voit comme le morphisme

\[\bigoplus_{\pi \in (S_A \setminus S_{m/L})} (V(\mu)_{m-a})_{S_A \cap \alpha L} \xrightarrow{\Psi_{m,t}} \bigoplus_{\pi \in (S_A \setminus S_{m+1/L'})} (V(\mu)_{m+1-a})_{S_{A' \cap \alpha L'}} \]

induit terme à terme par le morphisme de transition ϕ_{m-a} via l'inclusion naturelle

\[(S_A \setminus S_{m/L}) \subseteq (S_A \setminus S_{m+1/L'}). \]

(8)

\[\text{Lemme 2. L'inclusion (8) est une égalité lorsque} \]

\[m \geq |\lambda| + t \]

(9)

auquel cas, on a un isomorphisme de foncteurs sur $\text{Mod}(k[S_{m-a}])$

\[(\text{ind}_{S_{m-|\lambda|}}^{S_m} (_{-})[S_{m-t}] \simeq \bigoplus_{\pi \in (S_A \setminus S_{m/L})} (-)[S_{A \setminus \alpha L}]. \]

De plus, on a

\[\ell \leq ((m-a) - |A \cap \alpha L|) \leq \ell + t. \]

(10)

et $\alpha \in S_m$ est tel que $A \cap \alpha L$ est l'intervalle des derniers $|A \cap \alpha L|$ éléments de l'intervalle $[1, m]$.

\[\text{Preuve du lemme 2. Pour toute double classe } \overline{\alpha} \in (S_{A'} \setminus S_{m+1/L'}), \text{ on a} \]

\[|A' \cap \alpha L'| \geq |L'| + |A'| - (m+1) = (m-(|\lambda|+t)) + 1, \]

et lorsque (9) est vérifié, il existe $\alpha \in \overline{\alpha}$ tel que $L' \cap \alpha A'$ est l'intervalle des derniers $|L' \cap \alpha A'|$ éléments de $[1, m+1]$, en particulier $\alpha \in S_m$. Dans ce cas, on a $L' \cap \alpha A' = (L \cap \alpha A) \cup \{m+1\}$ et l’inclusion (8) est bien une égalité. La fin de la preuve est immédiate d’après le lemme 1.
(B₃) Condition d’isomorphie du morphisme $\Psi_{m,t}$ dans (6).

Nous sommes maintenant en mesure de prouver l’inégalité (2). D’après le lemme 2, l’application $\Psi_{m,t}$ sera bijective lorsque $m \geq |\Lambda| + t$ et que les

$$ (V(\mu)_{m-a}) \delta_{|A \cap aL|} \xrightarrow{\phi_{m-a}} (V(\mu)_{m+1-a}) \delta_{|A \cap aL'|} (\phi) $$

sont bijectifs. Or, si nous notons $t'' := (m-a) - |A \cap aL|$, on sait par 7.9.5-(c) que l’application (ϕ) est bijective dès que $m-a \geq t'' + \mu_1$, et comme $t'' \leq \ell + t$ d’après (10), et que $t \leq |\mu| + |\Lambda|$ dans (2), on voit qu’il suffit que

$$ m \geq a + \ell + |\mu| + |\Lambda| + \mu_1 = |\mu| + \mu_1 + 2|\Lambda| $$

(condition qui garantit aussi (3)) pour que $\Psi_{m,t}$ soit bijective. L’inégalité (2) est donc bien satisfaite et ceci termine la preuve de la partie de (d) qui concerne $\operatorname{rg}_{m,s}(\operatorname{Ind}_{\Lambda}\mathcal{V})$.

(d) pour $\operatorname{rg}_m(\operatorname{Ind}_{\Lambda}\mathcal{V})$, on suit la même démarche que pour $\operatorname{rg}_{m,s}$.

(A) Réduction au cas \mathcal{V} est à poids unique t. (31)

Soit p est le plus petit poids tel que $\mathcal{V}^{(p)} \neq 0$. On a la suite exacte courte

$$ 0 \to \mathcal{V}^{(\geq p)} \to \mathcal{V} \to \mathcal{V}^{(p)} \to 0, $$

d’où la suite exacte d’extensions

$$ 0 \to \operatorname{Ind}_{\Lambda}(\mathcal{V}^{(\geq p)}) \to \operatorname{Ind}_{\Lambda}(\mathcal{V}) \to \operatorname{Ind}_{\Lambda}(\mathcal{V}^{(p)}) \to 0. $$

Maintenant, si (d) satisfaite par les extrémités, on aura

$$ \operatorname{rg}_m(\operatorname{Ind}_{\Lambda}(\mathcal{V})) \leq \sup\{\operatorname{rg}_m(\operatorname{Ind}_{\Lambda}(\mathcal{V}^{(\geq p)})), \operatorname{rg}_m(\operatorname{Ind}_{\Lambda}(\mathcal{V}^{(p)}))\} $$

$$ = \sup\{\operatorname{rg}_m(\mathcal{V}^{(\geq p)}) + a, \operatorname{rg}_m(\mathcal{V}^{(p)}) + a\} = \operatorname{rg}_m(\mathcal{V}) + a, $$

par 7.4.5-(a) et d’après 7.5.7-(c), et $\operatorname{Ind}_{\Lambda}(\mathcal{V})$ vérifie (d).

L’itération de cette idée montre que si (d) est satisfaite par les \mathcal{FI}-modules à poids unique, elle sera satisfaite par les quotients $\mathcal{V}^{(\leq t)}$ pour tout $t \in \mathbb{N}$, donc par \mathcal{V}, qu’elle soit de poids fini ou non.

(B) Le cas où \mathcal{V} est à poids unique.

Notons $\phi_{m,t}$ le morphisme de transition à l’ordre m de $\operatorname{Ind}_{\Lambda}(\mathcal{V})$ et utilisons l’égalité $\operatorname{rg}_m = \operatorname{rg}_m^e$ de 7.9.8-(b). On a donc

$$ \operatorname{rg}_m(\operatorname{Ind}_{\Lambda}(\mathcal{V})) = \operatorname{ind}\{s \in \mathbb{N} \mid \Phi_t(\phi_{m,t}) \text{ est injective } \forall m \geq s, \forall t \leq m\}. $$

L’étude de l’injectivité de $\Phi_t(\phi_{m,t})$ suit les mêmes étapes (B₃) que pour le cas $\operatorname{rg}_{m,s}$, mais en plus simple puisque seul l’injectivité nous intéresse. De ce fait, on ne rencontre aucune contrainte sur m en (B₃) et (B₄), mais si en (B₃) où il faudra que $\Phi_t(\phi_{m-a})$ soit injective, soit que $m-a \geq \operatorname{rg}_m(\mathcal{V})$, grâce, une fois de plus, à l’égalité $\operatorname{rg}_m = \operatorname{rg}_m^e$, de 7.9.8-(b).

31 Cette étape n’est pas indispensable, mais elle simplifie quelque peu l’étape (B).
8.1.6. Le foncteur \(\text{Ind}_{\rho,\lambda} \)

Lors de l’étude de rangs de monotonie et stabilité des termes des suites spectrales basiques de 9.3.14, nous aurons besoin d’une version légèrement plus élaborée des foncteurs d’induction \(\text{Ind}_\lambda \).

Étant donnés, \(\lambda \in \mathcal{Y}_\ell(\ell + a) \) et une représentation \(\rho : \mathcal{H}_\Delta \to \text{Gl}_k(\sigma) \) d’un sous-groupe \(\mathcal{H}_\Delta \subseteq S_\Delta \), on définit le foncteur

\[
\text{Ind}_{\rho,\lambda} : \text{Mod}(k[FI]) \to \text{Mod}(k[FI]_{\geq |\lambda|})
\]

qui fait correspondre à un \(S_m \)-module \(V \), le \(S_m \)-module

\[
W_m := \begin{cases}
0, & \text{si } m < |\lambda|, \\
\text{ind}_{\mathcal{H}_\Delta \times S_m - |\lambda|}^S \sigma \otimes V_{m - a}, & \text{si } m \geq |\lambda|.
\end{cases}
\]

Les analogues de la proposition 8.1.4 et du théorème 8.1.5 sont encore vérifiés. En particulier, on contrôle toujours le rang de monotonie et stabilité.

8.1.7. Théorème. Soit \(\lambda \in \mathcal{Y}_\ell(\ell + a) \) et \(\rho : \mathcal{H}_\Delta \to \text{Gl}_k(\sigma) \) une représentation d’un sous-groupe \(\mathcal{H}_\Delta \subseteq S_\Delta \). Alors,

\[
\text{rg}(\text{Ind}_{\rho,\lambda} V) \leq \text{rg}(V) + |\lambda| \quad \text{et} \quad \text{rg}(\text{Ind}_{\rho,\lambda} V) \leq \text{rg}(V) + a.
\]

Indication. On a une surjection naturelle de \(S_m \)-modules

\[
\text{ind}_{\mathcal{H}_\Delta \times S_m - |\lambda|}^S \sigma \otimes (\text{Res}_{S_m - |\lambda|}^S V_{m - a}) \to \text{ind}_{\mathcal{H}_\Delta \times S_m - |\lambda|}^S \sigma \otimes V_{m - a}
\]

et le règles de Littlewood-Richardson (cf. note (26), p. 91) appliquées au \(S_m \)-module de gauche confirment le majorant \(\mathcal{P}(V) + |\lambda| \). La preuve de 8.1.5 s’applique alors telle quelle grâce à la réduction \(B_1 \) qui fait abstraction de la représentation \(\sigma \).

8.1.8. Rangs des produits tensoriels d’un espace gradué

Étant donné un \(k \)-espace vectoriel positivement gradué

\[
A := \bigoplus_{i \in \mathbb{N}} A^i \in \text{Vec}^N(k) \quad \text{avec} \quad A^0 = k,
\]
on munit \(A^\otimes m := A \otimes_k \cdots \otimes_k A \) de l’action de \(\alpha \in S_m \)

\[
\alpha \cdot (a_1 \otimes \cdots \otimes a_m) := a_{\alpha^{-1}(1)} \otimes \cdots \otimes a_{\alpha^{-1}(m)}.
\]
L’application \(\phi_m : A^\otimes m \to A^\otimes {m+1}, \omega \mapsto \omega \otimes 1_k \), où \(1_k \in A^0 \), est alors un morphisme de \(S_m \)-modules positivement gradués, et

\[
A^\otimes := \{ \phi_m : A^\otimes m \to A^\otimes {m+1} \}_m
\]
est un FI-module. Pour chaque $i \in \mathbb{N}$, les restrictions des ϕ_m aux composantes homogènes de degré i donnent le sous-FI-module de $(A^\otimes)^i \subseteq A^\otimes$

$$(A^\otimes)^i := \{ \phi_m : (A^\otimes)^i \to (A^\otimes^m+1)^i \}_m.$$

8.1.9. Proposition ([110]). Soit A un k-espace vectoriel positivement gradué avec $A^0 = k$. Alors, pour tout $i \in \mathbb{N}$, on a

$$\mathcal{P}((A^\otimes)^i) \leq i, \quad \text{rg}_{\text{ms}}((A^\otimes)^i) \leq i \quad \text{et} \quad \text{rg}_{\text{ms}}((A^\otimes)^i) \leq 2i.$$

Démonstration. Pour tout $m \geq i$, on a un isomorphisme

$$(A^\otimes^m)^i = \bigoplus_{\lambda \in \mathcal{Y}(2i)} \text{Ind}_{G_\lambda \times S_{m-\ell}}^{G_\lambda \times S_{m-\ell}} A_{\lambda_{\ell-1}}^{\lambda_{\ell-1}} \otimes \cdots \otimes A_{\lambda_{\ell-1}}^{\lambda_{\ell-1}} \otimes k \otimes \cdots \otimes k$$

(*)

Où $G_\lambda \times S_{m-\ell}$ est sous-groupe de $S_\ell \times S_{m-\ell} \subseteq S_m$. Les règles de Littlewood-Richardson (7.5.1) montrent aussitôt que le poids de chaque induit est majoré par $\ell = \ell(\lambda) \leq i$. Chaque terme de la somme (*) n’est autre que le FI-module $\mathcal{M}^\lambda_G(A^{\lambda_{\ell-1}} \otimes \cdots \otimes A^{\lambda_{\ell-1}})$ de 7.6 dont le rang de monotone est majoré par ℓ et celui de stabilité par 2ℓ d’après 7.6.2-(e).

8.1.10. **Commentaire.** Si W est une représentation de G_λ, la famille de foncteurs $\{ \text{Ind}_{G_\lambda \times S_{m-\ell}}^{G_\lambda \times S_{m-\ell}} W \otimes _ \}_m$ se recolle en un foncteur $\text{Ind}_{G_\lambda} W \otimes _$ défini sur $\text{Mod}(k[\text{FI}])$. Il est alors possible d’adapter la démarche des théorèmes 8.1.5 et 8.1.7 pour démontrer que l’on a

$$\mathcal{P}(\text{Ind}_{G_\lambda} W \otimes \mathcal{V}) \leq \mathcal{P}(\mathcal{V}) + \ell \quad \text{et} \quad \left\{ \begin{array}{ll} \text{rg}_{\text{ms}}(\text{Ind}_{G_\lambda} W \otimes \mathcal{V}) \leq \text{rg}_{\text{ms}}(\mathcal{V}) + 2\ell, \\ \text{rg}_{\text{ms}}(\text{Ind}_{G_\lambda} W \otimes \mathcal{V}) \leq \text{rg}_{\text{ms}}(\mathcal{V}) + \ell. \end{array} \right.$$

Le cas $W := A^{\lambda_{\ell-1}} \otimes \cdots \otimes A^{\lambda_{\ell-1}}$ et $\mathcal{V} := \mathcal{V}(\ell)$ aurait alors fourni une nouvelle preuve de 8.1.9.

8.2. Les foncteurs d’induction I^a, $I^a(a)$ et Θ^a

Dans la section 5.3, nous avons introduit le foncteur $I^{\ell+a}$ qui associe à une représentation de S_ℓ une représentation de $S_{\ell+a}$ en induisant suivant tous les diagrammes de Young $\lambda \in \mathcal{Y}(\ell+a)$:

$$I^{\ell+a}_\ell : \text{Mod}(k[S_\ell]) \hookrightarrow \text{Mod}(k[S_{\ell+a}]), \quad I^{\ell+a}_\ell := \sum_{\lambda \in \mathcal{Y}(\ell+a)} \text{Ind}_{G_\lambda \times S_{m-\ell}}^{G_\lambda \times S_{m-\ell}}.$$

Ce foncteur apparaît naturellement dans l’étude des espaces $\Delta_\ell X^{\ell+a}$. Il intervient notamment dans la proposition 5.3.1, où il donne l’égalité

$$\chi_\ell(\Delta_\ell X^{\ell+a}; i) = I^{\ell+a}_\ell(\chi_\ell(F_\ell(X); i)).$$

Nous allons maintenant recoller la famille des foncteurs $\{I^{m-a}_m\}_m$ en un unique foncteur $I^a : \text{Mod}(k[\text{FI}]) \hookrightarrow \text{Mod}(k[\text{FI}])$ dans le but d’étudier la stabilité (cf. 7.7) des $k[\text{FB}]$-modules $\{H^i_c(\Delta_{m-a} X^m)\}_m$ et $\{H^i(\Delta_{m-a} X^m)\}_m$.

105
Dans la section 8.1.4, nous avons associé à chaque $\lambda \in Y(\ell + a)$ un foncteur

$$\text{Ind}_\lambda : \text{Mod}(k[FI]) \rightsquigarrow \text{Mod}(k[FI])_{\geq |\lambda|}.$$

Sa définition est telle que $\text{Ind}_\lambda = \text{Ind}_\lambda$ où $|\lambda| \leq 2a$, de sorte que la correspondance

$$\left(\bigcup_{1 \leq i \leq a} \gamma(i + a) \right) \ni \lambda \mapsto \text{Ind}_\lambda$$

est surjective sur l’ensemble de tels foncteurs. Mieux encore, le lemme 8.1.1 montre que cette correspondance devient bijective pour peu que l’on tronque les foncteurs :

$$\gamma_a(2a) \ni \lambda \leftrightarrow \text{Ind}_\lambda(\cdot)_{\geq 2a}.$$

On pose alors pour $a \in \mathbb{N}$:

$$I_a := \sum_{\lambda \in Y_a(2a)} \text{Ind}_\lambda(\cdot)_{\geq 2a} : \text{Mod}(k[FI]) \rightsquigarrow \text{Mod}(k[FI])_{\geq 2a}$$

qui est un foncteur exact, fidèle sur $\text{Mod}(k[FI])_{\geq a}$.

8.2.1. Nous pouvons maintenant facilement introduire l’analogue des inductions composées $I(\sigma)$ et $\Theta^{\ell+a}$ de 5.4.

Pour $a \in \mathbb{N}$, notons $\mathfrak{A}(a)$ l’ensemble des suites d’entiers $a = (a_1, a_2, \ldots, a_r)$, avec $a_i > 0$ et tels que $a = \sum_i a_i$. On pose pour chaque $a \in \mathfrak{A}(a)$:

$$I(a) := I^{a_1} \circ I^{a_2} \circ \cdots \circ I^{a_r} : \text{Mod}(k[FI]) \to \text{Mod}(k[FI])_{\geq 2a}.$$

C’est un foncteur exact. La valeur de troncature de l’image, fixée à $2a$, est plus large que nécessaire, mais elle est ainsi indépendante de a. De même, le noyau de $I(a)$ dépend beaucoup de la suite a. La figure suivante illustre ces remarques, en grisé la zone de fidélité d’un foncteur composé pour $a = 20$.

On pose ensuite

$$\Theta^a := (-1)^a \sum_{a \in \mathfrak{A}(a)} (-1)^{|a|} I(a) : \text{Mod}(k[FI]) \to K(\text{Mod}(k[FI])_{\geq 2a})$$

où la présence de signes indique que l’on a affaire à des FI-modules virtuels.

Le corollaire suivant du théorème 8.1.5 est immédiat.
8.2.2. Théorème. Soient \(a \in \mathbb{N}\) et \(a \in \mathfrak{A}(a)\) et désignons par \(L^a\) l’un des trois foncteurs \(I^a, I(a), \Theta^a\).

a) Le foncteur \(L^a: \text{Mod}(k[FI]) \rightsquigarrow \text{Mod}(k[FI])_{\geq 2a}\) est covariant, additif, exact.

b) Si \(\mathcal{V}\) est (de type fini) engendré en degrés \(\leq d\), le \(FI\)-module \(L^a(\mathcal{V})\) est (de type fini) engendré en degrés \(\leq \sup(d + a, 2a)\).

c) On a
\[
\text{rg}_{\text{ms}}(L^a \mathcal{V}) \leq \text{rg}_{\text{ms}}(\mathcal{V}) + 4a, \quad \text{rg}_{\text{ms}}(L^a \mathcal{V}) \leq \text{rg}_{\text{ms}}(\mathcal{V}) + a
\]

9. Stabilité des familles \(\{S_m: H^i_{BM}(\Delta_{m-a}X^m)\}_{m}\)

Dans cette section on généralise le théorème de stabilité de Church ([7]) sur les familles \(\{F_m(M)\}_{m}\) où \(M\) est une variété différentielle orientée, au cas des familles \(\{\Delta_{m-a}M^m\}_{m}\) où \(M\) est une pseudovariété orientable, et où \(a \in \mathbb{N}\) est quelconque.

9.1. Structure de \(FI\)-module de \(\{H^i_{BM}(\Delta_{m-a}M^m)\}_{m}\)

Dans les sections précédentes (cf. 6.1, 6.6.5), nous avons muni les familles \(H^i_{BM}(X^m)\) et \(H^i_{BM}(\Delta_{m-a}X^m)\) de structures de \(FI\)-modules induites par les projections \(p_m: X^{m+1} \rightarrow X^m\). On étend maintenant ces structures aux familles \(\{H^i_{BM}(\Delta_{m-a}M^m)\}_{m}\) pour toute pseudovariété orientée \(M\). Pour cela on considère le diagramme commutatif de décompositions ouvertes-fermées :

\[
\begin{array}{c}
\Delta_{m+1-a}M^{m+1} \searrow \Delta_{m+1-a}M^{m+1} \\
\downarrow j \quad \downarrow j \quad \downarrow i \\
\Delta_{m-a}M^m \times M \searrow \Delta_{m-a}M^m \times M \\
\downarrow p_m \quad \downarrow p_m \quad \downarrow p_m \\
\Delta_{m-a}M^m \searrow \Delta_{m-a}M^m
\end{array}
\]

où \(j\) est une inclusion ouverte et les inclusions \(i\) sont fermées entre des espaces de même dimension cohomologique \((m-a) d_M\) et mêmes orientations. On en déduit par les règles de fonctorialité de la cohomologie de Borel-Moore, le diagramme commutatif de suites exactes longues :

\[
\begin{array}{c}
H^*_BM(\Delta_{m+1-a}M^{m+1}) \leftarrow H^*_BM(\Delta_{m+1-a}M^{m+1}) \leftarrow H^*_BM(\Delta_{m-a}M^m) \\
\downarrow (j)^\vee \quad \downarrow (j)^\vee \quad \downarrow (i)^\vee \\
H^*_BM(\Delta_{m-a}M^m \times M) \leftarrow H^*_BM(\Delta_{m-a}M^m \times M) \leftarrow H^*_BM(\Delta_{m-a}M^m) \\
\downarrow p_m^* \quad \downarrow p_m^* \quad \downarrow p_m^* \\
H^*_BM(\Delta_{m-a}M^m) \leftarrow H^*_BM(\Delta_{m-a}M^m) \leftarrow H^*_BM(\Delta_{m-a}M^m)
\end{array}
\]

où les composées des flèches verticales sont compatibles à l’action des groupes symétriques et vérifient la condition pour définir des \(FI\)-modules.

Ces observations constituent l’essentiel de la preuve des assertions (a,b) de proposition suivante.
9.1.1. Proposition et définitions. Soit \(M \) une pseudovariété orientée de dimension \(d_M \), et soient \(0 < a \leq m \).

a) Dans le diagramme précédent, les morphismes verticaux définissent les \(\text{FI} \)-modules \(\{H^i_{\text{BM}}(\Delta_{m-a}M^m)\}_m \) et les horizontaux définissent alors la suite exacte longue de \(\text{FI} \)-modules

\[
\rightarrow \{H^i_{\text{BM}}(\Delta_{m-a-1}M^m)\} \rightarrow \{H^i_{\text{BM}}(\Delta_{m-a}M^m)\} \rightarrow \{H^i_{\text{BM}}(\Delta_{m-a}M^m)\} \rightarrow \]

b) Les complexes fondamentaux en cohomologie de Borel-Moore de la famille \(\{\Delta_{m-a}M^m\}_m \), obtenus en dualisant les complexes 3.2.2, s’organisent naturellement en « complexe fondamental de \(\text{FI} \)-modules »

\[
0 \rightarrow \{H^i_{\text{BM}}(\Delta_{m-a}M^m)\}_m \rightarrow \mathcal{H}(m-a) \rightarrow \mathcal{H}(m-a-1) \rightarrow \cdots \rightarrow \mathcal{H}(1) \rightarrow 0
\]

où \(\mathcal{H}(m-a-b) := \{H^i_{\text{BM}}(\Delta_{m-a-b}M^m)\}_m \) et \(i \geq b(d_M-1) \).

Lorsque \(M \) est i-acyclique, le complexe fondamental est exact et l’on a l’égalité suivante dans \(K(\text{Mod}(k[\text{FI}])), \)

\[
\{H^i_{\text{BM}}(\Delta_{m-a}M^m)\} = \sum_{0 \leq b < m-a} (-1)^b \{H^i_{\text{BM}}(\Delta_{m-a-b}M^m)\}_m - b \}
\]

c) Le foncteur \(I^a : \text{Mod}(k[\text{FI}]) \hookrightarrow \text{Mod}(k[\text{FI}]_{\geq 2a}) \) identifie les \(\text{FI} \)-modules

\[
\{H^i_{\text{BM}}(\Delta_{m-a}M^m)\}_m = I^a(\{H^i_{\text{BM}}(F_{m-a}(M))\}_m - a) \}
\]

d) Si \(X \) est i-acyclique, les foncteurs \(\Theta^a, I^a : \text{Mod}(k[\text{FI}]) \hookrightarrow \text{Mod}(k[\text{FI}]_{\geq 2a}) \) donnent les identifications suivantes dans \(K(\text{Mod}(k[\text{FI}]), \)

\[
\{H^i_{\text{BM}}(F_m(X))\}_m_{\geq 2a} = \sum_{0 \leq a < m} \Theta^a(\{H^i_{\text{BM}}(dx-1)(X^{m-a})\}_m - a) \]
\]

\[
\{H^i_{\text{BM}}(\Delta_{m-a}X^m)\}_m_{\geq 2a+2i} = I^a(\sum_{0 \leq b < m-a} \Theta^b(\{H^i_{\text{BM}}(dx-1)(X^{m-(a+b)})\}_m - (a+b)) \]
\]

\[
\{H^i_{\text{BM}}(\Delta_{m-a}X^m)\}_m_{\geq 2a+2i} = \sum_{0 \leq b < m-a} (-1)^b I^{a+b}(\sum_{0 \leq c < m-a-b} \Theta^c(\{H^i_{\text{BM}}(dx-1)(X^{m-(a+b+c)})\}_m - (a+b+c)) \}
\]

avec \(i = \lfloor i/(dx-1) \rfloor \).

Indications. (c) résulte de 5.3.1 et de la définition de \(I^a \) (8.2), et (d) résulte de la définition de de \(\Theta^a \) (loc.cit.) et des égalités 5.4.1-(a)-(i,ii,iii), le tout modulo les équivalences \(H^i_{c}(\Delta_{<r}X^s)^{\vee} = H^r_{BM}(\Delta_{<r}X^s) \).

\[\Box\]

108
9.2. Les familles de représentations \(\{H^i_{\text{BM}}(\Delta_{m-a}X^m)\}_m \)

Nous supposons dans un premier temps que \(X \) est une pseudovariété orientable \(i \)-acyclique. Plus tard, dans 9.3, nous nous affranchirons de l’hypothèse de \(i \)-acyclicité.

9.2.1. Le cas de la stabilité de la cohomologie à support compact.
Ce cas est inintéressant si \(X \) est \(i \)-acyclique puisque, d’après 4.2.5 et 4.4, les polynômes de Poincaré pour \(H_c(\Delta_{m-a}X^m) \) sont de valuation \(m-a, ce qui implique que

\[
H^i_c(\Delta_{m-a}X^m) = 0, \quad \forall m > a + i.
\]

9.2.2. Le cas de la stabilité de la cohomologie de Borel-Moore.
Lorsque \(M \) est de type fini, la condition de stabilité de représentations imposée sur \(M \) qu’elle soit connexe et que \(\dim R(M) \geq 2 \), car, autrement, les \(\text{FI} \)-modules \(H^i_{\text{BM}}(\Delta_{m-a}M^m) \) ne sont pas de type fini. En effet, si \(r := |\pi_0(M)|, on a \(|\pi_0(M^m)| = r^m \) et \(|\pi_0(F_m(M))| = (r^m)^m \) ce qui exclut toute possibilité de finitude pour le \(\text{FI} \)-module \(\{H^i_{\text{BM}}(\Delta_{m-a}M^m)\}_m \) pour peu que \(r > 1 \).

D’autre part, si \(M \) est connexe et \(\dim R(M) = 1 \), c’est une courbe illimitée avec un nombre fini \(f \) de points multiples et alors \(|\pi_0(F_m(M))| \geq (m-f)! \) d’où encore une obstruction à la finitude.

On suppose que \(X \) est une pseudovariété \(i \)-acyclique connexe orientable.

• (A) Le cas de \(\{\Delta_{\leq m}(X^m)\}_m \).— On s’intéresse au \(\text{FI} \)-module

\[
A(X; i) := \{H^i_{BM}(X^m)\}_m.
\]

La proposition 8.1.9 s’applique, car \(H^0_{BM}(X; k) = k \) (cf. 6.2.6-(c)), et donne

\[
r_{\text{gm}}(A(X; i)) \leq 2i, \quad \text{et} \quad r_{\text{gm}}(A(X; i)) \leq i. \quad (A)
\]

• (B) Le cas de \(\{\Delta_m(X^m)\}_m \).— (32) On s’intéresse au \(\text{FI} \)-module

\[
B(X; i) := \{H^i_{BM}(F_m(X))\}_m.
\]

L’égalité 9.1.1-(d) nous conduit à chercher un majorant pour les rangs de stabilité des \(\text{FI} \)-modules

\[
B_a(X; i) := \Theta^a(\{H^i_{BM}(dX-1)(X^{m-a})\}_{m-a}) \quad (*)
\]

pour \(0 \leq a < m \) vérifiant

\[
a(dX-1) \leq i. \quad (\dagger)
\]

On sait d’après (A) que le \(\text{FI} \)-module \(\{H^{i-a}(dX-1)(X^{m-a})\}_{m-a} \) est stable pour \(m-a \geq 2(i-a(dX-1)) \) et le théorème 8.2.2-(c) permet d’évaluer les

\[\text{cf. 7.1) ; il a suscité ce chapitre de généralisations.}\]
rangs de monotonie et stabilité de $\mathcal{B}_a(X; i)$. On aboutit alors aux majorations
\[
\begin{align*}
\text{rg}_{\text{ms}}(\mathcal{B}_a(X; i) \supseteq 2i) & \leq 2(i - a(d_X-1)) + 4a \leq \begin{cases} 4i, & \text{si } d_X = 2, \\ 2i, & \text{si } d_X \geq 3, \end{cases} \\
\text{rg}_{\text{ms}}(\mathcal{B}_a(X; i) \supseteq 2i) & \leq (i - a(d_X-1)) + a = i - a(d_X-2) \leq i,
\end{align*}
\]
dont la première résulte d’expliciter $2(i + (3 - d_X)a)$ suivant que $d_X = 2$ ou $d_X \geq 3$ et moyennant la majoration (\dagger).

Il faut encore remarquer que les foncteurs Θ^a considérés sont à valeurs dans $\text{Mod}((\mathbb{F}t)k)_{\geq 2a}$ et que dans tous les cas on a $2a \leq 2i$ de sorte que les majorations (B) sont aussi valables pour $\mathcal{B}(X; i)$.

- **(C)** Le cas de $\{\Delta_{m-a}(X)\}_m$. — On s’intéresse au $\mathbb{F}t$-module

\[
\mathcal{C}_a(X; i) := \{H^i_{\mathbb{B}t}(\Delta_{m-a}X^m)\}_m.
\]

On raisonne exactement comme dans (B) à l’aide de la formule 9.1.1-(d), ce qui nous conduit à calculer les rangs de stabilité des $\mathbb{F}t$-modules
\[
\Gamma^a \left(\sum_{0 \leq b < m-a} \Theta^b \left(\{H^{i-b}(d_X-1)(X^{m-(a+b)})\}_{m-(a+b)} \right) \right).
\]

On est conduit à trouver le borne supérieures
\[
\begin{align*}
\text{rg}_{\text{ms}} & \leftrightarrow \sup_{0 \leq b} \left\{ 2(i - b(d_X-1)) + 4b + 4a \right\} \\
\text{rg}_{\text{ms}} & \leftrightarrow \sup_{0 \leq b} \left\{ (i - b(d_X-1)) + b + a \right\}
\end{align*}
\]
sachant que $b(d_X-1) \leq i$. On trouve les majorations
\[
\begin{align*}
\text{rg}_{\text{ms}}(\mathcal{C}_a(X; i) \supseteq 2a+2i) & \leq \begin{cases} 4i + 4a, & \text{si } d_X = 2, \\ 2i + 4a, & \text{si } d_X \geq 3, \end{cases} \\
\text{rg}_{\text{ms}}(\mathcal{C}_a(X; i) \supseteq 2a+2i) & \leq i + a,
\end{align*}
\]
qui sont également valables pour $\mathcal{C}_a(X; i)$ puisque $i = [i/(d_X-1)] \leq i$.

- **(D)** Le cas de $\{\Delta_{m-a}(X)\}_m$. — On s’intéresse au $\mathbb{F}t$-module (9.1)

\[
\mathcal{D}_a(X; i) := \{H^i_{\mathbb{B}t}(\Delta_{m-a}X^m)\}_m.
\]

On trouve encore les mêmes majorations des rangs que dans (C). Pour s’en convaincre, on pourrait raisonner à l’aide de la formule 9.1.1-(d), mais il s’avère plus intéressant d’appliquer (C) au complexe fondamental de $\mathbb{F}t$-modules pour la cohomologie de Borel-Moore (9.1.1-(b)),
\[
0 \to \{H^i_{\mathbb{B}t}(\Delta_{m-a}X^m)\}_m \to H(m-a) \to H(m-a-1) \to \cdots \to H(1) \to 0
\]
avec $H(m-a-\ell) := \{H^{i-(d_X-1)\ell}(\Delta_{m-a-\ell}X^m)\}_m$ et aussi $i \geq (d_X-1)\ell$, et qui est exact dans le cas présent puisque X est i-acyclique.
Le FI-module $\{H^i_{\text{BM}}(\Delta \leq m X^m)\}_m$ apparaît ainsi comme somme alternée des FI-modules $H(m-a-\ell)$ dans le groupe de Grothendieck $K_0(\operatorname{Mod}(k[\text{FI}])))$, et hérite donc des mêmes rangs de monotonie et stabilité d’après 7.4.5-(b-ii).

Résumons les conclusions de ces observations sous forme de théorème.

9.2.3. Théorème. Soit X une pseudovariété i-acyclique connexe orientable de dimension $d_X \geq 2$. Pour $a, i \in \mathbb{N}$, le FI-module $\{S_m : H^i_{\text{BM}}(\Delta \leq m-a X^m)\}_m$ est monotone pour $m \geq i + a$ et est monotone et stable pour $m \geq 4i + 4a$, si $d_X = 2$, et pour $m \geq 2i + 4a$, si $d_X \geq 3$. Les familles des caractères et des nombres de Betti correspondantes sont (donc) polynomiales sur les mêmes intervalles d’entiers m.

9.2.4. Remarque. Dans les arguments qui précèdent, $\{H^i_{\text{BM}}(\Delta \leq m-a X^m)\}_m$ a une structure à priori de FI-module, celle donnée par les morphismes image-inverse (9.1). Lorsque nous utilisons le théorème 9.1.1-(d) nous passons de la catégorie des FI-modules dans $\operatorname{Mod}(k[\text{FI}])$ mais la conclusion se fait de nouveau dans $\operatorname{Mod}(k[\text{FI}])$. Par exemple, le FI-module $\{H^i_{\text{BM}}(\Delta \leq m-a X^m)\}_m (†)$ se retrouve identifié à une somme alternée de FI-modules ayant les bons rangs de monotonie et stabilité, mais cette somme alternée provient en fait d’une résolution dans $\operatorname{Mod}(k[\text{FI}]) \geq ?$ par des FI-modules à la fois monotones et stables. Le fait que la sous-catégorie pleine $\operatorname{Mod}(k[\text{FI}]) \geq ?$ de ce type de FI-modules en soit une sous-catégorie abélienne permet de conclure que $(†)$ est également monotone et stable pour $m \geq ?$. C’est d’ailleurs ce que dit la proposition 7.4.5-(b-ii).

9.3. Stabilité des familles de représentations $\{H^i_{\text{BM}}(\Delta \leq m-a M^m)\}_m$

On rappelle que M désigne une pseudovariété orientée de type fini.

Nous démontrerons l’analogue du dernier théorème 9.2.3 pour la famille de représentations $\{S_m : H^i_{\text{BM}}(F_m(M))\}_m$ où M est une pseudovariété orientée générale, i.e. qu’elle soit i-acyclique ou non.

9.3.1. Stabilité dans les suites spectrales basiques. Le théorème 6.7.1 établit que les FI-modules définis par les morphismes

$$E_\sigma(q^*_{m})^{p,q} : E_\sigma(U^m)_1^{p,q} \rightarrow E_\sigma(U^{m+1})_{1}^{p+1,q},$$

sont canoniquement isomorphes aux FI-modules définis par les morphismes

$$\text{id}_{S_m} \otimes H^q_{\text{BM}}(U^{m-p,...,m}) \rightarrow \text{id}_{S_{m+1}} \otimes H^q_{\text{BM}}(U^{m+1,p,...})$$

où σ indique que l’action de $S_{m-(p+1)} \times 1$ est tordue $\sigma_{m-(p+1)}$ et lorsque le couple $(p, q) \in \mathbb{N}^2$ est soumis à la contrainte $q = i + (m-(p+1))$. 111
Le théorème (loc. cit.) décrit aussi, dans son assertion (c), le diagramme commutatif d’espaces vectoriels

\[
\begin{align*}
H^q_{BM}(U^{m-p,\ldots,m}) \xrightarrow{P^*_m} H^q_{BM}(U^{m+1-p,\ldots,m+1}) \\
\bigoplus_{f \in \mathcal{F}(p+1,m)} H^Q_{BM}(F_p(f)(M_{>0})) \xrightarrow{\bigoplus P^*_m} \bigoplus_{f^* \in \mathcal{F}^*(p+2,m+1)} H^Q_{BM}(F_p(f^*)(M_{>0}))
\end{align*}
\]

où les isomorphismes \(\Xi^m_{p+1} \) pourraient nous inciter à transporter l’action des \(S_{m-(p+1)} \times S_{p+1} \) pour en faire un diagramme commutatif de représentations, quelque chose dont nous n’avons pas encore eu besoin. Or, un tel transfert où les isomorphismes commutatif d’\(\Xi^m_{p+1} \) pourraient nous inciter à transporter l’action des \(S_{m-(p+1)} \times S_{p+1} \) pour en faire un diagramme commutatif de \(\mathcal{F}(1,a+1) \) défini pour \(i \leq a \), par la règle suivante

Pour \(i \in [1,a] \), notons \(I_{\tau}(i) := \{ j \leq i \mid x_j > x_i \} \). Alors

\[
f_{\tau}(x_i) = \begin{cases} a+1, & \text{si } I_{\tau}(i) = \emptyset \\ x_{\sup I_{\tau}(i)}, & \text{autrement.} \end{cases}
\]

Par exemple :

\(\tau = (1,2,\ldots,a-1,a) \Rightarrow f_{\tau}(i) = a+1 \)

\(\tau = (a,a-1,\ldots,2,1) \Rightarrow f_{\tau}(i) = \sup\{i+1,a+1\} \)

Cette correspondance est injective. En effet, si \(\tau \neq \eta \), il existe un premier \(i \) tel que \(x_i \neq y_i \). Supposons que l’on ait \(x_i < y_i \). Alors, comme il existe \(h > i \) avec \(y_h = x_i \), on aura \(f_\tau(x_i) = f_\eta(y_h) = y_k \neq a+1 \) pour un certain \(k \geq i \), tandis que \(f_\tau(x_i) = x_k = y_k \) pour un certain \(k < i \), ou bien \(f_\tau(x_i) = a+1 \). Dans tous les cas, \(f_\tau \neq f_\eta \).

\[
\begin{array}{ccc}
x_1 & x_2 & x_k \quad \hv \quad x_1 \\
y_1 & y_2 & \vdots \quad \vdots \quad y_i \quad \vdots \quad y_k \quad y_h = x_i
\end{array}
\]

Comme d’autre part \(a! = |\mathcal{F}(1,a+1)| \), on conclut que la correspondance en question est bijective. Cette idée est la base de la preuve du lemme suivant.
9.3.3. Lemme et notations. L’ensemble \(\mathcal{F}(p+1, m) \) est en bijection avec l’ensemble \(\mathcal{T}(p+1, m) \) des tableaux à \((p+1)\) lignes et \(m\) boîtes de formes :

\[
\tau := \begin{cases}
 m-p & \bullet \\
 m-p+1 & \bullet \\
 m-p+2 & \bullet & \bullet & \bullet \\
 \vdots & (j) \leftarrow & (i) \\
 m-2 & \bullet \\
 m-1 & \bullet & \bullet & \bullet \\
 m & \bullet & \bullet & \bullet
\end{cases}
\]

où les boîtes marquées par ‘\(\bullet\)’ sont remplies par les entiers de \([1,m-(p+1)]\) de manière biunivoque. La correspondance associe au tableau \(\tau\) la fonction \(f\) qui, appliquée à \(i \in [1,m-(p+1)]\), donne le premier entier \(j > i\) à gauche de \(i\) sur la ligne de \(\tau\) où il figure.

L’ensemble \(\mathcal{F}(p+2, m+1) \) est en bijection avec l’ensemble des tableaux \(\mathcal{T}(p+2, m+1) \) dont la ligne \((m+1)\) est de longueur \(1\). L’application

\[
(_ \, ^\bullet) : \mathcal{T}(p+1, m) \rightarrow \mathcal{T}(p+2, m+1)
\]

qui associe à \(\tau\) le tableau \(\tau^\bullet\) obtenu en rajoutant la boîte \((m+1)\) est bijective.

9.3.4. Décomposition symétrique de \(H_c(\Delta_{a+b}(Z^a \times X^b))\)

Avant d’aborder le cas spécifique de \(U_{m-p,p,...,m} = \Delta_m(M_{0\ge0}^{m-(p+1)} \times M_{0\ge0}^{p+1})\), on se place dans un contexte plus général avec des notations plus légères.

9.3.4.1. Données et notations

N-1) Soit \(X \subseteq Z\) une inclusion d’espaces \(i\)-acycliques et \(H_c(Z) = 0\).

N-2) Pour \(I \subseteq [1,a]\), on note \(Z^I\) le produit \(Z^{|I|}\) où les coordonnées sont indexées par \(I\). On notera \(F_I := \Delta_I(Z^I)\) et \(F_b := F_b(X)\). Les notations \(\Delta_I(F_I \times F_b)\) et \(\Delta_I(Z^I \times F_b)\) ont alors le sens habituel de 2.1-(N-1).

N-3) Soit \(\mathcal{T}_b(I)\) l’ensemble des tableaux à \(|I|+b\) boîtes dont la première colonne est \((1,\ldots,b)\) et dont la forme est

\[
\tau := \begin{cases}
 1 & \bullet & \bullet \\
 2 & \bullet \\
 3 & \bullet & \bullet & \bullet & \bullet \\
 \vdots \\
 b-2 & \bullet \\
 b-1 & \bullet \\
 b & \bullet & \bullet & \bullet
\end{cases}
\]

où les boîtes ‘\(\bullet\)’ sont remplies avec tous les éléments de \(I\). Le groupe \(S_I \times S_b\) agit sur \(\mathcal{T}_b(I)\) par son action sur le contenu des tableaux. Par exemple, si \(\tau := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 \end{pmatrix}\), on a \((1,2)(x,y,z) \cdot \tau = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 \end{pmatrix}\).
N-4) Pour $\tau \in T_b(I)$, on notera $p(\tau)$ la partition de $I \sqcup \{1,b\}$ déterminée par les lignes de τ. Par exemple,

$$\tau := \begin{array}{ccc}
1 & 2 & 3 \\
2 & & \\
3 & &
\end{array} \implies p(\tau) = \{\{1,x,y,z\}, \{2\}, \{3,a\}\}.$$

Alors, conformément à la notation de 2.3.2, on pose

$$F_{\tau} := F_{p(\tau)} \subseteq \Delta_b(Z \times F_b).$$

La projection $\pi_b : F_{\tau} \rightarrow F_b$ est clairement un homéomorphisme.

9.3.4.2. Les isomorphismes Ψ^I_b

On définit par induction sur $|I|$ un isomorphisme de $S_I \times S_b$-modules

$$\Psi^I_b : \bigoplus_{\tau \in T_b(I)} H_c(F_{\tau}) \xrightarrow{\text{+1}} H_c(\Delta_{|I|+b}(Z \times F_b)).$$

On utilisera de manière systématique le complexe fondamental (3.5.4) pour l'espace $(F_I \times F_b)$. Lorsque $I \neq \emptyset$, on a $H_c(F_I \times F_b) = 0$, car $H_c(Z) = 0$, et ce complexe donne la présentation de $S_I \times S_b$-modules

$$\Delta_{|I|+b-2}(F_I \times F_b) \xrightarrow{c_2} \Delta_{|I|+b-1}(F_I \times F_b) \xrightarrow{c_1} \Delta_{|I|+b}(F_I \times F_b) \quad (\diamond)$$

où la notation ‘$H_c(_)$’ est absente pour gagner de la place.

On rappelle qu’on est sous l’hypothèse $b > 0$.

Le cas $|I| = 0$. L’ensemble $T_b(\emptyset)$ comporte l’unique tableau $\tau = \begin{array}{cc}
1 & 2 \\
2 & \\
\end{array}$. On a clairement $F_{\tau} = F_b = \Delta_{|I|+b}(Z \times F_b)$ et l’on pose $\Psi^\emptyset_b = \text{id}_{F_b}$.

Le cas $|I| = 1$. L’ensemble $T_b(I)$ comporte b tableaux

$$\begin{array}{ccc}
\begin{array}{cc}
1 & 2 \\
2 & \\
\end{array}, & \begin{array}{cc}
1 & 2 \\
2 & \\
\end{array}, & \cdots & \begin{array}{cc}
1 & 2 \\
2 & \\
\end{array}.
\end{array}$$

Le complexe fondamental (\diamond) est réduit au seul isomorphisme

$$c_1 : H_c(\Delta_b(Z \times F_b)) \xrightarrow{\text{+1}} H_c(\Delta_{1+b}(Z \times F_b))$$

où le terme de gauche se décompose naturellement en

$$H_c(\Delta_b(Z \times F_b)) = \bigoplus_{\tau \in T_b(I)} H_c(F_{\tau}).$$

On définit alors $\Psi^I_b = c_1$, c’est un isomorphisme de $S_I \times S_b$-modules

$$\Psi^I_b : \bigoplus_{\tau \in T_b(I)} H_c(F_{\tau}) \xrightarrow{\sum \Psi_{\tau}} H_c(\Delta_{1+b}(Z \times F_b)).$$

où on a noté Ψ_{τ} la restriction de Ψ^I_b au facteur $H_c(F_{\tau})$.

114
Le cas $|I| > 1$. Le complexe fondamental (α) fournit la surjection
\[
c_1 : H_c(\Delta_{|I|+b-1}(F_I \times F_b)) \rightarrow H_c(\Delta_{|I|+b}(F_I \times F_b))
\]
où le terme de gauche se décompose en
\[
H_c(\Delta_{|I|+b-1}(F_I \times F_b)) = \bigoplus_{x \in I, 1 \leq j \leq b} H_c(\Delta_{|I|+b-1}^{(x,j)}(F_I \times F_b))
\]
où $\Delta_{|I|+b-1}^{(x,j)}(F_I \times F_b)$ est l’ouvert-fermé de $\Delta_{|I|+b-1}(F_I \times F_b)$ des uplets dont les éléments en coordonnées $x \in I$ et $j \in [1,b]$ coïncident. Notons $c_1(x,j)$ la restriction de c_1 au terme en question, i.e.
\[
c_1(x,j) : H_c(\Delta_{|I|+b-1}^{(x,j)}(F_I \times F_b)) \rightarrow H_c(\Delta_{|I|+b}(F_I \times F_b))
\]
En négligeant la coordonnée redondante x, on identifie ensuite
\[
H_c(\Delta_{|I|+b-1}^{(x,j)}(F_I \times F_b)) = H_c(\Delta_{|I|+b-1}(F_I-x \times F_b))
\]
où le terme de droite est l’image de l’isomorphisme $S_{I-x} \times \hat{S}_b$-modules
\[
\Psi_{I-x}^{\Gamma} : \bigoplus_{\tau \in \mathcal{T}_b(I-x)} H_c(F_\tau) \rightarrow H_c(\Delta_{|I|+b-1}(F_I-x \times F_b))
\]
que l’on peut supposer déjà défini (induction). On a donc les morphismes
\[
\bigoplus_{\tau \in \mathcal{T}_b(I-x)} H_c(F_\tau) \xrightarrow{\Psi_{I-x}^{\Gamma}} H_c(\Delta_{-1}(F_I \times F_b)) \xrightarrow{c_1(x,j)} H_c(\Delta_{|I|+b}(F_I \times F_b))
\]
(\$\sim\$)
où la notation $\Delta_{-1}(_)$ abrège $\Delta_{|I|-1}(_)$.

Maintenant, pour $\nu \in \mathcal{T}_b(I-x)$ notons $\nu+(x,j)$ le tableau de $\mathcal{T}_b(I)$ obtenu en rajoutant la case x à l’extrémité droite de la ligne j de ν. Par exemple,
\[
\begin{array}{ccc}
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
& & & \\
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
\end{array}
\]
\[
\nu+(x,1) = \begin{array}{ccc}
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
& & & \\
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
\end{array}
\]
\[
\nu+(x,2) = \begin{array}{ccc}
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
& & & \\
\begin{array}{cccc}
1 & w & u & z \\
2 & z & a & & \\
3 & 0 & & & \\
\end{array}
\end{array}
\]

Alors, pour chaque (x,j) et $\nu \in \mathcal{T}_b(I-x)$, on identifie $F_{\nu+(x,j)}$ à F_ν par l’oubli de la x-ième coordonnée et l’on définit le morphisme (de degré $|I|$)
\[
\Psi_{\nu,(x,j)} : H_c(F_{\nu+(x,j)}) \rightarrow H_c(\Delta_{|I|+b}(F_I \times F_b))
\]
(\$\dagger\$)
comme la restriction de la composée de morphismes (\$\sim\$) à $H_c(F_\nu)$.

9.3.5. Lemme. $\Psi_{\nu,(x,j)}$ est déterminé par le tableau $\tau := \nu+(x,j)$.

\[\text{Démonstration.} \quad \text{Dans la suite, l’opérateur ‘} H_c(_)' étant omniprésent, il sera effacé pour gagner de la place dans les diagrammes. De même, la notation Δ_{-q} sera un raccourci pour $H_c(\Delta_{|I|-q-1}(F_I \times F_b))$.

Soient $w, x, y, z \in I$ et $i, j, k, l \in [1,b]$, avec $x \neq y$ et $j \neq k$, et considérons le diagramme suivant.
Dans le diagramme I
– Les lignes (0) et (5) sont les plongement diagonaux.
– Les lignes (1,2,3) résultent d’appliquer verticalement la suite de foncteurs
 \[\cdots \to H_c(\Delta_{[-1]}(-)) \to H_c(\Delta_{[-1]}(-)) \xrightarrow{\rho} H_c(\Delta_{[-2]}(-)) \to \cdots \]
 scindée en \(\rho \) (3.5.2). Les morphismes de liaison entre lignes (3)[−1] \to (1) sont alors injectifs, et ceux des colonnes (1) et (2) sont même bijectifs puisque l’on a \(H_c(\Delta_{[-1]}(x,j)) = H_c(\Delta_{[-1]}(y,k)) = 0 \).
– La flèche \(\xrightarrow{\text{proj}} \) en ligne (1) est la surjection de \(H_c(\Delta_{[-1]}(-)) \) sur les facteurs indiqués de sa décomposition en somme directe. Tandis que la flèche \(\xrightarrow{\text{projj}} \), en ligne (4) est la projection de \(H_c(\Delta_{[-2]}(-)) \), colonne par colonne, sur les sommes de facteurs indiqués, elle n’est pas nécessairement surjective.
– Les flèches \(\xrightarrow{\text{rest}} \) désignent les restrictions aux les sous-espaces fermés.
– La ligne (5) est restriction de la (4) aux espaces indiqués et c’est un plongement diagonal. L’injection (5) \(\hookrightarrow \) (4) est par prolongement par zéro.
– Le diagramme est commutatif par construction.

Suite à ces remarques, on remplace le sous-diagramme en pointillé par les morphismes \(c_2 \) de complexes fondamentaux. On obtient alors le diagramme commutatif II.
Maintenant, pour $\tau = \begin{array}{ccc} i & \cdots & j \\ \vdots & \ddots & \vdots \\ k & \cdots & l \end{array} \in T_b(I)$, notons $\tau-x, \tau-y, \tau-xy$ les tableaux obtenus en enlevant les boîtes x, y comme indiquent les notations. Le morphisme $\Psi_{\tau-x,(x,j)}$ est, par la définition (††), la composée

$$H_c(F_{\tau-xy}) \xrightarrow{\Psi_{\tau-x,y,(y,k)}} \Delta_{[-1]}(F_{\tau-xy} \times F_b) = \Delta_{[-2]} \xrightarrow{c_1(x,j)c_2(x,j) + 2} \Delta_{[0]}.$$

Or, l’image de $\Psi_{\tau-xy,(x,j)}$ est contenue dans le facteur $\Delta_{[-2]}(y,k)$ de $\Delta_{[-2]}$, facteur qui est le même pour $\Psi_{\tau-xy,(y,k)}$ modulo le plongement diagonal de la ligne (5). L’égalité

$$\Psi_{\tau-x,(x,j)} = \Psi_{\tau-y,(y,k)}$$

résulte alors de ce que la projection de $c_2(\Delta_{[-2]}(y,k))$ sur un facteur de $\Delta_{[-1]}$ de la forme $\Delta_{[-2]}(w,l)$ avec $(w, l) \notin \{(x, j), (y, k)\}$ est nul. Ce qui est clair déjà sur la ligne (4) où $\Delta_{[-2]}(y,k) \cap \Delta_{[-2]}(w,l) = 0$ et par commutativité du diagramme.

Le lemme précédent montre que le morphisme $\Psi_{(\tau-x),(x,j)}$ de la définition (††) est indépendant de l’écriture $\tau = (\tau-x)+(x,j)$, raison pour laquelle il sera noté simplement

$$\Psi_{\tau} : H_c(F_{\tau}) \xrightarrow{\Sigma \Psi_{\tau}} H_c(\Delta_{|I|+b}(F_{I\times F_b})).$$

9.3.6. Proposition. Le morphisme

$$\Psi^I_{b} : \bigoplus_{\tau \in T_b(I)} H_c(F_{\tau}) \xrightarrow{\Sigma \Psi_{\tau}} H_c(\Delta_{|I|+b}(F_{I\times F_b})).$$

est un isomorphisme de $S_I \times S_b$-modules.
Démonstration. Le fait que c’est un morphisme de \(S_I \times S_b \)-modules résulte de ce que, par construction, pour tout \(\alpha \in S_I \times S_b \) le diagramme

\[
\begin{array}{ccc}
H_c(F_\tau) & \xrightarrow{\Psi_\tau} & H_c(\Delta_{|I|+b}(F_I \times F_b)) \\
\downarrow \alpha & & \downarrow \alpha \\
H_c(F_{\alpha(\tau)}) & \xrightarrow{\Psi_{\alpha(\tau)}} & H_c(\Delta_{|I|+b}(F_I \times F_b))
\end{array}
\]

est commutatif. Il est surjectif puisqu’il en est ainsi de

\[\bigoplus_{(x,j) \in \mathcal{T}_b(I)} \Delta(x,j)_{[-1]} = \Delta_{[-1]} \xrightarrow{c_1} \Delta_{[0]},\]

et que \(\Psi_{I-b}^* \) est une surjection sur chaque \(\Delta(x,j)_{[-1]} \) par hypothèse de récurrence. Pour conclure maintenant que l’on a un isomorphisme il suffit de comparer les dimensions. On a

\[
\dim \left(\bigoplus_{\tau \in \mathcal{T}_b(I)} H_c(F_\tau) \right) = |\mathcal{T}_b(I)| \cdot \dim H_c(F_b) \quad (d_1)
\]

et, par 6.5.2(b),

\[
\dim \left(H_c(\Delta_{|I|+b}(F_I \times F_b)) \right) = |\mathcal{T}(b,|I|+b)| \cdot \dim H_c(F_b). \quad (d_2)
\]

L’égalité de dimensions dans (d_1) et (d_2) résulte alors du lemme 9.3.3 qui établit que l’on a \(|\mathcal{T}(b,|I|+b)| = |\mathcal{T}(b,|I|)| = |\mathcal{T}_b(I)| \).

Cette proposition achève la dernière étape de la définition inductive des isomorphismes \(\Psi_{I-b} \) commencée dans 9.3.4.2.

9.3.7. Structure de \(S_{m-b} \times S_b \)-module de \(H_c(\Delta_m(Z^{m-b} \times F_b(X))) \)

On applique les considérations précédentes au cas où \(I = [1, m-b] \) et où l’intervalle \([1, b]\) est décalé vers \([m-b+1, m]\). Il est alors avantageux de remplacer la notation de l’ensemble \(\mathcal{T}_b^* \) par celle, équivalente, de l’ensemble de tableaux \(\mathcal{T}(b, m) \) de la section 9.3.2.

9.3.7.1. Tableaux normaux. Chaque orbite de \(S_{m-b} \times S_b \) dans \(\mathcal{T}(b, m) \) contient un unique tableau où la longueur des lignes est décroissante et le contenu des boîtes ‘•’ est strictement croissant. Par exemple, si \(m = 50 \) et \(m-b = 14 \),

\[
\tau = \begin{array}{cccccccc}
15 & 1 & 2 & 3 & 4 & 5 & 6 \\
16 & 7 & 8 & 9 \\
17 & 10 & 11 & 12 \\
18 & 13 & 14 \\
19 \\
20 \\
b-(m-b) = 22
\end{array}
\]

Un tel tableau sera dit « normal », leur ensemble est noté \(\mathcal{T}_0(b, m) \).
9.3.8. Remarque. On a indiqué en gris la plus petite colonne de lignes de cardinal 1 dans les tableaux normaux, son cardinal, \(b-(m-b) \), est atteint lorsque la longueur des lignes de \(\tau \) est \(\leq 2 \) et que \(m \geq 2(m-b) \). Il y a alors autant de tableaux normaux que des partitions de \([1,m-b]\) et l’application \((_,_)* : \mathcal{T}(b,m) \to \mathcal{T}^*(b+1,m+1)\) de 9.3.3 est une bijection sur \(\mathcal{T}(b+1,m+1) \).

9.3.9. Lemme et notation. Le stabilisateur \(\mathcal{H}_\tau \) de \(\tau \) dans \(S_{m-b} \times S_b \) est le produit direct

\[\mathcal{H}_\tau = \mathcal{H}_\underline{\tau} \times S_{m-|\underline{\tau}|}, \]

où \(\underline{\tau} \) désigne le sous-tableau des lignes de longueur \(> 1 \) de \(\tau \), et où \(\mathcal{H}_\underline{\tau} \) désigne le stabilisateur de \(\underline{\tau} \) dans \(S_{|\underline{\tau}|} \cap (S_{m-b} \times S_b) \). On a

\[\left\{ \begin{array}{l}
\mathcal{H}_\underline{\tau} \subseteq S_{m-b} \times S_{[m-b+1,m-|\underline{\tau}|]}, \\
1_{|\underline{\tau}|} \times S_{m-|\underline{\tau}|} \subseteq 1_{m-b} \times S_b.
\end{array} \right. \]

La projection \(p_2 : \mathcal{H}_\underline{\tau} \to S_{[m-b+1,m-|\underline{\tau}|]} \) est un isomorphisme sur son image.

9.3.10. Commentaire. Dans 9.3.7.1-(*), on a \(\mathcal{H}_\underline{\tau} \subseteq S_{[1,14]} \times S_{[15,18]} \). C’est le groupe cyclique d’ordre 2 engendré par l’involution \((16 7 8 9 17 10 11 12) \).

9.3.11. Proposition. Pour toute inclusion d’espaces i-acycliques \(X \subseteq Z \) avec \(H_c(Z) = 0 \), il existe un isomorphisme canonique de \(S_{m-b} \times S_b \)-modules

\[\Psi^m \times \bigoplus_{\tau \in \mathcal{T}(b,m)} \text{ind} S_{m-b} \times S_b \mathcal{H}_\tau(F_c(X)) \xrightarrow{\sim} \mathcal{H}_\tau\Delta_m(Z^{m-b} \times F_b(X))). \]

\[\Box \]

9.3.12. Structure de \(S_{m-(p+1)} \times S_{p+1} \)-module de \(H_{BM}(U^m_{m-p,...,m}) \)

On reprend maintenant le sujet de 9.3 qui concerne la donnée d’une pseudo-variété orientée \(M \) de type fini de dimension \(d_M \). On appliquera la proposition 9.3.11 au cas où \(Z := M_{>0} \), où \(X := M_{>0} \) et où \(b = p+1 \). Pour chaque tableau \(\tau \in \mathcal{T}(p+1,m) \), on a

\[F_\tau(M_{>0}) := \{ \bar{x} \in M_{>0}^{m-(p+1)} \times F_{p+1}(M_{>0}) \mid x_i = x_{f(i)} \}. \]

9.3.13. Proposition

a) Il existe un isomorphisme canonique de \(S_{m-(p+1)} \times S_{p+1} \)-modules gradués, de degré \(-(m-(p+1))d_M \),

\[\sigma \otimes H_{BM}(U^m_{m-p,...,m}) \cong \bigoplus_{\tau \in \mathcal{T}(p+1,m)} \text{ind} \mathcal{H}_\tau \Delta_m \otimes H_{BM}(F_\tau(M_{>0})) \]

où \(\sigma \) est la signature de \(S_{m-(p+1)} \). On a \(|\mathcal{T}(p+1,m)| \leq |\Psi(m-(p+1))| \) avec égalité pour tout \(m \geq 2(m-(p+1)) \).
b) Le FI-module défini dans 6.7.1 par les morphismes des suites spectrales

\[E_\sigma(q_m^*)_{p,q} : E_\sigma(U_m^m)_{p,q} = E_\sigma(U_{m+1}^{m+1})_{p+1,q}, \]

où \(q = i + (m-(p+1)) \), est canoniquement isomorphe au FI-module défini par les morphismes

\[
\bigoplus_{\tau \in \mathcal{T}(p+1, m)} \left(\text{ind} \left(\frac{\mathcal{H}_\beta^{\mathcal{I}_m} \otimes H_{\beta(m)}(F_{p+1}(M_{>0}))}{\text{ind}_{p+1}} \right) \right)
\]

où \(\sigma \) est la restriction à \(\mathcal{K}_\beta \) de la signature de \(S_{m-(p+1)} \), où \(F_{p+1} \) et \(F_{p+2} \) réfèrent respectivement à \(F_{p(\tau)} \) et \(F_{p(\tau^*)} \) (cf. 9.3.4.1-N-4 et 9.3.3), et où

\[Q := q - (m-(p+1))d_M = i - (m-(p+1))(d_M-1). \]

Indication. (a) En dualisant 9.3.11 et en incorporant les caractères signature nécessaires (6.2.4-(b)), on a l’isomorphisme de \(\mathcal{S}_{m-(p+1)} \times \mathcal{S}_{p+1} \)-modules

\[
\left(\Psi_m^* \right) \vdash: \sigma_{m-(p+1)}^{d_M-1} \otimes \sigma_{p+1}^{d_M+1} \otimes H_{\beta(m)}(U_m^m) \xrightarrow{\text{ind}_{p+1}} H_{\beta(m)}(F_{p+1}(M_{>0}))
\]

dont on conclut en simplifiant les caractères redondants (cf. note (18)). L’assertion (b) est alors une simple reformulation de 6.7.1-b. □

9.3.14. Monotonicité et stabilité dans les suites spectrales basiques

Pour chaque \(\tau \in \mathcal{T}(p+1, m) \), on reconnaît dans 9.3.13-(b) le FI-module

\[\text{Ind}_{\rho, \tau} \left(\left\{ H_{\beta(m)}(F_{p+1}(M_{>0})) \right\}_{p+1} \right) \in \text{Mod}(k[FI])_{\geq 2(m-(p+1))}, \]

où \(\rho \) désigne l’action de \(\mathcal{K}_\beta \) sur \(\sigma_{m-(p+1)} \) et \(\text{Ind}_{\rho, \tau} \) est le foncteur d’induction introduit dans 8.1.6.

9.3.15. Théorème. Soit \(M \) une pseudo-variété connexe orientée avec \(d_M \geq 2 \).

a) Pour \(Q := i - (m-(p+1))(d_M-1) \) et \(\tau \in \mathcal{T}(p+1, m) \), on a

\[
\text{rgms} \left(\text{Ind}_{\rho, \tau} \left(\left\{ H_{\beta(m)}(F_{p+1}(M_{>0})) \right\}_{p+1} \right) \right) \leq \begin{cases} 4i, & \text{si } d_M = 2 \\ 2i, & \text{si } d_M \geq 3. \end{cases}
\]

b) Pour \(a, i \in \mathbb{N} \) fixés, le FI-module \(\left\{ H_{\beta(m)}(\Delta_{m-a}M^m) \right\}_{m} \) est monotone et stable pour \(m \geq 4i + 4a, \) si \(d_M = 2, \) et pour \(m \geq 2i + 4a, \) si \(d_M \geq 3. \) Les familles des caractères et des nombres de Betti correspondantes sont (donc) polynomiales sur les mêmes intervalles d’entiers \(m. \)

120
Démonstration. (a) On applique le théorème 9.2.3 à l’espace i-acyclique \(M_{>0} \).
Comme \(\dim(M_{>0}) \geq 3 \), la famille \(\{ H^Q_{\text{ind}}(F_{p+1}(M_{>0})) \}_{p+1} \) est monotone pour
\((p+1) \geq Q \) et est monotone et stable pour \((p+1) \geq 2Q \). Le théorème 8.1.7
garantit alors que le FI-module induit par \(\text{Ind}_{p,r} \) est monotone pour tout
\[
m \geq Q + (m-(p+1)) = (m-(p+1))(d_M-2)
\]
et est monotone et stable pour tout
\[
m \geq 2Q + 4(m-(p+1)) = 2i + (m-(p+1))(4-2(d_M-1)), \quad (*)
\]
et comme on dispose de l’inégalité 6.5.2-(d) : \(i \geq (m-(p+1))(d_M-1) \), le
dernier terme de (*) est majoré par \(4i \) si \(d_M = 2 \), et par \(2i \) si \(d_M \geq 3 \).

(b) Le cas de la famille \(\{ p^*_m : H^i_{\text{ind}}(F_m(M)) \to H^i_{\text{ind}}(F_{m+1}(M)) \}_m \).

Fixons \(i \in \mathbb{N} \). D’après 6.5.2 les termes \(E_{\sigma}(U^m)^{p,q}_r \) de la suite
spectrale basique \(\{ E_{\sigma}(U^m)^{p,q}_r \}_{q} \) qui convergent vers \(H^i_{\text{ind}}(F_m(M)) \) sont ceux pour
lesquels on a \(q = i + (m-(p+1)) \). Si maintenant on fixe \(q \), la différence \((m-p) \)
est constante et si l’on augmente \(m \) et \(p \) simultanément, ces contraintes
décrivent un facteur direct du FI-module défini par la famille de morphismes
suites spectrales basiques (6.7.1)
\[
\{ E_{\sigma}(q^*_m)^{p,q}_r : E_{\sigma}(U^m)^{p,q}_r \to E_{\sigma}(U^{m+1})^{p+1,q}_r \}_m,
\]
facteur que nous allons noter
\[
E^i_{r,q} := \{ E_{\sigma}(q^*_m)^{p,q}_r : E_{\sigma}(U^m)^{p,q}_r \to E_{\sigma}(U^{m+1})^{p+1,q}_r \mid q = i + (m-(p+1)) \}_m.
\]
Les différentielles des suites spectrales basiques définissent alors un complexe
FI-modules
\[
(\mathcal{E}(r,q), d_r) := (\cdots \to \mathcal{E}^{i-1,q+r-1}_r \xrightarrow{d_r} \mathcal{E}^{i,q}_r \xrightarrow{d_r} \mathcal{E}^{i+1,q-r+1}_r \to \cdots). \quad (*)
\]
Nous avons des isomorphismes canoniques
\[
h^i(\mathcal{E}(r,q), d_r) \simeq \mathcal{E}^{i,q+1}_r \quad \text{et} \quad \mathcal{E}^{i,q}_{r+1}, \forall r > q+1,
\]
et donc la condition de convergence (6.7.1-(a))
\[
\left(\bigoplus_{q \in \mathbb{N}} E^{i,q}_q \right) \implies \{ p^*_m : H^i_{\text{ind}}(F_m(M)) \to H^i_{\text{ind}}(F_{m+1}(M)) \}_m. \quad (\circ)
\]

Lemme. Pour tout \(r \geq 1 \), on a
\[
\begin{cases}
rg_{ms}(\mathcal{E}^{i+1,q}_r) = 0, & \forall i < 0,
rg_{ms}(\mathcal{E}^{i,q}_r) = \sup\{i,1\}, & \forall i \geq 0,
rg_{ms}(\mathcal{E}^{i,q}_r) = \sup\{(i-1),1\}, & \forall i \geq 1,
\end{cases}
\]
avec \(\epsilon = 4 \) si \(d_M = 2 \), et \(\epsilon = 2 \) si \(d_M \geq 3 \).

<table>
<thead>
<tr>
<th>(\mathcal{E}_r)</th>
<th>(\mathcal{E}^{-1}_r)</th>
<th>(\mathcal{E}^{0}_r)</th>
<th>(\mathcal{E}^{1}_r)</th>
<th>(\mathcal{E}^{2}_r)</th>
<th>(\mathcal{E}^{3}_r)</th>
<th>(\mathcal{E}^{4}_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{rg}_{ms})</td>
<td>0</td>
<td>1</td>
<td>(\epsilon)</td>
<td>2(\epsilon)</td>
<td>3(\epsilon)</td>
<td>(i\epsilon)</td>
</tr>
<tr>
<td>(\text{rg}_{ms})</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\epsilon)</td>
<td>2(\epsilon)</td>
<td>((i-1)\epsilon)</td>
</tr>
</tbody>
</table>
Preuve. • Le cas $r = 1$. On a par définition et 9.3.13-(b)
\[
(\mathcal{E}_1^q)_m = \bigoplus_{\tau \in \mathcal{T}(p+1,m)} \operatorname{Ind}_{p,\tau} H^Q_{\text{BM}}(F_{p+1}(M_{>0})).
\]
L’assertion (a) donne, pour chaque $\tau \in \mathcal{T}(p+1, m)$ et tout $i \geq 0$
\[
\begin{align*}
\rho_{\text{gs}}(\operatorname{Ind}_{p,\tau}(H^Q_{\text{BM}}(F_{p+1}(M_{>0})))) &\leq i \\
\rho_{\text{gs}}(\operatorname{Ind}_{p,\tau}(H^Q_{\text{BM}}(F_{p+1}(M_{>0})))) &\leq i
\end{align*}
\]
La majoration $\rho_{\text{gs}}(\mathcal{E}_1^q) \leq i$ s’ensuit puisque $(_): \mathcal{T}(p+1, m) \rightarrow \mathcal{T}(p+2, m+1)$
est toujours injective, mais pour avoir $\rho_{\text{gs}}(\mathcal{E}_1^q) \leq i$, il faut s’assurer que si on a $m \geq \epsilon i$ et $H^Q_{\text{BM}}(F_{p+1}(M_{>0})) \neq 0$, l’application $(_)$ est bijective. Raisonner par l’absurde, si $(_)$ n’est pas injective, on a $(p+1) < m/2$, et si de plus $m \geq \epsilon i$, on a
\[
(d_M-1)(m - (p+1)) > \frac{d_M-1}{2} - m \geq \frac{d_M-1}{2} \geq \epsilon i,
\]
donc $Q = i - (d_M-1)(m - (p+1)) < 0$ et alors $H^Q_{\text{BM}}(F_{p+1}(M_{>0})) = 0$.

Le tableau qui suit illustre ces conclusions dont on remarquera qu’elles sont compatibles à celles du lemme pour \mathcal{E}_1 puisque $i \leq \epsilon(i-1)$ dès que $2 \leq i$.

<table>
<thead>
<tr>
<th>\mathcal{E}_1^q</th>
<th>\mathcal{E}_1^{-1}</th>
<th>\mathcal{E}_1^0</th>
<th>\mathcal{E}_1^1</th>
<th>\mathcal{E}_1^2</th>
<th>\mathcal{E}_1^3</th>
<th>\mathcal{E}_1^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{gs}</td>
<td>0</td>
<td>0</td>
<td>ϵ</td>
<td>2ϵ</td>
<td>3ϵ</td>
<td>ϵ</td>
</tr>
<tr>
<td>ρ_{gs}</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>ϵ</td>
</tr>
</tbody>
</table>

• Le cas général. Si nous appliquons au tableau $(_____)$ les règles suivantes, établies dans 7.4.4-(e),
\[
\begin{align*}
\rho_{\text{gs}} \mathcal{E}_r^i &\leq \sup\{\rho_{\text{gs}} \mathcal{E}_r^{-1}, \rho_{\text{gs}} \mathcal{E}_r^i\} \\
\rho_{\text{gs}} \mathcal{E}_r^i &\leq \sup\{\rho_{\text{gs}} \mathcal{E}_r^{-1}, \rho_{\text{gs}} \mathcal{E}_r^i, \rho_{\text{gs}} \mathcal{E}_r^i+1\}
\end{align*}
\]
on obtient aussitôt le tableau du lemme pour \mathcal{E}_2, et comme ce tableau est laissé stable par ces règles le lemme résulte pour tout $r \geq 1$.

Ceci étant, on rappelle que la convergence $(_)$ aboutit en fait sur le bi-
gradué du FI-module $\mathcal{H}_i := \{p^\ast_m : H^i_{\text{BM}}(F_m(M)) \rightarrow H^i_{\text{BM}}(F_{m+1}(M))\}_m$ rela-
tivement à la filtration par le degré p des cochaînes de Čech (cf. 6.4.7). Or,
comme nous sommes soumis à la condition $Q = i - (m-(p+1))(d_M-1) > 0$,
la filtration en question possède un nombre fini de termes ($\leq \frac{d_M-1}{2} + 1$), et
les majorations des rangs de \mathcal{E}_q^{i+2} sont aussi valables pour \mathcal{H}_i^i d’après 7.4.5.

Dans le cas particulier où $i = 0$, ces raisonnements donnent seulement la majoration $\rho_{\text{gs}} \mathcal{H}_i^0 \leq 1$ (c’est ce qui arrive lorsque $H^0_{\text{BM}}(M) = 0$). Lorsque
$H^0_{\text{BM}}(M) = k$, un calcul direct élémentaire montre que l’on a $\mathcal{H}_0^0 = V(0)$ et
donc que $\rho_{\text{gs}} \mathcal{H}_0^0 = 0$.

(b2) Le cas des familles $\{H^i_{\text{BM}}(\Lambda_{-a}M^m)\}_m$ resul-\tede a) exactement comme dans le cas (C) des espaces i-acycliques (p. 121).
Pour le cas général des familles \(\{H^i_{\text{BM}}(\Delta_{\leq m-a}M^m)\}_m \), on ne peut pas faire appel au complexe fondamental des \(\text{FI} \)-modules, comme dans le cas (D) des espaces \(\iota \)-acycliques (p. 122), puisque ce complexe n’est plus exact. On fait plutôt appel aux suites longues de \(\text{FI} \)-modules de 9.1.1

\[
\hom: \to \{H^i_{\text{BM}}(\Delta_{\leq m-a}M^m)\} \to \{H^i_{\text{BM}}(\Delta_{\leq m-a}M^m)\} \to \{H^i_{\text{BM}}(\Delta_{m-a}M^m)\} \to
\]

où l’on peut supposer que les termes de droite et gauche sont monotones et stables pour \(m \geq 2i + 4a \) ou \(m \geq 4i + 4a \) suivant le cas. On en déduit (7.4.5-(b)) le même rang de monotonie et stabilité pour \(\{H^i_{\text{BM}}(\Delta_{\leq m-a}M^m)\} \) puisque extension d’un noyau et conoyau de \(\text{FI} \)-modules monotones est stables sur le même rang des entiers \(m \). C.Q.F.D

9.3.16. Commentaire. Au delà du fait que \(X \) est maintenant une pseudo-variété, la démarche de Church dans la démonstration de son théorème de stabilité ([7], cf. 7.1) est très différente de la nôtre. Elle utilise de manière essentielle les résultats de Totaro ([33]) sur la de suite spectrale de Leray associée au plongement \(F_m(X) \to X^m \), valable parce que \(X \) est lisse.

10. Calcul du caractère de \(S_m \)-module de \(H_c(F_m(X)) \)

On étend les résultats de Macdonald ([27]) concernant le caractère du \(S_m \)-module \(H_c(X^m) \) au cas du \(S_m \)-module \(H_c(F_m(X)) \) lorsque \(X \) est \(\iota \)-acyclique.

Avertissement. Dans cette section et la suivante, car(\(k \)) = 0 et la donnée d’un espace \(\iota \)-acyclique \(X \) présuppose que \(\dim H_c(X) < \infty \).

10.1. Série de caractères de \(S_m \)-module

10.1.1. Série de caractères d’un \(S_m \)-module gradué. Nous appellerons \(S_m \)-module gradué, la donnée d’un \(k \)-espace vectoriel gradué \(V := \bigoplus_{i \in \mathbb{Z}} V^i \), tel que chaque \(V^i \) est un \(S_m \)-module.

Lorsque, de plus, chaque \(V^i \) de dimension finie sur \(k \), la « série de caractères de \(V \) », est l’application \(\chi_V : S_m \to k[[T]] \) définie par (cf. [27] (2.3))

\[
S_m \ni \alpha \mapsto \chi_V(\alpha, T) := \sum_{i \in \mathbb{Z}} (-1)^i \text{tr}(\alpha; V^i) T^i.
\]

Le lemme suivant, pendant du lemme 4.1.2, est élémentaire.

10.1.2. Lemme

a) Si \(\cdots \to V_{i-1} \to V_i \to V_{i+1} \to \cdots \) est un complexe borné de \(S_m \)-modules gradués, on a \(\sum_{i \in \mathbb{Z}} (-1)^i \chi_{V^i}(\alpha, T) = 0 \).

b) Pour \(r \in \mathbb{Z} \), on a \(\chi_{V^i(-r)}(\alpha, T) = \chi_V(\alpha, T) \cdot (-T)^r \).

c) \(\chi_{V_1 \otimes_k V_2}(\alpha_1 \otimes \alpha_2, T) = \chi_{V_1}(\alpha_1, T) \cdot \chi_{V_2}(\alpha_2, T) \).

d) \(\mathcal{P}(\text{Hom}_{k}(V_1, V_2))(T) = \mathcal{P}(V_1)(1/T) \cdot \mathcal{P}(V_2)(T) \)
10.1.3. Série de caractères d’un S_m-espace topologique. Si M est un espace topologique de type fini, muni d’une action de S_m, les « séries de caractères de $H_c(M)$ et de $H(M)$ » seront respectivement notées

$$\chi_c(M)(\alpha, T) := \chi_{H_c(M,k)}(\alpha, T), \quad \text{et} \quad \chi(M)(\alpha, T) := \chi_{H(M,k)}(\alpha, T).$$

On a donc vis-à-vis des définitions de 5.2.2, l’égalité

$$\chi_c(M)(-, T) = \sum_{i \in \mathbb{N}} (-1)^i \chi_{H_c(M)}(_i) T^i = \sum_{i \in \mathbb{N}} (-1)^i \chi_c(M; i)(_i) T^i.$$

10.1.4. Remarque. Il convient de retenir pour la suite les expression suivantes. Pour tout espace topologique X et tout $m \geq 0$, on a :

$$P_c(X^m)(-T)^m = \left(\frac{\chi_c(X)(1, T)}{T} \right)^m,$$

$$P_c(F_m(X))^m(-T)^m = \left(\frac{\chi_c(X)(1, T)}{T} \right)^m.$$

10.2. Séries de caractères de $F^q(X)$

L’exactitude des complexes fondamentaux associés aux espaces $\Delta_{\leq \ell}(F^q)$ du théorème 3.5.4 s’avère particulièrement adaptée à la détermination des séries de caractères. La proposition suivante est un ingrédient important dans le calcul des caractères.

10.2.1. Théorème. Soit X un espace i-acyclique. Pour toute partition q de $[1, m]$, tout $\ell \leq m$ et tout $\alpha \in S^q$ (3.4.3), on a

$$\chi_c(\Delta_{\leq \ell}F^q(X))(-\alpha, T) = \sum_{a \geq 0} \chi_c(\Delta_{\ell-a}F^q(X))(-\alpha, T^{\ell-a}).$$

Démonstration. Corollaire immédiat de 3.5.4 et du lemme 10.1.2

10.3. Séries de traces pour un m-cycle

L’action de S_m sur $[1, m]$ induit une action sur l’ensemble $P(m)$ des partitions de $[1, m]$ qui sera sous-entendue dans la suite. Pour $m > 0$ donné, on note $\sigma_m \in S_m$, ou simplement σ s’il est superflu de préciser l’entier m, la permutation cyclique $(1, 2, \ldots, m)$. On notera $C_m := \langle \sigma_m \rangle$ le sous-groupe de S_m engendré par σ_m.

10.3.1. Lemme. Les points fixes de l’ensemble $P(m)$ sous l’action de C_m sont les partitions en orbites de $[1, m]$ sous l’action des différents sous-
groupes de C_m. On a

$$
\begin{align*}
\Psi_d(m)C_m &= \{ [1,m] / \langle \sigma_m^d \rangle \}, & \text{si } d | m, \\
\Psi_d(m)C_m &= \emptyset, & \text{sinon.}
\end{align*}
$$

En particulier, $|\Psi(m)C_m| = |\{ d \in \mathbb{N} \text{ t.q. } d | m \}|$.

Démonstration. L’application $C_m \to [1,m]$, $\alpha \mapsto \alpha(1)$ est un isomorphisme de C_m-espaces lorsque l’on munit C_m de son action par multiplications à gauche. Les partitions C_m stables par multiplication à gauche sont aussi stables par multiplication à droite puisque C_m est abélien. Or, les partitions de C_m stables par multiplication à droite sont les ensemble des classes d’équivalence à gauche de C_m des sous-groupes $H \subseteq C$, autrement dit, ce sont les partitions de C_m en H-orbites. Enfin, comme C_m est cyclique engendré par σ, ses sous-groupes sont les $\langle \sigma^d \rangle$ avec $d | m$. □

10.3.2. Théorème. Soit X un espace i-acyclique. Pour tout $m \geq 1$, la série de traces de l’action de σ_m sur $H_c(F_m(X))$ vérifie

$$
\frac{\chi_c(F_m(X)(\sigma_m,T))}{T^m} = \sum_{d|m} \mu\left(\frac{m}{d}\right) \frac{\chi_c(F_m(1,T^d))}{T^d},
$$

où $\mu(_)$ est la fonction de Möbius.

Démonstration. Le théorème 10.2.1 appliqué à la partition $q = (1, \ldots, 1)$ et pour $\ell = m$ donne l’égalité de séries de traces

$$
\frac{\chi_c(X^m)(\sigma,T)}{T^m} = \sum_{a\geq 0} \frac{\chi_c(\Delta_{m-a}X^m)(\sigma,T)}{T^{m-a}} \tag{*}
$$

D’après 2.3.3, on a la décomposition

$$
H_c(\Delta_{m-a}X^m) = \bigoplus_{p \in \Psi_{m-a}(m)} H_c(F_p),
$$

et la trace de l’action de σ sur $H_c(\Delta_{m-a}X^m)$ se lit sur les termes $H_c(F_p)$ tels que $\sigma \cdot p = p$. Or, on a vu dans le lemme 10.3.1 qu’il n’y a de telles partitions que lorsque $d := m - a$ est un diviseur de m, et dans ces cas, il y a une et une seule partition telle, à savoir $p := C_m \cdot \langle \sigma_m^d \rangle$. L’action de σ_m sur F_p coïncide avec l’action de σ_d sur F_d, on a donc l’égalité de séries de traces

$$
\begin{align*}
\chi_c(\Delta_dX^m)(\sigma_m,T) &= \chi_c(F_d(X))(\sigma_d,T), & \text{si } d | m, \\
\chi_c(\Delta_dX^m)(\sigma_m,T) &= 0, & \text{si } d \nmid m,
\end{align*}
$$

dont on déduit l’expression du deuxième membre de (*) suivante :

$$
\sum_{a\geq 0} \frac{\chi_c(\Delta_{m-a}X^m)(\sigma_m,T)}{T^{m-a}} = \sum_{d|m} \frac{\chi_c(F_d(X))(\sigma_d,T)}{T^d} \tag{†}
$$
Maintenant, si \(p_i : X^m \to X \) est la projection \(\pi \mapsto x_i \), on a \(\sigma^* \circ p^*_\sigma = p^*_i \) et l’action de \(\sigma \) sur les tenseurs simples de \(H^k_c(X)^{\otimes m} \) se fait par permutation signée (cf. [27]) :

\[
\sigma^*(\omega_1 \otimes \omega_2 \otimes \cdots \otimes \omega_m) = (-1)^{k(m-1)}(\omega_2 \otimes \omega_3 \otimes \cdots \otimes \omega_1).
\]

Comme l’opérateur \(\sigma^* \) agit sur une base de tenseurs simples de \(H^k_c(X)^{\otimes m} \), sa trace le lit sur ceux de tels tenseurs fixés par \(\sigma \), donc de la forme \(\omega \otimes \cdots \otimes \omega \) pour \(\omega \) appartenant à une base de \(H^k_c(X) \). On a alors l’égalité

\[
\left\{ \begin{array}{l}
\text{tr}(\sigma^* : H^k_c(X)^{\otimes m}) = (-1)^{k(m-1)} \dim H^k_c(X) \\
\text{tr}(\sigma^* : H^k_c(X)^{\otimes m}) = 0, \text{ si } m \nmid j,
\end{array} \right.
\]

et, par définition de la série des traces 10.1.1,

\[
\chi_c(X^m)(\sigma_m, T) = \sum_{k \geq 0} (-1)^{km} \cdot (-1)^{k(m-1)} \dim H^k_c(X) \cdot T^{km}
= \sum_{k \geq 0} (-1)^{k} \dim H^k_c(X) \cdot (T^m)^k = \chi_c(X)(1, T^m).
\]

En reportant les égalités (†) et (‡) dans la formule (*), on obtient :

\[
\frac{\chi_c(X)(1, T^m)}{T^m} = \sum_{d \mid m} \frac{\chi_c(F_d(X))(\sigma_d, T)}{T^d}, \quad \forall m \geq 1,
\]

et la formule d’inversion de Möbius donne l’égalité recherchée :

\[
\frac{\chi_c(F_m(X)(\sigma_m, T))}{T^m} = \sum_{d \mid m} \mu(\frac{m}{d}) \frac{\chi_c(X)(1, T^d)}{T^d}.
\]

10.3.3. Remarque pour \(X^m \). D’après l’égalité (‡) de la preuve précédente qui donne

\[
\chi_c(X^m)(\sigma_m, T) = \chi_c(X)(1, T^m),
\]

l’analogue du théorème 10.3.2 pour l’espace \(X^m \) s’énonce par la même formule où la sommation est restreinte au seul terme d’indice \(d := m \). On retrouve alors les résultats de Macdonald ([27], formule (3.2)).

10.4. Séries des traces pour une puissance d’un \(m \)-cycle

10.4.1. Partitions en orbites \(q_r \)

On s’intéresse maintenant au cas où \(m = dr \) avec \(1 \leq d \leq m \) et à la trace de l’opérateur \(\sigma^r_{dr} \) agissant sur \(F_{dr}(X) \). Notons \(q_r \) la partition de \([1,dr]\) et \(q_r \)-orbites. Pour l’étude de \(\chi_c(F_{dr}(X))(\sigma^r_{dr}, T) \) nous allons utiliser le théorème 10.2.1 avec \(q := q_r \) et \(\ell := dr \). Dans ce cas, on a (10.1.2-(c))

\[
\frac{\chi_c(F_{dr}(X))(\sigma^r_{dr}, T)}{T^{dr}} = \left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{T^d} \right)^r
\]

126
d'où l'égalité :

\[
\left(\frac{\chi_c (F_d (X)) (\sigma_d, T)}{T^d} \right)^r = \sum_{a \geq 0} \chi_c \left(\Delta_{dr-a} F^{qr} (X) \right) (\sigma_{dr}^a, T) \frac{T^{dr-a}}{T^d},
\]

qui nous emmène à l'étude de l'espace \(\Delta_{dr-a} F^{qr} (X) \) sous l'action de \(\sigma_{dr}^a \).

10.4.2. Proposition. Soit \(q_r \), la partition de \(\llbracket 1, dr \rrbracket \) en \(\langle \sigma_{dr}^r \rangle \)-orbites et soit \(p = \{ I_1, \ldots, I_l \} \cap q_r \) telle que \(\sigma_{dr}^r \cdot p = p \). Alors, \(\ell = dr' \), pour un certain \(r' \) vérifiant \(1 \leq r' \leq r \), et l'on a une identification d'espaces munis d'actions

\[
\langle \sigma_{dr}^r : F_p (X) \rangle \simeq \langle \sigma_{dr}^{r'} : F_{dr'} (X) \rangle.
\]

Le cardinal de l'ensemble de telles partitions \(p \) est

\[
\left| (q_r \cap P_{dr'})^{\sigma_{dr}^r} \right| = \left\{ \sum_{i=1}^{r} \right\} d^{(r-r')}
\]

Démonstration. Commençons par remarquer qu’une partition \(p \in P_{dr'} \) vérifie \(\sigma_{dr}^r \cdot p = p \), si et seulement si, la relation \(\sim \) est « \(\langle \sigma^r \rangle \)-équivariante », c’est-à-dire :

\[
i \sim \, j \Rightarrow \sigma^a (i) \sim \sigma^a (j), \quad \forall a \in \mathbb{N}.
\]

L’illustration ci-dessous représente, sur la partie gauche, la partition \(q_r \). Chaque colonne étant l’une des parties de \(q_r \), est remplie d’indices \(i \) de \(\llbracket 1, dr \rrbracket \) pour lesquels les coordonnées \(x_i \) de \(x \in F_{q_r} \) sont deux à deux distinctes. Le cycle à l’intérieur des colonnes rappelle l’action simplement transitive du groupe \(\langle \sigma^r \rangle \) sur chacune d’elles.

Sur la partie droite, on représente, à l’aide de flèches, les identifications définies par l’équivalence \(\sim \). Il faut remarquer le parallélisme des flèches dans le sens vertical qui reflète la \(\sigma^r \)-équivariance de \(\sim \).

Les regroupements \(k_1, k_2, \ldots, k_{r'} \) sont tels que \(r = \sum_{i} k_i \). On voit donc bien qu’au final on a \(F_p \simeq F_{dr'} \) et que l’action \(\sigma_{dr}^r : F_p \) s’identifie à \(\sigma_{dr}^{r'} : F_{dr'} \).

La partie de droite de la figure permet aussi de comprendre que pour chaque partition de l’ensemble \(q_r \) en \(r' \) parties non vides de cardinaux \(k_i \), les différentes manières de définir les partitions \(p \in (q_r^{dr})^{\sigma_{dr}^r} \) pour les regroupements \(k_i \) sont en bijection avec les différentes manières de dessiner les flèches, soit au nombre \(d^{k_{r-1}} d^{k_{r-2}} \ldots d^{k_{r'}} = d^{r-r'} \), nombre qui seul dépend de \(r' \) et pas de la suite \((k_1, \ldots, k_{r'}) \). La proposition en découle. \(\square \)
10.4.3. Théorème. Soit X un espace i-acyclique. Pour tous $d, r \geq 1 \in \mathbb{N}$, la série de traces de l'action de σ_{dr}^r sur $H_c(F_{dr}(X))$ vérifie l'égalité :

$$\chi_c(F_{dr}(X))(\sigma_{dr}, T) = \left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{dT^d} \right)^r \chi, $$

soit

$$\chi_c(F_{dr}(X))(\sigma_{dr}, T) = \left(\sum_{e|d} \mu\left(\frac{d}{e} \right) \chi_c(F_d(X))(1, T^{e}) \right)^r \chi,$$

où μ est la fonction de Möbius et $(_)^r$ est la factorielle décroissante de 14.1.

Démonstration. Dans la formule de l'introduction 10.4.1 :

$$\left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{dT^d} \right)^r = \sum_{a \geq 0} \frac{\chi_c(\Delta_{dr-a}F_{q^r}(X))(\sigma_{dr}^r, T)}{T^{dr-a}},$$

nous pouvons maintenant préciser le membre de droite. Par 10.4.2, on a

$$\begin{cases}
\chi_c(\Delta_{\ell}F_{q^r}(X))(\sigma_{dr}^r, T) = 0, & \text{si } d \nmid \ell, \\
\chi_c(\Delta_{dr}F_{q^r}(X))(\sigma_{dr}^r, T) = \left\{ \begin{array}{l}
\begin{array}{c}
 r \\
 r'
\end{array}
\end{array} \right\} d^{(r-r')} \chi_c(F_{dr'}(X))(\sigma_{dr'}^r, T).
\end{cases}$$

En substituant les expressions, on obtient, pour tout $r \geq 1$,

$$\left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{dT^d} \right)^r = \sum_{r' \geq 1} \left\{ \begin{array}{l}
\begin{array}{c}
 r
\\
 r'
\end{array}
\end{array} \right\} \frac{\chi_c(F_{dr'}(X))(\sigma_{dr'}^r, T)}{(dT^d)^{rr'}}.$$

soit, en écriture vectorielle,

$$\left(\begin{array}{c}
\frac{\chi_c(F_d(1))(\sigma_d, T)}{dT^d} \\
\vdots \\
\frac{\chi_c(F_d(r))(\sigma_d, T)}{dT^d}
\end{array} \right) = \left(\begin{array}{c}
\begin{array}{c}
 0 \\
 \vdots \\
 1
\end{array}
\end{array} \right) \left(\begin{array}{c}
\frac{\chi_c(F_{d,1}(1))(\sigma_{d,1}^1, T)}{(dT^d)^1} \\
\vdots \\
\frac{\chi_c(F_{d,r}(r))(\sigma_{d,r}^r, T)}{(dT^d)^r}
\end{array} \right).$$

La matrice $\left(\begin{array}{c}
v_{ij}
\end{array} \right)$ est la matrice des nombres de Stirling de deuxième espèce $(S(i, j))$ (14.4.1). Son inverse est la matrice des nombres de Stirling de première espèce signés $(s(i, j))$. Cette matrice est aussi la matrice de changement d’un système de puissances (X^1, \ldots, X^r) vers un système de factorielles décroissantes (X^1, \ldots, X^L) (14.3.3), par conséquent :

$$\chi_c(F_{dr}(X))(\sigma_{dr}^r, T) = \left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{dT^d} \right)^r \chi.$$
Le théorème découle alors de l’égalité du théorème 10.3.2 qui donne :

$$
\frac{\chi_c(F_d(X)(\sigma_d, T))}{dT^d} = \sum_{\epsilon \mid d} \mu\left(\frac{d}{\epsilon}\right) \frac{\chi_c(X)(1, T^\epsilon)}{dT^\epsilon}.
$$

\[\square\]

10.4.4. Remarque pour \(X^m \). La remarque de l’introduction 10.4.1 est la même pour l’espace \(X^m \), mais en plus simple. On a clairement (cf. 10.3.3, mais aussi [27] (eq. 4.5))

$$
\chi_c(X^{dr}(\sigma_{dr}), T) = \chi_c(X(1, T^d))^r.
$$

Aussi, l’analogue du dernier théorème 10.4.3 pour l’espace \(X^m \) est donné par la même formule où la factorielle décroissante \((-)^r \) est remplacée par la puissance \((-)^r \) et où la sommation est restreinte au terme d’indice \(e := d \).

10.5. Séries des traces pour une permutation générale

10.5.1. Permutations immiscibles

À une permutation \(\alpha \in S_m \), on associe la partition \(p_\alpha \) de \([1, m]\) en \(\langle \alpha \rangle \)-orbites. Les cardinaux des \(\langle \alpha \rangle \)-orbites définissent une décomposition de \(m \) que l’on note \(\lambda(\alpha) = (1^{X_1(\alpha)}, 2^{X_2(\alpha)}, \ldots, m^{X_m(\alpha)}) \), ce qui signifie le fait qu’il y a exactement \(X_i(\alpha) \) orbites de cardinal \(i \).

Définition. Étant données deux parties non vides \(I \) et \(J \) de \([1, m]\) et deux permutations \(\alpha \in S_I \) et \(\beta \in S_J \) (voir 3.4.3), on dit qu’elles sont « immiscibles », si l’on a \(\sum_i X_i(\alpha)X_i(\beta) = 0 \), autrement dit, si les orbites de \(\langle \alpha \rangle \) dans \(I \) ont toutes des cardinaux différents de celles de \(\langle \beta \rangle \) dans \(J \).

10.5.2. Proposition. Soit \(X \) un espace icyclique. Pour toute partition \(q := \{J_1, \ldots, J_r\} \in \mathfrak{P}(m) \), et toute famille de permutations \(\{\alpha_i \in S_{J_i}\}_{i=1,\ldots,r} \) deux à deux immiscibles, on a

$$
\chi_c(F_m(X))(\alpha, T) = \prod_{i=1}^r \chi_c(F_{|J_i|}(X))(\alpha_i, T)
$$

où \(\alpha \) désigne le recollement des \(\alpha_i \) et où, dans les terme de droite, nous avons identifié le support \(J_i \) de \(\alpha_i \) avec l’intervalle \([1, |J_i|]\).

Démonstration. Grâce au complexe fondamental de \(F^q(X) \), pour \(\ell = m \) et pour \(\alpha \) le recollement des \(\alpha_i \), on a l’égalité (10.2.1)

$$
\frac{\chi_c(F^q(X))(\alpha, T)}{T^m} = \sum_{a \geq 0} \frac{\chi_c(\Delta_{m-a}F^q(X))(\alpha, T)}{T^{m-a}}
$$

où, dans le premier membre, on a clairement

$$
\chi_c(F^q(X))(\alpha, T) = \prod_{i=1}^r \chi_c(F_{|J_i|}(X))(\alpha_i, T).
$$
Dans le second membre, pour \(a = 0 \), on a bien
\[
\chi_c(\Delta_m F^q(X))(\alpha, T) = \chi_c(F_m(X))(\alpha, T)
\]
ce qui nous emmène à montrer que pour tout \(a \geq 1 \), on a
\[
\chi_c(\Delta_{m-a} F^q(X))(\alpha, T) = 0 \quad \quad \quad (*)
\]
Or, d’après 3.4.5, on a la décomposition en sous-espaces ouverts
\[
\Delta_\ell F^q(X) := \coprod_{p \in \mathcal{P}_\ell(m), p \notin q} F_p(X),
\]
et la série de traces de \(\alpha \) pour \(\Delta_\ell F^q \) est concentrée sur les espaces \(F_p \) correspondants aux partitions \(p \) vérifiant, de plus, \(\alpha \cdot p = p \), donc, telles que
\[(i \not\sim_p j) \iff (\alpha^e i \not\sim_p \alpha^e j) .\]
Maintenant, s’il existait une telle partition pour \(\ell < m \), on aurait un certain couple \((i \not\sim j) \) vérifiant \((i \not\sim_p j) \), auquel cas, par transversalité, on aurait \((i \not\sim_q j) \) et il existerait des parties \(J_a \neq J_b \) de \(q \) telles que \(i \in J_a \) et \(j \in J_b \). En particulier, les orbites \((\alpha) \cdot i = (\alpha_a) \cdot i \) et \((\alpha) \cdot j = (\alpha_b) \cdot j \) seraient de cardinaux différents puisque \(\alpha_a \) et \(\alpha_b \) sont immiscibles. Si \(\epsilon := \text{ord}(\alpha_a) < \text{ord}(\alpha_b) \), on aurait
\[(i \not\sim_j j) \quad \text{et} \quad (j \sim_p \alpha^e j) ,
\]
avec \(\alpha^e j \neq j \), et ceci contredirait la transversalité de \(p \) et \(q \) puisque \(j \sim_q \alpha^e j \).
L’égalité (*) se trouve ainsi justifiée et la proposition résulte. □

On peut maintenant énoncer le théorème principal de cette section.

10.5.3. Théorème.

Soit \(X \) un espace \(i \)-acyclique. Étant donné une permutation \(\alpha \in S_m \), soit \(\lambda(\alpha) = (1^{X_1}, 2^{X_2}, \ldots, m^{X_m}) \) la décomposition de \(m \) déterminée par la partition de \([1, m] \) en \((\alpha) \)-orbites. Alors,
\[
\chi_c(F_m(X))(\alpha, T) = \prod_{d=1}^{m} \left(\sum_{e \mid d} \mu\left(\frac{d}{e}\right) \chi_c(X)(1, T^e) \right) x_d
\]
où \(\mu \) est la fonction de Möbius et \((_)^2\) est la factorielle décroissante de 14.1.

Démonstration.

Pour chaque \(d = 1, 2, \ldots, m \), notons \(J_d \) la réunion des \((\alpha) \)-orbites de \([1, m] \) qui sont de cardinal \(d \). Notons \(q \) la partition de \([1, m] \) définie par les parties \(J_d \) non vides, \(i.e. \) telles que \(x_d \neq 0 \).
Pour chaque \(J \in q \), notons \(\alpha_J \) la restriction de \(\alpha \) à \(J \). On a \(\alpha \in S^q \), et ses différentes composantes \(\alpha_J \) sont deux à deux immiscibles. On peut donc appliquer la proposition 10.5.2 à la partition \(q \) et à la permutation \(\alpha \). On
obtient l’égalité
\[
\chi_c(F_m(X))(\alpha, T) = \frac{\prod_{j \in q} \chi_c(F_{j^d+1}(X)) (\alpha_j, T)}{T^{\beta_j}}.
\]
(\ast)

Maintenant, comme une partie \(J_d \in \mathcal{X}_d\) est la réunion de \(X_d\) orbites de cardinal \(d\), l’action de \(\alpha\) sur \(J_d\) est équivalente à l’action de \(\sigma_d^{X_d}\) sur \([1, dX_d]\) et chaque terme du produit dans (\ast) est, d’après 10.4.3,
\[
\chi_c(F_{dX_d}(X))(\sigma_d^{X_d}, T) = d^{X_d} \left(\frac{\chi_c(F_d(X))(\sigma_d, T)}{d^{T^d}} \right). X_d.
\]

Le théorème résulte alors de remarquer que dans le produit de la formule à démontrer, les termes d’indices \(d\) tels que \(X_d = 0\) sont tous égaux à 1. □

10.5.4. Remarque pour \(X^m\). Tout comme dans les remarques 10.3.3 et 10.4.4, l’analogue du dernier théorème 10.5.3 pour l’espace \(X^m\) est donné par la même formule où \((_)^\circ\) est remplacée par \((_)^*\) et où la sommation est restreinte au seul terme d’indice \(e := d\) (cf. aussi [27] (eq. 4.5)). On a donc pour tout \(\alpha \in S_m\) avec \(\lambda(\alpha) = (1^{x_1}, 2^{x_2}, \ldots, m^{x_m})\):

\[
\chi_c(X^m)(\alpha, T) = \prod_{d=1}^m d^{X_d} \chi_c(X)(1, T^d)^{X_d}.
\]

10.6. Comparaison entre \(\chi_c(F_m(X))\) et \(\chi_c(F_m(X \smallsetminus \alpha))\)

Pour \(\alpha \in S_m\), notons \(\lambda(\alpha) = (1^{x_1}(\alpha), 2^{x_2}(\alpha), \ldots) \vdash m\) son type. Le coefficient \(\chi_1(\alpha)\) est le cardinal de l’ensemble des \(\alpha\)-orbits réduites à un point, autrement dit, de l’ensemble des \(i \in [1, m]\) fixés par \(\alpha\).

10.6.1. Cas \(\chi_1(\alpha) = 0\). On a vu dans le corollaire de 3.1.3 que si \(X\) est \(i\)-acyclique, on dispose d’une suite exacte courte de \(S_m\)-modules gradués
\[
0 \rightarrow H_c(F_m^*(X))[-1] \rightarrow H_c(F_m^*(\tilde{X})) \rightarrow H_c(F_m(X)) \rightarrow 0 \quad (\ast)
\]

où \(\tilde{X} := X \smallsetminus \{\bullet\}\) pour un certain \(\bullet \in X\), et où \(F_m^*(X)\) est la réunion disjoints des parties ouvertes \(F_m^{\circ}(X) := \{(x_1, \ldots, x_m) \in F_m \mid x_i = \bullet\}\) où \(i = 1, \ldots, m\).

Or, par l’égalité évidente \(\alpha(F_m^{i=x}) = F_m^{\alpha(i)=x}\), on voit que lorsque \(\chi_1(\alpha) = 0\), on a \(\alpha(F_m^{i=x}) \neq (F_m^{i=x})\), et donc que \(\chi_c(F_m^*(\alpha, T) = 0\). On conclut alors, par l’exactitude de (\ast), que \(\chi_c(F_m(X \smallsetminus 1)) = \chi_c(F_m(X))\), d’où l’on déduit suivant.

10.6.2. Lemme. Soit \(X\) un espace \(i\)-acyclique. Pout tout \(m > 0\) et toute permutation \(\alpha \in S_m\) telle que \(\chi_1(\alpha) = 0\), on a

\[
\chi_c(F_m(X \smallsetminus \alpha))(\alpha, T) = \chi_c(F_m(X))(\alpha, T)
\]
pour tout \(a \in \mathbb{N}\).
10.6.3. Remarque. Ce lemme peut aussi être vérifié en appliquant le théorème 10.5.3. Dans ce cas, il suffit de voir que pour tout \(d > 1 \) on a
\[
\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\chi_c(X \setminus 1)(1, T^e)}{T^e} = \sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\chi_c(X)(1, T^e)}{T^e}.
\]

Or, d’après 4.1.5-(c), on a \(\chi_c(X \setminus 1)(1, T) = \chi_c(X)(1, T) - T \), et alors
\[
\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{\chi_c(X \setminus 1)(1, T^e)}{T^e} = \sum_{e|d} \mu\left(\frac{d}{e}\right) \left(\frac{\chi_c(X)(1, T^e)}{T^e} - 1 \right).
\]
On conclut par le fait bien connu sur la fonction de Möbius que l’on a \(\sum_{e|d} \mu(d/e) = 0 \) lorsque \(d > 1 \).

10.6.4. Le cas général. Pour \(\alpha \in S_m \), notons \(I := \{ i \in [1, m] | \alpha(i) = i \} \) et \(J := [1, m] \setminus I \). Les permutations \(\text{id}_J \in S_I \) et \(\alpha|_J \in S_J \) sont clairement immiscibles et on peut appliquer 10.5.2. On a
\[
\chi_c(F_m(X))(\alpha, T) = \chi_c(F_{|I|}(X))(1, T) \cdot \chi_c(F_{|J|}(X))(\alpha|_J, T),
\]
d’où la proposition suivante.

10.6.5. Proposition. Soit \(X \) un espace \(i \)-acyclique. On a
\[
\frac{\chi_c(F_m(X))(\alpha, T)}{\chi_c(X)(1, T)} = \frac{\chi_c(F_m(X \setminus a))(\alpha, T)}{\chi_c(X)(1, T) - a} \cdot \frac{\chi_c(X)(\alpha)}{x_i(\alpha)}
\]

10.7. Comparaison entre \(\chi_c(F_{b+a}(X)) \) et \(\chi_c(F_b(X \setminus a)) \cdot \chi_c(F_a(X)) \)

Dans la section 12, nous allons nous intéresser de plus près aux projections \(\pi_a : F_{b+a}(X) \rightarrow F_a(X) \) de fibre \(F_b(X \setminus a) \). Le théorème 12.4.9 établit que lorsque \(X \) est, de plus, \(i \)-acyclique et localement connexe, la suite spectrale de Leray associée à \(\pi_a \) est dégénérée \((d_e = 0, \text{ pour } r \geq 2) \), auquel cas on a un isomorphisme
\[
H_c(F_{b+a}(X)) \sim H_c(F_b(X \setminus a)) \otimes H_c(F_a(X)).
\]
Notons \(S_a \) (resp. \(S_b \)) le sous-groupe des permutations \(\alpha \in S_{b+a} \) telles que \(\alpha(i) = i \) pour tout \(i \leq b \) (resp. \(b < i \)). Le groupe \(S_a \) agit sur la base \(F_a(X) \), et le groupe \(S_b \) sur la fibre \(F_b(X \setminus a) \).

La proposition suivante montre qu’il n’est généralement pas vrai que le caractère de \(S_b \times S_a \) sur \(H_c(F_{b+a}) \) soit le produit des deux autres caractères, i.e. on n’a pas pour tous \((\alpha, \beta) \in S_b \times S_a \) l’égalité :
\[
\chi_c(F_{b+a}(X))((\beta, \alpha), T) = \chi_c(F_b(X \setminus a))(\beta, T) \cdot \chi_c(F_a(X))(\alpha, T).
\]
10.7.1. Proposition. Soit X un espace i-acyclique.

a) Pour $d > 1$ et $r > r' \geq 1$, et pour $\pi : F_{dr}(X) \to F_{dr'}(X)$ la projection sur la réunion de r' orbites de (σ_{dr}^r). On a

\[\chi_c(F_{dr}(X))(\sigma_{dr}^r) = (dT^d)^r Q_d(X)^r \]
\[\chi_c(F_b(X \setminus dr' \setminus dr))(\sigma_{dr}^{r''}) \cdot \chi_c(F_{dr'}(X))(\sigma_{dr'}^{r''}) = (dT^{dr})^r Q_d(X)^{r''} \cdot Q_d(X)^r \]

où $r'' := r - r'$. Quand $Q_d(X) := \chi_c(F_d(X))(\sigma_d, T)/(dT^d)$.

Dans cette situation, l’égalité (†) n’est donc jamais vérifiée.

Démonstration. (a) La fibre de π étant $F_{dr'}(X \setminus dr')$, on a par 10.4.3

\[\begin{cases}
\chi_c(F_{dr}(X))(\sigma_{dr}^r, T) = (dT^d)^r Q_d(X)^r \\
\chi_c(F_{dr'}(X))(\sigma_{dr'}^{r'}, T) = (dT^{dr})^{r'} Q_d(X)^{r'} \\
\chi_c(F_{dr''}(X \setminus dr'))(\sigma_{dr''}^{r''}, T) = (dT^{dr'})(dr')^{r''} Q_d(X \setminus dr')^{r''}
\end{cases} \]

où, dans la troisième égalité on a $Q_d(X \setminus dr') = Q_d(X)$, d’après 10.6.2.

(b) Les égalités résultent aussitôt de 10.5.3. La formule (†) est vérifiée si et seulement si

\[Q_1^{b+\chi_1(\alpha)} = (Q_1 - a)^b \cdot Q_1^{\chi_1(\alpha)} \]

et la conclusion résulte de ce que $Q_1^{b+\chi_1(\alpha)} = Q_1^{X_1(\alpha)} \cdot (Q_1 - X_1(\alpha))^b$. □

10.7.2. Proposition. Soit X un espace i-acyclique. Si α et β sont immiscibles et si $X_1(\beta) = 0$, l’égalité (‡) est vérifiée.

Démonstration. Conséquence du théorème 10.5.3 et du lemme 10.6.2. □

11. Quotients d’espaces de configuration généralisés

La possibilité d’un algorithme de calcul des caractères de S_m-modules $H^i_c(\Delta_t X^m)$ donnée par le théorème 5.3.3 et évoquée dans la remarque 5.3.4, ouvre la porte à la détermination des polynômes de Poincaré de la cohomologie des espaces d’orbites $(\Delta_t X^m)/H$ où H est un sous-groupe de S_m. 133
11.1. Polynômes de Poincaré de \((\Delta_?X^m)/H\)

L’énoncé bien connu suivant rappelle le lien entre le polynôme de Poincaré des quotients et les séries de caractères.

11.1.1. Proposition. Soit \(Z\) un espace topologique de type fini muni d’une action de \(S_m\). Pour tout sous-groupe \(H \subseteq S_m\), on a

\[
\mathcal{P}_c(Z/H)(-T) = \frac{1}{|H|} \sum_{h \in H} \chi_c(Z)(h, T)
\]

\[
= \frac{1}{m!} \sum_{g \in S_m} \chi_c(Z)(g, T) \cdot \chi(\text{ind}^S_H 1)(g)
\]

\[
= \frac{1}{m!} \sum_{\lambda} h_\lambda \chi_c(Z)(g_\lambda, T) \cdot \chi(\text{ind}^S_H 1)(g_\lambda)
\]

Dans la dernière formule, la sommation est indexée par les décompositions \(\lambda = \{1^{x_1}, 2^{x_2}, \ldots, m^{x_m}\}\) de \(m\), le nombre \(h_\lambda\) est le cardinal de l’ensemble \(\pi(\lambda)\) des permutations dont la décomposition en produit de cycles disjoints est de type \(\lambda\), l’élément \(g_\lambda\) est alors un représentant quelconque de \(\pi(\lambda)\).

Démonstration. Un théorème classique de Grothendieck ([21]) donne l’équivalence \(H^i_c(Z/H) = H^i_c(Z)^H\), pour tout \(i \in \mathbb{N}\). On a donc

\[
\mathcal{P}_c(Z/H)(-T) = \sum_{i \in \mathbb{N}} \left(\frac{1}{|H|} \sum_{h \in H} \text{tr}(h: H^i_c(Z)) \right)(-T)^i
\]

\[
= \frac{1}{|H|} \sum_{h \in H} \chi_c(Z)(h, T).
\]

Les autres égalités sont classiques (cf. [27] eq. (6.1) et (6.2)). \(\square\)

11.1.2. Commentaire. Lorsque l’espace \(X\) est \(i\)-acyclique, cette proposition et l’explicitation des séries de caractères des \(S_m\)-modules \(H_c(F_m(X))\) du théorème 10.5.3, donnent des formules très explicites des polynômes de Poincaré pour les espaces de configurations cycliques et non-ordonnées associés à \(F_m(X)\), ce qui constitue le sujet des deux sections suivantes.

11.2. Espaces de configurations cycliques \(CF_m(X)\)

Soit \(C_m\) le sous-groupe de \(S_m\) engendré par le cycle \(\sigma_m := (1, \ldots, m)\). L’« espace de configurations cycliques de \(X\) », noté \(CF_m(X)\), est l’espace

\[
CF_m(X) := F_m(X)/C_m.
\]
11.2.1. **Théorème.** Soit X un espace i-acyclique. Pour tout $m \in \mathbb{N}$, on a

$$
P_c(CF_m)(-T) = \frac{T^m}{m} \sum_{d|m} \phi(d) d^{m/d} \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{P_c(X)(-T^e)}{dT^e}\right)^{m/d},
$$

où $\phi(_)$ est la fonction indicatrice d’Euler, $\mu(_)$ est la fonction de Möbius et $(_)$ est la factorielle décroissante de 14.1.

Démonstration. Par 11.1.1, on a

$$
P_c(CF_m)(-T) = \frac{T^m}{m} \sum_{d|m} \phi(d) \frac{\chi_c(F_m)(\sigma^*_m, T)}{T^m}.
$$

Par 10.4.3, on a alors

$$
P_c(CF_m)(-T) = \frac{T^m}{m} \sum_{d|m} \phi(d) \frac{\chi_c(F_d(X))(\sigma_d, T)}{T^d}
$$

et la proposition résulte de l’égalité 10.3.2 :

$$
\chi_c(F_d(X)(\sigma_d, T)) = \sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{P_c(X)(-T^e)}{T^e}.
$$

11.2.2. **Remarque.** Un cas particulier de la proposition précédente est lorsque m est un nombre premier p. Dans ce cas, on a simplement

$$
P_c(CF_p)(-T) = \frac{1}{p} \left(\frac{\chi_c(F_p)(1, T)}{T^p} + (p-1) \frac{\chi_c(F_p)(\sigma_p, T)}{T^p} \right)
$$

Où l’on remarquera que si nous notons $Q(T) := \chi_c(X)(1, T)/T$, la dernière expression entre les grandes parenthèses est

$$
Q(T) \mathcal{E} + (p-1)(Q(T^p) - Q(T)),
$$

qui est nulle modulo p puisque l’on a

$$
Q(T) \equiv_p Q(T)^p - Q(T) \equiv_p Q(T^p) - Q(T).
$$

11.2.3. **Remarque.** En suivant la méthode décrite dans [27], la proposition résulte également comme application de la troisième égalité de 11.1.1. Dans ce cas, $\chi(\text{ind}_{\mathcal{C}_m}^m(g_\lambda)) \neq 0$, si et seulement si, g_λ est conjuguée à $\sigma_m^{m/d}$ pour un certain $d|m$, auquel cas

$$
\lambda = \left\{ d^{m/d} \right\}, \quad h_\lambda = \frac{m!}{d^{m/d}}, \quad g_\lambda := \sigma_m^{m/d}, \quad \chi(\text{ind}_{\mathcal{C}_m}^m(g_\lambda)) = \phi(d) \frac{d^{m/d}}{m},
$$

d’où

$$
P_c(CF_m(X))(-T) = \frac{1}{m} \sum_{d|m} \phi(d) \chi_c(F_m(X))(\sigma_m^{m/d}, T),
$$

135
et la conclusion suit par application de 10.5.3 à la décomposition \(\lambda \) en question, ce qui donne
\[
\chi_c(F_m(X))(\sigma_m^{m/d}, T) = T^m \left\{ \frac{\chi_c(F_d(X)) (\sigma_d, T)}{dT^d} \right\}^{m/d}.
\]

11.2.4. Remarque pour \(X^m \). En accord avec la remarque 10.5.4, l’analogue du théorème 11.2.1 pour le produit cyclique \(X[m] := X^m / C_m \) est donné par la même formule où la factorielle décroissante \(\left\langle \right\rangle \) est remplacée par la puissance \(\left(\right)^r \) et où la deuxième sommation est restreinte au seul terme d’indice \(e := d \). On a donc :
\[
P_c(X[m])(T) = \frac{1}{m} \sum_{d|m} \phi(d) P_c(X)((-1)^{d+1} T^d)^{m/d},
\]
qui est très précisément la formule (8.4) de [27].

11.3. Espaces de configurations non-ordonnées \(BF_m(X) \)

On appelle « espace de configurations non ordonnées de \(X \) », noté \(BF_m(X) \), l’espace
\[
BF_m(X) := F_m(X) / S_m.
\]

11.3.1. Théorème. Soit \(X \) un espace \(i \)-acyclique. Pour tout \(m \in \mathbb{N} \), on a
\[
\frac{P_c(BF_m(X))(-T)}{T^m} = \frac{1}{m!} \sum_{\lambda := (1^x_1, \ldots, m^x_m) \vdash m} h_\lambda \prod_{d=1}^m d^{x_d} \left(\sum_{e|d} \mu\left(\frac{d}{e} \right) P_c(X)((-T^e)^{x_e}) \right)^{\frac{x_e}{d}}
\]
où \(\mu(_\,) \) est la fonction de Möbius, \(\left\langle \right\rangle \) est la factorielle décroissante (14.1), et \(h_\lambda \) est le cardinal de l’ensemble des permutations de \(S_m \) dont la décomposition en cycles disjoints est de type \(\lambda := (1^{x_1}, \ldots, m^{x_m}) \vdash m \), soit :
\[
h_\lambda = \frac{m!}{x_1! \cdot x_2! \cdots x_m! \cdot (1!)^{x_1} (2!)^{x_2} \cdots (m!)^{x_m}}.
\]

Démonstration. Corollaire immédiat de la troisième formule de 11.1.1 modulo le calcul de séries de traces de 10.5.3. La valeur de \(h_\lambda \) est classique et bien connue (cf. [3] thm. 13.2, p. 215). \(\square \)

11.3.2. Remarque pour \(X^m \). Comme pour les autres remarques concernant \(X^m \), l’analogue du dernier théorème 11.3.1 pour le produit symétrique \(X(m) := X^m / S_m \) est donné par la même formule où la factorielle décroissante \(\left\langle \right\rangle \) est remplacée par la puissance \(\left(\right)^r \) et où la deuxième som-

34 Notation de [27] p. 568.
35 Notation de [27] p. 568.
mation est restreinte au seul terme d’indice $e := d$. On a donc :

$$P_c(X(m))(T) = \frac{1}{m!} \sum_{\lambda := (X_1, \ldots, X_m) \vdash m} \prod_{d=1}^m P_c(X)((-1)^{d+1}T^d)^x_d$$

qui est très précisément la formule (8.3) de [27].

Concernant cette formule, on rappelle que Macdonald en a donné une très belle fonction génératrice (loc.cit. eq (8.5)) : le k-ième coefficient de $P_c(X(m))$ est le coefficient en $x^k t^m$ du développement en série entière de

$$(1 + xt)^{\beta_1}(1 + x^3t)^{\beta_3} \cdots (1 - t)^{\beta_0}(1 - x^2t)^{\beta_2}(1 - x^4t)^{\beta_4} \cdots$$

où β_k est le k-ième coefficient de $P_c(X)$.

Nous ne connaissons pas de résultat semblable pour $P_c(BF_m(X))$, la difficulté essentielle, par rapport à l’approche de Macdonald, réside dans les factorielles décroissantes.

11.3.3. Commentaire. Conformément au théorème 9.2.3 de monotonie et stabilité des familles $\{S_m:H_{bm}^i(F_m(M))\}_m$, lorsque M est une pseudovariété connexe orientable de dimension $d_M \geq 2$ et pour chaque $i \in \mathbb{N}$ fixé, la famille de polynômes de Poincaré

$$\{P_c(BF_m(M))(1/T) \cdot T^{md^M} \pmod{T^{i+1}}\}_m$$

est stationnaire. C’est un phénomène qui n’est pas apparent à la lecture de la formule 11.3.1. Cela nous a intrigué et nous a conduit à la rédaction de la section suivante où nous déterminons assez précisément le rang de stabilité de la famille de nombres $\{\text{Betti}_{bm}^i(BF_m(M))\}_m$. On y procède en deux temps. D’abord, lorsque M est i-acyclique (11.5.3), en étudiant le coefficient de T^i dans développement de la série $(1/m!) \sum_{\alpha \in S_m} \chi_{bm}(F_m(M))(\alpha, T)$ d’après la formule 10.5.3. Ensuite, lorsque M est général, à l’aide des suites spectrales basiques. Nous obtenons, ce faisant, une importante amélioration de l’estimation de la plage de stabilité puisque l’on passe de $\{m \geq 2i\}$ ou $\{m \geq 4i\}$ à simplement $\{m > i\}$ (36), ce qui est conforme et généralise le corollaire 3 de Church ([7], p. 470) valable seulement lorsque M est une variété topologique.

11.4. Sur le rang de stabilité de la famille $\{\text{Betti}_{bm}^i(BF_m(M))\}_m$

11.4.1. Rang de stabilité des caractères polynomiaux. Dans 7.3.1, nous avons rappelé la notion de polynomialité d’une famille de caractères

36En fait $\{m \geq i\}$ si M est i-acyclique ou si $d_M \geq 3$.

137
\{X_{S_m}(W_m)\}_m. \text{ Nous y avons introduit la fonction } X_i : S_m \to \mathbb{N} \text{ qui fait correspondre à } \alpha \in S_m \text{ le nombre } X_i(\alpha) \text{ de cycles de longueur } i \text{ dans la décomposition de } \alpha \in S_m \text{ comme produit de cycles disjoints.}

11.4.2. Définition. \text{On munit l’algèbre de polynômes } k[\mathcal{X}] := k[X_1, X_2, \ldots] \text{ de la graduation « deg » telle que deg } X_i = i. \text{On fait ensuite correspondre à } P \in k[\mathcal{X}] \text{ une fonction centrale } \bar{P} \in k_c[S_m] \text{ en convenant que l’on a}

\[(X_1^{d_1}X_2^{d_2} \cdots X_\ell^{d_\ell})(\alpha) := \prod_k X_k(\alpha)^{d_k}, \quad \forall d_k \in \mathbb{N}.
\]

11.4.3. \text{On prendra garde du fait que si l’application } P \mapsto \bar{P} \text{ n’est pas injective, car p.e. } (X_aX_b)^\gamma = 0 \text{ si } a + b > m, \text{elle est bien surjective. En effet, pour } \mu = (1^{a_1}, \ldots, m^{a_m}) \vdash m, \text{notons } Q_\mu := \sum_k (X_k - a_k)^2. \text{Alors, pour } \lambda \vdash m \text{ donné, le polynôme } \prod_{\mu \neq \lambda} Q_\mu \text{ définit un multiple non nul de la fonction caractéristique de l’ensemble des permutations de type } \lambda. \text{En particulier, tout caractère de } S_m \text{ s’exprime à l’aide d’un polynôme de } k[X_1, \ldots, X_m].

11.4.4. Proposition. \text{Pour } P \in k[X_1, \ldots, X_\ell], \text{la famille de nombres}

\[\left\{ \frac{1}{m!} \sum_{\alpha \in S_m} P(X_1(\alpha), \ldots, X_\ell(\alpha)) \right\}_m \]

est constante pour \(m \geq \text{deg}(P)\).

\text{Démonstration. Il suffira de le prouver pour un monôme } P := X_1^{d_1}X_2^{d_2} \cdots X_\ell^{d_\ell} \text{lorsque } d_1 + \cdots + d_\ell > 0. \text{Pour } i > 1, \text{on note par } C_i(m) \text{l’ensemble des } i \text{-cycles de } S_m, \text{et pour } i = 1, \text{on note } C_1(m) := \{1, m\}. \text{Le groupe } S_m \text{ agit sur } C_i(m) \text{par conjuguaison, } \alpha \cdot \gamma := \alpha \gamma \alpha^{-1} \text{et sur } C_1(m) \text{par son action naturelle. On note ensuite } E_i(m) \text{ le } S_m\text{-module engendré sur } k \text{par les éléments de } C_i(m) \text{et l’on considère le } S_m\text{-module obtenu par produit tensoriel de représentations :}

\[E_P(m) := E_1(m)^{\otimes d_1} \otimes \cdots \otimes E_\ell(m)^{\otimes d_\ell}.
\]

\text{Notons } \gamma_i : S_m \to k \text{ la fonction centrale définie par}

\[\gamma_i(\alpha) := \text{tr}(\alpha : E_P(m)).
\]

\text{On a}

\[\dim_k (E_P(m)^{S_m}) = \frac{1}{m!} \sum_{\alpha \in S_m} \gamma_1^{d_1} \cdots \gamma_\ell^{d_\ell}(\alpha).
\]

(A) \text{Rang de stabilité de } \dim_k (E_P(m)^{S_m}).

\text{L’espace } E_P(m) \text{ a une base paramétrée par l’ensemble de } \text{deg}(P)\text{-uplets}

\[C_P(m) := \{ (\gamma_{1,1}, \ldots, \gamma_{1,d_1}, \gamma_{2,1}, \ldots, \gamma_{2,d_2}, \ldots, \gamma_{\ell,1}, \ldots, \gamma_{\ell,d_\ell}) \},
\]

\text{où } \gamma_{i,j} \in C_i(m), \text{de sorte que le sous-espace } E_P(m)^{S_m} \text{admet une base paramétrée par l’ensemble } C_P(m)/S_m \text{des orbites de l’action } S_m \text{sur } C_P(m).
L’inclusion canonique $S_m \subseteq S_{m+1}$ induit des inclusions $C_P(m) \subseteq C_P(m+1)$, et donc $E_P(m) \subseteq E_P(m+1)$, compatibles aux actions des groupes symétriques. On vérifie alors aisément que les applications induites

$$C_P(m)/S_m \subseteq C_P(m+1)/S_{m+1} \quad \text{et} \quad E_P(m)^{S_m} \subseteq E_P(m+1)^{S_{m+1}}, \quad (*)$$

sont injectives.

Maintenant, pour $i > 1$ et $\gamma \in C_i(m)$, notons $|\gamma|$ le « support de γ », i.e. l’ensemble des $x \in [1,m]$ tels que $\gamma(x) \neq x$, et pour $i = 1$ et $\gamma \in C_1(m)$, notons plus simplement $|\gamma| = \{ \gamma \}$. Avec ces conventions, on définit le support de $\bar{\gamma} = (\gamma_{i,j}) \in C_P(m)$ par $|\bar{\gamma}| := \bigcup_{i,j} |\gamma_{i,j}|$, où la réunion est paramétrée par les couples (i,j) tels que $d_i \geq 1$ et $1 \leq j \leq d_i$.

Maintenant, pour $m \geq \ell$, le support de $\bar{\gamma} \in C_P(m)$ vérifie $\#|\bar{\gamma}| \leq \deg(P)$ et donc, si $\deg(P) \leq m$, on peut trouver $\alpha \in S_{m+1}$ tel que $|\alpha \cdot \bar{\gamma}| \subseteq [1,\deg(P)]$. Dans ce cas, les injections $(*)$ sont bijectives et le terme de gauche de (\diamond) est indépendant de m pour tout $m \geq \deg(P)$.

B) Description des Y_i en termes des X_i.

Pour $i = 1$, on a $Y_1(\alpha) = \text{tr}(\alpha : E_1(m)) = C_1(m)^{(\alpha)} = X_1(\alpha)$.

Pour $i \geq 2$, on a $Y_i(\alpha) = \text{tr}(\alpha : E_i(m)) = C_i(m)^{(\alpha)} = \#\{ \gamma \in C_i(m) | \alpha \gamma = \gamma \alpha \}$.

La condition $\alpha \gamma = \gamma \alpha$ implique que α laisse stable l’ensemble $|\gamma|$ qui va donc se décomposer en réunion disjointe de cycles de α, tous de la même longueur puisque γ agit transitivement sur son support. Il s’ensuit que les éléments de $C_i(m)^{(\alpha)}$ sont les i-cycles de S_m obtenus, pour chaque $d | i$, en concaténant i/d cycles distincts de α de longueur d. On en déduit l’égalité

$$Y_i(\alpha) = X_i(\alpha) + \sum_{d | i, \ d < i} i d^{(i/d)-2} X_d(\alpha)^{i/d}, \quad (\ddagger)$$

où il convient de remarquer que dans le membre de droite tous les termes sont du même degré \deg égal à i mais que ceux après le signe sommatoire sont de degré polynôme strictement supérieur à 1.

C) Conclusion. La partie (A) nous dit déjà que la proposition est vraie pour les monômes $Y_1^{\ell_1} \cdots Y_\ell^{\ell_\ell}$. Si nous remplacions ensuite chaque Y_i par son expression en termes des X_i de (\ddagger), nous avons une somme de termes de la forme

$$Y_1^{\ell_1} \cdots Y_\ell^{\ell_\ell} = X_1^{\ell_1} \cdots X_\ell^{\ell_\ell} + \sum \deg(X_1^{\ell_1} \cdots X_\ell^{\ell_\ell}) = \deg(P),$$

mais le degré polynôme de $X_1^{\ell_1} \cdots X_\ell^{\ell_\ell}$ est strictement plus grand que celui de P. Il est donc envisageable de raisonner par récurrence inverse sur le degré polygôme des monômes $X_1^{\ell_1} \cdots X_\ell^{\ell_\ell}$, ce qui nous fait aboutir au monôme $X_1^{\deg P}$ pour lequel la proposition résulte de l’égalité $X_1 = Y_1$. \square

139
11.4.5. La série de caractères $\chi_{BM}(Y)(\alpha, T)$. De manière analogue à 10.1.3, nous définissons la série des caractères pour la cohomologie de Borel-Moore d’une pseudovariété Y orientable (6.1.1) et munie d’une action de S_m (6.2.1-[ad-4]), par la formule

$$
\chi_{BM}(Y)(\alpha, T) = \sum_{i \in \mathbb{Z}} (-1)^i \chi_{H^i_{BM}(Y)}(\alpha) T^i.
$$

Nous avons montré dans 6.2.4-(b) que si M est une pseudovariété orientable de type fini de dimension d_M, on a une identification de S_m-modules

$$
H^i_{BM}(BF_m(M)) = \text{sgn}(\alpha)^{d_M} \otimes H^m_{c}(BF_m(M); k) \upnu,
$$
d'où

$$
\chi_{BM}(BF_m(M))(\alpha, T) = \left(\text{sgn}(\alpha)^{d_M} (T)^{md_m} \right) \chi_c(BF_m(M))(\alpha^{-1}, T^{-1}),
$$

avec $\text{sgn}(\alpha)^{d_M} (T)^{md_m} = \prod_d (T^d)^{md_m} x_d(\alpha)$ d’après un calcul élémentaire.

Maintenant, si M est en plus i-acyclique, le théorème 10.5.3 et des manipulations simples (10.1.4), nous conduisent à la formule explicite

$$
\chi_{BM}(F_m(M))(\alpha, T) = \prod_{d=1}^{m} \left(\frac{(-T^d)^{d_M}}{d-1 T^d} \right)^{x_d} \left(\sum_{e|d} \mu\left(\frac{d}{e} \right) \frac{P_c(M)(-T^{-e})}{d T^{-e}} \right)^{x_d},
$$
où ‘x_d’ est un raccourci pour ‘$x_d(\alpha)$’.

11.5. Stabilité de $\{\text{Betti}_{BM}^i(BF_m(M))\}_m$, cas i-acyclique. La proposition 11.5.2 qui suit étudie la formule de $\chi_{BM}(F_m(M))(\alpha, T)$ indépendamment de toute théorie de représentation ou topologie. La formule dépend alors seulement de la donnée de m et $d_M \in \mathbb{N}$ et de la suite des nombres de Betti compacts $c = (c_0, \ldots, c_{d_M}) \subseteq \mathbb{Z}^{d_M+1}$, on notera

$$
\chi(c)_m := \chi_{BM}(F_m(M))(\alpha, T).
$$

Polynomialité de la famille $\chi^{(i)}(e)$. Évaluée en $\alpha \in S_m$, la formule de $\chi(c)_m$ donne le polynôme de $\mathbb{Z}[T, 1/T]$ noté

$$
\chi(c)_m(\alpha) = \sum_{i \in \mathbb{Z}} \chi^{(i)}(e)_m(\alpha) T^i,
$$
d'où les familles de fonctions centrales $\chi^{(i)}(e) = \{\chi^{(i)}(e)_m : S_m \to \mathbb{Z}\}_m$.

On dira d’une famille de fonctions centrales $f = \{f_m : S_m \to \mathbb{Z}\}_m$ qu’elle est « (éventuellement) polynomiale » s’il existe un polynôme $Q_f \in \mathbb{Z}[X_1, X_2, \ldots]$ tel que $f_m(\alpha) = Q_f(\alpha)$ pour tout m (assez grand) et tout $\alpha \in S_m$. Un tel Q_f est unique (37) et le « degré polynôme de f » est alors celui de Q_f. Si $f_m = Q_f$ pour tout $m \geq N$, on dira que « f est polynomiale sur $\{m \geq N\}$ ».

37. En effet, si $Q(X_1, \ldots, X_r) \in \mathbb{Z}[X]$ est non nul, il existe $a_i \in \mathbb{N}$ tels que $Q(a_1, \ldots, a_r) \neq 0$. Il est alors facile de fabriquer des permutations $\alpha_m \in S_m$, pour tout $m \geq \sum_i a_i$, telles que $a_m = X_i(\alpha_m)$, auquel cas $Q(\alpha_m) = Q(a_1, \ldots, a_r)$ et Q n’est pas éventuellement nulle.
11.5.1. Critère de polynomialité. Soit \(f(x_1, \ldots, x_\ell) \) une expression telle que pour tout \(m \), la fonction \(f_m(\alpha) := f(X_1(\alpha), \ldots, X_\ell(\alpha)) \) soit bien définie sur \(S_m \) à valeurs dans \(\mathbb{Z} \). Alors, pour que la famille de fonctions centrales \(f = \{ f_m : S_m \to \mathbb{Z} \} \) soit polynomiale sur \{ \(m \geq N \) \}, il est nécessaire que \(f(n_1, \ldots, n_\ell) \) soit un polynôme en les entiers \(n_j \geq 0 \) tels que \(\sum_j n_j \cdot i_j \geq N \).

Démonstration. Pour \(n := (n_1, \ldots, n_\ell) \), notons \(|n| = \sum_j n_j \cdot i_j \) et choisissons \(\sigma(n) \in S_{|n|} \) vérifiant \(X_j(\sigma(n)) = n_j \), pour \(1 \leq j \leq \ell \). Alors, si \(Q \in \mathbb{Z}[X_1, X_2, \ldots] \) est un polynôme tel que \(f_m = Q \) sur tous les \(S_m \) tels que \(m \geq N \), on a

\[
f(n_1, \ldots, n_\ell) = f_{|n|}(\sigma(n)) = Q(\sigma(n)) = Q'(n_1, \ldots, n_\ell)
\]
où \(Q' \in \mathbb{Z}[Y_1, \ldots, Y_\ell] \) est obtenu de \(Q \) en posant \(Y_j := X_j \) et en annulant les autres variables. \(\square \)

Factorielle décroissante modifiée. On utilisera une extension de la notion de factorielle décroissante (14.1). Pour \(a, b \) dans un anneau et \(X \in \mathbb{N} \), on note

\[
a^{\deg b} = 1, \quad \text{et} \quad a^{X \cdot b} := a(a-b)(a-2b)\cdots(a-(\ell-1)b),
\]
On a alors : \(b X_a X^c = (ba) X^{(bc)} \) et \(a^{X^{\ell+1} \cdot b} = a^{X^\ell \cdot (a-X b)} \).

11.5.2. Proposition. Étant donnés \(d_M \in \mathbb{N} \) et \(c = \{ c_0, \ldots, c_{d_M} \} \subset \mathbb{Z} \), on note \(P_T(T) = c_0 + c_1 T + \cdots + c_{d_M} T^{d_M} \) et

\[
\chi(c)_m(X, T) := \prod_{d=1}^m \left(\frac{(-T^d)^{d_M}}{d-1 \cdot T^d} \right)^{x_d} \left(\sum_{c_1 | d} \mu(d) \frac{P_T(-T^{-c})}{d^{T^{-c}}} \right)^{x_d}.
\]

Alors, pour tout \(i \in \mathbb{N} \), la famille \(\chi^{[i]}(c) \) est éventuellement polynomiale si et seulement si, \(c_{d_M} \in \{0, 1\} \). Dans ce cas, on a les propriétés suivantes de \(\chi(c) \) suivant les valeurs de \(d_M \).

<table>
<thead>
<tr>
<th>(d_M)</th>
<th>(\chi^{[i]}(c_0, \ldots, c_{d_M}))</th>
</tr>
</thead>
</table>
| 0 | \(\begin{align*}
\deg \chi^{[-i]}(c_0 = 1) & \leq 2i, & \forall i \geq 0 \\
\chi^{[-i]}(c_0 = 0)_m = 0, & \forall m, \forall i \geq 0
\end{align*} \) |
| 1 | \(\begin{align*}
\chi^{[0]}(c_0 = 0, c_1) = (c_1 \chi_1, -1) \prod_{d \geq 1} 0 \chi_2^{*(-d)}, & \forall m, \forall i \geq 0 \\
\chi^{[1]}(c_0 = 0, c_1)_m = 0, & \forall m, \forall i \geq 0
\end{align*} \) |
| 2 | \(\begin{align*}
\deg \chi^{[i]}(c_0, c_1, c_2 = 1) & \leq 2i, & \forall i \geq 0 \\
\chi^{[i]}(c_0, c_1, c_2 = 0)_m = 0, & \forall m, \forall i \geq 0
\end{align*} \) |
| \(\geq 3 \) | \(\begin{align*}
\deg \chi^{[i]}(c_0, \ldots, c_{d_M} = 1) & \leq i, & \forall i \geq 0 \\
\deg \chi^{[i]}(c_0, \ldots, c_{d_M} = 0) & \leq \frac{i}{d_M - 1}, & \forall i \geq 0
\end{align*} \) |
Démonstration. Pour $d \geq 1$, notons

$$
\begin{align*}
Q_d(c)(X_d, T) &:= \left(\frac{(-T^d)^{dM}}{d^d} \right) X_d \left(\sum_{e \mid d} \mu \left(\frac{d}{e} \right) \frac{P_e(-T^{-e})}{dT^{-e}} \right) X_d, \\
R(c)_d(T) &:= \left(\frac{(-T^d)^{dM}}{d^{-1}T^d} \right) \left(\sum_{e \mid d} \mu \left(\frac{d}{e} \right) \frac{P_e(-T^{-e})}{dT^{-e}} \right),
\end{align*}
$$

(1)
de sorte que (38)

$$
Q_d = (R_d)x_d^*((-1)^{dM}dT^{d(dM-1)}).
$$

(2)

Lorsque l’on évalue Q_d en $\alpha \in S_m$, on a $X_d(\alpha) \in \mathbb{N}$ et le développement de la factorielle décroissante gène une série

$$
Q_d(X_d(\alpha), T) = \sum_{i \in \mathbb{Z}} Q_d^i(X_d(\alpha)) T^i
$$

où Q_d^i définit la famille fonctions centrales $\{S_m \ni \alpha \mapsto Q_d^i(X_d(\alpha)) \in \mathbb{Z}_m\}$.

Le terme $R_d(c)$ dans (1) vaut, suivant les cas $d = 1$ ou $d > 1$,

$$
\begin{align*}
R_1(c)(T) &= \sum_{0 \leq j \leq dM} c_j (-T)^{(dM-j)}, \\
R_d(c)(T) &= \sum_{0 \leq j \leq dM, j \neq 1, e \mid d} \mu \left(\frac{d}{e} \right) c_j (-1)^{dM-j} T^{d(dM-1)-e(j-1)}.
\end{align*}
$$

(3)

Il s’agit de polynômes, en T^{\pm}, en T si $dM > 0$ et en $1/T$ si $dM = 0$. Le coefficient du terme constant est c_{dM}, sauf si $dM = 1$ et $d > 1$ auquel cas il est nul. Ensuite, le premier terme non constant, de la forme $?T^{p \neq 0}$, varie suivant les situations. Le calcul explicite à partir des formules (3) donne

- Si $d = 1$, $\forall d \in \mathbb{M}$, $?T^x = -c_{dM-1} T^{d}$.

- Si $d > 1$, $\begin{cases}
 dM = 0, \quad \forall T^x = c_0 T^{d(p-1)/p} \\
 dM = 1, \quad \forall T^x = -c_0 \mu(d) T \\
 dM = 2, \quad \forall T^x = c_2 T^{d(p-1)/p} \\
 dM \geq 3, \quad \forall T^x = -c_{dM-1} T^d.
\end{cases}$

d’où les expressions

$$
\begin{align*}
\forall dM & \quad Q_1(c) = (?T^{\pm} + c_{dM})X_d^*((-1)^{dM}T^{d(dM-1)}) \\
 dM = 0, \quad Q_d(c) = (?T^{d(p-1)/p} + c_0)X_d^*(-d) \\
 dM = 1, \quad Q_d(c) = (?T^{d(dM-1)})X_d^*(-d) \\
 dM = 2, \quad Q_d(c) = (?T^{d(p-1)/p} + c_2)X_d^*(-dT^d) \\
 dM \geq 3, \quad Q_d(c) = (?T^d + c_{dM})X_d^*((-1)^{dM}dT^{d(dM-1)})
\end{align*}
$$

(4)

où p désigne le plus petit facteur premier de d.

38 On omet d’indiquer ‘c’ lorsqu’il est sous-entendu superflu.
• Conditions nécessaires à la polynomialité. En dehors du cas $d_M = 1$ qui pose de problèmes particuliers, dans tous les autres cas, le critère de polynomialité 11.5.1 appliqué aux expressions (4) donne aussitôt la condition

$$\left(Q^{(1)}_d(c) \text{ est éventuellement polynomial } \right) \implies \left(c_{d_M} \in \{0, 1\} \right)$$

En effet, c’est déjà clairement la condition pour que $Q^{(0)}_d(c) = c_{d_M}^x$ soit polynomial. Ensuite, par exemple dans les cas $d_M \geq 3$, le terme qui suit est $Q^{(d)}_d = c_{d_M}^x T^d$ où la même condition apparaît, etc.

• Les cas $d_M = 1$. On a $c = (c_0, c_1)$ et

$$\begin{align*}
Q_1(x_1, T) &= (-c_0 T + c_1)^{x_1*}(-1) \\
Q_d(x_d, T) &= (-c_0 \sum_{e|d} \mu\left(\frac{d}{e}\right) T^e)^{x_d*}(-d), \text{ si } d > 1,
\end{align*}$$

Le critère de polynomialité appliqué à Q_1 nous emmène à regarder les produits de n facteurs

$$(-c_0 T + c_1)(-c_0 T + c_1 + 1) \cdots (-c_0 T + c_1 + (n - 1)).$$

Pour chaque $i > 0$, le coefficient en T^i du produit est $(-c_0)^i\left(\sum x_1 \cdots x_{n-i}\right)$, où la somme concerne les $(n-i)$-uplets d’éléments deux à deux distincts de l’ensemble $\{c_1, c_1+1, \ldots, c_1+(n-1)\}$. Une telle somme est donnée par un polynôme en n de degré $n-i+1$, le coefficient en question n’est pas polynomial, sauf évidemment si $c_0 = 0$ auquel cas on a

$$\begin{align*}
Q^{(0)}_1(0, c_1) &= c_{d_M}^{x_1*}(-1) \\
Q^{(0)}_d(0, c_1) &= (d) c_{d_M}^{x_d*}(-d) \quad \text{et} \quad Q^{(d)}_d(0, c_1) = 0, \ \forall i \geq 1, \ \forall d \geq 1.
\end{align*}$$

Par conséquent,

$$\begin{align*}
Q^{(0)}(0, c_1) &= c_{d_M}^{x_1*}(-1) \left(\prod_{d>1} 0 x_d^{*}(-1) \right) \\
Q^{(d)}(0, c_1) &= 0, \ \forall c_0 > 0.
\end{align*}$$

• Les cas $d_M \in \{0, 2\}$. Pour e respectivement (c_0) et (c_0, c_1, c_2) on a

$$Q_d(c_0) = \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \frac{c_0}{T^d-e} \right) x_d^{*}(d/T^d),$$

$$Q_d(c_0, c_1, c_2) = \left(\sum_{e|d} \mu\left(\frac{d}{e}\right) \left(c_0 T^{d+e} + c_1 T^d + c_2 T^{d-e} \right) \right) x_d^{*}(d/T^d),$$

où l’on constate aussitôt l’égalité

$$Q_d(c_0)(x_d, 1/T) = Q_d(0, 0, c_0)(x_d, T), \quad (5)$$

qui réduit le cas $d_M = 0$ à un cas particulier de $d_M = 2$.

143
Pour $d_M = 2$, on a vu dans (4) que l’on a les expressions
\[
\begin{align*}
Q_{1}(c) &= (\bar{T} + c_2)^{X_1T} \\
Q_{d}(c) &= (\bar{T}^{d((p-1)/p)} + c_2)^{X_d*(d^{T_d})}, \text{ si } d > 1.
\end{align*}
\tag{6}
\]

où seuls les cas $c_2 \in \{0, 1\}$ nous intéressent.

- Pour $c_2 = 1$, on a $Q_{d}^{[0]} = 1$. Ensuite, les propriétés élémentaires des factorielles décroissantes dans les expressions (6) justifient les relations
\[
Q_1(X_1, T) - Q_1(X_1-1, T) = Q_1(X_1-1, T) (\bar{T} - (X_1-1)) T
\]
\[
Q_d(X_d, T) - Q_d(X_d-1, T) = Q_d(X_d-1, T) (\bar{T}^{d((p-1)/p)} - (X_d-1) T^d),
\]
dont on déduit, pour tout $i \geq 1$,
\[
(i) \deg Q_i^{[i]} \leq 2 + \deg Q_i^{[i-1]} \\
(ii) \deg Q_d^{[i]} \leq d + \sup \left\{ \deg Q_d^{[i-d((p-1)/p)]}, \ d + \deg Q_d^{[i-d]} \right\}.
\]

On peut alors prouver par induction sur i que l’on a
\[
\deg Q_d^{[i]}(c_0, c_1, c_2=1) \leq 2i, \ \forall i \geq 0, \forall d \geq 1. \tag{7}
\]

En effet, pour $i = 0$ l’assertion est claire puisque $Q_d^{[0]} = 1$. Ensuite, si l’on suppose $\deg Q_i^{[i-1]} \leq 2(i-1)$, l’égalité (i) donne $\deg Q_i^{[i]} \leq 2i$. Pour $Q_d^{[i]}$, on remarque que $2i - 2d(p-1)/p \leq 2i - d$, puisque $1/2 \leq (p-1)/p$, et, à l’aide de (ii), on tire
\[
\deg Q_d^{[i]} \leq d + \sup \{2i - d, \ d + 2(i - d)\} = 2i,
\]
ce qui prouve (7). Par conséquent,
\[
\deg \chi^{[i]}(c_0, c_1, c_2=1) \leq 2i, \ \forall i \geq 0,
\]
puisque $\chi^{[i]}(c) = \sum_{i_1+i_2+\ldots+i_d} Q_{i_1}^{[i_1]}(c_1) Q_{i_2}^{[i_2]}(c_2) \ldots$. On en déduit
\[
\deg \chi^{[-i]}(c_0=1) \leq 2i, \ \forall i \geq 0,
\]
grâce à l’égalité (5).

- Lorsque $c_2 = 0$, on a
\[
\begin{align*}
Q_1(X_1, T) &= (c_0 T^2+c_1 T)^{X_1T} = (\bar{T})^{X_1} (-c_0 T-c_1)^{X_1*(-1)} \\
Q_d(X_d, T) &= \left((-T^d) \sum_{e|d} \mu\left(\frac{d}{e}\right) (-c_0) T^e \right)^{X_d*(d^{T_d})}, \text{ si } d > 1,
\end{align*}
\]
ce qui montre que pour tout m, la fonction centrale
\[
\chi(c_0, c_1, c_2=0) : S_m \to \mathbb{Z}[T]
\]

144
coïncide avec
\[(-T)^m \chi(c_0, -c_1) : S_m \to \mathbb{Z}[T]. \]

En particulier,
\[\chi^{[i]}(c_0, c_1, c_2=0)_m = 0, \quad \forall m > i \geq 0, \]
alors que \(\chi(c_0=0) = \prod_{d \geq 1} 0^{x_d \ast (d/T^d)} \) et donc
\[\chi^{[-i]}(c_0=0)_m = 0, \quad \forall m \geq 1, \forall i \geq 0. \]

- Les cas \(d_M \geq 3 \). On suit la même démarche que pour le cas \(d_M = 2 \) en se restreignant (donc) aux cas où \(c_{d_M} \in \{0, 1\} \).
 - Pour \(c_{d_M} = 1 \) et tout \(d \geq 1 \), on a \(\mathcal{Q}^{[i]}_d = 1 \), et grâce à (6), la relation
 \[\mathcal{Q}_d(x_d, T) - \mathcal{Q}_d(x_d-1, T) = \mathcal{Q}_d(x_d-1, T) \rightarrow T^d=\leftarrow T^{d(d_{M}-1)} \]
 dont on déduit, pour tout \(i \geq 1 \), la majoration
 \[\deg \mathcal{Q}^{[i]}_d (c_{d_M}=1) \leq i, \quad \forall i \geq 0, \forall d \geq 1. \]
 - Lorsque \(c_{d_M} = 0 \), la majoration (8) se simplifie en
 \[\deg \mathcal{Q}^{[i]}_d (c_{d_M}=0) \leq \frac{i}{d_M-1}, \quad \forall i \geq 0, \forall d \geq 1. \]

11.5.3. Corollaire. Soit \(M \) une pseudovariété i-acyclique de type fini de dimension \(d_M \geq 1 \) et telle que \(\dim H^{d_M}_c (M; \mathbb{Q}) \leq 1 \). Alors, pour \(i \in \mathbb{N} \) donné, la famille \(\{ \text{Betti}^{i}_{BM}(BF_m(M; \mathbb{Q})) \}_m \) pour la cohomologie de Borel-Moore est constante pour \(m \geq i \). On a aussi,

a) si \(d_M = 1 \), constance sur \(\{ m \geq 1 \} \);
b) si \(d_M = 2 \) et \(c_2 = 0 \), nullité sur \(\{ m > i \} \);
c) si \(d_M \geq 3 \) et \(c_{d_M} = 0 \), constance sur \(\{ m \geq \frac{i}{d_M-1} \}. \)
Démonstration. On applique les estimations de 11.5.2 avec $c_{d_M} \in \{0, 1\}$. Pour $d_M = 1$, seul le cas $i = 0$ et $c_0=0$ est à considérer. On a pour tout $m \geq 1$

$$
\frac{1}{m!} \sum_{\alpha \in \mathcal{S}_m} \chi^{(0)}(c_0=0, c_1)(\alpha) = \frac{1}{m!} \sum_{\alpha \in \mathcal{S}_m} (c_1) \chi_1^*(-1) \prod_{d>1} 0 \chi_d^*(-d)(\alpha)
$$

$$
= \begin{cases}
1 & \text{si } c_1 = 1 \\
0 & \text{si } c_1 = 0
\end{cases}
$$

Les estimations de 11.5.2 pour le degré \deg des familles de fonctions centrales polynomiales $\chi^{(i)}(c)$ jointes à la proposition 11.4.4 justifient les autres assertions à l’exception du cas $d_M = 2$. Dans ce cas, le procédé donne la constance seulement sur $\{m \geq 2i\}$. Pour aller plus loin, on remarque que $\chi_{\text{Bum}}^{(i)}(M)$ seul dépend des nombre de Betti compacts de M. Le cas $M = \mathbb{C}$ est connu depuis Arnold ([2]) qui montre que la cohomologie rationnelle de χ est acyclique avec Q à l’aide de la suite spectrale basique M orientables. Nous procédons comme dans la preuve du théorème 9.3.15, en dualisant $\tau \in \mathcal{T}(p+1,m)$ discoïde des ouverts $F_{m-1}(M) := \{\tau \in F_m \mid x_i = \bullet\}$ où $j = 1, \ldots, m$. On remarquera ici que $H^k_{\text{Bum}}(M)$ et $H^k_{\text{Bum}}(\hat{M})$ seul diffèrent en degré d_M-1 où

$$
\dim H^d_{\text{Bum}}(\hat{M}) = \dim H^d_{\text{Bum}}(M)+1.
$$

En dualisant (*) on obtient :

$$
0 \rightarrow H^i_{\text{Bum}}(F_{m}(M)) \rightarrow H^i_{\text{Bum}}(F_{m}(\hat{M})) \rightarrow \text{ind}^{\mathcal{S}_m}_{\mathcal{S}_{m-1}} H^i_{\text{Bum}}(F_{m-1}(\hat{M})) \rightarrow 0
$$

et donc

$$
\text{Betti}^i(BF_{m}(\hat{M})) = \text{Betti}^i(BF_{m}(M)) + \text{Betti}^{i-d(m-1)}(BF_{m-1}(\hat{M})).
$$

Lorsque $d_M = 2$, ces remarques montrent que $\{\text{Betti}^i(BF_{m}(\mathbb{C} \setminus c_1))\}_m$ est constante pour $m \geq i$, alors que $\text{Betti}^i(\mathbb{C} \setminus c_1) = c_1$. Ceci termine la justification du cas $d_M = 2$, et achève la preuve du corollaire. □

11.6. Stabilité de $\{\text{Betti}_{\text{Bum}}(BF_{m}(M))\}_m$, cas général

On étend la portée du corollaire 11.5.3 au cas des pseudovariétés générales M orientables. Nous procédons comme dans la preuve du théorème 9.3.15, à l’aide de la suite spectrale basique

$$
\mathcal{E}_\sigma(U_m)^{pq} = \bigoplus_{\tau \in \mathcal{T}(p+1,m)} \text{ind}^{\mathcal{S}_m}_{\mathcal{S}_{m-1}} \sigma^{d_M} \otimes H^Q_{\text{Bum}}(F_+((M \geq 0))) \Rightarrow H^i_{\text{Bum}}(F_{m}(M))
$$

avec $Q = i - (d_M-1)(m-(p+1))$.

146
La compatibilité entre les morphismes \(p^*_m : H^i_{tst}(F_m(M)) \to H^i_{tst}(F_{m+1}(M)) \) et ceux des suites spectrales basiques (9.3.13-(b))

\[
\mathcal{E}_\sigma(a^*_m p^q_1) : \mathcal{E}_\sigma(U^m p^q_1) \to \mathcal{E}_\sigma(U^{m+1} p^{+1,q}_1),
\]
y compris avec les actions des groupes symétriques, ramènent la question de la stabilité de la famille \(\{\text{Betti}_{tst}(BF_m(M))\}_m \), à celle de la stabilité des morphismes de suites spectrales de co-invariants (7.9.1) induits par \(\tau \), i.e.

\[
\Phi_0(\mathcal{E}_\sigma(q^*_m p^q_1)) : \Phi_0(\mathcal{E}_\sigma(U^m p^q_1)) \to \Phi_0(\mathcal{E}_\sigma(U^{m+1} p^{+1,q}_1)).
\]

On est alors emmené à trouver le rang de stabilité des familles de morphismes définis par les morphismes de \(\mathcal{H}_{\tau} \)-modules

\[
\Phi_\ell(p^*_\tau) : \Phi_\ell(H^Q_{tst}(F_\tau(M_{\geq 0}))) \to \Phi_\ell(H^Q_{tst}(F_{\tau,\bullet}(M_{\geq 0})))
\]
définis par les morphismes de \(\mathcal{H}_{\tau} \)-modules

\[
\sum_{\tau \in \mathcal{T}(p+1,m)} H^Q_{tst}(F_\tau(M_{\geq 0}))(\sum_{|\tau|} p^*_\tau) \sum_{\tau \in \mathcal{T}(p+1,m)} H^Q_{tst}(F_\tau(M_{\geq 0}))(\sum_{|\tau|} p^*_\tau)
\]

où \(p_\tau : F_{\tau,\bullet}(M_{\geq 0}) \to F_{\tau}(M_{\geq 0}) \) est la projection sur les \(p+1 \) premières coordonnées, et où \(\mathcal{T} \) est tel que \(m-|\tau|= (p+1)-\ell \), conformément à la notation 8.1.2-(b). L’étude de cette question conduit à l’énoncé suivant.

11.6.1. Proposition. Soit \(M \) est une pseudovariété connexe orientée. Le morphisme

\[
\Phi_0(p^*_m) : \Phi_0(H^i_{tst}(F_m(M))) \to \Phi_0(H^i_{tst}(F_{m+1}(M)))
\]
est bijectif pour \(m \geq 2i \) si \(d_M = 2 \), et pour \(m \geq i \) si \(d_M \geq 3 \).

Démonstration. Soit \(\epsilon := 2 \) si \(d_M = 2 \) et \(\epsilon := 1 \) si \(d_M \geq 3 \). D’après les remarques préliminaires, la proposition résultera de montrer que les morphismes \(\sum p^*_\tau \) dans \((\circ) \) sont des isomorphismes pour \(m \geq \epsilon i \), ce qui découle clairement de ce que pour tout \(m \geq \epsilon i \),

a) le morphisme \(\Phi_\ell(p^*_\tau) \) dans \((\circ\circ) \) est un isomorphisme ;

b) l’application \((___)^*: \mathcal{T}(p+1,m) \to \mathcal{T}(p+1,m+1) \) est bijective pour \(Q \geq 0 \).

(a) Commençons la généralisation suivante du corollaire 11.5.3.

Lemme. Soit \(X \) est une pseudovariété \(i \)-acyclique connexe orientée de dimension \(d_X \geq 2 \). Pour tout \(t \geq 0 \), le morphisme induit

\[
\Phi_t(p^*_m) : \Phi_t(H^i_{tst}(F_m(X))) \to \Phi_t(H^i_{tst}(F_{m+1}(X)))
\]
est bijectif pour \(m \geq i + t \).

Preuve. On raisonne par induction sur \(t \in \mathbb{N} \) puis, pour chaque \(t \) par induction sur \(i \in \mathbb{N} \). Le cas \(t = 0 \) est réglé pour tout \(i \in \mathbb{N} \), par le corollaire 11.5.3. Supposons donc \(t > 0 \) et le lemme vérifié pour \((t-1) \). En dualisant la suite

147
exacte du théorème de scindage 3.1.1-(a) et en appliquant le foncteur $\Phi_t(_\cdot)$ (possible puisque $t > 0$), on a la suite exacte courte

$$0 \rightarrow \bigoplus_{a+b=i} H_{BM}^\alpha(X) \otimes \Phi_{t-1}(H_{BM}^b(F_{m-1})) \rightarrow \Phi_t(H_{BM}^i(F_m))$$

$$m \rightarrow \Phi_{t-1}(\text{ind}_{S_{m-2}} S_{m-1}^{t-1} H_{BM}^i(dX-1)(F_{m-1})) \rightarrow 0$$

(1)

qui montre que la bijectivité de $\Phi_t(p_m^\ast)$ au niveau du terme central est subordonnée par celle des termes extrêmes.

Lorsque $i = 0$, le terme de droite de (1) est nul puisque $dX > 1$ et le lemme résulte des terme de gauche $\Phi_{t-1}(H_{BM}^b(F_{m-1}(X)))$ par l’hypothèse inductive.

Lorsque $i > 0$, le terme de droite n’est pas forcément nul. On remarque alors que la preuve du lemme 1 (p. 112) dans la démonstration du théorème 8.1.5, donnait déjà l’identification

$$\Phi_{t-1}(\text{ind}_{S_{m-2}} S_{m-1}^{t-1}(_\cdot)) \simeq \bigoplus_{\pi \in \{S_{m-2} \setminus S_{m-1}/S_{m-t}\}}(\cdot)_{S_{2m-1}[t,m-1]}^{\prime},$$

où

$$\|2m-1\| \cap \alpha\|t,m-1\| = (m-1)-t', \quad \text{avec } t' \in [t-1,t].$$

On y montrait aussi que l’application naturelle

$$(\cdot)^\ast_m : \left(S_{m-2} \setminus S_{m-1}/S_{m-t}\right) \rightarrow \left(S_{m-1} \setminus S_{m}/S_{m-(t-1)}\right),$$

où $\alpha^\ast = \alpha$ sur $[1,m-1]$ (donc $\alpha^\ast(m) = m$), est bijective dès que $m \geq t + 1$.

De ces remarques, suit que sur les termes de droite de (1), l’application

$$\Phi_{t-1}(\text{ind}_{S_{m-2}} S_{m-1}^{t-1} H_{BM}^i(dX-1)(F_{m-1})) \rightarrow \Phi_{t-1}(\text{ind}_{S_{m-1}} S_{m}^{t} H_{BM}^i(dX-1)(F_{m}))$$

sera bijective dès lors que

$$m \geq i + t.$$

(2)

En effet, pour que (2) soit bijective, il suffit que

a) l’application (1) pour $m \geq t + 1$;

b) l’application $\Phi_{t'}(H_{BM}^{i}(dX-1)(F_{m-1})) \rightarrow \Phi_{t'}(H_{BM}^{i}(dX-1)(F_{m}))$ soit bijective

pour $t' \in [t-1,t]$, donc, que $m-1 \geq i-(dX-1)-t'$, par hypothèses inductives puisque $i-(dX-1) < i$ et $t' \leq t$;

et comme $i \geq 1$, la condition (2) suffit pour avoir (a,b), ce qui termine la preuve du lemme. \hfill \Box

Lorsque $dM \geq 3$, l’application du lemme aux morphismes (3)

$$\Phi_E(p_m^\ast) : \Phi_E(H_{BM}^Q(F_{\ast}(M_{\geq 0}))) \rightarrow \Phi_E(H_{BM}^Q(F_{\ast}(M_{\geq 0})))$$

montre que $\Phi_E(p_m^\ast)$ est bijective sous les conditions

$$((p+1) \geq (Q+2)) \text{ et } (Q \geq 0).$$

(4)
En substituant (cf. notations 8.1.2-(b))
\[
\begin{align*}
Q & \leftrightarrow i - (dM - 1)(m - (p+1)), \\
\ell & \leftrightarrow |\tau| - (m - (p+1)), \\
m - (p+1) & \leftrightarrow |\tau| - \ell,
\end{align*}
\]
les conditions (‡) s'écrivent aussi
\[
(m \geq i - (dM - 2)|\tau| + (dM - 1)\ell) \text{ et } (i \geq |\tau| - \ell),
\]
et comme $|\tau| \geq 2\ell$, on voit aisément que si $dM = 2$, l'intervalle $\{m \geq 2i\}$ est contenu dans (‡‡), tandis que si $dM \geq 3$, c'est le cas de $\{m \geq i\}$.

(b) On raisonne par l'absurde. Nous avons vu dans la preuve du théorème 9.3.15-(b) (p. 134) que l'application $(_)^*$ n'est pas bijective si et seulement si, $2(p+1) < m$. Dans ce cas, si $m \geq 2i$, on a
\[
Q = i - (m - (p+1)) < i - (dM - 1)m \ell \leq \left(\frac{2}{\epsilon} + 1 - dM\right)m/2 \leq 0,
\]
puisque $dM \geq 2$, ce qui est contraire à la condition $Q \geq 0$. □

12. Suites spectrales de Leray

Cette section est consacrée à l'étude de la dégénérescence des suites spectrales de Leray associées aux fibrations $\pi a = \Delta[a]X^m \to F_a(X)$ (en particulier $\pi a = F_{b+a}(X) \to F_a(X)$), lorsque X est i-acyclique et localement connexe.

Avertissement. Le corps k est de caractéristique quelconque et l'espace i-acyclique X n’est pas supposé de type fini.

12.1. Cohomologie à support π-propre

12.1.1. Catégorie d’espaces au-dessus de B. Soit B un espace topologique. On rappelle qu’on appelle « espace de base B, ou au-dessus de B, » la donnée d’une application continue $\pi Y : Y \to B$, et « morphisme d’espaces au-dessus de B » de $\pi Y : Y \to B$ vers $\pi Z : Z \to B$ la donnée une application continue $f : Y \to Z$, rendant commutatif le diagramme ci-contre.

Pour $\pi Y : Y \to B$ donné, la « cohomologie à support πY-propre », notée $H_{\pi!}(\pi Y)$ où $H_{\pi!}(Y; B)$ où même $H_{\pi!}(Y)$, suivant les contextes, comme la cohomologie du complexe
\[
(C_{\pi!}(Y; B), d_{\pi!}) := \mathcal{R}\Gamma(B, \mathcal{R}\pi Y! k_{\pi Y}^B).
\]
Les morphismes naturels de complexes
\[
\mathcal{R}\Gamma_c(B, \mathcal{R}\pi Y! k_{\pi Y}^B) \to \mathcal{R}\Gamma(B, \mathcal{R}\pi Y! k_{\pi Y}^B) \to \mathcal{R}\Gamma(B, \mathcal{R}\pi Y_* k_{\pi Y}^B)
\]
149
induisent des morphismes naturels en cohomologie :

\[H_c(Y) \to H_{\pi!}(Y; B) \to H(Y). \]

(††)

12.1.2. On rappelle (cf. 1.1.2) que dans la mesure où la résolution du faisceau constant par les cochaînes d’Alexander-Spanier \(\delta \) est une résolution \(\Phi \)-mollle pour toute famille paracompactifiante \(\Phi \) de \(B \), on dispose du candidat canonique des « cochaînes à support \(\pi \)-propre » :

\[(C_{\pi!}(Y; B), d_{\pi!}) := \Gamma(Y; \pi_Y!(\delta^{-}(X; k), d_{\bullet})), \]

puisque \(\pi_Y! \) conserve la propriété d’être c-mou (39) et qu’un c-mou sur la pseudovariété dénombrable à l’infini \(B \) est \(\Gamma(B, ____)_\)-acyclique (40). Des raisons qui expliquent aussi que \(H_c(Y) \) est calculée par le complexe des « cochaînes à support compact »

\[(C_c(Y; B), d_c) := \Gamma_c(Y; \pi_Y!(\delta^{-}(X; k), d_{\bullet})). \]

Dans la suite on notera

\[Z_{\pi!}(Y; B) := \ker(d_{\pi!}) \quad \text{et} \quad B_{\pi!}(Y; B) := \text{im}(d_{\pi!}). \]

et de manière analogue pour le complexe \((C_c(Y; B), d_c)\).

12.1.3. Lorsque \(B = \{\text{pt}\} \), on a \(H_{\pi!}(_; B) = H_c(_). \) La cohomologie à support \(\pi \)-propre étend la cohomologie à support compact et tout comme elle, si \(j : U \to Y \) est une inclusion ouverte, complémentaire de l’inclusion fermée \(i : F \hookrightarrow Y \), on munit \(U \) et \(F \) des structures d’espaces basés sur \(B \) en composant les inclusions avec \(\pi_Y : Y \to B \), et l’on dispose alors des morphismes

- de prolongement par zéro \(j_! : H_{\pi!}(U; B) \to H_{\pi!}(Y; B) \)
- de restriction à un fermé \(i^* : H_{\pi!}(Y; B) \to H_{\pi!}(F; B) \)

et d’une suite exacte longue de cohomologie à support \(\pi \)-propre

\[\cdots \to H^{i-1}_{\pi!}(F; B) \to H^i_{\pi!}(U; B) \to H^i_{\pi!}(Y; B) \to H^i_{\pi!}(F; B) \to H^{i+1}_{\pi!}(U; B) \to \cdots \]

qui est aussi un complexe de \(H(B)\)-modules.

En effet, une décomposition en parties respectivement ouverte et fermée \(Y = U \cup F \) donne lieu à la suite exacte courte

\[0 \to j_! k_U \to k_Y \to i_! k_F \to 0 \]

de \(\text{Mod}(k_Y) \), et donc au triangle exact de \(D^+_{\pi!}(B) \) :

\[\mathcal{R}\pi_{Y!} j_! k_U \to \mathcal{R}\pi_{Y!} k_Y \to \mathcal{R}\pi_{Y!} i_! k_F \to \]

où nous avons \(\mathcal{R}\pi_{Y!} j_! = \mathcal{R}\pi_{U!} \) et \(\mathcal{R}\pi_{Y!} i_! = \mathcal{R}\pi_{F!} \), puisque \(j_! \) et \(i_! \) sont exacts et transforment c-mous en c-mous (39).

Enfin, dans le modèle des cochaines d’Alexander-Spanier, les morphisme naturels \(\pi_{Y!} j_{!*} \mathcal{A}_X^i \to \pi_{Y!} \mathcal{A}_Y^i \) et \(\pi_{Y!} \mathcal{A}_X^i \to \pi_{Y!} \mathcal{A}_F^i \) correspondent clairement aux opérations de prolongement par zéro et de restriction habituels.

12.1.4. Si \(f : Z \to Y \) est une application continue et propre entre deux espaces au-dessus de \(B \), le morphisme d’adjonction \(k_{\mathcal{X}Y} \to (Rf_* \circ f^{-1}) k_{\mathcal{X}Y} \) donne lieu au morphisme de complexes de faisceaux

\[
(R\pi_{Y!} k_{\mathcal{X}Y}) \to (R\pi_{Y!} \circ Rf_*) k_{\mathcal{X}Z} = (R\pi_{Y!} \circ Rf_! k_{\mathcal{X}Z}) = R\pi_{Z!} k_{\mathcal{X}Z},
\]

d’où le morphisme « image-inverse » pour la cohomologie à support \(\pi \)-propre

\[f^* : H_{\pi!}(Y;B) \to H_{\pi!}(Z;B). \]

La naturalité des morphismes \((\star\star)\) de 12.1.1, donne alors lieu au diagramme commutatif de morphismes image-inverse

\[
\begin{array}{ccc}
H_c(Y) & \longrightarrow & H_{\pi!}(Y;B) & \longrightarrow & H(Y) \\
\downarrow f^* & & \downarrow f^* & & \downarrow f^* \\
H_c(Z) & \longrightarrow & H_{\pi!}(Z;B) & \longrightarrow & H(Z)
\end{array}
\]

L’analogue pour la cohomologie \(H_{\pi!}(_ ; B) \) de la propriété caractéristique des espaces \(i \)-acycliques, le théorème 1.3.1-(d), est également vérifiée.

12.1.5. Proposition. Soit \(X \) un espace \(i \)-acyclique. Étant donnés des espaces basés \(\pi_Z : Z \to B \) et \(\pi_Y : Y \to B \), soit \(\pi_{X \times Y} : X \times Y \to B \), \((x,y) \mapsto \pi_Y(y)\) et notons \(p_2 : X \times Y \to Y \), \((x,m) \mapsto m\). Soit \(f : Z \to X \times Y \) un morphisme d’espaces au-dessus de \(B \), notons \(f_2 := p_2 \circ f \). Soit \(j : V \to Y \) un plongement ouvert, notons \(f_2' : f^{-1}(V) \to V \) la restriction de \(f_2 \). On a le diagramme commutatif d’espaces au-dessus de \(B \) suivants,

\[
\begin{array}{ccc}
f_2^{-1}(V) & \longrightarrow & Z \twoheadrightarrow X \times Y \\
\downarrow f_2' & & \downarrow f_2 & \downarrow p_2 \\
V & \twoheadrightarrow & Y.
\end{array}
\]

Alors, si \(f \) et \(f_2' \) sont propres et si \(j_1 : H_{\pi!}(V;B) \to H_{\pi!}(Y;B) \) est surjectif, on a

\[(f^* : H_{\pi!}(X \times Y;B) \to H_{\pi!}(Z;B)) = 0. \]

Démonstration. C’est presque littéralement la même preuve que 1.3.1-(d).

Soient \(p_1 : X \times Y \to X \) la projection canonique et \(f_1 := p_1 \circ f \). Par Künneth, on a \(H_{\pi!}(X \times Y;B) = H_c(X) \otimes H_{\pi!}(Y;B) \) et il suffit de montrer que pour tous cocycles \(\omega \in Z_c(X) \) et \(\varpi \in Z_{\pi!}(Y;B) \), le cocycle

\[f^*(\omega \otimes \varpi) = f^*(p_1^* \omega \cup p_2^* \varpi) = f_1^* \omega \cup f_2^* \varpi \in Z_{\pi!}(Z;B) \quad (\star) \]

est la différentielle d’une cochaines à support \(\pi \)-propre de \(Z \). Or, il existe par hypothèse \(\tau \in Z_{\pi!}(V;B) \) qui représente la classe de \(\varpi \) dans \(H_{\pi!}(Y;B) \). On peut donc remplacer dans (\(\star\)) \(f_2^* \varpi \) par \(f_2^* \tau \) qui est à support \(\pi \)-propre dans \(f_2^{-1}(V) \) donc dans \(Z \) par le prolongement par zéro \(j_1 \). D’autre part, comme
\(X\) est \(i\)-acyclique, on a \(f_1^* \omega = f_1^* \alpha \) pour une certaine cochaîne \(\alpha\) de \(X\) (à support non nécessairement compact), et alors
\[
f_1^* \omega \cup f_2^* \tau = df_1^* \alpha \cup f_2^* \tau,
\]
où \(f_1^* \alpha \cup f_2^* \tau\) est à support \(\pi\)-propre de \(Z\) puisqu’il en est ainsi de \(f_2^* \tau\). On a donc bien \(f^*(\omega \otimes \varpi) = 0\) dans \(H_{\pi!}(Z; B)\).

\[\square\]

12.2. Localisation du théorème de scindage

12.2.1. Naturalité de \(H_{\pi!}(_; B)\) relative aux ouverts de \(B\). Soit \(B'\) un ouvert de \(B\). Étant donné \(\pi_Y : Y \to B\), on note \(Y' := \pi_Y^{-1}(B)\) et \(\pi_Y' : Y' \to B'\) la restriction de \(\pi_Y\). Nous avons ainsi un diagramme cartésien de plongements ouverts :

\[
\begin{array}{ccc}
Y' & \longrightarrow & Y \\
\downarrow \pi_Y' & & \downarrow \pi_Y \\
B' & \longrightarrow & B
\end{array}
\]
et un morphisme naturel de restriction de complexes
\[
\mathbb{R}\Gamma(B, \mathbb{R}\pi_Y^! \underline{L_0}) \to \mathbb{R}\Gamma(B', \mathbb{R}\pi_{Y'}^! \underline{L_0}) = \mathbb{R}\Gamma(B', \mathbb{R}\pi_{Y'}^! \underline{L_0})
\]
donnant lieu à un morphisme naturel de restriction :
\[
H_{\pi!}(Y; B) \to H_{\pi!}(Y'; B').
\]

Nous aurons besoin du résultat classique suivant (\((41)\)).

12.2.2. Proposition. Soient \(Y\) et \(B\) des espaces localement compacts et soit \(\pi : Y \to B\) une application continue. Pour tout \(b \in B\), le morphisme canonique
\[
\lim_{B' \ni b} H_{\pi!}(\pi^{-1}(B'); B') \to H_\ell(\pi^{-1}(b))
\]
est un isomorphisme.

12.2.3. Notations. Pour la suite de cette section nous fixons un espace \(X\) et un entier \(0 \leq a \in \mathbb{N}\). On note \(F_a := F_a(X)\), si \(a > 0\), et \(F_0 := \{\text{pt}\}\).

Pour tous \(a \leq \ell \leq m \in \mathbb{N}\), nous avons introduit (2.1-(N-3)) les espaces
\[
\Delta_{\ell}^{[a]} X^m := \Delta_{\ell} X^m \cap (X^{m-a} \times F_a),
\]
que nous notons aussi \(\Delta_{\ell}^{[a]} X^m\) lorsque l’on aura besoin d’une écriture plus compacte. Nous y avons aussi introduit la projection \(\pi_a : X^m \to X^a\) sur les dernières \(a\) coordonnées, et les espaces de base \(F_a\)
\[
\pi_a : \Delta_{\ell}^{[a]} X^m \to F_a \quad \text{et} \quad \pi_a : F_m \to F_a.
\]

\[^{41}\text{Conséquence immédiate de la proposition 2.5.2 p.103, [24].}\]
Maintenant, pour tout ouvert \(U \subseteq F_a \), nous notons
\[
U \Delta_{\ell}^{m[a]} := \pi^{-1}_a U \cap \Delta_{\ell}^{m[a]} \quad \text{et} \quad UF_m := \pi^{-1}_a U \cap F_m,
\]
et considérons les produits fibrés :
\[
\begin{array}{ccc}
U \Delta_{\ell}^{m[a]} & \rightarrow & \Delta_{\ell}^{m[a]} \\
\pi_a \downarrow & & \downarrow \pi_a \\
U & \rightarrow & F_a
\end{array}
\quad \begin{array}{ccc}
UF_m & \rightarrow & F_m \\
\pi_a \downarrow & & \downarrow \pi_a \\
U & \rightarrow & F_a
\end{array}
\quad \begin{array}{ccc}
X \times UF_m & \rightarrow & X \times F_m \ni (x, y) \\
\pi_a \downarrow & & \downarrow \pi_a \\
X \times F_a & \rightarrow & \mathcal{F}_a \ni \pi_a(y)
\end{array}
\]

Les décompositions ouvertes-fermées
\[
U \Delta_{\ell}^{m[a]} \subset \Delta_{\ell}^{m[a]} \quad \text{et} \quad X \times UF_m = UF_{1+m} \sqcup \Delta_m(X \times UF_m)
\]
sont alors des décompositions d’espaces basés sur \(U \).

On peut maintenant énoncer l’analogue du théorème 3.1.1 dans le contexte d’espaces basés sur \(U \). Il est important de remarquer que si dans 3.1.1 la \(i \)-acyclicité était une condition suffisante, maintenant elle apparaît comme une condition nécessaire et suffisante.

12.2.4. Théorème de scindage local. Soient \(1 \leq a \leq \ell \leq m \in \mathbb{N} \). On fixe un ouvert \(U \subseteq F_a \). Les espaces dans cet énoncé sont des sous-espaces de \(\pi_a : X^{m-a} \times U \rightarrow U \). On note \(H_{\pi!}(_) \) la cohomologie à support \(\pi_a \)-propre. Alors, \(X \) est \(i \)-acyclique, si et seulement si, il vérifie les assertions suivantes.

a) Pour \(m \geq a \geq 1 \) et un ouvert \(U \subseteq F_a \), le morphisme de restriction
\[
H_{\pi!}(X \times UF_m) \rightarrow H_{\pi!}(\Delta_{\ell}^{m[a]}(X \times UF_m))
\]
est nul et la suite
\[
0 \rightarrow H_{\pi!}(UF_m)[-1]^m \rightarrow H_{\pi!}(UF_{m+1}) \rightarrow H_{\pi!}(X \times UF_m) \rightarrow 0
\]
extraite de la suite longue de cohomologie à support \(\pi \)-propre, est exacte.

b) Pour \(m \geq \ell \geq a \geq 1 \) et un ouvert \(U \subseteq F_a \), le morphisme de restriction
\[
H_{\pi!}(U \Delta_{\ell}^{m[a]}) \rightarrow H_{\pi!}(U \Delta_{\ell-1}^{m[a]})
\]
est nul et la suite
\[
0 \rightarrow H_{\pi!}(U \Delta_{\ell-1}^{m[a]})[-1] \rightarrow H_{\pi!}(U \Delta_{\ell}^{m[a]}) \rightarrow H_{\pi!}(U \Delta_{\ell-1}^{m[a]}) \rightarrow 0
\]
extraite de la suite longue de cohomologie à support \(\pi \)-propre, est exacte.

Démonstration. On suppose que \(X \) est \(i \)-acyclique. La preuve de (a) et (b) est alors la même que dans 3.1.1 modulo la version de la propriété fondamentale des espaces \(i \)-acycliques pour les espaces basés sur \(U \) de la proposition 12.1.5.
Pour l’assertion (a), on est conduit au diagramme
\[
\begin{array}{ccc}
\Delta_{\leq m}(X \times UF_m) & \xrightarrow{f_2} & X \times UF_m \\
\downarrow & & \downarrow p_2 \\
UF_m & \end{array}
\]
ôù l’application \(f_2\) est propre car revêtement trivial d’ordre \(m\).

Pour (b), on raisonne par induction sur \(\ell\). Sa valeur la plus petite est \(\ell := a\), auquel cas \(\Delta_{\leq \ell-1}^{(a)} = \emptyset\) et l’assertion est claire quel que soit \(m\). Ensuite, en supposant l’assertion établie pour \(\ell-1 \geq a\), on est conduit à considérer le diagramme commutatif suivant où \(m \geq \ell\)
\[
\begin{array}{ccc}
f_{2}^{-1}(U \Delta_{\leq \ell-1}^{m-1[a]}) & \xrightarrow{f_2} & U \Delta_{\leq \ell-1}^{m-1[a]} \\
\downarrow & & \downarrow \\
U \Delta_{\leq \ell-1}^{m-1[a]} & \xrightarrow{f_{2}^{-1}} & U \Delta_{\leq \ell-1}^{m-1[a]}
\end{array}
\]
où \(f_{2}^{-1}\) est propre car restriction (par l’image) de l’application propre de même nom \(f_{2}^{-1}: \Delta_{\leq \ell-1}^{m-1} \rightarrow \Delta_{\leq \ell-1}^{m-1}\) de la preuve de 3.1.1-(b).

Réciproquement, si \(m = \ell = a = 1\) et si \(U = X\), le morphisme \(H_{\pi 1}(X \times X) \rightarrow H(\Delta_1(X \times X))\) est nul. Or, ce morphisme s’identifie au cup-produit
\[\cup: H_c(X) \otimes H(X) \rightarrow H(X)\]
et \(X\) est bien \(i\)-acyclique.

\[\Box\]

12.2.5. Le corollaire suivant est un résultat technique qui sera très utile pour montrer que les faisceaux des cohomologie à support \(\pi\)-propre de la fibration \(\pi_a: F_m \rightarrow F_a\) sont constants sur les composantes connexes de \(F_a\). Ceci participera ensuite de manière décisive dans l’étude des suites spectrales de Leray correspondantes. (Voir la remarque 4.2.4.)

12.2.6. Proposition. Soit \(X\) un espace \(i\)-acyclique. Soient \(a \leq m \in \mathbb{N}\) et \(\pi_{m,a}: F_m(X) \rightarrow F_a(X)\), \((x_1, \ldots, x_m) \mapsto (x_{m-a+1}, \ldots, x_m)\). Pour tout \(\pi \in F_a\), le morphisme de restriction
\[\rho_{m,a}: H_{\pi 1}(F_m(X)) \rightarrow H_c(\pi_{m,a}^{-1}(\pi))\]
est surjectif.

Démonstration. On raisonne par induction sur \(m \geq a\). Lorsque \(m = a\), on a \(\pi_a = \text{id}_{F_a}\) et donc \(H_{\pi 1}(F_m) = H(F_a)\), et cette cohomologie se surjecte clairement sur \(H_c(\pi) = H^0(\pi) = k\).

Dans le cas général, on considère décomposition en parties respectivement ouverte et fermée
\[X \times F_m = F_{m+1} \sqcup \Delta_m(X \times F_m)\]

154
et la décomposition qu’elle induit sur le fermé $X \times \pi^{-1}_{m,a} \bar{x}$, à savoir

$$X \times \pi^{-1}_{m,a} \bar{x} = \pi_{m+1,a}^{-1} \bar{x} \sqcup \Delta_m (X \times \pi^{-1}_{m,a} \bar{x}).$$

On considère alors le morphisme de restrictions des suites de cohomologie à supports π-propres

$$0 \rightarrow H_{\pi!}(F_m)[-1]^m \rightarrow H_{\pi!}(F_{m+1}) \rightarrow H_{\pi!}(X \times F_m) \rightarrow 0$$

$$(\rho_m) \downarrow \quad \rho_{m+1} \downarrow \quad \xi \downarrow$$

$$(*)$$

où la première ligne est exacte d’après 12.2.4-(a) (la seconde aussi, mais on n’en aura pas besoin). La colonne de gauche est surjective puisque $\rho_{m,a}$ l’est par hypothèse de récurrence, et la colonne de droite l’est puisque le morphisme de restriction $\xi : H_{\pi!}(X \times F_m) \rightarrow H_c(X \times \pi^{-1}_{m,a} \bar{x})$ s’identifie trivialement à $\text{id} \otimes \rho_{m,a} : H_c(X) \otimes H_{\pi!}(F_m) \rightarrow H_c(X) \otimes H_c(\pi^{-1}_{m,a} \bar{x})$. Une chasse au diagramme élémentaire montre alors la surjectivité de $\rho_{m+1,a}$.

\[\square \]

12.2.7. Polynôme de Poincaré de la cohomologie à support π-propre

Pour tout ouvert $U \subseteq F_a$ et tout $\pi : Z \rightarrow U$ tel que dim$_k H_{\pi!}(Z; U) < \infty$, on note, de manière analogue à 4.1.3,

$$P_{\pi!}(Z; U)(T) := \sum_{i \in \mathbb{Z}} \text{dim}_k(H^i_{\pi!}(Z; U)) T^i.$$

Le corollaire suivant de 12.2.4-(a) est un ingrédient essentiel dans la preuve de dégénérescence de la suite spectrale de Leray du théorème 12.4.9. (Comparer à 4.2.3.)

12.2.8. Corollaire. Soit X un espace i-acyclique tel que dim$_k H_c(X) < \infty$ et soit $U \subseteq F_a(X)$ un ouvert tel que dim$_k H(U) < \infty$. Alors, pour tout $b > 0$,

$$P_{\pi!}(UF_{b+a}(X); U) = P(U) \cdot P_c(F_b(X \sim a)).$$

Démonstration. Par 12.2.4-(a), on a l’égalité

$$P_{\pi!}(UF_m; U) = P_{\pi!}(UF_{m-1}; U) \cdot (P_c(X) + (m-1)T)$$

que l’on va iterer jusqu’à ce que $m-1 = a$, auquel cas $P_{\pi!}(UF_a; U) = P(U)$ puisque $UF_a = U$ et que $\pi_a = \text{id}_U$. Le produit résiduel

$$(P_c(X) + aT) \cdots (P_c(X) + (m-1)T)$$

étant alors clairement égal à $P_c(F_{m-a}(X \sim a)).$ \[\square \]
12.3. Constance des faisceaux de cohomologie à support π-propre

Pour $a \leq \ell \leq m$, reprenons les espaces F_m et $\Delta_{m[a]}^{\ell}$ de base F_a et les décompositions ouvertes-fermées de base F_a

\[
X \times F_m = F_{1+m} \sqcup \Delta_m (X \times F_m) \quad (\diamond_1)
\]

\[
\Delta_{m[a]}^{\ell} = \Delta_{\ell}^{m[a]} \sqcup \Delta_{\ell-1}^{m[a]} \quad (\diamond_2)
\]

12.3.1. Les faisceaux $\mathcal{H}^i_{\pi^!(_)}$ sur F_a

Le cas $\Delta_{m[a]}^{\ell}$. Reprenons l’application $\pi_a : \Delta_{m[a]}^{\ell} \to F_a$ et introduisons les faisceaux :

\[
\mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) := R^i\pi_{a!}(\Delta_{m[a]}^{\ell}), \quad \forall i \in \mathbb{Z}
\]

dont les fibres sont (12.2.2)

\[
\mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell})_x = H^i(\pi_{a}^{-1}(x)), \quad \forall x \in F_a(X)
\]

D’autre part, le foncteur $R\pi_{a!}$ appliqué au triangle exact de $D^+_k(\Delta_{m[a]}^{\ell})$

\[
j_{\Delta_{m[a]}^{\ell}} : k_{\Delta_{m[a]}^{\ell}} \to k_{\Delta_{m[a]}^{\ell-1}} \quad (\rho) \to i_{\Delta_{m[a]}^{\ell-1}} k_{\Delta_{m[a]}^{\ell-1}} \to
\]

associé à la décomposition (\diamond_2), où $j_!$ est le prolongement par zéro et ρ la restriction, donne la suite exacte longue de faisceaux localement constants :

\[
\cdots \to \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) \xrightarrow{j_!} \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) \xrightarrow{\rho_*} \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell-1}) \xrightarrow{+1} \cdots \quad (\dagger\dagger)
\]

Le cas $F_m(X)$. La même démarche sur la décomposition (\diamond_1), nous conduit à la suite exacte longue de faisceaux localement constants sur F_a

\[
\mathcal{H}^i_{\pi^!}(F_{1+m}) \xrightarrow{j_{1+m}} \mathcal{H}^i_{\pi^!}(X \times F_m) \xrightarrow{\rho_*} \mathcal{H}^i_{\pi^!}(\Delta_m(X \times F_m)) \xrightarrow{+1} \cdots \quad (\dagger)
\]

12.3.2. Théorème de scindage. Soit X un espace i-acyclique.

a) Pour $a \leq m \in \mathbb{N}$, les morphismes de faisceaux de la suite $(\dagger)\dagger$

\[
\mathcal{H}^i_{\pi^!}(X \times F_m) \xrightarrow{\rho_*} \mathcal{H}^i_{\pi^!}(\Delta_m(X \times F_m)), \quad \forall i \in \mathbb{Z},
\]

sont nuls et l’on a une suite exacte courte de faisceaux

\[
0 \to \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}X \times F_m)[-1] \to \mathcal{H}^i_{\pi^!}(F_{1+m}) \to \mathcal{H}^i_{\pi^!}(X \times F_m) \to 0.
\]

b) Pour $0 \leq a \leq \ell-1$ et $\ell \leq m \in \mathbb{N}$, les morphismes de faisceaux dans $(\dagger\dagger)$

\[
\mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) \xrightarrow{\rho_*} \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell-1}), \quad \forall i \in \mathbb{Z},
\]

sont nuls et l’on a la suite exacte courte de faisceaux

\[
0 \to \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell-1})[-1] \to \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) \to \mathcal{H}^i_{\pi^!}(\Delta_{m[a]}^{\ell}) \to 0.
\]
c) *Si* X *est, de plus, localement connexe, les faisceaux dans (a,b) sont constants sur les composantes connexes de* $F_a(X)$ *(cf. 1.3.5 et 2.2.2).*

Démonstration. La preuve de (a) et (b) est essentiellement la même que celle de 3.1.1. On indique brièvement les modifications à faire pour prouver (b). La preuve pour (a) suit exactement la même démarche.

Preuve de (b). On reprend les notations de 12.2.3. Pour un ouvert $U \subseteq F_a$, on pose $U\Delta_{\leq \ell}^m[a] := \pi_a^{-1}(U)$. On a les suites exactes courtes (12.2.4-(b)) :

$$0 \rightarrow H_\pi!(U\Delta_{\leq \ell-1}^m[a])[-1] \rightarrow H_\pi!(U\Delta_{\leq \ell}^m[a]) \rightarrow H_\pi!(U\Delta_{\leq \ell}^m[a]) \rightarrow 0. \quad (*)$$

Cela étant, la naturalité de la cohomologie à supports propres relative à la base (12.2.1) permet de dire que si $\pi_a : M \rightarrow F_a$ est un espace topologique basé sur F_a, et que l’on note $UM := \pi_a^{-1}(U)$, la correspondance

$$U \rightsquigarrow H_\pi!(UM)$$

définit le préfaisceau $\overline{H}_\pi!(M)$ de k-espaces vectoriels sur F_a. Cette idée appliquée aux suites $(*)$ donne la suite exacte de préfaisceaux sur F_a :

$$0 \rightarrow \overline{H}_\pi!(\Delta_{\leq \ell-1}^m[a])[-1] \rightarrow \overline{H}_\pi!(\Delta_{\leq \ell}^m[a]) \rightarrow \overline{H}_\pi!(\Delta_{\leq \ell}^m[a]) \rightarrow 0,$n

e et comme le faisceau engendré par $\overline{H}_\pi!(_)$ est précisément le faisceau $H_\pi!(_)$, on obtient l’exactitude de la suite courte des faisceaux sur F_a :

$$0 \rightarrow H_\pi!(\Delta_{\leq \ell}^m[a])[-1] \rightarrow H_\pi!(\Delta_{\leq \ell}^m[a]) \rightarrow H_\pi!(\Delta_{\leq \ell}^m[a]) \rightarrow 0,$n

e donc aussi l’annulation du morphisme ρ_a dans la suite longue $(††)$.

Commentaire. On remarquera que grâce à l’exactitude des ces suites courtes, l’assertion : “le faisceau $H_\pi!(\Delta_{\leq \ell}^m[a])$ est constant sur une composante connexe C de F_a ” sera conséquence de ce que le faisceaux $H_\pi!(\Delta_{\leq \ell-1}^m[a])$ et $H_\pi!(\Delta_{\leq \ell}^m[a])$ la vérifient. Or, comme la plus petite valeur possible de ℓ vérifie $a = \ell - 1$ et que $H_\pi!(\Delta_{\leq \ell}^m[a]) = H_\pi!(\Delta_{\leq \ell}^m[a])$, une preuve de l’assertion par récurrence découle de prouver seulement que les faisceaux $H_\pi!(\Delta_{\leq \ell}^m[a])$ sont constants sur C et ce, pour tout $\ell \geq a$ (et pas seulement $\ell > a$).

Preuve de (c). Nous commençons par montrer que les faisceaux $H_\pi!(F_m)$ sont constants sur une composante connexe C de F_a.

Nous procédons par induction sur $m \geq a$, le cas $m = a$ étant évident. Supposons maintenant que $H_\pi!(F_m)$ est constant sur C. Comme $\Delta_m(X \times F_m)$ est isomorphe au produit $[1,m] \times F_m$, le faisceau $H_\pi!(\Delta_mX \times F_m)$ est isomorphe à $H_\pi!(F_m)^m$ et il est donc constant sur C. D’autre part, on a $H_\pi!(X \times F_m) \simeq H_\pi!(X) \otimes_k H_\pi!(F_m)$ et $H_\pi!(X \times F_m)$ est aussi constant sur C. Par conséquent, dans la suite exacte courte de (a)

$$0 \rightarrow H_\pi!(\Delta_mX \times F_m)[-1] \rightarrow H_\pi!(F_{k+m}) \rightarrow H_\pi!(X \times F_m) \rightarrow 0, \quad (**)$$

les faisceaux de droite et de gauche sont constants. Nous allons en déduire que celui du centre l’est également.

157
Critère de trivialité d’extensions de faisceaux constants. Dans une suite exacte courte de faisceaux sur une composante connexe C de F_a

\[0 \to A \to L \to B \to 0 \]

où A et B sont constants, le faisceau L est constant, si et seulement si la suite est scindée, donc si et seulement si, l’application naturelle

\[\text{Hom}_{F_a}(L, L) \to \text{Hom}_{F_a}(B, B) \]

est surjective, et comme B est constant sur un espace localement connexe, ceci équivaut à la surjectivité de

\[\Gamma(C, L) \to \Gamma(C, B) = B_z, \quad \forall z \in C. \]

Dans le cas de la suite de faisceaux $(\ast\ast)$, si $\pi \in F_a$ et si C est la composante connexe de F_a contenant π, on a

\[\Gamma(C, \mathcal{H}_{\pi!(X \times F_m)}) = \mathcal{H}_{\pi!}(X \times F_m) \pi = H_c(X) \otimes \mathcal{H}_{\pi!}(F_m) \pi \]

\[= H_c(X) \otimes H_c(\pi_a^{-1} \pi), \]

d’après 12.2.2. D’autre part, le morphisme $\Gamma(C, _) \to (_, \pi) \quad \text{germe en } \pi$, donne sur le préfaisceau $\mathcal{H}_{\pi!}(X \times F_m)$

\[\begin{array}{ccc}
\Gamma(C, \mathcal{H}_{\pi!(X \times F_m)}) & \to & \mathcal{H}_{\pi!}(X \times F_m) \pi = \Gamma(C, \mathcal{H}_{\pi!(X \times F_m)}) \\
H_c(X) \otimes H_c(CF_m) & \to & H_c(X) \otimes H_c(\pi_a^{-1} \pi) \\
\text{id} \otimes \rho_C & \to & \text{id} \otimes \rho_C
\end{array} \]

où l’on voit apparaître la restriction $\rho_C : H_{\pi!}(CF_m) \to H_c(\pi_a^{-1} \pi)$ qui est surjective comme conséquence de la surjectivité de $\rho_{m,a} : H_{\pi!}(F_m) \to H_c(\pi_a^{-1} \pi)$, d’après 12.2.6, et du fait que, dans la décomposition

\[H_{\pi!}(F_m) = \bigoplus_{C \in \Pi_a F_a} H_{\pi!}(C'F_m), \]

la restriction $H_{\pi!}(C'F_m) \to H_c(\pi_a^{-1} \pi)$ est nulle si $C' \not\equiv \pi$. Le morphisme (\dagger) est par conséquent surjectif. Comme d’autre part une section globale d’un préfaisceau détermine une section globale du faisceau associé, le diagramme naturel induit par les prolongements par zéro

\[\begin{array}{ccc}
\Gamma(C, \mathcal{H}_{\pi!(F_{1+m})}) & \to & \Gamma(C, \mathcal{H}_{\pi!(X \times F_m)}) \\
\Gamma(C, \mathcal{H}_{\pi!(F_{m+1})}) & \to & \Gamma(C, \mathcal{H}_{\pi!(X \times F_m)})
\end{array} \]

(\dagger)

permet de conclure à la surjectivité du morphisme

\[\Gamma(C, \mathcal{H}_{\pi!(F_{1+m})}) \to \Gamma(C, \mathcal{H}_{\pi!(X \times F_m)}), \]

et le critère de trivialité d’extensions de faisceaux constants s’applique, et le faisceau $\mathcal{H}_{\pi!(F_{1+m})}$ est bien constant sur C.

\[^{42} \text{Voir aussi la remarque 4.2.2.} \]

158
Preuve de la deuxième partie de (c). D’après le commentaire à la fin de la preuve de (b), il suffit de prouver que les faisceaux $\mathcal{H}_{\pi!}(\Delta_\ell^{m|a})$ sont constants sur les composantes connexes de \mathcal{F}_a.

On a la décomposition en parties ouvertes (cf. 2.3.3)

$$\Delta_\ell^m = \bigsqcup_{p \in \mathcal{P}_\ell(m)} F_p.$$

L’inclusion $F_p \subseteq \Delta_\ell^{m|a}$ a lieu, si et seulement si, la partition p de $[1,m]$ décompose l’intervalle $[m-a+1,m]$ en singletons. Appelons une telle partition « π_a-adaptée ». Si p n’est pas π_a-adaptée, on a $F_p \cap \Delta_\ell^{m|a} = \emptyset$.

Si p est π_a-adaptée, la projection $\pi_a : F_p \to F_a$ (sur les a derniers termes) est trivialement équivalente à des projections $\pi_a : F_\ell \to F_a$ déjà traitées. Le faisceau $\mathcal{H}_{\pi_a}(F_p)$ est donc constant sur les composantes connexes de F_a. On conclut ensuite grâce à la décomposition évidente

$$\mathcal{H}_{\pi!}(\Delta_\ell^{m|a}) = \bigoplus_p \mathcal{H}_{\pi!}(F_p),$$

où p décrit l’ensemble des partitions $p \in \mathcal{P}_\ell(m)$ qui sont π_a-adaptées. □

12.3.3. Remarque et notation. L’assertion 12.3.2-(c) est la généralisation de la trivialité monodromique annoncée dans le commentaire 1.3.5 par le fait qu’elle montre pour $\pi_a : F_{b+a}(X) \to F_a(X)$ l’une identification canonique des fibres $H_{\pi_a}(F_{b+a}(X))_x = H_c(F_b(X \setminus \pi))$ lorsque π parcourt une composante connexe C de $F_a(X)$. Il est intéressant d’observer que la connexité par arcs n’est pas concernée et que le phénomène dépasse de ce fait le cadre classique de la monodromie. L’assertion permet de comprendre le sens à donner à la notation $H_c(F_m(X \setminus a))$ où $a, m \in \mathbb{N}$ (cf. 12.4.4).

12.4. Dégénérescence des suites spectrales de Leray

12.4.1. Critère élémentaire de dégénérescence. Nous donnons ici un critère de dégénérescence de suites spectrales par comparaison à une suite spectrale dégénérée. Le critère est très élémentaire, mais il sera utilisé à plusieurs reprises, ce qui justifie que nous l’énonçons séparément.

Comme il est d’usage, l’expression « « la suite spectrale (E_r, d_r) est dégénérée » » sera synonyme de « $d_r = 0$, pour tout $r \geq 2$ ».

12.4.2. Proposition. Soit $\{\varphi_r : (E_r, d_r) \to (E'_r, d'_r) \mid r \in \mathbb{N}\}$ un morphisme de suites spectrales.

a) Si (E_r, d_r) est dégénérée et φ_2 est surjectif, alors (E'_r, d'_r) est dégénérée.

b) Si (E'_r, d'_r) est dégénérée et φ_2 est injective, alors (E_r, d_r) est dégénérée.

Dans les deux cas on a $\varphi_r = \varphi_2$, pour tout $r \geq 2$.

159
Démonstration. (a) On montre par induction sur \(r \geq 2 \), que \(d'_r = 0 \) et que \(\varphi_r = \varphi_2 \). Lorsque \(r = 2 \), le complexe \((E'_2, d'_2)\) est quotient de \((E_2, 0)\) par hypothèse, donc \(d'_2 = 0 \). Maintenant, si nous avons montré que \(d'_r = 0 \), on aura \(\varphi_{r+1} = \varphi_r \) et alors \(\varphi_{r+1} = \varphi_2 \) puisque par hypothèse inductive \(\varphi_r = \varphi_2 \), le morphisme de complexes \(\varphi_{r+1} \) est alors surjectif et \(d'_r = 0 \). L’assertion (b) se démontre par un raisonnement dual.

12.4.3. Les suites spectrales de Leray. Le théorème 12.3.2 établit que pour un espace \(i \)-acyclique \(X \) localement connexe, les faisceaux

\[
\mathcal{H}^i_{\pi^!(\Delta^{m[a]}_q)} := R^i\pi_!(k_{\Delta^{m[a]}_q}), \quad \forall i \in \mathbb{Z},
\]

sont constants sur les composantes connexes de \(F_a(X) \).

Notons \(c : F_a \to \{pt\} \) l’application constante. Comme nous l’avons déjà rappelé dans 12.1.1, la théorie des foncteurs dérivés donne des identifications

\[
R(c_\phi \circ \pi_!(k_{\Delta^{m[a]}_q})) = R\pi_!(R\pi_!(k_{\Delta^{m[a]}_q})), \quad \text{où} \; \phi \in \{*, !\},
\]
dont on tire les suites spectrales de Leray

\[
(E_r(\Delta^{m[a]}_q)_\varphi, d_r), \quad \text{où} \; \varphi \in \{\pi!, c\}.
\]

Ces suites se décomposent en sommes directes de suites spectrales

\[
E_r(\Delta^{m[a]}_q)_\varphi = \bigoplus_{C \in \Pi_0 F_a} E_r(C\Delta^{m[a]}_q)_\varphi,
\]

où \(C \) est une composante connexe de \(F_a \). Les termes de \(E_2(C\Delta^{m[a]}_q)_\varphi \) sont

\[
E_2(C\Delta^{m[a]}_q)_\varphi := H_\phi(C, \mathcal{H}^1_{\pi^!(\Delta^{m[a]}_q)}), \quad \text{où} \; H_\phi \in \{H_{\pi!}, H_c\},
\]

et comme le faisceau \(\mathcal{H}^1_{\pi^!(\Delta^{m[a]}_q)} \) est constant sur \(C \), on a respectivement

\[
\begin{align*}
\{E_2^{p,q}(C\Delta^{m[a]}_q)_C := H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}(\Delta^{m[a]}_q) \} \quad & (E_2(C)) \\
E_2^{p,q}(C\Delta^{m[a]}_q)_{\pi!} := H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}(\Delta^{m[a]}_q) \}
\end{align*}
\]

où \(F_C \) désigne la fibre de \(\pi_a : \Delta^{m[a]}_q \to F_a \) au-dessus de \(C \).

12.4.4. Remarque sur les notations. Concernant l’expression « \(F_C \) est la fibre de \(\pi_a \) », on rappelle que bien que ces fibres ne sont généralement pas homéomorphes, nous les notons depuis 4.2.3 par la notation \(F_b(X \smallsetminus a) \). C’est une notation commune mais qui demande à être réinterprétée en fonction du contexte. Par exemple, les termes \(E_2(F_{b+a}(X))_\varphi \) sont notés de manière succincte

\[
E_2(UF_{b+a}(X))_\varphi = H_\phi(U) \otimes H_c(F_b(X \smallsetminus a)). \quad (\ast)
\]

Lorsque \(U \subseteq F_a(X) \) est connexe, la constance de \(\mathcal{H}^1_{\pi^!(F_{b+a}(X))} \) au dessus de \(U \) enlève toute ambiguïté à la notation \(H_c(F_b(X \smallsetminus a)) \) (12.3.3). Autrement, l’égalité (\ast) sous-entend de décomposer \(U \) en ses composantes connexes \(C \).
et d’interpréter $E_2(UF_{b+a}(X))_\varphi$ comme la somme $\bigoplus_C E_2(CF_{b+a}(X))_\varphi$ des formules $(E_2(C))$ ci-dessus.

L’intérêt pratique de la notation (\ast) est que comme $\mathcal{P}_c(F_b(X \setminus a))$ est intrinsèque d’après 4.2.3, elle donne une description immédiate du polynôme de Poincaré de termes $E_2(UF_{b+a}(X))_\varphi$.

12.4.5. Le cas où $\dim_k(H_c(X)) < +\infty$. Lorsque X est i-acyclique et que $\dim H_c(X) < +\infty$, on a $H_c(F_m(X \setminus n)) < +\infty$, pour tous $m, n \in \mathbb{N}$, d’après 2.4.2-(c). Les remarques 4.2.3 et 12.2.8 s’appliquent alors au cas de la fibration $\pi_a : F_{b+a}(X) \to F_a(X)$ de fibre $F_b(X \setminus a)$, de sorte que, pour tout ouvert U de $F_a(X)$, on a

(A) si $H_c(U) < +\infty$, alors $\mathcal{P}_c(UF_{b+a}(X)) = \mathcal{P}_c(U) \cdot \mathcal{P}_c(F_b(X \setminus a))$;

(B) si $H(U) < +\infty$, alors $\mathcal{P}_{\pi!}(UF_{b+a}(X)) = \mathcal{P}(U) \cdot \mathcal{P}_c(F_b(X \setminus a))$.

On en déduit, respectivement dans chaque cas, que :

(A) si $H_c(U) < +\infty$, alors
$$\dim_k E_2(UF_{b+a})_c = H_c(UF_{b+a}) = \dim_k E_\infty(UF_{b+a})_c;$$

(B) si $H(U) < +\infty$, alors
$$\dim_k E_2(UF_{b+a})_{\pi!} = H_{\pi!}(UF_{b+a}) = \dim_k E_\infty(UF_{b+a})_{\pi!};$$

et on conclut que les suites $(E_r(UF_{b+a})_c, d_r)$ et $(E_r(UF_{b+a})_{\pi!}, d_r)$ sont dégénérées, car si jamais on avait $d_r \neq 0$ pour un certain r, on aurait forcément
$$\dim(E_2) \geq \dim(E_r) > \dim(E_{r+1}) \geq \dim(E_\infty),$$

ce qui n’est pas le cas.

12.4.6. Remarque. Dans cette approche, la finitude joue un rôle essentiel mais nous verrons qu’elle n’est pas nécessaire. La proposition suivante s’afranchit des hypothèses de finitude sur U, mais demande encore celle sur X. Ce sera le théorème 12.4.9 qui aura l’énoncé le plus général, i.e. sans aucune hypothèse de finitude sur X.

12.4.7. Proposition. Soit X un espace i-acyclique, localement connexe et tel que $\dim H_c(X) < +\infty$. Alors, pour tout ouvert $U \subseteq F_a(X)$, les suites spectrales $(E_r(UF_{b+a}(X))_c, d_r)$ et $(E_r(UF_{b+a}(X))_{\pi!}, d_r)$ sont dégénérées.

Démonstration. Comme $F_a(X)$ localement connexe, il suffit de considérer le cas où U est connexe. Nous pouvons alors fixer une famille croissante $U := \{\uparrow U_m\}_{m \in \mathbb{N}}$ d’ouverts connexes et de type fini qui recouvre $F_a(X)$. Pour
chaque $U_m \in \mathcal{U}$, on considère le produit fibré
\[
U_m \times_U UF_{b+a} = U_m F_{b+a} \xrightarrow{\ j_m\ } UF_{b+a}
\]
\[
\begin{array}{ccc}
U_m & \xrightarrow{\ j_m\ } & UF_{b+a} \\
\downarrow{\pi_a} & & \downarrow{\pi_a} \\
U_m & \xrightarrow{\ j_m\ } & U
\end{array}
\]

où $La suite spectrale$ $\mathcal{E}(UF_{b+a})_c$. — Le cas où $H_c(U) < +\infty$ est déjà considéré dans 12.4.5-(A) où $(\mathcal{E}_r(F_a)_c, d_r)$ est bien dégénérée. Dans le cas général on a recours au recouvrement \mathcal{U}. Les morphismes canoniques
\[
j_m! \mathcal{R}\pi_a! k\big|_{U_m F_{b+a}} = \mathcal{R}\pi_a! j_m! k\big|_{U_m F_{b+a}} \rightarrow k\big|_{UF_{b+a}}
\]
duisent un morphisme de “prolongement par zéro” de suites spectrales
\[
j_m! : (\mathcal{E}_r(U_m), d_r) \rightarrow (\mathcal{E}_r(U), d_r), \quad (\mathcal{E}_r)
\]
qui s’identifie pour $r = 2$, au morphisme de complexes
\[
H_c(U_m) \otimes H_c(F_b(X \setminus a)) \xrightarrow{j_m! \otimes \text{id}} H_c(U) \otimes H_c(F_b(X \setminus a)). \quad (\mathcal{E}_2)
\]
Maintenant, le fait que $\lim_{\rightarrow m} j_m! : \lim_{\rightarrow m} H_c(U_m) = H_c(U)$ implique que le morphisme de complexes
\[
\lim_{\rightarrow m} j_m! \otimes \text{id} : \lim_{\rightarrow m} (\mathcal{E}_2(U_m), d_2) \rightarrow (\mathcal{E}_2(U), d_2)
\]
est bijectif, et alors, comme les suites $(\mathcal{E}(U_m), d_r)$ sont dégénérées, le critère de dégénérescence 12.4.2 s’applique et $(\mathcal{E}_r(U), d_r)$ est bien dégénérée.

○ $La suite spectrale$ $\mathcal{E}(UF_{b+a})_!$. — Le cas où $H(U) < +\infty$ est déjà considéré dans 12.4.5-(B) où $(\mathcal{E}_r(F_a)_!, d_r)$ est bien dégénérée. Dans le cas général on a recours au recouvrement \mathcal{U}. Les morphismes canoniques
\[
\mathcal{R}\pi_a! k\big|_{UF_{b+a}} \rightarrow \mathcal{R}j_m! j_m^{-1} \mathcal{R}\pi_a! k\big|_{U_m F_{b+a}} = \mathcal{R}j_m! \mathcal{R}\pi_a! k\big|_{U_m F_{b+a}}
\]
donnent les morphismes “de restriction” de complexes
\[
\mathcal{R}\Gamma(U; \mathcal{R}\pi_a! k\big|_{UF_{b+a}}) \rightarrow \mathcal{R}\Gamma(U_m; \mathcal{R}\pi_a! k\big|_{U_m F_{b+a}})
\]
d’où les morphismes de suites spectrales
\[
(\mathcal{E}_r(UF_{b+a})_!, d_r) \rightarrow (\mathcal{E}_r(U_m F_{b+a})_!, d_r), \quad (\mathcal{E}_r)
\]
et donc le morphisme de suites spectrales
\[
(\mathcal{E}_r(UF_{b+a})_!, d_r) \rightarrow \lim_{\leftarrow m} (\mathcal{E}_r(U_m F_{b+a})_!, d_r). \quad (\mathcal{E}_r)
\]
Or, comme l’application en homologie $\lim_{\rightarrow m} H_s(U_m, k) \rightarrow H_s(U, k)$ est bijective, on a par dualité, que $H(U) = \lim_{\leftarrow m} H(U_m)$ l’est également. On en
déduit les identifications suivantes pour les termes E_2,

$$UE_2(F_{b+a})_{\pi!} = H(U) \otimes H_c(F) = \left(\lim_{\leftarrow m} H(U_m) \right) \otimes H_c(F) = \lim_{\leftarrow m} (H(U_m) \otimes H_c(F)) \quad (E_2)$$

où on a noté $H_c(F) := H_c(F_b(X \smallsetminus a))$ et où l'égalité de la ligne centrale est justifiée par le fait que $\dim_k H_c(F) < +\infty$. Ces identifications sont compatibles aux différentielles d_2. Les conclusions de (B) s'appliquent aux suites $(E_r(U_m F_{b+a})_{\pi!}, d_r)$, et alors $d_2 = 0$ dans $E_2(U F_{b+a})_{\pi!}$. Le critère de dégénérescence 12.4.2 s'applique et $(E_r(U F_{b+a})_{\pi!}, d_r)$ est bien dégénérée. □

12.4.8. Le cas général. Nous nous affranchissons maintenant de l'hypothèse de finitude pour $H_c(X)$ et montrons la dégénérescence des suites spectrales en question en nous appuyant sur la proposition précédente 12.4.7.

12.4.9. Théorème. Soient $a \leq \ell \leq m \in \mathbb{N}$. Soit X un espace topologique i-acyclique et localement connexe. Pour tout ouvert $U \subseteq F_a(X)$, les applications $\pi_a : U \Delta^{m[a]}_{t\ell} \to U$ donnent lieu à des suites spectrales de Leray pour les cohomologies $H_c(__)$ et $H_{\pi}(__)$ notées respectivement

$$(E_r(U \Delta^{m[a]}_{t\ell}), d_r) \quad \text{et} \quad (E_r(U \Delta^{m[a]}_{t\ell} \otimes \pi_a), d_r) \quad (E_r).$$

telles que

$$\left\{ \begin{array}{l}
\bigoplus_{C \in \Pi_0 U} E_2^{p,q}(C \Delta^{m[a]}_{t\ell}) = H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}(\Delta^{m[a]}_{t\ell}) \\
\bigoplus_{C \in \Pi_0 U} E_2^{p,q}(C \Delta^{m[a]}_{t\ell} \otimes \pi_a) = H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}(\Delta^{m[a]}_{t\ell})
\end{array} \right.$$}

où C désigne une composante connexe de U et où F_C désigne une fibre quelconque de π_a au-dessus de C. De plus, les suites spectrales (E_r) sont dégénérées.

Démonstration. Compte tenu des résultats qui précèdent, il ne nous reste qu'à justifier la dégénérescence des suites spectrales, ce pour quoi nous allons nous limiter aux ouverts U connexes. Les faisceaux $H_{\pi}(\Delta^{m[a]}_{t\ell})$ sont donc constants sur U.

On fixe une famille croissante $V := \{V_n\}_{n \in \mathbb{N}}$ d’ouverts V_n (pas forcément connexes) de type fini qui recouvre X.

• Le cas des fibrations $\pi_a : UF_{b+a}(X) \to U \subseteq F_a(X)$

○ Dégénérescence de $(UE_r(F_{b+a})_{c,\pi}, d_r)$. — Compte tenu de la proposition 12.4.7, nous avons juste à vérifier le cas où $\dim_k(H_c(X)) = +\infty$.

Pour chaque $m \in \mathbb{N}$, notons $U_m := F_a(V_m) \cap U$. La famille $U := \{U_m\}_{m \in \mathbb{N}}$ est clairement un recouvrement ouvert croissant de U. On remarquera aussi
que l’on des inclusions ouvertes
\[U_m \subseteq F_a(V_m) \subseteq F_a(V_n) \subseteq F_a(X) \]
pour tous \(m \leq n \).

Considérons ensuite les diagrammes commutatifs où \(n \geq m \)
\[\begin{array}{ccc}
F_{b+a}(V_n) & \xleftarrow{\pi_n} & \to \ \ U_m F_{b+a}(V_n) \xrightarrow{j_{m,n}} \to U_m F_{b+a}(X) \xrightarrow{j_m} \to UF_{b+a}(X) \\
\pi_n \downarrow & & \downarrow \pi_n \\
F_a(V_n) & \xleftarrow{\pi_a} & \to \ \ U_m c \xrightarrow{j_m} \to U \\
\end{array} \]

Les sous-diagrammes (I) et (III) sont des produits fibrés et les cohomologies à support compact des fibres de \(H \) où les morphismes de complexes
\[\lim_{\to}^n (\mathcal{F}_n \otimes H_c(F_b(V_n))) \xrightarrow{id \otimes j_{n,a}} \lim_{\to}^n (\mathcal{F}_n \otimes H_c(F_b(V_n))) \]

où \(c : U_m \to \{ pt \} \) est l’application constante et \(\phi \in \{ *, ! \} \), induisent alors les morphismes de suites spectrales
\[\lim_{\to}^n (E_r(U_m F_{b+a}(V_n))_{\phi}, d_r) \to (E_r(U_m F_{b+a}(X))_{\phi}, d_r) \quad (E_r) \]

où \(\phi \in \{ \pi!, c \} \), qui s’identifient pour \(r = 2 \), au morphisme
\[\lim_{\to}^n (H_c(U_m) \otimes H_c(F_b(V_n))) \xrightarrow{id \otimes j_{n,a}} H_c(U_m) \otimes H_c(F_b(X \smallsetminus a)) \quad (E_2) \]

où \(H_c \in \{ H, H_c \} \) et où \(j_n : H_c(V_n) \to H_c(X) \) est le prolongement par zéro. Or, comme la famille \(\{ F_a(V_n) \}_{n \geq m} \) recouvre \(F_b(X \smallsetminus a) \), la limite inductive des morphismes (id \(\otimes j_{n,a} \)) est un isomorphisme.

Enfin, les suites spectrales \((E_r(U_m F_{b+a}(V_n))_{\phi}, d_r) \) sont dégénérées d’après 12.4.7 puisque \(\dim H_c(V_n) < +\infty \). Le critère de dégénérescence 12.4.2 s’applique et les suite spectrales \((E_r(U_m F_{b+a}(X))_{\phi}, d_r) \) sont bien dégénérées.

Revenons maintenant au sous-diagramme (III). Ici, les fibres sont fixes et égales à \(F_b(X \smallsetminus a) \) mais la base change. Aussi, nous avons deux situations différentes à considérer.

- La suite spectrale \(E_r(UF_{b+a}(X))_{\phi}, d_r) \). — Les morphismes de complexes des prolongements par zéro
\[\lim_{\to}^n (E_r(UF_{b+a}(V_n))_{\phi}, d_r) \to (E_r(UF_{b+a}(X))_{\phi}, d_r), \quad (E_r) \]
qui s’identifie pour $r = 2$, au morphisme
\[
\lim_{\longleftarrow m} \left(H_c(U_m) \otimes H_c(F_b(X - a)) \right) \xrightarrow{\lim_{\longleftarrow m} j_m \otimes \text{id}} H_c(U) \otimes H_c(F_b(X - a)),
\]
clairement bijectif puisque $\{ U_m \}$ recouvre U. Ce fait, et la dégénérescence déjà établie des suites spectrales $\left(\mathcal{E}_r(U_m F_{b+a}(X))_c, d_r \right)$ font que le critère de dégénérescence $12.4.2$ s’applique et la suite spectrale $\left(\mathcal{E}_r(UF_{b+a}(X))_c, d_r \right)$ est dégénérée.

La suite spectrale $\left(\mathcal{E}_r(UF_{b+a}(X))_{\pi_1}, d_r \right)$. — On commence par rappeler le morphisme canonique de restriction de complexes dans $D^+(U)$
\[
\mathcal{R} \pi_{a!} k_{U F_{b+a}(X)} \rightarrow \mathcal{R} \pi_{a!} \mathcal{R} j_m^* k_{U_m F_{b+a}(X)} = \mathcal{R} \pi_{a!} \mathcal{R} \pi_{a!} k_{U_m F_{b+a}(X)};
\]
ôù l’égalité est justifiée puisque (III) est un produit fibré. On en déduit le morphisme de complexes
\[
\mathcal{R} \Gamma(U; \mathcal{R} \pi_{a!} k_{U F_{b+a}(X)}) \rightarrow \mathcal{R} \Gamma(U_m; \mathcal{R} \pi_{a!} k_{U_m F_{b+a}(X)}),
\]
qui donne lieu au morphisme de suites spectrales
\[
\mathcal{E}_r(UF_{b+a}(X))_{\pi_1}, d_r \rightarrow \lim_{\longleftarrow m} \left(\mathcal{E}_r(U_m F_{b+a}(X))_{\pi_1}, d_r \right),
\]
qui s’identifie pour $r = 2$, au morphisme
\[
H(U) \otimes H_c(F_b(X - a)) \xrightarrow{\lim_{\longleftarrow m} j_m^* \otimes \text{id}} \lim_{\longleftarrow m} \left(H(U_m) \otimes H_c(F_b(X - a)) \right).
\]
Or, comme $\{ U_m \}$ recouvre U, on a $H(U) = \lim_{\longleftarrow m} H(U_m)$ et $\left(\mathcal{E}_2 \right)$ est injectif. Nous savons d’autre part, que les suites spectrales $\left(\mathcal{E}_r(U_m F_{b+a}(X))_{\pi_1}, d_r \right)$ sont dégénérées. Le critère de dégénérescence $12.4.2$ s’applique et la suite spectrale $\left(\mathcal{E}_r(UF_{b+a}(X))_{\pi_1}, d_r \right)$ est dégénérée.

Ceci termine la preuve du cas des fibrations $\pi_a : UF_{b+a}(X) \rightarrow U \subseteq F_a(X)$.

- Le cas des fibrations $\pi_a : U \Delta^m_{\varepsilon} X^m \rightarrow U \subseteq F_a(X)$

Résulte du cas précédent, en raison de la décomposition ouverte 43
\[
\Delta^m_{\varepsilon} X^m = \bigsqcup_p F_p
\]
où p est une partition π_a-adaptée de $\mathfrak{Q}_e(m)$, et où $F_p \simeq F_\ell$.

- Le cas des fibrations $\pi_a : U \Delta^m_{\varepsilon} X^m \rightarrow U \subseteq F_a(X)$

Notons $j : U \Delta^m_{\varepsilon} X^m \rightarrow U \Delta^m_{\varepsilon}$ l’inclusion ouverte. Le morphisme de prolongement par zéro dans $D^+(U)$
\[
\mathcal{R} j_! \mathcal{R} \pi_{a!} k_{U \Delta^m_{\varepsilon}} = \mathcal{R} \pi_{a!} \mathcal{R} j_! k_{U \Delta^m_{\varepsilon}} \rightarrow \mathcal{R} \pi_{a!} k_{U \Delta^m_{\varepsilon}}
\]
donne lieu aux morphismes de complexes
\[
\mathcal{R} \Gamma_{\phi}(U; \mathcal{R} \pi_{a!} k_{U \Delta^m_{\varepsilon}}) \rightarrow \mathcal{R} \Gamma_{\phi}(U; \mathcal{R} \pi_{a!} k_{U \Delta^m_{\varepsilon}}),
\]

43 Cf. fin de la démonstration du théorème 12.3.2.
avec $\Gamma_\varphi \in \{ \Gamma, \Gamma_c \}$, qui induisent des morphismes de suites spectrales
\[
\left(\mathcal{E}_r(U \Delta^m_{\ell}[^a]), d_r \right) \to \left(\mathcal{E}_r(U \Delta^m_{\ell}[^a]), d_r \right),
\]
avec $\varphi \in \{ \pi!, c \}$, qui s’identifient pour $r := 2$, aux morphismes
\[
H_\varphi(U) \times H_\varphi(F_\ell) \xrightarrow{\text{id} \otimes j_!} H_\varphi(U) \times H_\varphi(F_\ell)
\]
avec $H_\varphi \in \{ H, H_c \}$, et où F_ℓ désigne la fibre de $\pi_a : U \Delta^m_{\ell} \to U$, et
\[
j_! : H_\varphi(F_\ell) \to H_\varphi(F_{\ell})
\]
est le prolongement par zéro. Or, le théorème 12.2.4-(b) établit la surjectivité du prolongement par zéro
\[
H_{\pi}!(V \Delta^m_{\ell}) \longrightarrow H_{\pi}!(V \Delta^m_{\ell})
\]
pour tout $V \subseteq F_a$. Si maintenant V parcours une base de voisinages connexes d’un point, la proposition 12.2.2 assure la surjectivité de (†), et donc aussi celle des morphismes (E2). Comme nous avons déjà établi la dégénérescence de $(\mathcal{E}_r(U \Delta^m_{\ell}[^a]), d_r)$, le critère 12.4.2 s’applique et $(\mathcal{E}_r(U \Delta^m_{\ell}[^a]), d_r)$ est aussi dégénérée. Ceci termine la preuve du théorème.

12.4.10. Sur l’action de $S_b \times S_a$ sur la suite spectrale de Leray

Reprenons la discussion de 10.7. Pour $a, b \in \mathbb{N}$, réalisons $S_b \times S_a$ comme le sous-groupe de S_{b+a} des permutations laissant stables les sous-intervales $[[1, b]]$ et $[[b+1, b+a]]$ et faisons-le agir sur F_{b+a} par son action naturelle à travers S_{b+a}. Faisons-le ensuite agir sur F_a, à travers de la projection sur S_a. La projection (2.1-(N-3))
\[
\pi_a : F_{b+a}(X) \to F_a(X),
\]
est alors $S_b \times S_a$-équivationnaire.

Action de S_b sur $\mathcal{E}^n_{2,q}(C)$

Notons par $\Phi_h : F_{b+a} \to F_{b+a}$ l’homéomorphismes de l’action de $h \in S_b$. On a $\pi_a \circ \Phi_h = \pi_a$. L’action de Φ_h respecte donc les fibres de π_a et l’action induite sur $H_c(C, H^{n,q}_{\pi}((F_a)))$ correspond à l’action de S_b sur le second facteur du produit tensoriel $H_c(C) \otimes H_c(F_C)$.

Action de S_a sur $\mathcal{E}^n_{2,q}(S_a C)$

Les exemples de la proposition 10.7.1, montrent bien que l’action de S_a sur $H_c(S_a C, H^{n,q}_{\pi}((F_a)))$ ne correspond pas à l’action de S_a sur le premier facteur du produit tensoriel $H_c(S_a C) \otimes H_c(F_C)$, et ne se voit donc pas sur la suite spectrale de Leray.
Conclusion

Ces remarques montrent que seule l’action \(S_b \times 1_a \) sur \(H_c(F_{b+a}) \) et \(H_{\pi!}(F_{b+a}) \) se voit sur les termes \(E_2 \) des suites spectrales de Leray (cf. 12.4.9)

\[
\begin{cases}
\bigoplus_C E_2^{p,q}(C) := H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}_{\pi!}(F_{b+a}), \\
\bigoplus_C E_2^{p,q}(C) := H^p(C) \otimes H^q(F_C) \Rightarrow H^{p+q}_{\pi!}(F_{b+a}).
\end{cases}
\]

Elle se voit comme étant l’action de \(S_b \) sur \(H_c(F_C) = H_c(F_b(X \setminus a)) \).

13. Questions diverses sur les espaces \(i \)-acycliques

Nous rassemblons ici des exemples d’espaces \(i \)-acycliques ainsi que des contre-exemples à certaines propriétés de l’\(i \)-acylicité que l’on aurait souhaité avoir mais qui ne sont pas vérifiées en toute généralité.

13.1. Espaces de configuration généralisés

\(\vdash \) Si \(X \) est \(i \)-acyclique, l’espace \(\Delta_\ell X^m \) est \(i \)-acyclique pour \(0 < \ell \leq m \).

Démonstration. Si \(X \) est \(i \)-acyclique, \(X^m \) l’est aussi (1.2.4-(e)), et donc aussi l’ouvert \(F_m(X) \subseteq X^m \) (1.2.4-(d)) de même que tout espace \(\Delta_\ell X^m \), car réunion disjointe ouverte d’espaces homéomorphes à \(F_\ell(X) \) (2.3.3).

Pour établir la \(i \)-acylicité des espaces \(\Delta_\ell X^m \), nous utilisons le critère 1.3.1-(c) selon lequel un espace \(Y \) est \(i \)-acyclique lorsque pour tout compact \(K \subseteq Y \), la restriction \(\rho_K : H_c(Y) \rightarrow H(K) \) est nulle. Dans le cas présent, comme en plus le prolongement par zéro \(j_! : H_c(\Delta_\ell X^m) \rightarrow H_c(\Delta_\ell X^m) \) est surjectif (3.1.1-(b)) et que \(\Delta_\ell X^m \) est réunion disjointe des ouvert \(U_p := F_p(X) \), avec \(p \in \mathcal{P}_\ell(m) \) (cf. 2.3.2), le critère en question sera validé par la nullité, pour tous \(p \) et \(K \), des composées

\[
H_c(U_p) \xrightarrow{j_!} H_c(\Delta_\ell X^m) \xrightarrow{\rho_K} H(K).
\]

Pour \(p \) et \(K \) donnée, notons \(\overline{U_p} \) l’adhérence de \(U_p \) dans \(\Delta_\ell X^m \), puis

\[
\delta U_p := \overline{U_p} \setminus U_p \quad \text{et} \quad K_p := K \cap \overline{U_p}.
\]

Les triplets d’espaces \((U_p \subseteq \overline{U_p} \supseteq \delta U_p) \) et \((F_\ell(X) \subseteq X^\ell \supseteq \Delta_\ell X^{\ell-1}) \) sont homéomorphes et l’annulation de \((\circ) \) résultera du lemme suivant qui généralise quelque peu le théorème 3.1.1-(b).

\(\vdash \) Lemme. Soit \(X \) un espace \(i \)-acyclique. Pour tout compact \(J \subseteq X^\ell \), le morphisme de restriction

\[
H_c(X^\ell) \rightarrow H_c((\Delta_\ell X^\ell) \cup J)
\]

(\(\ddagger \)) est nul. En particulier, le prolongement par zéro \(H_c(F_\ell(X) \setminus J) \rightarrow H_c(X^\ell) \) est surjectif.

167
Preuve du lemme. On procède comme dans la démonstration de 3.1.1. On considère le diagramme commutatif

\[
\begin{array}{ccccccccc}
\dot{f}_2^{-1}(F_\ell-1(X)) & \xrightarrow{f_2} & ((\Delta_{\leq \ell-1}X^\ell) \cup J) & \xrightarrow{f} & X \times X^{\ell-1} = X^\ell \\
& \searrow \downarrow f_2 & \downarrow p_2 & \nearrow f_2 & \nearrow \downarrow f_2 & \nearrow & \downarrow f
\end{array}
\]

où \(f \) est l’inclusion (fermée) et \(j \) est l’inclusion (ouverte). La restriction \(f'_2 \) de \(f_2 := p_2 \circ f \) est propre puisque si \(L \subseteq F_\ell-1(X) \) est compact, on a

\[
f_2^{-1}(L) = (p_2^{-1}(L) \cap \Delta_{\leq \ell-1}X^\ell) \cup (p_2^{-1}(L) \cap J)
\]

où \(p_2^{-1}(L) \cap \Delta_{\leq \ell-1}X^\ell \) est compact puisque la restriction de \(p_2 \) à \(\Delta_{\leq \ell-1}X^\ell \) est un revêtement fini au-dessus de \(F_\ell-1(X) \) (cf. loc.cit.). L’annulation de \((\dagger \dagger, j)\) résulte alors d’appliquer 1.3.1-(d), exactement comme dans 3.1.1.

Dans la situation présentée, ce lemme (avec \(J := K_p \)) nous dit que le morphisme de prolongement par zéro

\[
H_c(U_p \setminus K) \rightarrow H_c(U_p)
\]

est surjectif. Une classe de cohomologie \([\alpha] \in H_c(U_p)\) est donc représentée par une cocycle d’Alexander-Spanier \(\alpha \in \mathbb{A}(U_p) \) dont le support \([\alpha]\) est compact dans \(U_p \setminus K \). Comme cette partie est ouverte dans \(\Delta_{\leq \ell}X^m \), le cocycle \(\alpha \) représente aussi l’image \(j_! [\alpha] \) de \([\alpha]\) dans \(H_c(\Delta_{\leq \ell}X^m) \). Or, on a \([\alpha] \cap K = \emptyset\) et donc \(\rho_K(j_![\alpha]) = 0 \). L’annulation des morphismes \((\circ)\) est ainsi établie et l’espace \(\Delta_{\leq \ell}X^m \) est bien \(i \)-acyclique.

13.2. Variétés toriques affines

\(\dagger \) On suppose le corps \(k \) de caractéristique nulle.

\(\quad \)

a) Si \(G \) un groupe fini agissant sur un espace \(i \)-acyclique \(X \), l’espace des orbites \(X / G \) est \(i \)-acyclique.

b) Une variété torique affine \(U_\sigma \) associée à un cône simplicial \(\sigma \) est \(i \)-acyclique.

Démonstration. (a) Résulte aussitôt des égalités \(H_c(X / G) = H_c(X)^G \) et \(H(X / G) = H(X)^G \) et de la commutativité du diagramme

\[
\begin{array}{cccc}
H_c(X / G) & \xrightarrow{=} & H_c(X)^G & \xrightarrow{=} & H_c(X) \\
\downarrow & & \downarrow 0 & & \downarrow \\
H(X / G) & \xrightarrow{=} & H(X)^G & \xrightarrow{=} & H(X)
\end{array}
\]

(b) On a \(U_\sigma = \mathbb{A}_n(\mathbb{C})^G \times (\mathbb{C}^*)^m \), où \(G \) est un groupe abélien fini agissant sur l’espace affine complexe \(\mathbb{A}_n(\mathbb{C}) \) (cf. [17], §2.1, p. 29 et §2.2, p. 34). \(\square \)
13.3. Groupes de Lie non-compacts

⇒ Tout groupe de Lie réel connexe non compact est i-acyclique.

Démonstration. Comme un groupe de Lie G est toujours une variété différentielle orientable, il revient au même de montrer que G est $∪$-acyclique (1.2.4-(c)). Pour cela, on remarque que l’application

$$Ψ : ∆_G × G → G × G$$

$$(x, x)g ↦ (x, xg)$$

est bien un homéomorphisme échangeant les plongements fermés

$$Δ_G × \{e\} ⊆ Δ_G × G, \text{ et } Δ_G ⊆ G × G$$

Le morphisme de restriction à la diagonale s’identifie alors par Künneth au morphisme

$$H_c(Δ_G) ⊗ H_c(G) → H_c(Δ_G) ⊗ H_c(\{e\})$$

$$ω ⊗ ϖ ↦ ω ⊗ ϖ|_e$$

clairement nul lorsque G n’est pas compact. □

13.4. Ouverts i-acycliques de $\mathbb{P}_n(\mathbb{R})$

⇒ Si $\mathrm{car} k \neq 2$, tout ouvert de $\mathbb{P}_n(\mathbb{R})$ est i-acyclique.

Démonstration. Résulte de ce que $H^i(\mathbb{P}_n(\mathbb{R}); k) = 0$ pour tout $i < n$. □

13.5. Ouverts i-acycliques de $\mathbb{P}_n(\mathbb{C})$

⇒ Soit U un ouvert de $\mathbb{P}_n(\mathbb{C})$ dont le complémentaire contient une hypersurface complexe Z.

a) Si $\mathrm{car}(k) = 0$, l’espace U est i-acyclique.

b) Si $\mathrm{car}(k) = p > 0$, l’espace U est i-acyclique si $n = 1 \bmod 2$, ou bien si $n = 0 \bmod 2$ et si les degrés des composantes irréductibles de Z sont premiers à p.

Démonstration. Par 1.2.4-(d), l’assertion résulte aussitôt du cas où l’ouvert est $U := \mathbb{P}_n(\mathbb{C}) \smallsetminus Z$. L’ouvert U est alors une variété complexe affine lisse de dimension n. D’après un théorème de Hamm (cf. [11] th. (6.8) p. 26), il a le type d’homotopie d’un CW-complexe fini de dimension réelle n. Il s’ensuit que les groupes d’homologie $H_i(X; A)$ sont nuls, pour $i > n$ et tout anneau A, et de même en cohomologie. Comme U est non singulière et orientable, on dispose de la dualité de Poincaré-Lefschetz $H_i(U; A) \cong H^{2n-i}_c(U; A)$, et donc $H^i_c(U; A) = 0$ pour tout $i < n$. Par conséquent, on a à priori

$$(ε_{U,i} : H^i_c(U; A) → H^i(U; A)) = 0, \quad ∀i \neq n,$$

et la preuve de la proposition se réduit à montrer l’annulation de $ε_{U,n}$. 169
Notons \(j : U \hookrightarrow \mathcal{P}_n \) l’inclusion ensembliste.

Le morphisme \(\epsilon_{U,n} \) se factorise à travers \(H^n(\mathcal{P}_n) \) suivant les morphismes

\[
H^n_c(U; A) \xrightarrow{j_!} H^n(\mathcal{P}_n; A) \xrightarrow{j^*} H^n(U; A)
\]

où \(j_! \) désigne le prolongement par zéro et \(j^* \) la restriction. On a aussitôt deux cas à considérer suivant la parité de \(n \).

\(n = 1 \mod 2 \). On a \(H^n(\mathcal{P}_n; A) = 0 \) et donc \(\epsilon_{U,n} = 0 \). La proposition est alors prouvée et ce, quel que soit l’anneau de coefficients \(A \).

\(n = 0 \mod 2 \). On a \(H(\mathcal{P}_n; A) = A \). Dans ce cas, on a intérêt à reprendre notre convention et considérer que l’anneau de coefficients \(A \) est un corps, auquel cas on a l’équivalence \((\epsilon_{U,n} = 0) \iff \left(\begin{array}{c} \text{le morphisme de restriction} \\ \rho_n : H^n(\mathcal{P}_n) \to H^n(Z) \\ \text{est injectif} \end{array} \right) \) \((\ddagger) \).

En effet, comme \(H^n(\mathcal{P}_n) \) est une droite vectorielle, l’annulation de \(\epsilon_{U,n} \) équivaut au fait que soit \(j_! \), soit \(j^* \), est nul. Or, la dualité de Poincaré échange ces morphismes et il sont tous les deux nuls ou non nuls. Ainsi, l’annulation de \(\epsilon_{U,n} \) équival à l’annulation de \(j_! \) et donc à l’injectivité de \(\rho_n \), par la suite exacte longue de cohomologies.

\[
\cdots \to H^n(U) \xrightarrow{j_!} H^n(\mathcal{P}_n) \xrightarrow{\rho_n} H^n(Z) \to \cdots
\]

Notons \(L \) l’opérateur sur \(H(\mathcal{P}_n) \) et \(H(Z) \) de multiplication par la classe fondamentale \(\omega \in H^2(\mathcal{P}_n) \) de \(\mathcal{P}_1 \subseteq \mathcal{P}_n \), et considérons le diagramme commutatif suivant où la deuxième ligne est la suite exacte de cohomologies

\[
\begin{array}{ccc}
H^n(\mathcal{P}_n) & \xrightarrow{\rho_n} & H^n(Z) \\
\xrightarrow{L(n-2)/2} \oplus & & \xrightarrow{L(n-2)/2} \\
\cdots & \xrightarrow{j_!} & H^{2n-2}(\mathcal{P}_n) \xrightarrow{\rho_{2n-2}} H^{2n-2}(Z) \\
\xrightarrow{c} & & \xrightarrow{c} H_c^{2n-1}(U) \\
\end{array}
\]

(\(\ddagger\ddagger \))

Nous avons maintenant besoin de plus de renseignements sur le morphisme de liaison \(c \). Pour cela, on commence par remarquer que l’on peut supposer \(Z \) irréductible. En effet, si \(Z' \) est une composante irréductible de \(Z \), l’ouvert \(U = \mathcal{P}_n \setminus Z \) est contenu dans l’ouvert \(U' = \mathcal{P}_n \setminus Z' \) et il est donc i-acyclique si \(U' \) l’est (1.2.4-d).

Supposons donc que \(Z = V(f) \) est irréductible et, compte tenu des hypothèses, que \(\deg f \) n’est pas multiple de la caractéristique du corps de coefficients. L’espace vectoriel \(H^{2n-2}(Z) \) est alors de dimension 1 et comme

\[
H_c^{2n-1}(U; \mathbb{Z}) = H_1(U; \mathbb{Z}) \simeq \mathbb{Z}/(\deg f)
\]

(\(\star \))
différentielles holomorphes (dont le degré est à priori majoré par théorème de comparaison de Grothendieck entre la cohomologie des formes homologie du faisceau constant.

soit concentrée en dimension moitié logie à coefficients dans un corps de caractéristique nulle, le fait que

13.5.2. Remarque. L’hypothèse dans la proposition 13.5 concernant la caractéristique du corps de coefficients de la cohomologie est optimale. En effet, si \(Z = V(f) \subseteq \mathbb{P}_2(\mathbb{C}) \) avec \(f \) irréductible homogène de degré \(p \), on a pour \(U := \mathbb{P}_2(\mathbb{C}) \setminus V(f) \) d’après (*) :

\[
H_c^2(U; \mathcal{F}_p) \simeq H_1(U; \mathcal{F}_p) \simeq \mathcal{F}_p,
\]

auquel cas, la suite exacte longue de cohomologie devient

\[
H^2(\mathbb{P}_2; \mathcal{F}_p) \xrightarrow{-c} (H^2(V(f); \mathcal{F}_p) = \mathcal{F}_p) \xrightarrow{-\ell} (H^3(U; \mathcal{F}_p) = \mathcal{F}_p) \to 0,
\]

le morphisme \(-c \) est bijectif, et alors nécessairement \(\rho_2 = 0 \).

On en déduit la surjectivité de \(j_! : H^2_c(U; \mathcal{F}_p) \to H^2_c(\mathbb{P}_2; \mathcal{F}_p) \) et, par dualité, l’injectivité de \(j^* : H^2(\mathbb{P}_2; \mathcal{F}_p) \to H^2(U; \mathcal{F}_p) \). À partir de là, la non nullité de \(\epsilon_\mathbb{P}_2 = j^* \circ j_! \) découle de ce que \(H^2(\mathbb{P}_2(\mathbb{C}); \mathcal{F}_p) = \mathcal{F}_p \). L’ouvert \(U \) n’est donc pas \(i \)-acyclique pour la cohomologie à coefficients dans \(\mathcal{F}_p \).

13.5.2. Remarque. Dans le cas où la proposition 13.5 intéresse la cohomologie à coefficients dans un corps de caractéristique nulle, le fait que \(H_1(U) \) soit concentrée en dimension moitié \(n \), peut aussi être justifié en invoquant le théorème de comparaison de Grothendieck entre la cohomologie des formes différentielles holomorphes (dont le degré est à priori majoré par \(n \)) et la cohomologie du faisceau constant.

Dans le même ordre d’idées, si l’on se restreint au cas où l’hypersurface est supposée non-singulière, l’injectivité de \(\rho_n \) (et donc la \(i \)-acyclicité de \(U \)) admet aussi une justification via le théorème de Lefschetz vache. En effet, notons \(L \) l’opérateur de multiplication par la classe génératrice \(\omega \in H^2(\mathbb{P}_n(\mathbb{C})) \) et considérons, pour \(n \) pair, le diagramme commutatif ci-contre.

L’injectivité de \(\rho_n : H^n(\mathbb{P}_n) \to H^n(\mathbb{Z}) \) découle alors par une chasse au diagramme élémentaire de ce que :

- \(L : H^{n-2}(\mathbb{P}_n) \to H^n(\mathbb{P}_n) \) est trivialement bijectif,
- \(L : H^{(n-1)-1}(Z) \to H^{(n-1)+1}(Z) \) est bijectif d’après le théorème vache de Lefschetz.
- \(\rho_{n-2} : H^{n-2}(\mathbb{P}_n) \to H^{n-2}(Z) \) est injectif puisque \(H^{n-2}_c(U) = 0 \) en raison de précisément de l’affinité de \(U \).

13.6. Ouverts non \(i \)-acycliques de \(\mathbb{P}_n(\mathbb{C}) \)

\(\uparrow \) Un ouvert de \(\mathbb{P}_n(\mathbb{C}) \) dont le complémentaire est contenu dans un formé \(\mathcal{F} \) algébrique complexe (ou réel) et tel que \(\dim_{\mathbb{R}}(\mathcal{F}) < n \), n’est pas \(i \)-acyclique.
Démonstration. Un tel ouvert contient le complémentaire U d’un fermé algébrique Y de petite dimension. Il suffira donc, d’après 1.2.4-(d), de ne considérer que ce cas. Des suites longues de cohomologie, on retire les sous-suites

$$H^{n-1}(Y) \to H^n_c(U) \to H^n(P_n) \to H^n(Y) = 0$$

$$0 = H^n_Y(P_n) \to H^n(P_n) \to H^n(U) \to H^{n+1}_Y(P_n)$$

où $H^n(Y) = 0$ puisque $\text{dim}_\mathbb{C}(Y) < n$, et $H^n_Y(P_n) = H^n(Y)\wedge = 0$ (44).

13.7. Courbes algébriques i-acycliques

† Une courbe algébrique complexe irréductible C qui est i-acyclique est rationnellement lisse. Si de plus C est affine, elle est homéomorphe à un ouvert algébrique de \mathbb{C}.

Démonstration. Pour chaque $x \in X$, et tout voisinage ouvert $V \ni x$, le morphisme $\alpha_x : H_2(C) \to H(I) \text{ se factorise à travers } H_2(C)$ de sorte que si C est supposée i-acyclique, on a $\alpha_x = 0$ d’où la suite exacte courte

$$0 \to H(I) \to H(C \setminus \{x\}) \to H_2(C)[1] \to 0.$$

Il s’ensuit que lorsque C est complexe irréductible, on a $H_2^I(C) = 0$ (†) puisque C et $C \setminus \{x\}$ sont connexes. D’autre part, la singularité Σ de C est une partie fermée de dimension 0 donc discrète, et x admet des voisinages ouverts coniques $V = \mathcal{O}(\mathbb{L}(x, C))$, où $\mathbb{L}(x, C)$, le « lien de x dans C », est une réunion disjointe de cercles $\bigcup_{i=1}^r S^1$. On a donc d’après (†), l’égalité

$$0 = H^I_1(C) = H^I_1(\mathcal{O}(\mathbb{L}(x, C))) = H^I_0(\mathbb{L}(x, C)) = k^{r-1},$$

où H désigne la cohomologie réduite. Par conséquent, $r = 1$ et x est rationnellement lisse dans C.

Supposons maintenant que C est en plus affine. Quitte à remplacer les voisinages coniques $\mathcal{O}(S^1)$ par des disques D^2, nous pouvons supposer que C est une sous-variété fermée et différentiable de $\mathbb{A}_n(\mathbb{C})$ à laquelle nous pouvons appliquer la théorie de Morse (45). Soit donc $h : C \to \mathbb{R}_+$ une fonction de Morse et notons $C_{<r} := \{x \in C \mid h(x) < r\}$, c’est un espace i-acyclique car ouvert de C qui l’est par hypothèse. Montrons que $C_{<r}$ est homéomorphe à un ouvert algébrique de \mathbb{C}.

Pour r petit on a $C_{<r} \sim C$. Supposons ensuite que pour une certaine valeur critique r, l’espace $C_{<r}$ est homéomorphe à C privé d’un ensemble fini de disques fermés disjoints homéomorphes à D^2. Le bord $C_r = \partial C_{<r}$ est alors une réunion finie de cercles S^1.

44 Par le formalisme de la dualité de Poincaré-Grothendieck-Verdier, cela résulte de ce que $D^*\mathcal{R}\mathcal{C}_Y^*c_1\mathcal{Z}_P^* = \mathcal{R}\mathcal{C}_Y^*c_1\mathcal{Z}_P^* = \mathcal{R}\mathcal{C}_Y^*c_1\mathcal{Z}_P^*[2n]$ et du fait que $D^*\mathcal{R}\mathcal{C}_Y^*c_1\mathcal{Z}_P^* = \mathcal{Z}_P^*[2n]$.

45 Cf. le théorème fondamental de structure dans [29], thm. 2.7, p. 47.
Par la théorie de Morse, $C_{<r+\epsilon}$ est homéomorphe au récollement de $C_{<r}$ et d’une anse $A_{1,2} = \overline{D}^1 \times \overline{D}^1$ de noyau de dimension 1, ou bien d’une anse $A_{2,2} = \overline{D}^2 \times \overline{D}^1$ de noyau de dimension 2. Comme $C_{<r+\epsilon}$ est un ouvert d’une variété algébrique complexe, il est orientable, ce qui exclu certains recollements.

Pour une anse $A_{1,2}$, il y a deux recollements orientables possibles qui résultent du fait que le bord du cœur de $A_{1,2}$, à savoir $\overline{D}^1 = [0,1]$, possède deux composantes connexes $\{0,1\}$. Ces composantes peuvent être collées tantôt sur deux composantes connexes de $\partial C_{<r}$ tantôt sur la même. Dans le premier cas, $C_{<r+\epsilon}$ serait homéomorphe à un tore $T := S^1 \times S^1$ privé d’un ensemble fini de points F, mais alors on aurait la suite exacte

$$0 \to H^0(F) \to H^1_c(T \setminus F) \to H^1(T) \to 0,$$

et $H^1(T) \hookrightarrow H^1(T \setminus F)$ par dualité. Donc $\dim H^1_c(T_{r+\epsilon}) = \dim H^1(T) = 2$, ce qui contredit la i-acyclicité de $C_{<r+\epsilon}$. Dans le deuxième cas, un trou de C_r est partiellement comblé par l’anse et $C_{<r+\epsilon}$ est bien comme annoncé.

Pour une anse $A_{2,2}$. On recolle le disque \overline{D}^2 par son bord S^1 sur le bord de $C_{<r}$. Par connexité, il n’y a qu’une seule manière de le faire et c’est en comblant l’un des trous de $C_{<r}$. L’espace $C_{<r+\epsilon}$ est donc, de nouveau, homéomorphe à C privé d’un nombre fini de points. □

13.7.1. Remarque. Dans la preuve de 13.7, le tore $T := S^1 \times S^1$ privé d’un nombre fini non nul de points est une variété affine complexe non singulière C qui n’est pas i-acyclique. Les produits finis $P := \prod_i C_i$ de tels espaces sont des exemples de variété affine complexe non singulière non i-acycliques, contrairement à tout produit de la forme $C \times P$ (1.2.4).

13.8. Bouquet d’espaces i-acycliques

\vdash Un bouquet d’espaces i-acycliques est i-acyclique. Et de même en remplaçant i-acyclique par (totalement) \cup-acyclique.

Démonstration. Soient X et Y deux espaces i-acycliques. Notons $X \cup Y$ le
bouquet qui identifie $x \in X$ et $y \in Y$.

On considère le morphisme suivant de suites exactes de Mayer-Vietoris associées à la décomposition en parties fermées $X \cup Y = X \cup Y$.

$$
\begin{array}{ccc}
H_c(x = y) & \longrightarrow & H_c(X \cup Y) \\
\| & & \| \\
\longrightarrow & \longrightarrow & H_c(X) \oplus H_c(Y) \\
\epsilon_{X \cup Y} & & \epsilon_X \downarrow \downarrow \epsilon_Y \\
H(x = y) & \longrightarrow & H(X \cup Y) \\
\rho \longrightarrow & & H(X) \oplus H(Y)
\end{array}
$$

où $\rho : H^+(X \cup Y) \to H^+(X) \oplus H(Y)$ est clairement injectif. La nullité de $\epsilon_{X \cup Y}$ résulte alors immédiatement de celles de ϵ_X et ϵ_Y.

Le même raisonnement prouve que $X \cup Y$ est (totalement) \cup-acyclique si les espaces X et Y le sont.

13.9. Sommes amalgamées d’espaces i-acycliques

La somme amalgamée de variétés i-acycliques est i-acyclique si et seulement si au moins l’une des variétés est orientable.

Démonstration. Soient X et Y deux variétés topologiques i-acycliques de dimension n. Notons X' et Y' des complémentaires d’un point dans X et Y respectivement, ce sont des espaces i-acycliques d’après 1.2.4-(d). La somme amalgamée $X + Y$ est la variété topologique obtenue en recollant homéomorphiquement X' et Y' le long du cylindre ouvert bordant $\mathbb{S}^{n-1} \times \mathbb{R}$ noté V bordant respectivement X' et Y'.

On considère alors les suites exactes longues de Mayer-Vietoris pour le recouvrement ouvert $X + Y = X' \cup Y'$.

$$
\begin{array}{ccc}
H_c(V) & \longrightarrow & H_c^i(X') \oplus H_c^i(Y') \\
\epsilon_{X'}, & & \epsilon_{X'}, \delta_{X'}, \tau_{X'}, \tau_{Y'} \\
H^i(V) & \longrightarrow & H^i(X') \oplus H^i(Y') \\
\delta_i & & \gamma_i \\
\longrightarrow & \longrightarrow & H_i(X + Y)
\end{array}
$$

\blacksquare
où
\[
\begin{aligned}
H^i_c(V) &= k(1) \otimes (k(0) \oplus k(n-1)) = k(1) \oplus k(n), \\
H^i(V) &= k(0) \oplus k(n-1).
\end{aligned}
\]

Cas \(i \neq n - 1\). Le morphisme \(\beta_i\) est surjectif et \(\gamma_i\) est injectif, soit parce que \(i < n\) auquel cas \(H^{i-1}(V) = 0\), soit parce que \(i = n\) auquel cas les cohomologies \(H^n(__)\) sont nulles. On considère alors le diagramme

\[
\begin{array}{ccc}
H^i_c(X') \oplus H^i_c(Y') & \xrightarrow{\beta_i} & H^i_c(X + Y) \longrightarrow 0 \\
& \downarrow^{\epsilon_{X+Y,i}} & \\
H^{i-1}(V) & \longrightarrow & H^i(X + Y) \xrightarrow{\gamma_i} H^i(X') \oplus H^i(Y')
\end{array}
\]

où les lignes sont exactes. On y voit que

\[
\gamma_i \circ \epsilon_{X+Y,i} \circ \beta_i = \epsilon_{X',i} + \epsilon_{Y',i} = 0,
\]

et nous concluons, indépendamment de l’orientabilité de \(X\) et \(Y\), que

\[
\epsilon_{X+Y,i} = 0, \quad \forall i \neq n - 1.
\]

Cas \(i = n - 1\). La suite de Mayer-Vietoris en degré \(n\) est

\[
\longrightarrow (H^n_c(V) = k) \xrightarrow{\alpha_n} H^n_c(X') \oplus H^n_c(Y') \longrightarrow H^n_c(X + Y) \rightarrow 0. \quad (\dagger)
\]

montre que \(\alpha_n\) est injective pour peu que \(X\) ou \(Y\) soit orientable. Dans ces cas, \(\beta_{n-1}\) sera surjective et le diagramme (\(\ast\)) pour \(i = n - 1\) fournit toujours l’annulation \(\epsilon_{X+Y,n-1} = 0\) puisque \(\gamma_{n-1}\) est injective. Ceci termine la preuve de l’un des sens de la proposition.

Réciproquement, ni \(X\) ni \(Y\) ne sont orientables, ce qui équivaut à dire que ni \(X'\) ni \(Y'\) ne le sont. Nous allons nous intéresser à des suites longues de cohomologies associées à la décomposition ouvert/fermé

\[
X' = V \sqcup (X' \setminus V)
\]

où \(X' \setminus V\) est clairement est une variété à bord \(S^{n-1}\) et d’intérieur homéomorphe à \(X'\), raison pour laquelle on la notera \(\overline{X'}\). Enfin, l’adhérence de \(V\) dans \(X'\) qui sera notée \(\overline{V}\), est une variété à bord dont le bord \(S^{n-1}\) est aussi le bord de \(\overline{X'}\).
On a alors le diagramme de suites exactes longues :

\[
\begin{array}{c}
H_{n-1}^c(X') \xrightarrow{\text{rest}} H_{n-1}^c(X') \xrightarrow{c_X} (H_n^c(V) = k) \rightarrow (H_n^c(X') = 0) \\
\downarrow \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
(H_{n-1}^c(V) = 0) \rightarrow H_{n-1}^c(S^{n-1}) \xrightarrow{c_X} (H_n^c(V) = k) \rightarrow (H_n^c(V) = 0)
\end{array}
\]

On y constate que la classe fondamentale de \(V \) se relève bien en un classe \([V_X] \in H_{n-1}^c(X')\) et que cette classe se restreint sur la classe fondamentale \([S] \in S^{n-1}\), d'où le carré :

\[
\begin{array}{c}
H_{n-1}^c(X') \ni [V_X] \xrightarrow{c_X} [V] \\
\downarrow \quad \quad \downarrow \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \downarrow \\
H_{n-1}^c(S^{n-1}) \ni [S] \xrightarrow{c_X} [V]
\end{array}
\]

Maintenant, en remarquant que \(H_c(X') \rightarrow H_c(S^{n-1}) \) se factorise suivant

\[
H_c(X') \xrightarrow{\epsilon_X} H(S^{n-1}) \rightarrow H_n^c(S^{n-1})
\]

on déduit que

\[
\epsilon_X([V_X]) \neq 0.
\]

Ces observations s'appliquent telles quelles également à \(Y \) et conduisent aux mêmes conclusions ou \(Y \) vient remplacer \(X \).

Considérons à présent la décomposition ouvert/fermé

\[
X + Y = V \cup (X + Y \setminus V) = V \cup (\overline{X} \cup \overline{Y})
\]

et le morphisme de suites exactes de cohomologie

\[
\begin{array}{c}
H_{n-1}^c(X + Y) \xrightarrow{\epsilon_{X+Y}} H_{n-1}^c(\overline{X}) \oplus H_{n-1}^c(\overline{Y}) \xrightarrow{c_X + c_Y} (H_n^c(V) = k) \\
\downarrow \quad \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow \\
H_{n-1}^c(X + Y) \rightarrow H_n^c(X + Y) \xrightarrow{\epsilon_Y} (H_n^c(V) = 0)
\end{array}
\]

La classe \([V_X], -[V_Y] \in H_{n-1}^c(\overline{X}) \oplus H_{n-1}^c(\overline{Y})\) appartient clairement au noyau de \(c_X \oplus c_Y \) et survit au morphisme \(\epsilon_{\overline{X}} \oplus \epsilon_{\overline{Y}} \) d'après (**). La commutativité de (II) permet alors de conclure que \(\epsilon_{X+Y} \neq 0 \) et donc que l'espace \(X + Y \) n’est pas \(i \)-acyclique. □

13.10. La bouteille de Klein épointée

Dans l’implication \((\cup\text{-acyclique}) \Rightarrow (i\text{-acyclique})\) de l’assertion 1.2.4-(c), l’hypothèse d’orientabilité est indispensable. On donne ici un contre-exemple lorsque cette hypothèse fait défaut.
La bouteille de Klein épointée vérifie le théorème de scindage 3.1.1. Elle n’est ni i-acyclique ni totalement \cup-acyclique, mais elle est bien \cup-acyclique.

Notons T le tore $\mathbb{R}^2/\mathbb{Z}^2$. L’anneau de cohomologie $H(T)$ est engendré par les 1-cocycles dx et dy. Si nous notons $C_x := \mathbb{R}/\mathbb{Z} \times \{0\}$ et $C_y := \{0\} \times (\mathbb{R}/\mathbb{Z})$, on peut voir que

$$H^1_{C_x}(T) = \langle dy \rangle_k \subseteq H^1(T), \quad H^1_{C_y}(T) = \langle dx \rangle_k \subseteq H^1(T).$$

L’involution $\sigma : (x, y) \mapsto (x + 1/2, -y)$, induit sur $H(T)$ l’action $\sigma : dx \mapsto dx$ et $\sigma : dy \mapsto -dy$ de sorte que l’on a

$$H(T)^{\langle \sigma \rangle} \simeq k(0) \oplus \langle dx \rangle_k(1).$$

Comme la bouteille de Klein est la variété quotient $K := T/\langle \sigma \rangle$, si $\nu : T \to K$ est la surjection canonique, le morphisme $\nu^* : H(K) \to H(T)$ identifie $H(K)$ à $H(T)^{\langle \sigma \rangle} \simeq k(0) \oplus k(1)$.

On pose maintenant $X := K \setminus \text{pt}$.

\cup-acylicité de X. L’examen des suites exactes longues

$$\to H^0_{pt}(X) = k(2) \to H^1(K) \xrightarrow{\rho_1} H^1(X) \to$$

montre que l’on a

$$H(X) = k(0) \oplus \langle dx \rangle_k(1) = k(0) \oplus k(1)^2,$$

$$H_c(X) = H^+(K) = \langle dx \rangle_k(1) = k(1).$$

et $H_c(X) \cap H_c(X) = 0$. L’espace X est donc bien \cup-acyclique.

Non i-acylicité de X. Comme le cycle C_y est plongé (via ν) dans X, l’espace $H_1^C(X)$ est engendré par $dx \in H^1_{C_y}(X) \subseteq H^1_c(X)$ et le morphisme $\iota_1 : H^1_c(X) \to H^1_c(K)$ est bijectif. D’autre part, il est clair par la première suite dans (\circ) que le morphisme $\rho_1 : H^1(K) \to H^1(X)$ est injectif. On a donc

$$H^1_c(X) \xrightarrow{\iota_1} H^1_c(K) \quad 0 = H^1_{pt}(K) \xrightarrow{0} H^1(K) \xrightarrow{\rho_1} H^1(X) \to H^2_{pt}(K) = k(2)$$

et $\epsilon_{X,1} = \rho_1 \circ \iota_1$ est non nul. L’espace X n’est donc pas i-acyclique.

Non totale \cup-acylicité de X. Soit maintenant U un ouvert connexe de X. Comme $H_c(X) = k(1)$, le cup-produit

$$\cup : H_c(X) \times H_c(U) \to H_c(U)$$

satisfont la condition d de l’axiome de Mayer-Vietoris. Par suite$$H^2_c(X) = \text{ker}(\cup) \cap H^2_c(U)$$

et

$$H^2_c(X) = k(1).$$

177
est automatiquement nul si U n’est pas orientable car alors $H^2_c(U) = 0$. Lorsque, par contre, U est orientable, la dualité de Poincaré s’applique et le cap produit (\ast) est nul, si et seulement si, la restriction $H^1_c(X) \to H(U)$ est nulle, donc si et seulement si $dx|_U = 0$ dans $H(U)$.

On a deux cas possibles.

- Cas $C_y \subseteq U$. La restriction du revêtement $\nu : T \to K$ à $\nu^{-1}(U)$ est triviale à deux nappes U_1 et $U_2 = \sigma U_1$, car U orientable. On peut supposer $C_y \subseteq U_1$ et alors $\sigma C_y \cap U_1 = \emptyset$. On a donc $U \simeq U_1 \subseteq T \setminus C_y$, et U est i-acyclique puisque ouvert de $T \setminus C_y \sim S^1 \times \mathbb{R}$, espace i-acyclique. Maintenant, comme $C_y \subseteq U_1$, l’image de $H^1_{C_y}(X) = H^1_c(X) \to H^1(U)$ est l’image de $H^1_{C_y}(U) \to H^1(U)$, morphisme qui se factorise naturellement à travers $\epsilon_U : H_c(U) \to H(U)$, nul puisque U i-acyclique. Par conséquent, si $C_y \subseteq U$ le cup produit (\ast) est nul.

- Cas $C_y \not\subseteq U$. Il existe des ouverts $U \subseteq X$ tels que (\ast) n’est pas nul. En effet, si U est l’ouvert indiqué par la figure ci-contre, on y voit que c’est un cylindre et que dx ne s’intègre pas en une fonction sur U. Par conséquent, $dx \neq 0$ dans $H^1(U)$ et l’espace X n’est pas totalement \cup-acyclique.

Le théorème de scindage 3.1.1 pour X. L’espace X vérifie les assertions (a) et (b) de ce théorème, et la raison vient de ce que $H_c(X)$ est concentrée en degré 1. En effet, dans de tels cas, on s’aperçoit rapidement que $H_c(\Delta_{\ell}X^m)$ doit être concentré en degré ℓ, ce que l’on démontre par induction sur ℓ et prouve, en passant, les assertions en question.

Plus précisément, dans le cas des espaces F_m, on s’intéresse au morphisme

$$H_c(X) \otimes H_c(F_m) \to H_c(\Delta_{\leq m}(X \times F_m)) \sim H_c(F_m)^m \quad (\dagger)$$

où le terme de gauche est concentré en degré $m + 1$ puisque $H_c(X) = k(1)^\#$ et que $H_c(F_m) = k(m)^\#$, par hypothèse inductive. Le morphisme (\dagger) est alors nul puisque $H_c(\Delta_{\leq m}(X \times F_m))k(m)^\#$, également par hypothèse inductive. On a donc la suite exacte courte

$$0 \to H_c(F_m)[-1]^m \to H_c(F_{m+1}) \to H_c(X \times F_m) \to 0,$$

e et elle montre que $H_c(F_{m+1})$ est concentré en degré $m + 1$, et l’étape inductive peut être itérée.

Dans le cas des espaces $\Delta_{\leq \ell}X^m$, on s’intéresse au morphisme

$$H_c(\Delta_{\leq \ell}X^m) \to H_c(\Delta_{\leq \ell-1}X^m) \quad (\ddagger)$$

dont la preuve de 3.1.1 montre que son annulation résulte de l’annulation de

$$H_c(X) \otimes H_c(\Delta_{\leq \ell-1}X^m) \to H_c(\Delta_{\leq \ell-1}^m).$$

178
Cela résulte pour les mêmes raisons de degré que précédemment, sous l’hypothèse d’induction que $\Delta^{\leq \ell-1} \leq 1$ est concentré en degré $\ell-1$. À partir de là, on a la suite exacte courte

$$0 \to H_c(\Delta^{\leq \ell-1}X^m)[-1] \to H_c(\Delta^\ell X^m) \to H_c(\Delta^\leq \ell X^m) \to 0,$$

où le terme central est concentré en degré ℓ car somme directe d’espaces gradués isomorphes à $H_c(F^\ell)$ (cf. 2.3.3). On conclut que $H_c(\Delta^{\leq \ell}X^m)$ est concentré en degré ℓ, et l’étape inductive peut être itérée.

13.11. Revêtements non i-acycliques à base i-acyclique

\vdash *Un revêtement fini de base i-acyclique peut ne pas être i-acyclique.*

Une manière élémentaire de produire des contre-exemples consiste à prendre une variété orientable Y non i-acyclique, donc telle que $H_c(Y) \wedge H_c(Y) \neq 0$, et à faire agir librement sur Y un groupe fini W qui conserve l’orientation et tel que $H_c(Y)^W \wedge H_c(Y)^W = 0$.

Le tore T de dimension 2 est le domaine carré ci-contre sur lequel on a identifié les côtés opposés. Cet espace privé de quatre points, noté X, est représenté par la figure à droite. La suite exacte longue

$$0 \to H^0_c(T) \to H^0_c(4) \to H^1_c(X) \to H^1_c(T) \to 0 \to H^2_c(X) \to H^2_c(T) \to 0,$$

montre que les 1-cocycles dx et dy dans T sont représentés par des 1-cocycles à support compact dans X. La classe fondamentale de X se retrouve alors représentée comme le produit de ces deux cocycles. Il s’ensuit que X n’est pas $∪$-acyclique (ni i-acyclique). La suite (\dagger) révèle aussi l’apparition de trois nouveaux 1-cocycles dans X provenant de $H^0_c(4)$, nous avons donc

$$H^0_c(X) = 0, \quad H^1_c(X) = \mathbb{Q}^5, \quad H^2_c(X) = \mathbb{Q}.$$

Voici une représentation de 1-cycles de X générant $H^1_c(X)(= H_1(X))$:

Notons maintenant $\theta : T \to T$ l’isomorphisme d’ordre 4 qui se voit sur (\ast) par une rotation horaire d’angle $\pi/4$. Il est clair que θ agit librement sur X et préserve son orientation. L’espace quotient $B := X/\langle \theta \rangle$ est par conséquent une variété différentiable orientable et

$$H_c(B) = H_c(X)^{\langle \theta \rangle}.$$
Or, l’action de θ sur les 1-cycles se lit facilement sur (†). On y voit que

\[
\theta(\gamma_0) = \gamma_0, \quad \begin{cases}
\theta(\gamma_1) = \gamma_1 \\
\theta^2(\gamma_1) = \gamma_0 - \gamma_1 + \gamma_3 \\
\theta^3(\gamma_1) = \gamma_0 - \gamma_2 + \gamma_4
\end{cases}
\]

de sorte que \(H^0_c(B) = 0, \) \(H^1_c(B) = [\gamma_0] \mathbb{Q} \oplus [\gamma_3 + \gamma_4] \mathbb{Q}, \) et \(H^2_c(B) = \mathbb{Q}, \) où \([\gamma_0] \wedge [\gamma_3 + \gamma_4] = 0\) puisque l’intersection des cycles sous-jacents est vide. On conclut que \(H_c(B) \land H_c(B) = 0 \) et \(B \) est \(u \)-acyclique et donc \(i \)-acyclique.

(En fait, on peut vérifier que \(B \) est un cylindre ouvert épipointé \((S^1 \times \mathbb{R}) \setminus \bullet.)\)

Le revêtement \(X \to B \) est bien à base \(i \)-acyclique alors que \(X \) ne l’est pas.

13.12. Fibrations non \(i \)-acycliques à fibre et base \(i \)-acycliques

† Une fibration à fibre et base \(i \)-acycliques peut ne pas être \(i \)-acyclique.

Rappelons que la cohomologie de l’espace projectif complexe \(\mathbb{P} := \mathbb{P}_n(\mathbb{C}) \) est isomorphe à l’anneau gradué \(\mathbb{Q}[z]/(z^{n+1}) \) où \(\deg(z) = 2. \)

Le fibré tautologique \(\mathcal{T}\mathbb{P} \) au-dessus de \(\mathbb{P} \) est le sous-espace de \(\mathbb{P} \times \mathbb{C}^{n+1} \) des couples \((D, z)\) où \(D \) est une droite vectorielle de \(\mathbb{C}^{n+1} \) et \(z \in D. \) L’application \(\pi : \mathcal{T}\mathbb{P} \to \mathbb{P}, (D, z) \to D, \) est une fibration vectorielle localement trivialement de fibres isomorphes à \(\mathbb{C}. \) Notons \(IP \subseteq \mathcal{T}\mathbb{P} \) sa section nulle. La classe de Thom \(\Phi_{(IP, \mathcal{T}\mathbb{P})} \in H^2_c(\mathcal{T}\mathbb{P}) \) de la section nulle se restreint à la classe génératrice de \(H(\mathbb{P}), \) autrement dit,

\[
\Phi_{(IP, \mathcal{T}\mathbb{P})}|_{\mathbb{P}} = z
\]

En fait, on a

\[
H_c(\mathcal{T}\mathbb{P}) = \mathbb{Q}[\Phi]/(\Phi^{n+2})
\]

et la restriction à la section nulle s’identifie à l’isomorphisme canonique

\[
\mathbb{Q}[\Phi]/(\Phi^{n+2}) \to \mathbb{Q}[z]/(z^{n+1}), \quad \Phi \to z
\]

En particulier, la multiplication par \(\Phi_{(IP, \mathcal{T}\mathbb{P})} \) n’est pas une opération nulle dans \(H^+ (\mathcal{T}\mathbb{P}) \) pour peu que \(n \geq 1. \)

Maintenant, si nous restreignons le fibré tautologique au complémentaire de deux points \(\mathbb{P}' := \mathbb{P} \setminus 2, \) nous avons la suite exacte longue

\[
0 \to H^2_c(\mathcal{T}\mathbb{P'}) \rightarrow H^2_c(\mathcal{T}\mathbb{P}) = \Phi \cdot \mathbb{C} \xrightarrow{\rho} H^2_c(\mathbb{C})^2 \rightarrow H^3_c(\mathcal{T}\mathbb{P'}) \to 0
\]

où \(\rho \) est injective. On en déduit que \(H^i_c(\mathcal{T}\mathbb{P}) = 0 \) pour \(i \in \{0, 1, 2\}, \) puis que \(H^3_c(\mathcal{T}\mathbb{P}) = \mathbb{Q}, \) et enfin que

\[
H^i_c(\mathcal{T}\mathbb{P'}) = H^i_c(\mathcal{T}\mathbb{P}), \quad \text{pour tout } i \geq 4. \tag{\text{(*)}}
\]

180
Par conséquent, si $n \geq 4$ on a

\[
\begin{array}{cccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
 \dim H_i^c(\mathcal{T} P') & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
 \dim H_i^c(\mathcal{P}') & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & \ldots \\
\end{array}
\]

et si ω est non nulle de $H_4^c(\mathcal{T} P')$, on a $\omega \land \omega \neq 0$ dans $H_8^c(\mathcal{T} P')$ compte tenu de (*) et du fait qu’il en est ainsi pour $H_c(\mathcal{T} P)$ (pour $n \geq 3$).

Considérons maintenant \mathcal{P}' pour $n = 3$. Dans ce cas, on dispose sur $\mathcal{P}_3(\mathbb{C})$ de l’involution θ sans point fixes :

\[
\theta(\langle a, b, c, d \rangle) = \langle b, -a, d, -e \rangle
\]

dont on sait que son action sur z est $\theta z = -z$, de même par ailleurs que l’action sur le générateur de $H_1^c(\mathcal{P}')$. Il s’ensuit que l’on a

\[
\begin{array}{cccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \dim H_i^c(\mathcal{T} P') & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
 \dim H_i^c(\mathcal{P}') & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & \ldots \\
 \dim H_i^c(\mathcal{P}' / \langle \theta \rangle) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 \dim H_i^c(\mathcal{P}') & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
 \dim H_i^c(\mathcal{P}' / \langle \theta \rangle) & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Et on voit bien que la variété $(\mathcal{P}_3(\mathbb{C}) \setminus 2) / \langle \theta \rangle$ n’est pas \cup-acyclique.

14. **Rappels sur les nombres de Stirling**

Pour les notions de cette section de rappels, nous renvoyons à [22] pour plus de détails.

14.1. **Factorielles croissantes et décroissantes**

Pour $n \in \mathbb{N}$, les « n-ièmes factorielles croissante et décroissante » (46) d’un élément x d’un anneau, notées respectivement x^\nbar et x^\o, sont définies par

\[
\begin{align*}
 x^\nbar & := 1, \quad \text{et} \quad x^\nbar := x(x + 1)(x + 2) \cdots (x + (n - 1)) , \\
 x^\o & := 1, \quad \text{et} \quad x^\o := x(x - 1)(x - 2) \cdots (x - (n - 1)) .
\end{align*}
\]

On a clairement

\[
x^{n+1} = x^n(x - n) \quad \text{et} \quad x^\nbar(x + n) .
\]

\[\text{[46] « rising and falling factorials » en anglais.}\]
14.2. Nombres de Stirling de première espèce

Dans l’anneau de polynômes $\mathbb{Z}[X]$, le sous-module $\mathbb{Z}^n[X]$ des polynômes de degré majoré par n admet les trois bases suivantes

$$B := \{x^0, x^1, \ldots, x^n\}, \quad B := \{x^n, x^{n-1}, \ldots, x^0\}, \quad B := \{x^i, x^i, \ldots, x^n\},$$

Le développement des polynômes X^i et X^j en somme de monômes donne les coefficients des matrices de passage de B vers les deux autres bases. On note ces matrices respectivement par $(s(i,j))$ et $(\bar{s}(i,j))$. On a donc

$$X^i = \sum_{i\geq j \geq 0} s(i,j) X^j \quad \text{et} \quad X^i = \sum_{i\geq j \geq 0} \bar{s}(i,j) X^j.$$

Les matrices $(s(i,j))$ et $(\bar{s}(i,j))$ sont triangulaires inférieurs avec des 1 sur la diagonale. On voit clairement que $\bar{s}(i,j) \geq 0$ et que $(-1)^{i-j}s(i,j) \geq 0$.

On étend la définition de $s(i,j)$ et $\bar{s}(i,j)$ à tous les indices $i, j \in \mathbb{N}$, par la valeur 0 lorsque $j > i$. Ainsi, les sommations ci-dessous peuvent être indexées tout simplement indexées par $j \geq 0$.

14.2.1. Définition. Pour $i, j \in \mathbb{N}$, les entiers naturels $\bar{s}(i,j) \in \mathbb{N}$ sont « nombres de Stirling de première espèce (non signés) », et les entiers relatifs $s(i,j) \in \mathbb{Z}$ sont « les nombres de Stirling de première espèce (signés) ».

14.2.2. Lemme. Les nombres de Stirling de première espèce vérifient les propriétés suivantes.

a) Pour tous $i, j \in \mathbb{N}$, on a $s(i,j) = (-1)^i-j s(i,j)$. En particulier, si D désigne la matrice diagonale $\text{diag}(1, -1, \ldots, (-1)^n)$, on a

$$(s(i,j)) = D(\bar{s}(i,j))D^{-1}$$

b) Pour tout $i \geq 0$, on a $s(i,i) = 1$ et $\bar{s}(i,i) = 1$.

c) Pour tout $i \geq 1$, on a $s(0,i) = s(i,0) = 0$ et $\bar{s}(0,i) = \bar{s}(i,0) = 0$.

d) Pour tous $i, j \geq 1$, on a

$$\begin{cases} s(i,j) = s(i-1,j-1) - (i-1) s(i-1,j), \\ \bar{s}(i,j) = \bar{s}(i-1,j-1) + (i-1) \bar{s}(i-1,j). \end{cases}$$

e) Pour tout $i \geq 1$, on a $s(i,1) = (-1)^{i-1} (i-1)!$ et $\bar{s}(i,1) = (i-1)!$.

Démonstration. (a) Évident puisque $X^i = (-1)^i (-X)^i$. (b,c) Pour tout $i > 0$, les polynômes X^i sont clairement de coefficient constant 0 et de coefficient principal 1. (d) Résulte de ce que pour $i \geq 1$, on a

$$X^i = X^{i-1}(X-(i-1)) = \left(\sum_{j\geq 0} s(i-1,j) X^j \right) (X-(i-1))$$

$$= \sum_{j\geq 0} s(i-1,j) X^{j+1} - \sum_{j\geq 0} s(i-1,j) (i-1) X^j = \sum_{j\geq 0} s(i,j) X^j.$$
Pour $i > 0$, on a
\[
(\tilde{s}(i, 1) = (X - 1) \cdots (X - (i - 1)))|_{X=0} = (-1)(-2) \cdots (-i + 1).
\]
Les égalités concernant les coefficients $\tilde{s}(i, j)$ résultent ensuite de (a).

14.3. Nombres de Stirling de deuxième espèce
Les coefficients des matrices $(S(i, j)) := (s(i, j))^{-1}$ et $(\tilde{S}(i, j)) := (\tilde{s}(i, j))^{-1}$
 vérifient :
\[
X^i = \sum_{j \geq 0} S(i, j) X^j = \sum_{j \geq 0} \tilde{S}(i, j) X^j, \quad \forall i \geq 0.
\]
Les matrices $(S(i, j))$ et $(\tilde{S}(i, j))$ sont triangulaires inférieures avec des 1 sur
la diagonale. On verra que $S(i, j) \geq 0$ et que $(−1)^{i−j} \tilde{S}(i, j) \geq 0$.

14.3.1. Définition. Pour $i, j \in \mathbb{N}$, les entiers naturels $S(i, j) \in \mathbb{N}$ sont «
les nombres de Stirling de seconde espèce (non signés) », et les entiers relatifs
$\tilde{S}(i, j) \in \mathbb{Z}$ sont « les nombres de Stirling de seconde espèce (signés) ».

14.3.2. Lemme. Nombres de Stirling de deuxième espèce vérifient les propiètes suivantes

a) Pour tous $i, j \in \mathbb{N}$, on a $\tilde{S}(i, j) = (−1)^{i−j} S(i, j)$. En particulier, si D
designe la matrice diagonale $\text{diag}(1, −1, \ldots, (−1)^i)$, on a
\[
(\tilde{S}(i, j)) = D(S(i, j)) D^{-1}
\]
b) Pour tout $i \geq 0$, on a $S(i, i) = 1$ et $\tilde{S}(i, i) = 1$.

c) Pour tout $i \geq 1$, on a $S(0, i) = S(i, 0) = 0$ et $\tilde{S}(0, i) = \tilde{S}(i, 0) = 0$.

d) Pour tous $i, j \geq 1$, on a
\[
\begin{cases}
S(i, j) = S(i−1, j−1) + j S(i−1, j), \\
\tilde{S}(i, j) = \tilde{S}(i−1, j−1) − j \tilde{S}(i−1, j).
\end{cases}
\]
e) Pour tous $i, j \in \mathbb{N}$, on a $S(i, j) \geq 0$ et $(−1)^{i−j} \tilde{S}(i, j) \geq 0$.

f) Pour tout $i \geq 0$, on a $S(i, 1) = 1$ et $\tilde{S}(i, 1) = (−1)^{i+1}$.

Démonstration. (a) Évident d’après 14.2.2-(a). (b,c) Évidents. (d) Résulte de ce que pour $j \geq 0$, on a $X^j X = X^{j+1} + j X^j$ et alors
\[
X^i = X^{i−1} X = \left(\sum_{j \geq 0} S(i−1, j) X^j \right) X
\]
\[
= \sum_{j \geq 0} S(i−1, j) X^{j+1} + \sum_{j \geq 0} S(i−1, j) j X^j = \sum_{j \geq 0} S(i, j) X^j.
\]
(e) La positivité de $S(i, j)$ résulte inductivement de (d) à partir de la positivité de $S(0, j)$ et $\tilde{S}(1, j)$, ce qui a été établi dans (b) et (c). (f) La question
(b) fixe le cas $i = 1$, pour $i > 1$, on a $\mathcal{S}(i, 1) = \mathcal{S}(i - 1, 0) + \mathcal{S}(i - 1, 1) = \mathcal{S}(i - 1, 1)$, d’après (c) et (d), et par induction, $\mathcal{S}(i, 1) = \mathcal{S}(1, 1) = 1$. □

14.3.3. Remarques

- Valeurs initiales des nombres de Stirling. Les nombres de Stirling ont été indexés par les couples $(i, j) \in \mathbb{N}^2$. Dans tous les cas, les coefficients de la colonne $(j = 0)$ et la ligne $(i = 0)$ sont nuls sauf pour $i = j = 0$ où ils valent 1. Tous les autres termes découlent de ces « valeurs initiales » via les quatre règles de récurrence (d) des lemmes 14.2.2 et 14.3.2.

- On remarquera aussi les égalités suivantes qui concernent les sous-matrice de nombres de Stirling d’indices non nuls.

\[
\begin{align*}
\binom{\mathcal{S}(i, j)}{i, j \geq 1}^{-1} &= \binom{\mathcal{S}(i, j)}{i, j \geq 1}, \\
\binom{\mathcal{S}(i, j)}{i, j \geq 1}^{-1} &= \binom{\mathcal{S}(i, j)}{i, j \geq 1}
\end{align*}
\]

14.4. Nombres de Stirling non signés et cardinaux

Pour tous $i, j \geq 0 \in \mathbb{N}$, on définit :

- $\begin{bmatrix} i \\ j \end{bmatrix}$: cardinal de l’ensemble des permutations d’un ensemble à i éléments qui sont produits d’exactement j cycles.

- $\begin{bmatrix} i \\ 0 \end{bmatrix}$: cardinal de l’ensemble $\mathcal{P}_j(E)$ de partitions d’un ensemble E à i éléments en j parties non vides.

On remarquera l’égalité $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$ qui dit qu’il y a une unique partition de l’ensemble vide en 0 parties non vides, et l’égalité $\begin{bmatrix} 0 \\ i \end{bmatrix} = 1$ qui dit qu’il y a une unique permutation qui soit produit de 0 cycles.

14.4.1. Proposition. Pour tous $i, j \geq 0 \in \mathbb{N}$, on a

a) $\begin{bmatrix} i \\ j \end{bmatrix} = \mathcal{S}(i, j)$. Lorsque $i \geq 1$, on a $\begin{bmatrix} i \\ j \end{bmatrix} = \frac{1}{j!} \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} k^i$.

b) $\begin{bmatrix} i \\ 0 \end{bmatrix} = \mathcal{S}(i, j) = (-1)^{i-j} \mathcal{S}(i, j)$.

Démonstration. On a bien $\begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ et $0 = \begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix} = \begin{bmatrix} 0 \\ j \end{bmatrix} = \begin{bmatrix} i \\ j \end{bmatrix}$ pour tous $i, j \neq 0$. Les familles des nombres en question ont donc bien les même valeurs initiales que les nombres de Stirling.

Pour $i \geq j \geq 1$, on trie les partitions de $\mathcal{P}_j(\llbracket 1, i \rrbracket)$ en deux classes suivant qu’elles contiennent ou non le singleton $\{i\}$. Les cardinaux de ces classes sont respectivement $\begin{bmatrix} i-1 \\ j-1 \end{bmatrix}$ et $j \begin{bmatrix} i-1 \\ j \end{bmatrix}$. On a donc $\begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} i-1 \\ j-1 \end{bmatrix} + j \begin{bmatrix} i-1 \\ j \end{bmatrix}$, qui correspond à la récurrence 14.3.2-(d) pour les nombres $\mathcal{S}(i, j)$.

De même, en triant les permutations de $\llbracket 1, i \rrbracket$, suivant que $\{i\}$ est fixé ou non, on obtient deux classes de cardinaux $\begin{bmatrix} i-1 \\ j-1 \end{bmatrix}$ et $(i - 1) \begin{bmatrix} i-1 \\ j \end{bmatrix}$, on a donc :

184
\[[i] = [i-1]_{j-1} + (i-1) [i-1]_j, \]
cest ce qui correspond à la récurrence 14.2.2-(d) pour les nombres \(s(i, j). \)

Enfin, on rappelle que la formule dans (a) provient du dénombrement des surjections de \([1, i] \rightarrow [1, j]\) (modulo les permutations de \([1, j]\)). Cet ensemble est le complémentaire \(F_* \) dans l'ensemble \(F \) de toutes les applications de \([1, i] \rightarrow [1, j]\) de l'ensemble des applications qui ne sont pas surjectives. Notons \(F_t \) le sous-ensemble des applications de \(F \) qui n'atteignent pas la valeur \(t \in [1, j] \). Notons \(F_{t_1, \ldots, t_k} := F_{t_1} \cap \cdots \cap F_{t_k} \). On a alors

\[
|F_*| = \sum_{k=1}^j (-1)^{k-1} \sum_{1 \leq t_1 < \cdots < t_k \leq j} |F_{t_1, \ldots, t_k}| = \sum_{k=1}^j (-1)^{k-1} \binom{j}{k} (j-k)^j,
\]
et la formule découle aussitôt. \(\square \)

Références bibliographiques

Notations

Généralités sur les espaces i-acycliques

\((\mathbb{A}^n(X; k), d_*)\), complexe des faisceaux de germes de cochaînes d’Alexander-Spanier de \(X\) .. 15
\(\mathcal{K}(X)\)

famille des parties compactes \(K \subseteq X\) 15
\(X, Y, Z, \ldots\), pseudovariétés 16
\(\epsilon_X : H_c(X) \to H(X)\), morphisme induit par l’inclusion \(\Omega_c(X) \subseteq \Omega(X)\) 16
\(H_c(X) := \text{im}(\epsilon_X)\), cohomologie « intérieure » de \(X\) .. 17
\(\delta_X : H_c(X \times X) \to H_c(X)\), restriction à la diagonale 17
\(X \setminus a\) “complémentaire” dans \(X\) d’une partie finie \(a\) de cardinal \(a\) 19
\(\phi_\tau : H_c(X \setminus \tau(0)) \to H_c(X \setminus \tau(1))\), action par monodromie le long du chemin \(\tau\) .. 21

Espaces de configuration généralisés

\(\Delta_m \times X^n, \Delta^n_{\ell}\), espace de configurations (ordonnées) généralisé 21
\(F_m(X)\)

espace de configurations (ordonnées) classique, noté aussi \(\Delta_m X^n\) 22
\(Z[a]\)

intersection \(Z \cap (X^{m-a} \times F_a(X))\) 22
\(\pi_a \to X \to X^a\), projection sur les \(a\) dernières coordonnées 22
\(p_a \to X \to X^a\), projection sur les \(a\) premières coordonnées 22

\(< X\) est de type fini >, lorsque \(H_c(X)\) et \(H(X)\) sont de dimension finie 24

\(\Psi(E)\)

ensemble des partitions de l’ensemble \(E\) en \(\ell\) parties non vides 24
\(i \sim j\)

Si \(p \in \Psi(E)\), on pose \((i \sim j) \iff \exists \mathcal{I} \subseteq \mathcal{P}\) t.q. \(\{i, j\} \subseteq \mathcal{I}\) 25

[[a, b]] (resp. \(\llbracket a, b \rrbracket\)), entiers naturels \(m\) vérifiant \(a \leq m \leq b\) (resp. \(a \leq m < b\)) 25

\(F_p(X)\)

Si \(p \in \Psi(m)\), on a \(\overline{\pi} \in F_p(X) \iff (x_i = x_j) \iff (i \sim j)\) 25

\(\text{dim}_{ch}(X)\)

dimension cohomologique de \(X\) .. 25

\(\mathcal{O}^*_{\overline{\pi}}(X), d_* := \tau \in d_{\overline{\pi}}(\mathbb{A}^n(X; k), d_*)\), résolution c-molle d’un espace \(X\) de dimension \(d_X\) .. 25

Théorèmes de scindage et complexes fondamentaux

- point d’un espace .. 28
\(X^o\)

l’espace \(X\) privé d’un point • ... 28
\(F_{e^*}^m(X)\)

ensemble des \(\overline{\pi} \in F_m(X)\) avec \(x_i = \bullet\) 29
\(F_{e^*}^m(X)\)

ensemble des \(\overline{\pi} \in F_m(X)\) avec l’un des \(x_i\) égal à \(\bullet\) 29
\(S_m\)

groupe des permutations de l’ensemble fini \(\{1, 2, \ldots, m\}\) 29
\(S_m: X^m, S_m: H^i(Z), S_m: H^i(Z), \ldots\), action de \(S_m\) sur \(X^m\) par permutation des coordonnées et actions induites, pour \(Z\) partie \(S_m\) stable de \(X^m\) \ldots 29

\(F^q(X)\) Si \(q \in \mathbb{P}(m), \pi \in F^q(X) \Leftrightarrow \det (vi \neq j)(i \sim j) \Rightarrow (x_i \neq x_j)\) \ldots 34

Cohomologie des espaces de configuration, cas i-acyclique

\(\mathcal{P}(V) \in \mathbb{Z}[T],\) polynôme de Poincaré d’un espace vectoriel gradué \(V\) \ldots 36

\(\mathcal{P}(X), \mathcal{P}_r(X)\), polynômes de Poincaré de \(H(X)\) et \(H_c(X)\) respectivement \ldots 36

\(\mathcal{P}_c(X \times a)\) Polynôme de Poincaré compact du complémentaire dans \(X\) d’une partie finie de cardinal \(a\) \ldots 36

\(Q^\alpha_{\ell q} \in \mathbb{Z}[P, T]\), polynôme universel pour \(\mathcal{P}_c(\Delta^\ell_q X^m)\) \ldots 40

Représentations du groupe symétrique

\(\lambda \vdash m\) alias pour : \(\lambda\) est une décomposition de \(m\) \ldots 41

\(|\lambda|\) nombre décomposé par \(\lambda\), donc \(|\lambda| := \sum_i \lambda_i\) \ldots 41

\(\ell(\lambda)\) nombre de termes (non nuls) d’une décomposition \ldots 41

\(\nu_\ell(m) := \{\lambda \vdash m \mid \ell(\lambda) = \ell\}, \ldots 41

\(\tau(\lambda)\) tableau de Young standard associé à une décomposition \(\lambda\) \ldots 41

\(\mathcal{P}_{\lambda} = S_{\lambda_1} \times \cdots \times S_{\lambda_t}\), sous-groupe des permutations de \(S_m\) qui conservent les lignes du tableau \(\tau(\lambda_1, \ldots, \lambda_t)\) \ldots 41

\(S_{\lambda} := N_{S_m}(\mathcal{P}_{\lambda})\), normalisateur de \(\mathcal{P}_{\lambda}\) dans \(S_m\) \ldots 41

\(G_{\lambda} := S_{\lambda}/\mathcal{P}_{\lambda} = S_{\lambda_1} \times \cdots \times S_{\lambda_t}\), si \(\lambda = (\lambda_1, \ldots, \lambda_t) = (\alpha_1^X, \ldots, d_X^X)\) \ldots 42

\(\lambda; \alpha; \mu; \nu; \tau; I; \Theta\) \ldots 43

Cohomologie des espaces de configuration, cas général

\(p_m : F_{m+1} \rightarrow F_m\), projection sur les \(m\) premières coordonnées \ldots 46

\(H^i_{BM}(M) := H^i_{BM}(M; k)\), cohomologie de Borel-Moore d’une pseudovariété \(M\) dimension \(d_M\) \ldots 46

\(\langle _ , _ \rangle_M\) accouplement de la dualité de Poincaré sur la variété topologique orientée \(M\) \ldots 47

\(\sigma_M(f)\) action de \(f_a\) sur la classe fondamentale de \(M_a\), i.e. \(f([M_a]) = \sigma_M(f) \cdot [M(f(a))]\) \ldots 48

\(p_a : H_c(F_{b+a}(M) \rightarrow H_c(F_b(M)) - a \cdot d_M\), intégration sur les fibres \ldots 48

\(\text{sgn}(g)\) signature de \(g \in S_m\) \ldots 49

\(\sigma_m(g) := \text{sgn}(g) \cdot \text{dim}^M\), action de \(g \in S_m\) sur l’orientation de \(M^m\) \ldots 49

\(\langle _ \rangle^\nu\) dualité vectorielle \ldots 49

\(\sigma\) la représentation par « signature » de \(S_m\) \ldots 50

\((C^p(U, _), d)\), complexe de \(p\)-cochaînes simpliciales (non ordonnées) \ldots 51

\((C^p(U, _), d)\), complexe de \(p\)-cochaînes (simpliciales) ordonnées \ldots 52

\((C^p(U, _), d)\), complexe de \(p\)-cochaînes (simpliciales) alternées \ldots 52

\(\text{sgn}(\alpha)\) signature d’une permutation \(\alpha\) \ldots 52

188
\[\varepsilon_p : (\mathcal{C}_p^2(U_m, _), d) \to (\mathcal{C}_p^p(U_m, _), d), \] quasi-isomorphisme d’antisymétrisation 52

\[U_{(i_0, \ldots, i_p)} \] une copie de \(U_{i_0, \ldots, i_p} \) paramétrée par l’uplet \((i_0, \ldots, i_p)\) 52

\[\mathcal{G}_{U_m} \] faisceaux \(S_m \)-équivariant sur \(U^m \) 53

\[(\Omega^*_p(U), d) := \Gamma(U; (\mathcal{A}_p^*(X;k), d_*)), \] le complexe des cochaines à support compact de \(U \) 55

\[(\Omega^{\cdot}_{M,\cdot}(U), d) \] complexe de cofaisceaux (flasques) des cochaines à support compact sur \(M \) 55

\[(\Omega^*_{BM}(U), d) := ((\Omega^*_p(U), d)^*\right)^{-d_M}, \] le complexe des cochaines de Borel-Moore sur \(U \subseteq M \) 55

\[(\Omega^*_{M, BM}(U), d) \] complexe de faisceaux (flasques) de germes de cochaines de Borel-Moore de \(M \) 56

\[\mathcal{C}(U^m)_{\bullet} := ((\mathcal{C}_p^p(U^m, \mathcal{O}_{M,c}(_)), d_*), d_*), \] le complexe de chaînes de \(\check{C} \) à support compact de \(U^m \) 56

\[\mathcal{C}(U^m)_{\bullet, BM} := ((\mathcal{C}_p^p(U^m, \mathcal{O}_{M, BM}(_)), d_*), d_*), \] le complexe de chaînes de \(\check{C} \) à support compact de \(U^m \) 56

\[\mathcal{E}_e(U^m) := \mathcal{E}(U^m) \otimes \sigma_m, \] suite spectrale pour le complexe de faisceaux \(S_m \)-équivariants \(\mathcal{E}_{\bullet, BM}^* \otimes \sigma_m \) 59

\[\mathbb{X}^{p+1}_m \] décomposition canonique de \(H_{BM}(U^m_{m-p, \ldots, m}) \) 59

\[F(p+1, m) \] ensemble des applications \(f : [1, m] \] strictement croissantes sur \([1, m-p] \) qui fixent \([m-p, m] \) 59

\[\gamma_m(\omega) = (-1)^{\lfloor \omega \rfloor + m(m-1)/2} c_m(\omega), \] renormalisation du morphisme de liaison 64

\[F^p(p+2, m+1), \] ensemble des applications \(f : [1, m+1] \) strictement croissantes sur \([1, m-p] \) qui fixent \([m-p, m+1] \) 72

Stabilité des familles de représentations

FI
catégorie des ensembles \(\mathcal{F} \)-finis et des applications \(\mathcal{F} \)-injectives 75

\[\text{Mod}(\mathcal{A}([\mathcal{F}]), \) catégorie des \(\mathcal{F} \)-modules 75

\(\mathbb{V} = \{ \phi_m : V_m \to V_{m+1} \}_m, \) famille dénombrable représentant un \(\mathcal{F} \)-module 76

\(\phi_{m+b, m} : V_m \to V_{m+b}, \) morphisme de transition de \(\mathbb{V} = \{ \phi_m : V_m \to V_{m+1} \} \) 76

\(V_{\ge q} \) tronqué de \(\mathbb{V} \) qui préserve les \(V_m \) pour \(m \ge q \) et annule les autres 77

\(V_{< q} \) tronqué de \(\mathbb{V} \) qui préserve les \(V_m \) pour \(m < q \) et annule les autres 77

\(\mathfrak{a} := [1, a] \) notation pour l’ensemble fini représenté par l’intervalle \([1, a] \) 77

\(\mathcal{M}(\mathfrak{a}) \) le foncteur représentable \((_)_\to \mathcal{A}([\mathcal{M}(\mathfrak{a}, _)] \) 77

\([\Sigma] \subseteq \mathfrak{V} \) sous-\(\mathcal{F} \)-module de \(\mathfrak{V} \) engendré par \(\Sigma \subseteq \bigcup_m V_m \) 78

\(\mathcal{W} = \{ S_m : W_m \}_m, \) famille de représentations de dimensions finies des groupes symétriques 79

\(\chi(\mathfrak{W}) := \{ \chi_{S_m(W_m)} \}_m, \) famille des caractères associée à \(\mathfrak{W} \) 79

\(\dim(W) := \{ \dim_k(W_m) \}_m, \) famille des dimensions associée à \(\mathfrak{W} \) 79

\(V(\lambda)_m \) la représentation irréductible de \(S_m \) correspondante à \(\lambda[m] \) 80

\([x] \in \mathbb{Z} \) partie entière par excès de \(x \in \mathbb{R}, \) i.e. \([x] = 1 < x \leq [x] \). Le nombre \([m/\ell] \) est le plus petit nombre de colonnes d’un diagramme de Young de taille \(m \) possédant \(\ell \) lignes, on convient que \([0/0] = 0 \) 80

\(c(\lambda)_m \) multiplicité de \(V(\lambda)_m \) dans \(V_m \) 80

189
Si
λ
deg
rg
CF
Nombres de Betti des quotients des espaces de configuration

\[\psi \in \{ \text{s.m.} \} \rightarrow \text{Mod}(k[H]), \]

\[\mathcal{M}^H : \text{Mod}(k[H]) \rightarrow \text{Mod}(k[FI]), \]

\[\mathcal{M}^a : \text{Mod}(k[H]) \rightarrow \text{Mod}(k[FI]), \]

\[\mathcal{M}^a := \mathcal{M}^{S_a}, \text{ alias de notation} \]

\[\mathcal{M}(\lambda) : = \mathcal{M}(\lambda)(V_{\lambda}), \]

\[V(\lambda)_{m+1} := \mathcal{M}(\lambda)(\geqslant |\lambda|)/\mathcal{M}(\lambda)(|\lambda|), \]

\[\Phi : \text{Mod}(\mathcal{S}_m) \rightarrow \text{Mod}(\mathcal{S}_t), \text{ foncteur de } \mathcal{S}_{m-t}-\text{co-invariants} \]

\[V_\lambda \rightarrow \text{FI} \text{-module gradué associé au FI-module } \mathcal{W} \]

\[\phi(m) := (\binom{\lambda}{\lambda} \in > m, \text{ sur } \mathcal{S}_m \rightarrow \text{Mod}(\mathcal{S}_m)) \]

\[\deg \text{-stabilisateur de } \mathcal{W}, \text{ degré de stabilité en } t \in N \text{ d'un FI-module } \mathcal{W} \]

\[\deg \text{-inj}(\mathcal{W}), \text{ degré d'injectivité en } t \in N \text{ d'un FI-module } \mathcal{W} \]

\[\text{rg}_e(\mathcal{W}), \text{ rg}_{\text{sm}}(\mathcal{W}), \text{ rangs étendus du FI-module } \mathcal{W} \]

\[\lambda \mid n \text{ si } \lambda = (1^k, 2^k, \ldots) \Rightarrow m, \text{ on pose } \lambda \mid n (1^k+u, 2^k, \ldots) \]

\[\Lambda \text{ Si } \lambda = (1^k, 2^k, 3^k, \ldots), \text{ on pose } \Lambda = (1^k, 2^k, 3^k, \ldots) \]

\[\mathcal{S}_L \text{ sur a } L \subseteq [1, m] \text{ et } \mathcal{S}_L := \text{Fix}_{\mathcal{S}_m}([1, m] \times L) \]

\[L' \text{ pour } L \subseteq [1, m], \text{ on pose } L' := L \bigcup \{m+1\} \]

\[\mathcal{T}(p+1, m) \text{ ensemble de tableau paramétrant } \mathcal{T}(p+1, m) \]

\[(_*)^* : \mathcal{T}(p+1, m) \rightarrow \mathcal{T}(p+2, m+1), \text{ application qui rajoute une boîte isolée} \]

\[\mathcal{T}_b(I) \text{ ensemble de tableaux à } ([I]+b) \text{ boîtes dont la première colonne est } \]

\[[1, b] \text{ et dont } I \text{ remplit les autres boîtes} \]

\[p(\tau) \text{ partition de } [1, b] \text{ déterminée par le tableau } \tau \in \mathcal{T}_b(I) \]

\[\Psi^J : \bigoplus_{\tau \in \mathcal{T}_b(I)} H_{e}(F_{\tau}) \rightarrow H_{e}(\Lambda_{[I]+b}(Z^I \times F_{\tau})), \text{ isomorphisme de } S_I \times S_b \text{-modules} \]

\[\Psi_{\tau} \text{ restriction de } \Psi^J \text{ à } H_{e}(F_{\tau}) \]

\[\mathcal{T}_b(b, m) \text{ ensemble de tableaux \text{ « normaux » dans } } \mathcal{T}(b, m) \]

\[H_{\tau} \text{ le stabilisateur de } \tau \text{ dans } S_{m-b} \times S_b \]

\[F_{\tau} := \{ \tau \in M_{m-b}^{n-1} \times F_{p+1} \mid x_i = x_{f, (i)} \}, \]

**Calcul du caractère de } \mathcal{S}_m\text{-module de } H_{e}(F_{m}(X)) \]

\[P(\tau) : \mathcal{T}_b(I) \rightarrow H_{e}(F_{\tau}) \]

\[\chi_\lambda : \mathcal{S}_m \rightarrow k[[T]], \text{ série de caractères d'un } \mathcal{S}_m\text{-module gradué } V \]

\[\chi_\lambda(M)(\ldots, T) : \mathcal{S}_m \rightarrow k[[T]], \text{ série de caractères de } \mathcal{S}_m\text{-module de } H_{e}(M) \]

\[\sigma_m \text{ la permutation cyclique } (1, 2, \ldots, m) \]

\[C_m := \langle \sigma_m \rangle, \text{ sous-groupe de } \mathcal{S}_m \text{ engendré par } \sigma_m \]

\[\mu(\ldots) \text{ fonction de Möbius} \]

Nombres de Betti des quotients des espaces de configuration

CF_s(X) := F_s(X)/C_m, espace de configurations cycliques de X

φ(\ldots) fonction indicatrice d'Euler

BF_s(X) := F_s(X)/S_m, espace de configurations non ordonnées de X

190
\[\deg \quad \text{graduation de } k[X_1, X_2, \ldots] \text{ telle que } \deg X_k = k \]
\[a^{\mathbb{Z}^b} = 1, \quad \text{et } a^{\mathbb{Z}^b} := a(a - h)(a - 2h) \cdots (a - (X-1)h), \text{ factorial décroissante étendue} \]

Suites spectrales de Leray

\[H_{\pi!}(\pi_Y), H_{\pi!}(Y; B), H_{\pi!}(Y), \] cohomologie à support \(\pi \)-propre pour la fibration
\[\pi_a : Y \to B \]
\[D^+_k(Y) \] catégorie dérivée des complexes de faisceaux de \(k \)-espaces vectoriels sur \(Y \) bornés inférieurement
\[\Delta^m_{[a]} \] notation abrégée de \(\Delta^m_{[a]} X^m := \Delta^m Y^m \cap (X^{m-a} \times F_a) \)
\[P_{\pi!}(Z; U)(T), \] polynôme de Poincaré pour la cohomologie à support \(\pi \)-propre d’un espace \(Z \) basé sur \(U \subset F_a(X) \)
\[\mathcal{H}^i_{\pi!}(Y) := R^i \pi_\pi!(k_Y), \] faisceau de cohomologie à support \(\pi \)-propre pour l’application \(\pi_a : Y \to F_a \)
\[UY \] faux, \(\pi_a : Y \to F_a \) et \(U \subset F_a \), on pose \(UY := \pi_a^{-1} U \)
\[C \] composante connexe de \(F_a \)
\[c : Y \to \{ \text{pt.} \}, \] application constante
\[\mathcal{S}_a C := \bigcup_{g \in \mathcal{S}_a} g \cdot C, \] saturé d’une partie \(C \subset F_a \) sous l’action de \(\mathcal{S}_a \)

Rappels sur les nombres de Stirling

\[x^n := x(x+1) \cdots (x+(n-1)), \] \(n \)-ième factorielle croissante de \(x \)
\[x^\underline{n} := x(x-1) \cdots (x-(n-1)), \] \(n \)-ième factorielle décroissante de \(x \)
\[S(i, j), \bar{S}(i, j), \] nombres de Stirling de première espèce resp. signés et non signés
\[\bar{S}(i, j), \bar{S}(i, j), \] nombres de Stirling de seconde espèce resp. signés et non signés
\[[\ell] = \bar{S}(i, j), \] cardinal de l’ensemble des permutations d’un ensemble à \(i \) éléments qui sont produits d’exactement \(j \) cycles
\[\{i\} = \bar{S}(i, j), \] cardinal de l’ensemble \(\mathcal{P}_j(E) \) de partitions d’un ensemble \(E \) à \(i \) éléments en \(j \) parties non vides