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Abstract: We consider a real Gaussian process X with global unknown
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types of processes and we also include two real data applications.
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1. Introduction

In many application areas, such as geostatistics, chemistry and environmental
science, Gaussian processes are a fundamental modeling tool. One reason for
this is that the dependence structure is characterized by the covariance function.
Often, the covariance is assumed to belong to some parametric family, where
the unknown parameters determine the sample path regularity (Gneiting et al.
[18]). It is therefore important to be able to estimate sample path regularity from
observations of the process at discrete time points. In this paper, we introduce a
new estimator of the global regularity of a Gaussian processX whose smoothness
is described by a pair (r0, β0), where r0 ∈ N0 and β0 ∈]0, 1[. More precisely, we
suppose that X(r0) is locally stationary with regularity β0 where, if r0 ≥ 1,
X is r0-times mean-square differentiable with derivative denoted by X(r0). In
contrast to previous estimators of (r0, β0) proposed in the literature, we do not
require X to be observed at equally spaced time points and X is not assumed
to be stationary nor even to have stationary increments. In fact, most previous
works on this topic have assumed r0 to be known.

We consider designs where the sampled points can be associated with quan-
tiles of some distribution, see Section 2 for details. Actually, many applications
make use of non equidistant sampling and Stein [40] (chap. 6.9) gives a hint
of how adding three points very near to the origin, among the already twenty
equally spaced observations, improve drastically the estimation of the regularity
parameter. Taking into account a non uniform design is innovating regarding
other existing estimators and makes sense as to the remark above.
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Estimation of r0 is applied to interpolation and integration of the observed
sampled path. A wide range of methods have been proposed in this field. For
processes satisfying the so-called Sacks and Ylvisaker (SY) conditions, recent
works include: Müller-Gronbach [27, orthogonal projection, optimal designs],
Müller-Gronbach and Ritter [28, linear interpolation, optimal designs], Müller-
Gronbach and Ritter [29, linear interpolation, adaptive designs]. Under Hölder
type conditions, one may cite e.g. the works of Seleznjev [36, linear interpolation],
Seleznjev [37, Hermite interpolation splines, optimal designs], Seleznjev and Bus-
laev [38, best approximation order], Blanke and Vial [6, 7, interpolation with
piecewise Lagrange polynomials]. Note that a detailed survey may be found in
the book by Ritter [33]. Also, in a time series context, Cambanis [11] analyzes
three important problems (estimation of regression coefficients, estimation of
random integrals and detection of signal in noise) for which he is looking for
optimal designs. The latter two problems involve approximations of integrals,
where knowledge of process regularity is particularly important: we provide a
detailed discussion on this topic in Section 4. For other applications of the
estimation of regularity, we refer also to Adler [2] where bounds of suprema
distributions depend on the sample roughness, Istas [21] where it is involved
in the choice of the best wavelet base in image analysis, or more generally to
prediction area, see Cuzick [15], Lindgren [26], Bucklew [10].

Concerning the parameter β0, it is closely linked to fractal dimension of sam-
ple paths. This relationship is developed in particular in the works by Adler [1]
and Taylor and Taylor [41] and it gave rise to an important literature around
estimation of β0. Note that this relation is extended for non Gaussian processes
in Hall and Roy [19]. The recent paper of Gneiting et al. [18] gives a review
on estimation of the fractal dimension for times series and spatial data. They
also provide a wide range of applications (all for equally spaced observations)
in environmental science, e.g. hydrology, topography of sea floor. Still in this
framework, we refer especially to Constantine and Hall [13] for estimators based
on quadratic variations and their extensions developed by Kent and Wood [24].
For other estimators in the stationary case, we may refer to Chan et al. [12] for
a periodogram-type estimator whereas Feuerverger et al. [16] use the number of
level crossings.

Our motivation is to extend the previous works in several directions: we
consider a Gaussian process X , observed at possibly unevenly spaced sampled
points and, not supposed to be stationary or with stationary increments. Also,
X has an unknown degree of differentiability, r0, to be estimated and if r0 ≥ 1,
the unknown coefficient of smoothness β0 is related to the unobserved deriva-
tive X(r0). Our methodology is based on an estimator of r0, say r̂0, derived from
quadratic variations for divided differences of X and consequently, generalize
the estimator based on equally spaced data of Blanke and Vial [7]. In a second

step, we proceed to the estimation of β0, with an estimator β̂0 which can be
viewed as a simplification of that studied, in the case r0 = 0, by Constantine
and Hall [13], Kent and Wood [24]. For equally spaced observations of processes
with stationary increments, note that Istas and Lang [22] have proposed and
studied an estimator of H = 2(r0+β0) by using a linear regression approach. As
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far as we can judge, our two steps procedure seems to be simpler and more com-
petitive. We obtain an upper bound for P(r̂0 6= r0) as well as the mean square

error of r̂0 and almost sure rates of convergence for β̂0. Surprisingly, these rates
are comparable to those obtained in the case of r0 equal to 0: therefore, the
preliminary estimation of r0 does not affect that of β0, even though X(r0) is
not observed. Next, in Section 4, we derive theoretical and numerical results
concerning the approximation and integration problems. We complete this work
with an extensive computational study: we compare different estimators of r0
and r0 +β0 for various processes with different smoothness and, we derive prop-
erties of our estimators for finite sample size. Our numerical results show also
the importance of well estimating r0 to get a consistent estimation for β0. To
end this part, we apply our global estimation of (r0, β0) to two well-known real
data sets: Roller data (Laslett [25]) and Biscuit data (Brown et al. [9]). Finally,
proofs of all results are postponed at the end.

2. The framework

2.1. The process and its design

We consider a Gaussian process X = {X(t), t ∈ [0, T ]} with mean function
µ(t) := EX(t) and covariance function K(s, t) = Cov (X(s), X(t)). This process
is assumed to be observed at (n+ 1) instants on [0, T ], T > 0. We shall assume
the following conditions on the regularity of X .

Assumption A2.1. X satisfies the following conditions.

(i) There exists some nonnegative integer r0, such that X is r0-times differ-
entiable in quadratic mean, with r0-th derivative X(r0).

(ii) The process X(r0) is assumed to be locally stationary:

lim
h→0

sup
s,t∈[0,T ],|s−t|≤h,s6=t

∣∣∣∣∣
E
(
X(r0)(s)−X(r0)(t)

)2

|s− t|2β0
− d0(t)

∣∣∣∣∣ = 0 (2.1)

where β0 ∈]0, 1[ and d0 is a positive continuous function on [0, T ].
(iii-p) For either p = 1 or p = 2, the partial derivative K(r0+p,r0+p)(s, t) exists

on [0, T ]2
∖
{s = t} and satisfies for some Dp > 0:

∣∣∣K(r0+p,r0+p)(s, t)
∣∣∣ ≤ Dp |s− t|−(2p−2β0) .

Moreover, we suppose that µ ∈ Cr0+1([0, T ]).

Note that the local stationarity makes reference to Berman [5]’s definition.
The condition A2.1-(i) can be translated in terms of the mean and covariance
functions. In particular, it implies that the function K is 2r0-times continu-
ously differentiable with derivatives K(r,r)(s, t) = Cov (X(r)(s), X(r)(t)), for
r = 1, . . . , r0 and all (s, t) ∈ [0, T ]2. Also, the mean of the process µ is a r0-
times continuously differentiable function with EX(r)(t) = µ(r)(t), r = 0, . . . , r0.
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Conditions A2.1-(iii-p) are more technical but classical ones when estimating
regularity parameters, see Constantine and Hall [13], Kent and Wood [24].

These assumptions are satisfied by a wide range of examples, e.g. the r0-fold
integrated fractional Brownian motion or the stationary Gaussian process with

Matérn covariance, i.e. K(t, 0) = π1/2φ
2(ν)−1Γ(ν+1/2)

(α|t|)νKν(α|t|), where Kν , is a

modified Bessel function of the second kind of order ν. The latter process gets a
global smoothness equal to (⌊ν⌋, ν−⌊ν⌋), see Stein [40] p. 31. Detailed examples,
including other classes of stationary processes, can be found in Blanke and Vial
[6, 7]. Note that, for processes with stationary increments, the limit function
d0 of (2.1), is reduced to a constant. Of course, cases with non constant d0(·)
are allowed as well as processes with trend. In particular, for some sufficiently
smooth functions a and m on [0, T ], the process Y (t) = a(t)X(t) + m(t) will
also fulfills Assumption A2.1. More precisely, we get the following result from
Seleznjev [37] and straightforward computation.

Lemma 2.1. Let X be a zero mean process with given regularity (r0, β0) and
asymptotic function d0(t) ≡ Cr0,β0 that satisfies A2.1(iii-p) (p = 1 or 2). For a
positive function a ∈ Cr0+p([0, T ]) and m ∈ Cr0+p([0, T ]), if Y (t) = a(t)X(t) +
m(t), then Y has regularity (r0, β0) with asymptotic function Dr0,β0(t) = a2(t)
Cr0,β0 and satisfies A2.1(iii-p).

Let us turn now to the description of the sampled points. We consider that
the process X is observed at (n+ 1) instants, denoted by

0 = t0,n < t1,n < · · · < tn,n ≤ T

where the tk := tk,n form a regular sequence design. That is, they are defined
as quantiles of a fixed positive and continuous density ψ on [0, T ]:

∫ tk

0

ψ(s)ds =
kδn
T
, k = 0, . . . , n,

for δn a positive sequence such that δn → 0 and nδn → T−. Clearly, if ψ
is the uniform density on [0, T ], one gets the equidistant case. Some further
assumptions on ψ are needed to get some control over the tk’s.

Assumption A2.2. The density ψ satisfies:

(i) inft∈[0,T ] ψ(t) > 0,
(ii) ∀ (s, t) ∈ [0, T ]2, |ψ(s)− ψ(t)| ≤ L|s− t|α, for some α ∈]0, 1].
These hypotheses ensure a controlled spacing between two distinct points

of observation, see Lemma 6.1. From a practical point of view, this flexibility
may allow to recognize inhomogeneities in the process (e.g. presence of pics in
environmental pollution monitoring, see Gilbert [17] and references therein) or
else to describe situations where data are collected at equidistant times but
become irregularly spaced after some screening (see for example the wolfcamp-
aquifer data in Cressie [14] p. 212).
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2.2. The methodology

In this part, we give the background ideas about construction of our estimate of
the global regularity (r0, β0) for unevenly spaced sampled data. The main idea
is to introduce divided differences (generalizing the finite differences, studied by
Blanke and Vial [7, 8]). Let us first recall that the unique polynomial of degree
r that interpolates a function g at r + 1 points tk, . . . , tk+ur (for some positive
integer u and k ∈ {0, . . . , n− ru}) can be written as:

g[tk] + g[tk, tk+u](t− tk) + g[tk, tk+u, tk+2u](t− tk)(t− tk+u)

+ · · ·+ g[tk, . . . , tk+ru](t− tk) · · · (t− tk+(r−1)u) (2.2)

where the divided differences g[. . . ] are defined by g[tk] = g(tk) and for j =
1, . . . , r (using the Lagrange’s representation):

g[tk, . . . , tk+ju] =

j∑

i=0

g(tk+iu)∏j
m=0,m 6=i(tk+iu − tk+mu)

.

In particular, we write g[tk, . . . , tk+ru] =
∑r

i=0 b
(u)
ikrg(tk+iu) with

b
(u)
ikr :=

1∏r
m=0,m 6=i(tk+iu − tk+mu)

, i = 0, . . . , r. (2.3)

These coefficients are of particular interest. In fact, their first non-zero moments
are of order r. We can also derive an explicit bound and an asymptotic expansion

for b
(u)
irk, see lemma 6.2 for details. Then, for positive integers r and u, we consider

the u-dilated divided differences of order r for X :

D
(u)
r,k X =

r∑

i=0

b
(u)
ikrX(tk+iu), k = 0, . . . , n− ur. (2.4)

If ψ(t) = T−11[0,T ](t), note that equidistant sampled points are obtained (tk,n =
kδn), and divided differences become finite differences. More precisely, let define

the finite differences ∆
(u)
r,k X =

∑r
i=0 ai,rX((k+ iu)δn) with the sequence ai,r =(

r
i

)
(−1)r−i. For equally spaced observations, one gets from (2.3) the relation:

b
(u)
ikr =

(uδn)
−r

∏r
m=0,m 6=i(i−m)

=
ai,r
r!

(uδn)
−r,

and we deduce that D
(u)
r,k X = (uδn)

−r

r! ∆
(u)
r,k X .

From now on, we study the u-dilated quadratic variations of X of order r and

set: (D
(u)
r X)2 =

∑n−ur
k=0 (D

(u)
r,k X)2

n−ur+1 . The construction of our estimators is based on

the following asymptotic properties concerning the mean behavior of (D
(u)
r X)2:

(P )

{
the quantity E (D

(u)
r X)2 is of order (u/n)−2(p−β0) for r = r0 + p

with p = 1, 2, and gets a finite non zero limit when r ≤ r0
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(see Proposition 6.1 for a rigourous derivation). These results imply that a good
choice of r (namely r = r0 + 1 or r0 + 2) could provide an estimate of β0, at
least with an adequate combination of u-dilated quadratic variations of X . To
this end, we propose a two steps procedure:

Step 1: Estimation of r0.

Based on D
(1)
r,kX , k = 0, . . . , n− r, we estimate r0 with

r̂0 = min
{
r ∈ {2, . . . ,mn} :

(
D

(1)
r X

)2 ≥ n2bn

}
− 2. (2.5)

If the above set is empty, we fix r̂0 = l0 for an arbitrary value l0 6∈ N0.
Here, mn → ∞ but if an upper bound B is known for r0, one has to choose
mn = B + 2. The threshold bn is a positive sequence chosen such that:
n−2(1−β0)bn → 0 and n2β0bn → ∞ for all β0 ∈]0, 1[. For example, omnibus
choices are given by bn = (lnn)α, α ∈ R.

Step 2: Estimation of β0.

Next, we derive two families of estimators for β0, namely β̂
(p)
n , with either

p = 1 or p = 2 and u, v given integers (with u < v):

β̂(p)
n := β̂(p)

n (u, v) = p+
1

2

ln
((
D

(u)
r̂0+p

X
)2)− ln

((
D

(v)
r̂0+p

X
)2)

ln(u/v)
.

Remark 2.1 (The case of r0 = 0 with equally spaced observations). Kent and
Wood [24] proposed estimators of 2β0 = α based on ordinary and generalized
least squares on the logarithm of the quadratic variations versus the logarithm
of a vector of values u, more precisely

α̂(p) =
(1⊤W1)(u⊤WQ(p))− (1⊤Wu)(1⊤WQ(p))

(1⊤W1)(u⊤Wu)− (1⊤Wu)2

where 1 is the m-vector of 1s, u = (ln(u), u = 1, . . . ,m)⊤, Q(p) = (ln (∆
(u)
p+1X)2,

u = 1, . . . ,m)⊤ and W is either the identity matrix Im of order m × m or a
matrix depending on (n, β0) which converges to the asymptotic covariance of

n1/2((∆
(u)
p+1X)2 − E(∆

(u)
p+1X)2). The ordinary least square estimator – corre-

sponding to W = Im– is denoted by α̂
(p)
OLS, where p is adapted to the regularity

of the process (supposed to be known in their work). The choice p = 0, with the
sequence (−1, 1), leads to the estimator studied by Constantine and Hall [13].

For (u, v) = (1, 2), note that one gets β̂
(1)
n = α̂

(0)
OLS and β̂

(2)
n = α̂

(1)
OLS but, even

in this equidistant case, new estimators may be derived with other choices of
(u, v) such as (u, v) = (1, 4) (which seems to perform well, see Section 5.2).

3. Asymptotic results

In Blanke and Vial [7], an exponential bound is obtained for P(r̂0 6= r0) in the
equidistant case, implying that, almost surely for n large enough, r̂0 is equal
to r0. Here, we generalize this result to regular sequence designs but also, we
complete it with the mean square error of r̂0.
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Theorem 3.1. Under Assumption A2.1 (fulfilled with p = 1 or p = 2) and A2.2,
we have P(r̂0 6= r0) = O(exp(−ϕn(p))) and E(r̂0 − r0)

2 = O(m3
n exp(−ϕn(p))),

where, for some positive constant C1(r0), ϕn(p) is defined by

ϕn(p) = C1(r0)×
{
n1]0, 12 [

(β0) + n(lnn)−1
1{ 1

2 }
(β0) + n2−2β01] 12 ,1[

(β0) if p = 1

n if p = 2.

Note that one may choosemn tending to infinity arbitrary slowly. Indeed, the
unique restriction is that r0 belongs to the grid {1, . . . ,mn} for n large enough.
From a practical point of view, one may choose a preliminary fixed bound B,
and, in the case where the estimator return the non-integer value l0, replace B
by B′ greater than B.

The bias of β̂
(p)
n will be controlled by a second-order condition of local sta-

tionarity, more specifically we have to strengthen the relation (2.1) into:

lim
h→0

sup
s,t∈[0,T ],
|s−t|≤h,
s6=t

∣∣∣∣∣ |s− t|−β1

(E
(
X(r0)(s)−X(r0)(t)

)2

|s− t|2β0
− d0(t)

)
− d1(t)

∣∣∣∣∣ = 0 (3.1)

for a positive β1 and continuous function d1.

Theorem 3.2. If relation (3.1), Assumption A2.2 and A2.1 (with either p = 1
or p = 2) are satisfied, we obtain

lim sup
n→∞

V (p)
n

∣∣∣β̂(p)
n − β0

∣∣∣ ≤ C1(p) a.s.

where C1(p) is some positive constant and

V (1)
n = min

(
nβ1 ,

√
n

lnn
1]0, 34 [

(β0) +

√
n

lnn
1{ 3

4}
(β0) +

n2(1−β0)

lnn
1] 34 ,1[

(β0)
)
,

V (2)
n = min

(
nβ1 ,

√
n

lnn

)
.

Remark 3.1 (Rates of convergence with equally spaced observations). For
stationary Gaussian processes, Kent and Wood [24] give the mean square error
and convergence in distribution of their estimator described in Remark 2.1. They
obtained, for both families p = 1 and p = 2, the same rate up to a logarithmic
order, due here to almost sure convergence. The asymptotic distribution is either
of Gaussian or of Rosenblatt type depending on whether β0 is less or greater
than 3/4. For stationary increment processes, Istas and Lang [22] introduced
an estimator of H = 2(r0 + β0) by following a global linear regression approach
(based on an asymptotic equivalent of the quadratic variation with the choice
of some adequate family of sequences). For r0 = 0, their approach matches with
the previous one, with p = 1, in using dilated sequence of type ajr =

(
r
j

)
(−1)r−j.

Assuming a known upper bound on r0, they derived convergence in distribution
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to a centered Gaussian variable with rate depending on β0: root-n for β0 ≤ 3/4
and, n1/2−α(2β0−3/2) for β0 > 3/4 and δn = n−α with 0 < α < 1. In this last
case, to obtain a Gaussian limit they have to assume that r0 is known, the
observation interval is no more bounded, and the rate of convergence is lower
than root-n.

4. Approximation and integration

4.1. Results for plug-in estimators

A classical and interesting topic in the Gaussian framework is interpolation
and/or integration of a sampled process. Let X = {Xt, t ∈ R}, be observed
at sampled times t0,n, . . . , tn,n (denoted in the sequel by t0, . . . , tn) over some
interval [a, b]. We want to approximate X (on [a, b]) or its (weighted) integral

Iρ =
∫ b
a
X(t)ρ(t) dt for some known function ρ. An extensive literature exists

on these topics, we refer particularly to the recent monograph of Ritter [33]
for a detailed overview. Actually, approximation and integration problems are
closely linked (see for example, the latter reference p. 19–21). For the specific
case of locally stationary derivatives, we may refer to the works of Plaskota
et al. [30] and Benhenni [3] for, respectively, the approximation and integration
problems. For sake of clarity, we give a brief summary of their obtained re-
sults. In the following, we denote by H(r0, β0) the family of Gaussian processes
having r0 derivatives in quadratic mean and r0-th derivative with Hölderian reg-
ularity of order β0 ∈]0, 1[. For measurable gi(·), we consider the approximation
An,g(t) =

∑n
i=0X(ti)gi(t) and the corresponding, weighted and integrated, L2-

error eρ(An,g) with e2ρ(An,g) :=
∫ b
a E |X(t)−An,g(t)|2 ρ(t) dt with ρ supposed

to be positive and continuous. For X ∈ H(r0, β0) and known (r0, β0), Plaskota
et al. [30] have shown that

0 < c(r0, β0) ≤ lim
n→∞

nr0+β0 inf
g
eρ(An,g)

≤ lim
n→∞

nr0+β0 inf
g
eρ(An,g) ≤ C(r0, β0) < +∞

for equidistant sampled times t1, . . . , tn and Gaussian processes defined and
observed on the half-line [0,+∞[. Of course, optimal choices of functions gi,
giving a minimal error, depend on the unknown covariance function of X .

For weighted integration, the quadrature is denoted by Qn,d =
∑n
i=0X(ti)di

with well-chosen constants di (typically, one may take di =
∫ b
a
gi(t) dt). For

known (r0, β0), a short list of references could be:

– Sacks and Ylvisaker [34, 35] with r0 = 0 or 1, β0 = 1
2 and known covari-

ance,
– Benhenni and Cambanis [4] for arbitrary r0 and β0 =

1
2 ,

– Stein [39] for stationary processes and r0 + β0 <
1
2 ,

– Ritter [32] for minimal error, under Sacks and Ylvisaker’s conditions, and
with arbitrary r0.
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Let us set e2ρ(Qn,d) := E |Iρ −Qn,d|2, the mean square error of integration. In
the stationary case and for known r0, Benhenni [3] established the following
exact behavior: if ρ ∈ Cr0+3([a, b]) then for some given quadrature Qn,d∗(r0) on
[a, b],

nr0+β0+
1
2 eρ(Qn,d∗(r0)) −−−−→n→∞

cr0,β0

(∫ b

a

ρ2(t)ψ−(2(r0+β0)+1)(t) dt

) 1
2

where ψ is the density relative to the regular sampling {t1, . . . , tn}. Moreover,
following Ritter [32], it appears that this last result is optimal, at least under
Sacks and Ylvisaker’s conditions. Finally, Istas and Laredo [23] have proposed
a quadrature, requiring only an upper bound on r0, and with also an error of
order O

(
n−(r0+β0+

1
2 )
)
.

All these results show the importance of well estimating r0 and motivate
ourselves to focus on plug-in interpolators, namely those using Lagrange poly-
nomials, with order estimated by r̂0. More precisely, the Lagrange interpolation
of order r ≥ 1 for the sampled process X is defined by

X̃r(t) =
r∑

i=0

Li,k,r(t)X
(
tkr+i

)
, with Li,k,r(t) =

r∏

j=0
j 6=i

(t− tkr+j)

tkr+i − tkr+j
, (4.1)

for t ∈ Ik := [tkr, tkr+r], k = 0, . . . , ⌊nr ⌋ − 2 and I⌊n
r ⌋−1 = [⌊t⌊(n

r ⌋−1)r, T ].
Our plug-in method consists in the approximation defined for t ∈ [0, T ] with

An,L(t) = X̃max(r̂0,1)(t), and subsequent quadratureQn,L =
∫ T
0
X̃r̂0+1(t) ρ(t) dt.

Indeed, Lagrange polynomials are of easy implementation, they don’t require
the knowledge of the covariance structure and they reach the optimal rate of
approximation, n−(r0+β0) (see Plaskota et al. [30]) in the case where r0 is known.
Our following result shows that the associate quadrature has also the expected
rate, n−(r0+β0+

1
2 ). In the weighted case and for T > 0, we obtain the following

asymptotic bounds in the case of a regular design.

Theorem 4.1. Suppose that conditions A2.1(i)–(ii) and A2.2 hold, choose a
logarithmic order for mn in (2.5) and consider a positive and continuous weight
function ρ.

(a) Under condition A2.1(iii-1), we have

eρ(app
(
r̂0)
)
:=
( ∫ T

0

E

∣∣∣X(t)− X̃max(r̂0,1)(t)
∣∣∣
2

ρ(t) dt
)1/2

= O
(
n−(r0+β0)

)
,

(b) if condition A2.1(iii-2) holds:

eρ(int
(
r̂0)
)
:=
(
E

∣∣∣∣∣

∫ T

0

(X(t)− X̃r̂0+1(t))ρ(t) dt

∣∣∣∣∣

2 )1/2
= O

(
n−(r0+β0+

1
2 )
)
.

In conclusion, expected rates for approximation and integration are reached
by plugging-in Lagrange piecewise polynomials. Of course if r0 is known, the
latter result holds true with r̂0 replaced by r0.
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Fig 4.1. Logarithm of e21(app
(
r̂0)

)
, i.e. the IMSE, in function of lnn, for different processes.

The dashed line corresponds to Brownian motion, long dashed line to O.U., dashed line to
non stationary CARMA(2,1), dotted-dashed line to stationary CARMA(2,1) and solid line
to non stationary CARMA(3,1). The small triangles near lines indicate the theoretic slope.

4.2. Simulation results

We illustrate the results of approximation with a first numerical study. Note
that all numerical results of the paper are obtained by simulation of trajectories
using two different methods: for stationary processes or with stationary incre-
ments we use the procedure described in Wood and Chan [43] and for CARMA
(continuous ARMA) processes, we use Tsai and Chan [42]. Each of them con-
sists in n equally spaced sampled points on [0, 1] and 1000 simulated sample
paths. Also, all computations have been performed with the R software (R Core
Team [31]).

The Figure 4.1 illustrates results of approximation for different processes.
The logarithm of empirical integrated mean square error (in short IMSE), i.e.
e21(app

(
r̂0)
)
, is drawn as a function of lnn with a range of sample size from

n = 25 to 1000. We may notice that we obtain straight lines with slope very
near to−H = −2(r0+β0). Since the Ornstein-Uhlenbeck process is a scaled time-
transformed Wiener process, intercepts are different contrary to the stationary
versus the non-stationary continuous ARMA processes.

5. Numerical results

In the early part of this section, we restrict ourselves to the equidistant case (with
the choice ψ(t) = 1

T 1[0,T ](t)) in order to numerically compare our estimators

with existing ones. As noticed before, we get for ai,r =
(
r
i

)
(−1)r−i and ∆

(u)
r,k =
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Table 5.1

Value of the empirical probability that r̂0 or r̃n equals r0 or r0 + 1 with n = 10 or 25

Wiener process, r0 = 0 CARMA(2,1), r0 = 1 CARMA(3,1), r0 = 2
Number of equally spaced observations n

event 10 25 10 25 10 25
r̃n = r0 0.995 1.000 0.913 1.000 0.585 0.999

r̃n = r0 + 1 0.005 0.000 0.087 0.000 0.415 0.001
r̂0 = r0 1.000 1.000 1.000 1.000 0.999 1.000

r̂0 = r0 + 1 0.000 0.000 0.000 0.000 0.001 0.000

∑r
i=0 ai,rX((k+iu)δn), the relation D

(u)
r,k X = (uδn)

−r

r! ∆
(u)
r,k X . Theorems 3.1 and

3.2 imply in turn that

Ĥ(p)
n (u, v) =

ln
((

∆
(u)
r̂0+p

X
)2)− ln

((
∆

(v)
r̂0+p

X
)2)

ln(u/v)
(5.1)

is a consistent estimator of H = 2(r0 + β0), for all (u, v), u 6= v. The last part
of the section is devoted to the case of unevenly spaced data.

5.1. Results for estimators of r0

This section is dedicated to the numerical properties of two estimators of r0.
We consider the estimator introduced by Blanke and Vial [7], derived from (2.5)
in the equidistant case. An alternative, says r̃n, based on Lagrange interpolator
polynomials was proposed by Blanke and Vial [6]. More precisely, for δn = n−1

et T = 1, r̃n is defined by

r̃n = min
{
r ∈ {1, . . . ,mn} :

1

rñr

rñr−1∑

k=0

(
X
(2k + 1

n

)
− X̃r

(2k + 1

n

))2

≥ n−2rbn

}
− 1

where ñr = ⌊ n2r ⌋ and X̃r(t) is defined for all t ∈ [0, 1] and each r ∈ {1, . . . ,mn}
as follows. There exist k = 0, . . . , ñr − 1 such that for t ∈ I2k := [ 2krn , 2(k+1)r

n ],

the piecewise Lagrange interpolation of X(t), X̃r(t), is given by

X̃r(t) =

r∑

i=0

Li,k,r(t)X
(
(kr + i)n−1

)
with Li,k,r(t) =

r∏

j=0
j 6=i

(t− (kr + j)n−1)

(i− j)n−1
.

Both estimators use the critical value bn which is involved in detection of the
jump. Here, due to convergence properties, we make the choice bn = (lnn)−1.
The Table 5.1 illustrates the strong convergence of both estimators and shows
that this convergence is valid even for small number of observation points n (up
to 10 for the estimator r̂0). We may noticed that, in the case of bad estimation,
our estimators overestimate the number of derivatives. Also for identical sample
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Table 5.2

Value of the empirical probability that r̂0 or r̃n equals r0 for a fractional Brownian motion
or an integrated one with fractal index 2β0

r̂0 = r0 r̃n = r0
number of equally spaced observations n

50 100 500 1000 1200 50 100 500 1000 1200
fBm β0

0.90 1.000 1.000 1.000 1.000 1.000 0.655 0.970 1.000 1.000 1.000
0.95 0.969 0.999 1.000 1.000 1.000 0.002 0.002 0.004 0.134 0.331
0.97 0.242 0.521 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
0.98 0.019 0.015 0.0420 0.5258 0.759 0.000 0.000 0.000 0.000 0.000

ifBm β0

0.02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.645 0.999 1.000
0.95 0.305 0.888 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
0.97 0.000 0.000 0.292 0.993 1.000 0.000 0.000 0.000 0.000 0.000

paths, note that r̂0 seems to be more robust than r̃n. This behavior was expected
as the latter uses only half of the observations for the detection of the jump in
quadratic mean. In these first results, processes have fractal index β0 equals to
1/2, but alternative choices of β0 are of interest, so we consider the fractional
Brownian motion (in short fBm) and the integrated fractional Brownian motion
(in short ifBm), with respectively r0 = 0 and r0 = 1 and various values of β0 in
]0, 1[.

The Table 5.2 shows that r̂0 succeeds in estimating the true regularity for
β0 up to 0.9. Of course the number of observations must be large enough and,
even more important for large values of r0 in the case where β0 is greater or
equal to 0.95. This latter result is clearly apparent when one compares the
errors obtained for an ifBm with β0 = 0.95 and a fBm with β0 = 0.95. Finally,
we can see once more that r̃n is less robust against increasing values of β0,
whereas our simulations have shown that, for n = 2000 and each simulated
path, the estimator r̂0 is able to distinguish processes with regularity (0, 0.98)
and (1, 0.02), an almost imperceptible difference!

5.2. Estimation of H and β0

This part is dedicated to the estimation of the global regularity H = 2r0 + 2β0

and gives numerical properties of estimators Ĥ
(p)
n (u, v), defined in (5.1), for

p = 1 or 2. Here, we present only the results obtained for H
(p)
n = H

(p)
n (1, 4)

since they seem to be the more homogeneous among all the choices we have
tested for (u, v). Note that other values for v will be implemented in the case of
real data arising in Section 5.3.

5.2.1. Quality of estimation

For this numerical part, we focus on the study of fBm, ifBm and, CARMA(3,1)
with r0 = 2, β0 = 0.5. The Table 5.3 illustrates the performance of our esti-
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Table 5.3

Values of mean square error and bias (between brackets) for estimators Ĥ
(p)
n , for p = 1 or 2

and n = 1000

fBm β0

0.2 0.5 0.8 0.9 0.95

Ĥ
(1)
n

0.0017
(0.0001)

0.0018
(−0.0023)

0.0034
(−0.0098)

0.0053
(−0.0273)

0.0063
(−0.0426)

Ĥ
(2)
n

0.0030
(0.0017)

0.0039
(0.0005)

0.0040
(−0.0013)

0.0039
(−0.0025)

0.0039
(−0.0040)

ifBm β0

0.2 0.5 0.8 0.9 0.95

Ĥ
(1)
n

0.0031
(−0.0029)

0.0026
(−0.0004)

0.0040
(−0.0106)

0.0058
(−0.0299)

0.0069
(−0.0444)

Ĥ
(2)
n

0.0054
(−0.0041)

0.0050
(0.0005)

0.0045
(0.0005)

0.0043
(0.0004)

0.0042
(0.0004)

mators for fBm and ifBm: we compute the empirical mean-square error from
our 1000 simulated sample paths and n = 1000 equally spaced observations are

considered. It appears that, contrary to Ĥ
(2)
n , the estimator Ĥ

(1)
n slightly dete-

riorates for values of β0 greater than 0.8. This result is in agreement with the
rate of convergence of Theorem 3.2, depending on β0 for this estimator. Also,
we note that the bias seems to be unsensitive to the value of r0 while, for both
estimators, the mean-square error is slightly worsened for r0 going from 0 to 1.

Finally, for β0 less than 0.8, Ĥ
(1)
n seems preferable to Ĥ

(2)
n , possibly due to a

lower variance of this estimator. Nevertheless, both estimators perform globally
well on these numerical experiments. In the case of a CARMA(3,1) process, we
compute again 1000 simulated sample paths but, due to algorithmic limitations,

with only n = 950 equally spaced observations. We obtain for Ĥ
(1)
n , an empirical

mean-square error of 0.0032 and an empirical bias equals to −0.0095, and for

Ĥ
(2)
n , an empirical mean-square error of 0.0058 and an empirical bias equal to

0.0015. Then, regarding the variance, Ĥ
(1)
n is also preferable in that case.

5.2.2. Asymptotic properties

In this part, we focus on the asymptotic properties related to Theorem 3.2

where it appears that, contrary to β̂
(2)
n , the rate of convergence obtained for

β̂
(1)
n depends on β0. The Table 5.4 gives quantitative illustration of these results

with the estimated slope obtained by the regression of ln(E|Ĥ(p)
n −H |) on lnn,

for n varying in the set {400, 600, 700, 800, 900, 1000, 1200} and E|Ĥ(p)
n − H |

estimated from our 1000 simulated sample paths. As expected, the slope (cor-
responding to our polynomial rates of convergence of Theorem 3.2) is constant

and approximatively equal to 0.5 for Ĥ
(2)
n while, for Ĥ

(1)
n , the decrease is appar-

ent for high values of β0. Finally, the Figure 5.1 illustrates the behavior of the

estimators Ĥ
(p)
n with p = 1 or 2, for different values of the regularity parameter

β0. As we can see, the boxplots deteriorate only slightly for n = 100 and 250

when β0 increases from 0.5 to 0.8 but the dispersion for Ĥ
(2)
n is quite larger. For

β0 = 0.95, Ĥ
(2)
n clearly outperforms Ĥ

(1)
n if n = 500. Estimation appears to be
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Table 5.4

Results for linear regression of ln(E|Ĥ
(p)
n −H|) on lnn for n in

{400, 600, 700, 800, 900, 1000, 1200} with E|Ĥ
(p)
n −H| estimated on 1000 simulated sample

paths

Ĥ
(1)
n Ĥ

(2)
n

theoretical slope slope R2 theoretical slope slope R2

fBm β0 = 0.5 −0.5 −0.4754 0.998 −0.5 −0.4923 0.995
β0 = 0.6 −0.5 −0.4532 0.999 −0.5 −0.4937 0.995
β0 = 0.7 −0.5 −0.4064 0.995 −0.5 −0.494 0.997
β0 = 0.8 −0.4 −0.3210 0.987 −0.5 −0.4938 0.998
β0 = 0.9 −0.2 −0.2172 0.988 −0.5 −0.4970 0.998

β0 = 0.95 −0.1 −0.1725 0.993 −0.5 −0.5027 0.998
ifBm β0 = 0.9 −0.2 −0.2592 0.979 −0.5 −0.5480 0.998

β0 = 0.95 −0.1 −0.2034 0.968 −0.5 −0.5461 0.998

more difficult for smaller values of n, but it is a quite typical behavior in this
framework.

5.2.3. Impact of misspecification of regularity

The Table 5.5 illustrates the impact of estimating β0 when the order r in
quadratic variation is misspecified. As we have seen, such an estimation re-
quires the knowledge of r0 or an upper bound of it. On the other hand, working
with a too high value of r0 may induce artificial variability in estimation. So, a

precise estimation of r0 is important. Recall that β̂
(p)
n is defined by

β̂(p)
n = p+

1

2

ln
((
D

(u)
r̂0+p

X
)2)− ln

((
D

(v)
r̂0+p

X
)2)

ln(u/v)
,

with p = 1 or 2. Now, with an under-estimation of r0, namely if one works with

p + (ln((D
(u)
r+pX)2) − ln((D

(v)
r+pX)2))/(2 ln(u/v)) for any value of r + p less or

equal to r0, results of Proposition 6.1 suggest that the resulting estimate should

be close to p (because E(D
(u)
r X)2 has a finite limit ℓψ(r) not depending on u

for r = 1, . . . , r0). Our following numerical results confirm that the estimator of
β0 is no more consistent in this case and gives a value close to p for too small
estimates of r0.

5.2.4. Processes with varying trend or non constant function d0

All previous examples are locally stationary with a constant function d0 in
the condition (2.1). Processes meeting our conditions but with no stationary
increments may be constructed with the Lemma 2.1. As an example, from X
a standard Wiener process (r0 = 0, β0 = 0.5) or an integrated version (r0 = 1,
β0 = 0.5), we simulate Y (t) = (tr0+0.7+1)X(t) with regularity (r0, 0.5) and d0(t)
equal to (tr0+0.7 + 1)2. The Figure 5.2 illustrates a Wiener sample path and its
obtained transformation. Results are summarized in the Table 5.6: comparing
with the Table 5.3 (β0 = 0.5), it appears that the estimation is only slightly
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Ĥ
(1)
n Ĥ

(2)
n

Fig 5.1. Each boxplot corresponds to 1000 estimations of H by Ĥ
(1)
n on the left, and

Ĥ
(2)
n on the right of the graph. Each realization consists in n equally spaced observations

on [0, 1] of a fBm with β0 = 0.5 (top), β0 = 0.8 (middle), β0 = 0.95 (bottom), and
n = 100, 250, 500, 750, 1000, 1250, 1500, 2000. The solid line corresponds to the real value of H.

deteriorated for r0 = 1 but of the same order when r0 = 0. Other non stationary
processes may also be obtained by adding some smooth trend. To this aim, we
use the same sample paths as for the Table 5.3 and add the trendm(t) = (1+t)2,
see the Figure 5.3. We may noticed in the Table 5.7 that we obtain exactly the

same results for the estimator Ĥ
(2)
n and that, again, only a slight loss is observed

for Ĥ
(1)
n .



1168 D. Blanke and C. Vial

Table 5.5

Mean values of the estimator β̂
(1)
n (with standard deviation between brackets) based on

under-estimates of r0. The ‘good’ case r̂0 = 1 for ifBm is also reported in italics for
comparison

r̂0 = 1 r̂0 = 0
number n of equidistant observations
100 500 100 500

ifBm β0 = 0.2 0.1884
(0.0924)

0.1977
(0.0423)

0.9627
(0.0319)

0.9829
(0.0124)

β0 = 0.5 0.4870
(0.0838)

0.4982
(0.0366)

0.9883
(0.0173)

0.9980
(0.0030)

β0 = 0.8 0.7682
(0.0814)

0.7933
(0.0408)

0.9942
(0.0121)

0.9991
(0.0021)

CARMA(3,1)
(r0=2,β0=0.5)

0.9829
(0.0272)

0.9968
(0.0053)

0.9967
(0.0069)

0.9992
(0.0015)

Fig 5.2. Wiener process (solid) and its locally stationary transformation (dashed) used in the
Table 5.6.

Table 5.6

Value of MSE and bias (between brackets) for non constant d0(·)

Wiener Integrated Wiener

Ĥ
(1)
n

0.0021
(−0.0010)

0.0033
(0.0104)

Ĥ
(2)
n

0.0043
(−0.0001)

0.0057
(−0.0025)

Fig 5.3. Sample path of a fBm with β0 = 0.8 (dashed line) and the same with a trend
m(t) = (1 + t)2 (solid line).
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Table 5.7

Value of MSE and bias (between brackets) for estimators Ĥ
(p)
n , for p = 1 or 2 in the

presence of a smooth trend

fBm ifBm
β0 = 0.5 β0 = 0.8 β0 = 0.5 β0 = 0.8

Ĥ
(1)
n

0.0022
(0.0172)

0.0289
(0.1544)

0.0027
(0.0126)

0.0148
(0.0903)

Ĥ
(2)
n

0.0039
(0.0005)

0.0040
(−0.0013)

0.0050
(0.0005)

0.0045
(0.0005)

Table 5.8

Estimates in the roller height example

m Ĥ
(1)
n (1, m) α̂

(0)
OLS Ĥ

(2)
n (1, m) α̂

(1)
OLS

2 0.63 0.63 0.77 0.77
4 0.50 0.51 0.64 0.66
6 0.38 0.39 0.49 0.51
8 0.35 0.33 0.44 0.43
10 0.31 0.28 0.39 0.36

5.3. Real data

Let us turn to examples based on real data sets. In this part, we compare
our estimators of H with those proposed by Constantine and Hall [13], Kent
and Wood [24]. We compute estimated values by setting (u, v) = (1,m) in our

estimator, see (5.1), with m in {2, 4, 6, 8, 10} while for α̂
(ℓ)
OLS, ℓ = 0, 1, 2, defined

in Remark 2.1, regression is carried out over u = (ln(u), u = 1, . . . ,m)⊤.

5.3.1. Roller data

We first focus on roller height data introduced by Laslett [25], which consists
in n = 1150 heights measured at 1 micron intervals along a drum of a roller.
This example was already studied in Kent and Wood [24]: they noticed that
local self similarity may hold at sufficiently fine scales, so the regularity r0 was
supposed to be zero. Indeed, our estimator r̂0, directly used on the data with

bn = 1/ ln(n), gives r̂0 = 0 (with a value of n4−2(∆
(1)
2 X)2 equal to 1172345).

Next, we compute the values obtained for the estimation of H in the Table 5.8,
where values of estimates proposed by Constantine and Hall [13], Kent and

Wood [24], α
(ℓ)
OLS, are also reported for comparison (ℓ = 0 corresponds to the

choice (−1, 1) for ajr and ℓ = 1 to the choice (1,−2, 1)). It should be observed
that our simplified estimators present a similar sensitivity to the choice of m.

5.3.2. Biscuit data

Now, in order to compare the (empirical) variances of these estimators, we con-
sider a second example studied by Brown et al. [9]. The experiment involved
varying the composition of 40 biscuit dough pieces and, data consist in near
infrared reflectance (NIR) spectra for the same dough. The curves are graphed
on the Figure 5.4. Each represents the near-infrared spectrum reflectance mea-
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(a) (b)

Fig 5.4. (a) Curve drawing reflectance in function of wavelength, varying between 1100 and

2498. (b) Box-plots for both estimators on the left Ĥ
(1)
n , on the right Ĥ

(2)
n for the 39 curves

and (u, v) = (1, 4).

Table 5.9

Biscuit example: Means of estimates (with empirical standard deviations in brackets)

m = 2 m = 4 m = 6 m = 8 m = 10

Ĥ
(1)
n (1, m) 3.61 (0.12) 3.68 (0.07) 3.66 (0.05) 3.63 (0.04) 3.60 (0.04)

α
(1)
OLS 3.61 (0.12) 3.68 (0.07) 3.67 (0.05) 3.64 (0.04) 3.61 (0.03)

Ĥ
(2)
n (1, m) 2.84 (0.45) 3.69 (0.30) 3.84 (0.24) 3.85 (0.19) 3.85 (0.16)

α
(2)
OLS 2.84 (0.45) 3.68 (0.31) 3.92 (0.23) 3.99 (0.18) 4.01 (0.14)

sure at each 2 nanometers from 1100 to 2498 nm, so 700 observation points
for each biscuit. According to Brown et al. [9], the observation 23 appears as
an outlier for their regression setting. We estimate r0 for each of the left 39
curves, using the threshold bn = 1, which gives r̂0 = 1 for each curve. Note also

that the averaged mean quadratic variation n2r−2(D
(1)
r X)2 equals to 0.33 when

r = 2 and 122133 when r = 3. Refereing to the definition of r̂0 in (2.5), this
explosion at r = 3 confirms us in the choice r̂0 = 3 − 2 = 1. Now, we turn to

the estimation of H and compare our estimators H
(p)
n (1,m) together with α

(ℓ)
OLS

(where ℓ = 1 corresponds to the choice (1,−2, 1) for ajr and ℓ = 2 to the choice
(−1, 3,−3, 1)). The results are summarized in the Table 5.9 where it appears

that, our estimator Ĥ
(2)
n seems to be less sensitive toward high values of m.

Also, compared to the α̂
(p)
OLS with p = 1, 2, our simplified estimators present a

similar variance. To conclude this part, it should be noticed that for the 23rd

curve, the choice m = 4 gives Ĥ
(1)
n = 3.64 and Ĥ

(2)
n = 3.55. It appears that

these two values belong to the interquartile range calculated with the 39 curves,
so we can conclude that the abnormal behavior of this biscuit dough should not
be linked with the curve’s regularity.

5.4. Irregularly spaced points

In this last part, we focus on the unevenly spaced case in order to emphasize the
superiority of divided differences estimators over finite differences ones. First,
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Table 5.10

Values of mean square error and bias (between brackets) for estimators Ĥ
(p)
n (1, 4) built with

divided (resp. finite) differences (DD) (resp. FD), for p = 1 or 2 and n = 1000 with 200
points randomly removed. Empirical value of P(r̂0 = r0)

ifBm, β0 = 0.2 ifBm, β0 = 0.5

Ĥ
(1)
n Ĥ

(2)
n P̂(r̂0 = 1) Ĥ

(1)
n Ĥ

(2)
n P̂(r̂0 = 1)

with DD 0.0103
(−0.0749)

0.0431
(−0.1862)

1 0.0052
(−0.0394)

0.0276
(−0.1412)

1

with FD 0.3778
(−0.5978)

1.1021
(−1.0368)

0.305 2.513
(−1.5394)

3.7548
(−1.9341)

0.595

ifBm, β0 = 0.8 CARMA(3,1), β0 = 0.5

Ĥ
(1)
n Ĥ

(2)
n P̂(r̂0 = 1) Ĥ

(1)
n Ĥ

(2)
n P̂(r̂0 = 2)

with DD 0.0055
(−0.0238)

0.0173
(−0.1029)

1 0.0054
(−0.0326)

0.0228
(−0.1207)

1

with FD 5.548
(−2.3189)

6.753
(−2.5963)

0.703 12.1618
(−3.4588)

16.0365
(−4.0036)

0

Table 5.11

Biscuit example: means of estimates (and empirical standard deviations in brackets) in the
irregularly spaced case for divided (resp. finite) differences (DD) (resp. FD)

m = 2 m = 4 m = 6 m = 8 m = 10

Ĥ
(1)
n (1, m) with DD 3.65 (0.12) 3.66 (0.06) 3.60 (0.06) 3.57 (0.05) 3.53 (0.05)

Ĥ
(1)
n (1, m) with FD 1.67 (0.22) 1.82 (0.08) 1.91 (0.10) 1.94 (0.14) 2.01 (0.2)

Ĥ
(2)
n (1, m) with DD 3.11 (0.59) 3.77 (0.36) 3.82 (0.29) 3.84 (0.22) 3.80 (0.21)

Ĥ
(2)
n (1, m) with FD 1.26 (0.29) 1.53 (0.19) 1.75 (0.16) 1.98 (0.13) 2.06 (0.10)

note that from a practical point of view, the knowledge of the density ψ is
not required to compute our estimations. From a theoretical point of view, the
required conditions for the sampling points are given in Lemma 6.1 and are
satisfied for ψ fulfilling Assumptions A2.2. In practice, these conditions mean
that the sampling sequence should be rather homogeneous and, in particular,
too large gaps between successive observations should be avoided (which is a
quite natural natural condition in our framework). Finally, the choice of δn
follows with δn = Tn/n where Tn represents the total time of observation.

To mimic the typical case of missing observations, we consider same trajecto-
ries as in Section 5.2.1 but with 200 randomly deleted points (for each) to obtain
an irregular design. The Table 5.10 clearly points out that divided differences
still behave well and finite differences are no more consistent (with an explosion
of their mean-square error). More precisely, it is seen that the key problem is
the bad estimation of r0 in the case r0 ≥ 1. For large values of β0, sample paths
with a right estimation of r0 present again an important error since for them,
the joint estimation of β0 is close to zero. The theoretical explanation for such
a bad behavior can be be found in Proposition 6.1: indeed, one may show that
the relation (6.11) does not hold (polynomial terms of the Taylor expansion do
not vanish anymore when finite differences are combined with unevenly spaced
points).

Our last illustration concerns the real data case with the biscuit dough pieces:
again we delete randomly 200 observations in each curve and compute finite and
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divided difference estimators for these new data sets. The conclusion is the same
as before: a robust behavior of divided differences (comparing with results given
in the Table 5.9) and finite differences again break down, with the regularity r0
no more consistently estimated.

6. Annexes

6.1. Results for the regular sequence design

We start with useful results for regular sequences defined in Section 2 and sat-
isfying Assumption A2.2.

Lemma 6.1. Under Assumption A2.2, we get for k = 0, . . . , n − 1, and i =
1, . . . , n− k:

tk+i − tk ≥ C1iδn, C1 = (T sup
t∈[0,T ]

ψ(t))−1, (6.1)

tk+i − tk ≤ C2iδn, C2 = (T inf
t∈[0,T ]

ψ(t))−1, (6.2)

and if i = 1, . . . , imax with imax not depending on n:

tk+i − tk =
iδn

Tψ(tk)
(1 +O(δαn )) (6.3)

where O(. . . ) is uniform over i and k.

Proof. Relations (6.1)–(6.2) are obtained from the mean-value theorem that
induces, for k = 0, . . . , n− 1 and i = 1, . . . , n− k:

tk+i − tk =
iδn

Tψ(tk + θ(tk+i − tk))
, 0 < θ < 1.

To obtain the equivalence (6.3), one may write tk+i − tk = iδn
Tψ(tk)

(1 +Rn) with

|Rn| =
|ψ(tk)− ψ(tk + θ(tk+i − tk))|

ψ(tk + θ(tk+i − tk))
≤ L |tk+i − tk|α

inf t∈[0,T ] ψ(t)
= O(δαn )

by Assumption A2.2 (uniformly over i, n and k, for i = 1, . . . , imax).

6.2. Results on the mean behavior of (D
(u)
r X)2, r ≥ 1

We begin this part with results concerning the coefficients (b
(u)
ikr) defined in (2.3)

that are useful for the study of E((D
(u)
r X)2).

Lemma 6.2. We have under Assumption A2.2 and for r ≥ 1, i = 0, . . . , r,
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1. for p = 0, . . . , r − 1 and convention 00 = 1

r∑

i=0

(tk+iu − tk)
pb

(u)
ikr = 0, (6.4)

2.
r∑

i=0

(tk+iu − tk)
rb

(u)
ikr = 1, (6.5)

3. ∣∣∣b(u)ikr

∣∣∣ ≤ C−r
1 u−rδ−rn ,∏r

m=0,m 6=i |i−m| , (6.6)

with C1 given by (6.1),
4.

b
(u)
ikr =

u−rψr(tk)T
rδ−rn∏r

m=0,m 6=i(i−m)
(1 +O(δαn )) (6.7)

with O(. . . ) uniform over i and k.

Proof. The term g[tk, . . . , tk+ru] =
∑r
i=0 b

(u)
ikrg(tk+iu) is the leading coefficient in

the polynomial approximation of degree r of g, given in the decomposition (2.2).
Considering the polynomial g(t) = (t − tk)

p, we may immediately deduce the
properties (6.4)–(6.5), from uniqueness of the relation (2.2). Next, (6.6)–(6.7)

are direct consequences of Lemma 6.1 and the definition of b
(u)
ikr.

Next, the construction of our estimator r̂0 is derived from results of the
following proposition.

Proposition 6.1. Under Assumption A2.1 and A2.2, one obtains:
(i) for r = r0 + p with p = 1, 2:

n−2(p−β0) E

( (
D

(u)
r0+pX

)2 ) −−−−→
n→∞

u−2(p−β0)ℓ(p, r0, β0)

where

ℓ(p, 0, β0) = −1

2

∫ T

0

d0(t)
ψ2p+1(t)

ψ2β0(t)
dt

p∑

i,j=0

|i− j|2β0

∏p
m=0
m 6=i

(i −m)
∏p
q=0
q 6=j

(j − q)

while if r0 ≥ 1,

ℓ(p, r0, β0) =
(−1)r0+1

∫ T
0 d0(t)

ψ2p+1(t)
ψ2β0 (t)

dt

2(2β0 + 2r0) · · · (2β0 + 1)

r0+p∑

i,j=0

|i− j|2(r0+β0)

∏r0+p
m=0
m 6=i

(i −m)
∏r0+p
q=0
q 6=j

(j − q)

(6.8)
(ii) for r0 ≥ 1 and r = 1, . . . , r0:

E

( (
D

(u)
r X

)2 ) −−−−→
n→∞

1

(r!)2

∫ T

0

E
(
X(r)(t)

)2
ψ(t) dt.
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Proof. A. Let us begin with general expressions of E(D
(u)
r,k XD

(u)
r,ℓ X) useful for

the sequel. First for L(p,p)(s, t) = E(X(p)(s)X(p)(t)) (p ≥ 0), the relation (2.1)
is equivalent to

lim
h→0

sup
s,t∈[0,T ]

|s−t|≤h,s6=t

∣∣∣∣∣
L(r0,r0)(s, s) + L(r0,r0)(t, t)− 2L(r0,r0)(s, t)

|s− t|2β0
− d0(t)

∣∣∣∣∣ = 0. (6.9)

For (v, w) ∈ [0, 1]2, we set v̇ik = tk + (tk+iu − tk)v and ẇjℓ = tℓ+ (tℓ+ju − tℓ)w.

Next, from the definition of D
(u)
r,k X given in (2.4), we get

E(D
(u)
r,k XD

(u)
r,ℓ X) =

r∑

i,j=0

b
(u)
ikrb

(u)
jℓrL

(0,0)(tk+iu, tℓ+ju).

For r0 = 0 and since
∑r

i=0 b
(u)
ikr = 0, we have:

E(D
(u)
r,k XD

(u)
r,ℓ X) =

r∑

i,j=0

b
(u)
ikrb

(u)
jℓr

{
L
(0,0)(tk+iu, tℓ+ju)

− 1

2
L
(0,0)(tk+iu, tk+iu)−

1

2
L
(0,0)(tℓ+ju, tℓ+ju)

}
. (6.10)

If r0 ≥ 1, we apply multiple Taylor series expansions with integral remain-

der. Next, the properties
∑r

i=0 b
(u)
ikr(tk+iu − tk)

p = 0 for p = 0, . . . , r − 1 (and
convention 00 = 1) induce:

E(D
(u)
r,k XD

(u)
r,ℓ X) =

r∑

i,j=0

b
(u)
ikrb

(u)
jℓr(tk+iu − tk)

r∗(tℓ+ju − tℓ)
r∗

×
∫∫

[0,1]2

(1− v)r
∗−1(1− w)r

∗−1

((r∗ − 1)!)2
L
(r∗,r∗)(v̇ik, ẇjℓ) dvdw (6.11)

where we have set r∗ = min(r0, r) ≥ 1.

B. From expressions (6.10)–(6.11), we are in a position to derive the asymp-

totic behavior of E((D
(u)
r X)2).

Case r0 ≥ 1, r = r0 + p, p = 1 or p = 2. In this case, r∗ = r0 ≤ r − 1. From

(6.11) and the property
∑r
i=0 b

(u)
ikr(tk+iu − tk)

r0 = 0, we may write

E(D
(u)
r,k X)2 =

r∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu−tk)r0(tk+ju−tk)r0

∫∫

[0,1]2

((1 − v)(1 − w))r0−1

((r0 − 1)!)2

×
{
L
(r0,r0)(v̇ik, ẇjk)−

1

2
L
(r0,r0)(v̇ik, v̇ik)−

1

2
L
(r0,r0)(ẇjk, ẇjk)

}
dvdw (6.12)
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Using the locally stationary condition (6.9), uniform continuity of d0(·) on [0, T ]
and the bound: |v̇ik − ẇjk | ≤ tk+ru − tk ≤ C1ruδn for i = 0, . . . , r and j =

0, . . . , r, we may show that the predominant term for E((D
(u)
r X)2) is given by:

−1

2(nr + 1)

nr∑

k=0

r∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r0(tk+ju − tk)
r0

×
∫∫

[0,1]2

((1− v)(1 − w))r0−1

((r0 − 1)!)2
|v̇ik − ẇjk|2β0 d0(tk) dv dw (6.13)

where we have set nr = n − ur. From the equivalents (6.3) and (6.7), we can
write the leading term of (6.13) as a Riemann sum on tk to obtain

δ2p−2β0
n E

(
(D

(u)
r X)2

)
−−−−→
n→∞

−1

2
(
u

T
)−2p+2β0

∫ T

0

d0(t)ψ
2p+1−2β0 (t) dt

×
r∑

i,j=0

(ij)r0
r∏

m=0
m 6=i

(i−m)
r∏
q=0
q 6=j

(j − q)

∫∫

[0,1]2

((1 − v)(1− w))r0−1

((r0 − 1)!)2
|iv − jw|2β0 dv dw.

Next by performing elementary but tedious multiple integrations by parts, we
arrive at the simpler form of ℓ(r, r0, β0) given in (6.8), for nδn → T .

Case r0 = 0, r = r0 + 1,, r0 + 2. The proof is the same but starting from
(6.10) and ℓ = k.

Case r0 ≥ 1 and r = 1, . . . , r0. In this case, r∗ = r and from the relation
(6.11), one gets

E(D
(u)
r,k X)2 =

r∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r(tk+ju − tk)
r

×
∫∫

[0,1]2

((1 − v)(1 − w))r−1

((r − 1)!)2
L
(r,r)(v̇ik, ẇjk) dvdw.

The result follows after Riemann summation with the help of uniform continuity
of L(r,r)(·, ·), r = 1, . . . , r0 and properties (6.3), (6.5).

6.3. A general exponential bound for |(D
(u)
r X)2 − E((D

(u)
r X)2)|

We start with some auxiliary results. The following lemma gives results on

the asymptotic behavior of Cr(k, ℓ) = Cov (D
(u)
r,k X,D

(u)
r,ℓ X) and C2

r(k, ℓ) with
nr = n− ur and u a positive integer.
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Lemma 6.3. Suppose that Assumption A2.1 and A2.2 are satisfied.
(i) Under the condition A2.1-(iii-1) and for r = r0 + p, p = 1 or p = 2, one

obtains

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| =





O(n2p−2β0) if 0 < β0 <
1
2 ,

O(n2p−1 lnn) if β0 =
1
2 ,

O(n2p−1) if 1
2 < β0 < 1 ;

and

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) =





O(n4p−4β0+1) if 0 < β0 <
3
4 ,

O(n4p−2 lnn) if β0 =
3
4 ,

O(n4p−2) if 3
4 < β0 < 1.

(ii) Under the condition A2.1-(iii-2) and for r = r0 + 2, one obtains

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| = O(n4−2β0) and

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) = O(n9−4β0).

(iii) If r = 1, . . . , r0 (with r0 ≥ 1), then maxk=0,...,nr

∑nr

ℓ=0 |Cr(k, ℓ)| = O(n)
and

∑nr

k=0

∑nr

ℓ=0 C
2
r(k, ℓ) = O(n2).

Proof. (i) Setting µ(t) = E
(
X(t)

)
, µ is r0-times differentiable and similarly to

(6.10)–(6.11), we get the expansion

Cr(k, ℓ) =

r∑

i,j=0

b
(u)
ikrb

(u)
jℓr(tk+iu − tk)

r0(tℓ+ju − tℓ)
r0

×
∫∫

[0,1]2

((1− v)(1 − w))r0−1

((r0 − 1)!)2
K

(r0,r0)(v̇ik, ẇjℓ) dv dw

for r0 ≥ 1 while if r0 = 0, Cr(k, ℓ) =
∑r
i=0

∑r
j=0 b

(u)
ikrb

(u)
jℓrK(tk+iu, tℓ+ju).

Case r = r0 + 1 or r0 + 2. For r0 ≥ 1, we have the bound:

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| ≤ U1n + U2n + U3n

with

U1n = max
k=ur+1,...,nr

k−ur−1∑

ℓ=0

|Cr(k, ℓ)| , U2n = max
k=0,...,n−2ur−1

nr∑

ℓ=k+ur+1

|Cr(k, ℓ)|

and U3n = max
k=0,...,nr

min(nr ,k+ur)∑

ℓ=max(0,k−ur)

|Cr(k, ℓ)| .
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First, consider the sum U1n+U2n where |k − ℓ| ≥ ur+1. Since
∑r

i=0 b
(u)
ikr(tk+iu−

tk)
r0 = 0 for r = r0 + 1 or r = r0 + 2, and [tk, v̇ik] is distinct from [tℓ, ẇjℓ], we

get

Cr(k, ℓ) =

r∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r0(tℓ+ju − tℓ)
r0

×
∫∫

[0,1]2

((1 − v)(1 − w))r0−1

((r0 − 1)!)2

∫ v̇ik

tk

∫ ẇjℓ

tℓ

K
(r0+1,r0+1)(s, t) dsdtdvdw. (6.14)

Condition A2.1-(iii-1), together with (6.2) and (6.6), gives a bound of O(n2p−2β0∑n
i=1 i

−2(1−β0)) for |U1n + U2n|, which is of order n2(p−β0) if 0 < β0 < 1
2 ,

n2(p−β0) lnn if β0 = 1
2 and n2p−1 if β0 >

1
2 . Next, for U3n where |k − ℓ| ≤ ur,

we obtain that U3n = O(n2(p−β0)) in a similar way as in the proof of Proposi-
tion 6.1, and with the help of Cauchy-Schwarz inequality to control the terms
depending on µ(r0)(t).

We proceed similarly for the case r0 = 0, starting from the definition of
Cr(k, ℓ) as well as for the study of

∑nr

k=0

∑nr

ℓ=0 C
2
r(k, ℓ) for which the dominant

terms are of order O(n1+4p−4β0
∑n

i=1 i
−4(1−β0)).

(ii) The condition A2.1-(iii-2) and r = r0 + 2 allow to transform (6.14) into

Cr(k, ℓ) =

r∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu−tk)r0(tℓ+ju−tℓ)r0

∫∫

[0,1]2

((1− v)(1 − w))r0−1

((r0 − 1)!)2

×
∫ v̇ik

tk

∫ ẇjℓ

tℓ

∫ t

tk

∫ s

tℓ

K(r0+2,r0+2)(y, z) dy dzds dt dv dw (6.15)

which gives that

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| = O(n2(2−β0)
n∑

i=1

i−4+2β0) = O(n2(2−β0))

for all β0 ∈]0, 1[ and r0 ≥ 1. From (6.15), we also get that
∑nr

k=0

∑nr

ℓ=0 C
2
r(k, ℓ) =

O(n9−4β0
∑n

i=1 i
−8+4β0) = O(n9−4β0) for all β0 ∈]0, 1[.

(iii) Results of this part, where r0 ≥ 1, are consequences of

Cr(k, ℓ) =

r∑

i,j=0

b
(u)
ikrb

(u)
jℓr(tk+iu − tk)

r(tℓ+ju − tℓ)
r

×
∫∫

[0,1]2

((1− v)(1 − w))r−1

(r − 1)!2
K(r,r)(v̇ik, ẇjl) dv dw = O(1)

with uniform continuity of K(r,r)(·, ·) for r = 1, . . . , r0 together with the bounds
given in (6.2) and (6.6).

The next proposition gives the general exponential bound which is involved
in all of our main results.
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Proposition 6.2. Suppose that Assumption A2.1 and A2.2 are satisfied. Let
ηn(r) be some given positive sequence and u ∈ N∗, then

P

( ∣∣∣(D(u)
r X)2 − E

(
(D

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)

is of order:

O
(
exp
(
−C(r)nηn(r) ×min

((
max

0≤k≤nr

nr∑

ℓ=0

|Cr(k, ℓ)|
)−1

,
nηn(r)

nr∑
k,ℓ=0

C2
r(k, ℓ)

)))

+O
(
v
1/2
n (r)

nηn(r)
exp

(
− C(r)

n2η2n(r)

vn(r)

))

for some positive constant C(r), not depending on ηn(r) and

vn(r) := n max
k=0,...,nr

(
E(D

(u)
r,k X)

)2
max

k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| . (6.16)

Proof. For all r ≥ 1, we may bound P(|(D(u)
r X)2 − E((D

(u)
r X)2)| ≥ ηn(r)

)
by

S1 + S2 with

S1 = P

(∣∣∣
nr∑

k=0

(D
(u)
r,k X − E(D

(u)
r,k X))2 −Var (D

(u)
r,k X)

∣∣∣ > (nr + 1)ηn(r)

2

)

and S2 = P(|∑nr

k=0(E(D
(u)
r,k X))(D

(u)
r,k X −E(D

(u)
r,k X))| > (nr+1)ηn(r)

4 ). First, let

{Yi}i=1,...,dn be an orthonormal basis for the linear span of {D(u)
r,k X}k=0,...,nr

(so that Yi are i.i.d. with density N (0, 1)). We can write D
(u)
r,k X−E(D

(u)
r,k X) =

∑dn
i=1 dk,iYi with dk,i = Cov (D

(u)
r,k X,Yi). Next, if Y = (Y1, . . . , Ydn)

⊤, we obtain

nr∑

k=0

(D
(u)
r,k X − ED

(u)
r,k X)2 =

dn∑

i,j=1

ci,jYiYj = Y ⊤CY

and
∑nr

k=0 Var (D
(u)
r,k X) =

∑dn
i=1 ci,i with ci,j =

∑nr

k=0 dkidkj . Next, for C =(
ci,j
)
i=1,...,dn
j=1,...,dn

and D =
(
dk,j

)
k=0,...,nr

j=1,...,dn

, one gets C = D⊤D where C is a real,

symmetric and positive semidefinite matrix. There exists an orthogonal matrix
P such that diag(λ1, . . . , λdn) = P⊤CP , for λi eigenvalues of C. Then we can
transform the quadratic form as:

nr∑

k=0

(D
(u)
r,k X − E(D

(u)
r,k X))2 =

dn∑

i=1

λi(P
⊤Y )2i
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where (P⊤Y )i denotes the i-th component of the (dn × 1) vector P⊤Y . Since∑dn
i=1 ci,i =

∑dn
i=1 λi, we arrive at

S1 = P

( ∣∣∣
dn∑

i=1

λi
(
(P⊤Y )2i − 1

)∣∣∣ ≥ (nr + 1)ηn(r)

2

)
.

Now, with the exponential bound of Hanson and Wright [20], we obtain for some
generic constant c:

S1 ≤ 2 exp

(
−c(nr + 1)ηn(r) ×min

( 1

max(λi)
,
(nr + 1)ηn(r)∑

λ2i

))
.

Next, since D⊤D and DD⊤ have the same non zero eigenvalues,

max
i=1,...,dn

λi ≤ max
0≤k≤nr

nr∑

ℓ=0

|Cr(k, ℓ)|

and

dn∑

i=1

λ2i =

dn∑

i=1

dn∑

j=1

cijcji =

nr∑

k=0

nr∑

ℓ=0

( dn∑

i=1

dkidli

)2
=

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ).

Finally S1 is bounded by

2 exp

(
−c(nr + 1)ηn(r) ×min

((
max

0≤k≤nr

nr∑

ℓ=0

|Cr(k, ℓ)|
)−1

,
(nr + 1)ηn(r)
nr∑
k=0

nr∑
ℓ=0

C2
r(k, ℓ)

))
.

For S2, we use the classical exponential bound on a Gaussian variable: Y ∼
N (0, σ2) implies that P(|Y | ≥ ε) ≤ min(1,

√
2σ2

πε2 ) exp(− ε2

2σ2 ), ε > 0. Here Y =
∑nr

k=0(ED
(u)
r,kX)(D

(u)
r,kX−ED

(u)
r,kX) and we easily get that Var (Y ) ≤ vn(r).

6.4. Proofs of the main results of the Section 3

Proof of Theorem 3.1. Recall that r̂0 is given by: r̂0 = min{r ∈ {2, . . . ,mn} :

Bn(r) holds} − 2 where the event Bn(r) is defined by Bn(r) = {(D(1)
r X)2 ≥

n2bn}, and r̂0 = l0 if ∩mn
r=2B

c
n(r) holds. The condition mn → ∞ guarantees that

for n large enough, r0 + 2 ∈ {2, . . . ,mn}. From this definition, we write

E
(
r̂0 − r0)

2 =

mn−2∑

r=0

(r − r0)
2
P
(
r̂0 = r

)
+ (l0 − r0)

2
P
(
r̂0 = l0

)

where P
(
r̂0 = 0

)
= P

(
Bn(2)

)
, P
(
r̂0 = r

)
= P

(
Bcn(2)∩· · ·∩Bcn(r+1)∩Bn(r+2)

)

if r = 1, . . . ,mn − 2, and P
(
r̂0 = l0

)
≤ P

(
Bcn(r0 + 2)

)
. Then, for all r0 ∈ N0:
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E
(
r̂0 − r0

)2
= O

(
T1n(r0)

)
+ O

(
m3
nT2n(r0)

)
where we have set T1n(0) = 0,

T1n(r0) =
∑r0+1

r=2 P
(
Bn(r)

)
(for r0 ≥ 1) and T2n(r0) = P

(
Bcn(r0 + 2)

)
. Now,

the study of T1n and T2n is derived from results of Lemma 6.1, Lemma 6.2,
Proposition 6.1 and Lemma 6.3. In particular, since µ ∈ Cr0+1([0, T ]) we get:

E(D
(u)
r,kX) =

r∑

i=0

bikr(u)(tk+iu − tk)
r∗
∫ 1

0

(1 − v)r
∗−1

(r∗ − 1)!
µ(r∗)(tk + (tk+iu − tk)v) dv

which is O(nr−r
∗

) for r∗ = min(r, r0 + 1) implying that E(D
(u)
r,kX) = O(1) for

r = 1, . . . , r0 + 1, and E(D
(u)
r,kX) = O(n) for r = r0 + 2. Then one may bound

vn(r) given in equation (6.16) by O(n2) if r = 1, . . . , r0, O
(
n3−2β01]0, 12 [

(β0) +

n2 lnn1{ 1
2 }
(β0)+n

21] 12 ,1[
(β0)

)
if r = r0+1 with A2.1-(iii-1),O

(
n7−2β01]0, 12 [

(β0)+

n6 lnn1{ 1
2 }
(β0) + n61] 12 ,1[

(β0)
)
if r = r0 + 2 with A2.1-(iii-1), and O(n7−2β0) if

r = r0+2 and A2.1-(iii-2) holds. After some calculations based on the properties
n2β0bn → ∞ and n−2(1−β0)bn → 0, one may derive from Proposition 6.2 that:

T1n(r0) = O
(
exp

(
−D(r0)bn

(
n2β0+1

1]0, 12 [
(β0)+

( n2

lnn

)
1{ 1

2}
(β0)+n

2
1] 12 ,1[

(β0)
)))

.

Next, if A2.1-(iii-1) holds

T2n(r0) = O
(
exp

(
−D(r0)

(
n1]0, 12 [

(β0) +
( n

lnn

)
1{ 1

2}
(β0) + n2(1−β0)1] 12 ,1[

(β0)
)))

while, under A2.1-(iii-2) and for all β0 ∈]0, 1[, T2n(r0) = O
(
exp(−D(r0)n)

)
.

For p = 1, 2, we get that T1n(r0) = o
(
T2n(r0)

)
and the mean square error

follows. Finally, to obtain a bound for P(r̂0 6= r0), it suffices to notice that
{r̂0 = 0} = Bn(2) for r0 = 0 and {r̂0 = r0} = Bcn(2)∩· · ·∩Bcn(r0+1)∩Bn(r0+2)
for r0 ≥ 1, therefore P(r̂0 6= r0) = T1n(r0) + T2n(r0) = T2n(r0)(1 + o(1)).

Proof of Theorem 3.2. We start the proof, with either p = 1 or p = 2, and thus
denote by r̂p (resp. rp) the quantity r̂0 + p (resp. r0 + p). We set

ln(p, r0, β0) = − 1

2n

n∑

k=0

d0(tk)ψ
2(p−β0)(tk)

rp∑

i,j=0

(ij)r0∏rp
m=0
m 6=i

(i−m)
∏rp
q=0
q 6=j

(j − q)

×
∫∫

[0,1]2

((1 − v)(1− w))r0−1

(r0 − 1)!2
|iv − jw|2β0 dvdw, (6.17)

for all r0 ≥ 1 while if r0 = 0,

ln(p, 0, β0) = − 1

2n

n∑

k=0

d0(tk)ψ
2(p−β0)(tk)

rp∑

i,j=0

|i− j|2β0

∏p
m=0
m 6=i

(i−m)
∏p
q=0
q 6=j

(j − q)
.

(6.18)
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We study the convergence of α̂p = 2(β̂
(p)
n − p) toward αp = 2(β0 − p), so that

α̂p =
ln
(
(D

(u)
r̂p
X)2

)
− ln

(
(D

(v)
r̂p
X)2

)

ln(u/v)
.

We consider the following decomposition of ln(u/v)α̂p:

ln
( nαp

n− ur̂p + 1

n−ur̂p∑

k=0

(
D

(u)
r̂p,k

X
)2 − uαp ln(p, r0, β0) + uαp ln(p, r0, β0)

)

− ln
( nαp

n− vr̂p + 1

n−vr̂p∑

k=0

(
D

(v)
r̂p,k

X
)2 − vαp ln(p, r0, β0) + vαp ln(p, r0, β0)

)

Hence ln(u/v)(α̂p−αp) = Fn(u)−Fn(v)+ o(Fn(u)+Fn(v)) where o(·) a.s.−−−−→
n→∞

0

as soon as Fn(·) a.s.−−−−→
n→∞

0 with

Fn(u) =
nαp

(
D

(u)
r̂p
X
)2 − uαp ln(p, r0, β0)

uαp ln(p, r0, β0)
=
F1,n,p(u) + F2,n,p(u) + F3,n,p(u)

uαp ln(p, r0, β0)

for F1,n,p(u) = nαp((D
(u)
r̂p
X)2 − (D

(u)
rp X)2), F2,n,p(u) = nαp((D

(u)
rp X)2 −

E(D
(u)
rp X)2) and F3,n,p(u) = nαpE((D

(u)
rp X)2)− uαp ln(p, r0, β0).

(i) Study of F1,n,p(u). From Theorem 3.1, we get that
∑

nP(r̂0 6= r0) <∞,
so, a.s. for n large enough, r̂0 = r0 and F1,n,p(u) ≡ 0, p = 1 or p = 2.

(ii) Study of F2,n,p(u). We study

P
(∣∣(D(u)

rp X
)2 − E

(
D

(u)
rp X

)2∣∣ > cpn
2(p−β0)ψ−1

np (β0)
)

for cp a positive constant, ψn2(β0) ≡
(
n

lnn

) 1
2 and

ψn1(β0) =
( n

lnn

) 1
21]0, 34 [

(β0) +
(n1/2

lnn

)
1{ 3

4}
(β0) +

(n2(1−β0)

lnn

)
1] 34 ,1[

(β0).

We apply Lemma 6.3 and Proposition 6.2 with p = 1 or p = 2. After some
calculations and the application of Borel Cantelli’s lemma with cp chosen large
enough, we obtain that almost surely, limn→∞ ψnp(β0) |F2,n,p(u)| < +∞ under
the condition A2.1-(iii-p), with p = 1 or 2.

(iii) Study of F3,n,p(u). From (6.11) and proceeding similarly as in (6.12), we

get for r0 ≥ 1, that nβ1(nαpE(D
(u)
rp X)2 − uαp ln(p, r0, β0)) could be decomposed

into Bn1 +Bn2 +Bn3 with
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Bn1 = −
nαp+β1

2(n− urp + 1)

n−urp
∑

k=0

rp
∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r0(tk+ju − tk)
r0

×

∫∫

[0,1]2

((1− v)(1− w))r0−1

(r0 − 1)!2
|v̇ik − ẇjk|

2β0+β1

×

{

L
(r0,r0)(v̇ik,ẇjk)− 1

2
L
(r0,r0)(v̇ik,v̇ik)−

1
2
L
(r0,r0)(ẇjk ,ẇjk)

|v̇ik−ẇjk |
2β0

− d0(ẇjk)

|v̇ik − ẇjk|
β1

−d1(ẇjk)

}

dv dw

Bn2 = −
nαp+β1

2(n− urp + 1)

n−urp
∑

k=0

rp
∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r0(tk+ju − tk)
r0

×

∫∫

[0,1]2

((1− v)(1− w))r0−1

(r0 − 1)!2
|v̇ik − ẇjk|

2β0+β1 d1(ẇjk),

Bn3 = n
β1

( −nαp

2(n− urp + 1)

n−urp
∑

k=0

rp
∑

i,j=0

b
(u)
ikrb

(u)
jkr(tk+iu − tk)

r0(tk+ju − tk)
r0

×

∫∫

[0,1]2

((1− v)(1− w))r0−1

(r0 − 1)!2
|v̇ik − ẇjk|

2β0 d0(ẇjk) dv dw − u
αp ln(p, r0, β0)

)

and ln(p, r0, β0) given by (6.17). Next, using Lemma 6.1 and 6.2 and the con-
dition (3.1) with uniform continuity of d1(·), we get that Bn1 = o(1) and Bn2
has the limit:

− uαp+β1

2

rp∑

i,j=0

(ij)r0
∫ T
0 d1(t)ψ

1−αp−β1(t) dt∏rp
m=0
m 6=i

(i−m)
∏rp
q=0
q 6=j

(j − q)

×
∫∫

[0,1]2

(
(1− v)(1 − w)

)r0−1

((r0 − 1)!)2
|iv − jw|2β0+β1 dvdw.

For the last term Bn3, one may show that it is of order O(nβ1−1). Finally, the
case r0 = 0 is treated similarly from (6.10).

Conclusion. One may note that the deterministic term, ln(p, r0, β0), defined
in (6.17)–(6.18), converges to the nonzero term:

−
1

2

rp
∑

i,j=0

(ij)r0
∫ T

0
d0(t)ψ

−αp+1(t) dt
rp
∏

m=0
m6=i

(i−m)
rp
∏

q=0
q 6=j

(j − q)

∫∫

[0,1]2

((1− v)(1− w))r0−1

(r0 − 1)!2
|iv − jw|2β0dvdw

for r0 ≥ 1 while if r0 = 0, the limit is

−1

2

p∑

i,j=0

|i− j|2β0
∫ T
0 d0(t)ψ

−αp+1(t) dt∏p
m=0
m 6=i

(i −m)
∏p
q=0
q 6=j

(j − q)
.
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6.5. Proof of the results on approximation and integration

Proof of Theorem 4.1. We set r̃0 = max(r̂0, 1) and, for r̂0 and X̃r(·) respectively
defined in (2.5) and (4.1). For r̂0 = l0, we make use of the convention: X̃r̃0(·) =
X̃mn−1(·) and X̃r̂0+1(·) = X̃mn(·).

(a) If r = max(r, 1) and r0 = max(r0, 1), we get, for n large enough such that
r0 ≤ mn − 2,

(
X(t)− X̃r̃0(t)

)2
=

mn−2∑

r=0

(
X(t)− X̃r(t)

)2
1{r̂0=r}+

(
X(t)− X̃mn−1(t)

)2
1{r̂0=l0}

≤
(
X(t)− X̃r0(t)

)2
+1{r̂0 6=r0}

mn−1∑

r=0,r 6=r0

(
X(t)− X̃r(t)

)2
.

Therefore, e2ρ(app
(
r̂0)
)
could be bounded by

∫ T

0

E
(
X(t)− X̃r0(t)

)2
ρ(t) dt

+
(
P(r̂0 6= r0)

) 1
2

mn−1∑

r=0,r 6=r0

∫ T

0

(
E
(
X(t)− X̃r(t)

)4) 1
2

ρ(t) dt

We use the exponential bound established for P(r̂0 6= r0) in Theorem 3.1 as
well as the property E(Y 4) ≤ 3(E(Y 2))2 for a Gaussian r.v. Y . Moreover,

supt∈[0,T ](E(X(t) − X̃r(t))
2) = maxk=0,...,⌊n

r ⌋−1 supt∈Ik
(E(X(t) − X̃r(t))

2). If
r0 ≥ 1, we start from the decomposition established in Blanke and Vial [6,
Lemma 4.1] to obtain, for t ∈ Ik and r∗ = min(r, r0):

E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
(tkr+i − tkr)

r∗(tkr+j − tkr)
r∗

((r∗ − 1)!)2

×
∫∫

[0,1]2

(
(1− v)(1 − w)

)r∗−1
{
L
(r∗,r∗)(tkr + (t− tkr)v, tkr + (t− tkr)w)

− L
(r∗,r∗)(tkr + (t− tkr)v, tkr + (tkr+j − tkr)w)

− L
(r∗,r∗)(tkr + (tkr+i − tkr)v, tkr + (t− tkr)w)

+ L
(r∗,r∗)(tkr + (tkr+i − tkr)v, tkr + (tkr+j − tkr)w)

}
dvdw.

If r = 1, . . . , r0 − 1 (r0 ≥ 2), we obtain the uniform bound O(δ2r+2
n ) by uni-

form continuity of L(r+1,r+1)(·, ·) and results of Lemma 6.1. For r = r0, . . . ,mn,
we have r∗ = r0 so we apply the Hölderian regularity condition (6.9). Since

Li,k,r(t) ≤ rr, we arrive at supt∈[0,T ] E(X(t) − X̃r0(t))
2 = O(δ

2(r0+β0)
n )

for r = r0 while if r = r0 + 1, . . . ,mn, supt∈[0,T ] E(X(t) − X̃r(t))
2 =

O(m
2(mn+r0+β0)
n δ

2(r0+β0)
n ). The logarithmic order of mn yields the final result.

In the case r0 = 0, note that the above results hold true starting from
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E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
{
L(t, t)− L(t, tkr+j)

− L(tkr+i, t) + L(tkr+i, tkr+j)
}
.

(b) For e2ρ(int
(
r̂0)
)
,
∫ T
0

(
X(t)− X̃r+1

)
ρ(t) dt is again a Gaussian variable, so

in a similar way as for approximation, we get the following bound for this term:

√
3
(
P(r̂0 6= r0)

) 1
2

mn∑

r=0

(
sup
t∈[0,T ]

(
E
(
X(t)− X̃r+1(t)

)2) 1
2
)2( ∫ T

0

ρ(t) dt
)2

+

⌊ n
r0+1 ⌋−1∑

k=0

⌊ n
r0+1 ⌋−1∑

ℓ=0

∫

Ik

∫

Iℓ

E
(
X(t)−X̃r0+1(t)

)(
X(s)−X̃r0+1(s)

)
ρ(t)ρ(s) dsdt.

Study of the term E
(
X(t) − X̃r0+1(t)

)(
X(s) − X̃r0+1(s)

)
, (s, t) ∈ Iℓ × Ik.

Denoting r = r0 + 1 we get again from lemma 4.1 of Blanke and Vial [6] that

E
(
X(t)− X̃r(t)

)(
X(s)− X̃r(s)

)
is equal to:

r
∑

i,j=0

Li,k,r(t)Lj,ℓ,r(s)
((tkr+i − tkr)(tℓr+j − tℓr))

r0

((r0 − 1)!)2

∫∫

[0,1]2
dvdw ((1− v)(1− w))r0−1

×
{

L
(r0,r0)(tkr+(t−tkr)v, tℓr+(t−tℓr)w)−L

(r0,r0)(tkr+(t−tkr)v, tℓr+(tℓr+j−tℓr)w)

− L
(r0,r0)(tkr+(tkr+i−tkr)v, tℓr+(t−tℓr)w)+L

(r0,r0)(tkr+(tkr+i−tkr)v, tℓr+(t−tℓr)w)
}

.

For non-overlapping intervals Ik and Iℓ, that is |k − l| ≥ 2, we make use of
Condition A2.2(2) four times, by adding and subtracting the necessary terms,
and noting that

r∑

i,j=0

Li,k,r(t)Lj,ℓ,r(s)(tkr+i − tkr)
r1(tℓr+j − tℓr)

r2 = (t − tkr)
r1(s − tℓr)

r2

with either ri = r − 1 or ri = r for i = 1, 2. Therefore, we get

⌊n
r ⌋−1∑

k,ℓ=0

|k−ℓ|≥2

∫

Ik

∫

Iℓ

E
(
X(t)− X̃r(t)

)(
X(s)− X̃r(s)

)
ρ(t)ρ(s) dsdt

= O
(
δ2(r0+β0+1)
n

⌊n
r ⌋−1∑

k,ℓ=0

|k−ℓ|≥2

∣∣ |k − ℓ| − 1
∣∣−2(2−β0)

)

which is a O(δ
2(r0+β0)+1
n ). For overlapping intervals Ik and Iℓ, namely in the

case where |k − l| ≤ 1, we make use of Cauchy-Schwarz inequality to obtain
the same bound as above. Since the second part of e2ρ(int(̂r0)) is negligible, we
obtain the claimed result.
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[18] Gneiting, T., Ševč́ıková, and Percival, D. B. (2012). Estimators of
fractal dimension: assessing the roughness of time series and spatial data.
Statist. Sci. 27 (2), 247–277. MR2963995

[19] Hall, P. and Roy, R. (1994). On the relationship between fractal di-
mension and fractal index for stationary stochastic processes. Ann. Appl.
Probab. 4 (1), 241–253. MR1258183

[20] Hanson, D. L. and Wright, F. T. (1971). A bound on tail probabil-
ities for quadratic forms in independent random variables. Ann. Math.
Statist. 42 (3), 1079–1083. MR0279864

[21] Istas, J. (1992). Wavelet coefficients of a Gaussian process and applica-
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