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Abstract

Polymorphic variants are a useful feature of the OCaml language
whose current definition and implementation rely on kinding con-
straints to simulate a subtyping relation via unification. This yields
an awkward formalization and results in a type system whose be-
haviour is in some cases unintuitive and/or unduly restrictive.

In this work, we present an alternative formalization of poly-
morphic variants, based on set-theoretic types and subtyping, that
yields a cleaner and more streamlined system. Our formalization is
more expressive than the current one (it types more programs while
preserving type safety), it can internalize some meta-theoretic prop-
erties, and it removes some pathological cases of the current imple-
mentation resulting in a more intuitive and, thus, predictable type
system. More generally, this work shows how to add full-fledged
union types to functional languages of the ML family that usually
rely on the Hindley-Milner type system. As an aside, our system
also improves the theory of semantic subtyping, notably by prov-
ing completeness for the type reconstruction algorithm.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; Polymorphism.

Keywords Type reconstruction, union types, type constraints.

1. Introduction

Polymorphic variants are a useful feature of OCaml, as they balance
static safety and code reuse capabilities with a remarkable con-
ciseness. They were originally proposed as a solution to add union
types to Hindley-Milner (HM) type systems [17]. Union types have
several applications and make it possible to deduce types that are
finer grained than algebraic data types, especially in languages with
pattern matching. Polymorphic variants cover several of the appli-
cations of union types, which explains their success; however they
provide just a limited form of union types: although they offer some
sort of subtyping and value sharing that ordinary variants do not, it
is still not possible to form unions of values of generic types, but
just finite enumerations of tagged values. This is obtained by super-
imposing on the HM type system a system of kinding constraints,
which is used to simulate subtyping without actually introducing
it. In general, the current system reuses the ML type system—
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including unification for type reconstruction—as much as possible.
This is the source of several trade-offs which yield significant com-
plexity, make polymorphic variants hard to understand (especially
for beginners), and jeopardize expressiveness insofar as they forbid
several useful applications that general union types make possible.

We argue that using a different system, one that departs drasti-
cally from HM, is advantageous. In this work we advocate the use
of full-fledged union types (i.e., the original motivation of polymor-
phic variants) with standard set-theoretic subtyping. In particular
we use semantic subtyping [15], a type system where (i) types are
interpreted as set of values, (ii) they are enriched with unrestrained
unions, intersections, and negations interpreted as the correspond-
ing set-theoretic operations on sets of values, and (iii) subtyping
corresponds to set containment. Using set-theoretic types and sub-
typing yields a much more natural and easy-to-understand system
in which several key notions—e.g., bounded quantification and ex-
haustiveness and redundancy analyses of pattern matching—can be
expressed directly by types; conversely, with the current formaliza-
tion these notions need meta-theoretic constructions (in the case
of kinding) or they are meta-theoretic properties not directly con-
nected to the type theory (as for exhaustiveness and redundancy).

All in all, our proposal is not very original: in order to have
the advantages of union types in an implicitly-typed language, we
simply add them, instead of simulating them roughly and partially
by polymorphic variants. This implies to generalize notions such
as instantiation and generalization to cope with subtyping (and,
thus, with unions). We chose not to start from scratch, but instead
to build on the existing: therefore we show how to add unions as
a modification of the type checker, that is, without disrupting the
current syntax of OCaml. Nevertheless, our results can be used to
add unions to other implicitly-typed languages of the ML family.

We said that the use of kinding constraints instead of full-
fledged unions has several practical drawbacks and that the system
may therefore result in unintuitive or overly restrictive behaviour.
We illustrate this by the following motivating examples in OCaml.

EXAMPLE 1: loss of polymorphism. Let us consider the identity
function and its application to a polymorphic variant in OCaml (“#”
denotes the interactive toplevel prompt of OCaml, whose input is
ended by a double semicolon and followed by the system response):

# let id x = x;;

val id : α → α = <fun >

# id `A;;

- : [> `A ] = `A

The identity function id has type1∀α. α → α (Greek letters denote
type variables). Thus, when it is applied to the polymorphic variant
value `A (polymorphic variants values are literals prefixed by a
backquote), OCaml statically deduces that the result will be of

1 Strictly speaking, it is a type scheme: cf. Definition 3.3.
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type “at least `A” (noted [> `A]), that is, of a type greater than or
equal to the type whose only value is `A. Since the only value of
type [> `A] is `A, then the value `A and the expression id `A are

completely interchangeable.2 For instance, we can use id `A where
an expression of type “at most `A” (noted [< `A]) is expected:

# let f x = match x with `A → true ;;

val f : [< `A ] → bool = <fun >

# f (id `A);;

- : bool = true

Likewise `A and id `A are equivalent in any context:

# [`A; `C];;

- : [> `A | `C ] list = [`A; `C]

# [(id `A); `C];;

- : [> `A | `C ] list = [`A; `C]

We now slightly modify the definition of the identity function:

# let id2 x = match x with `A | `B → x;;

val id2: ([< `A | `B ] as α) → α = <fun >

Since id2 maps x to x, it still is the identity function—so it has
type α→α—but since its argument is matched against `A | `B,
this function can only be applied to arguments of type “at most
`A | `B”, where “|” denotes a union. Therefore, the type vari-
able α must be constrained to be a “subtype” of `A | `B, that is,
∀(α ≤ À | B̀). α → α, expressed by the OCaml toplevel as
val id2: ([< `A | `B ] as α) → α.

A priori, this should not change the typing of the application
of the (newly-defined) identity to `A, that is, id2 `A. It should still
be statically known to have type “at least `A”, and hence to be the
value `A. However, this is not the case:

# id2 `A;;

- : [< `A | `B > `A ] = `A

id2 `A is given the type [< `A | `B > `A ] which is parsed as
[ (< (`A|`B)) (> `A) ] and means “at least `A” (i.e., [ (> `A) ])
and (without any practical justification) “at most `A | `B” (i.e.,
[ (< (`A | `B)) ]). As a consequence `A and id2 `A are no longer
considered statically equivalent:

# [(id2 `A); `C];;

Error: This expression has type [> `C ] but an

expression was expected of type [< `A | `B > `A ].

The second variant type does not allow tag(s) `C

Dealing with this problem requires the use of awkward explicit
coercions that hinder any further use of subtype polymorphism.

EXAMPLE 2: roughly-typed pattern matching. The typing of
pattern-matching expressions on polymorphic variants can prove
to be imprecise. Consider:

# let f x = match id2 x with `A → `B | y → y;;

val f : [ `A | `B ] → [ `A | `B ] = <fun >

the typing of the function above is tainted by two approximations:
(i) the domain of the function should be [< `A | `B ], but—since
the argument x is passed to the function id2—OCaml deduces the
type [ `A | `B ] (a shorthand for [< `A | `B > `A | `B ]), which
is less precise: it loses subtype polymorphism; (ii) the return type
states that f yields either `A or `B, while it is easy to see that
only the latter is possible (when the argument is `A the function
returns `B, and when the argument is `B the function returns the
argument, that is, `B). So the type system deduces for f the type
[ `A | `B ] → [ `A | `B ] instead of the more natural and pre-
cise [< `A | `B ] → [> `B ].

2 Strictly speaking, `A is the only value in all instances of [> `A]: as shown
in Section 3 the type [> `A] is actually a constrained type variable.

To recover the correct type, we need to state explicitly that the
second pattern will only be used when y is `B, by using the alias
pattern `B as y. This is a minor inconvenience here, but writing the
type for y is not always possible and is often more cumbersome.

Likewise, OCaml unduly restricts the type of the function

# let g x = match x with `A → id2 x | _ → x;;

val g : ([< `A | `B > `A ] as α) → α = <fun >

as it states g can only be applied to `A or `B; actually, it can be
applied safely to, say, `C or any variant value with any other tag.
The system adds the upper bound `A | `B because id2 is applied to
x. However, the application is evaluated only when x = À: hence,
this bound is unnecessary. The lower bound `A is unnecessary too.

The problem with these two functions is not specific to variant
types. It is more general, and it stems from the lack of full-fledged
connectives (union, intersection, and negation) in the types, a lack
which neither allows the system to type a given pattern-matching
branch by taking into account the cases the previous branches have
already handled (e.g., the typing of the second branch in f), nor
allows it to use the information provided by a pattern to refine the
typing of the branch code (e.g., the typing of the first branch in g).

As a matter of fact, we can reproduce the same problem as for
g, for instance, on lists:

# let rec map f l = match l with

| [] → l

| h::t → f h :: map f t;;

val map : (α → α) → α list → α list = <fun >

This is the usual map function, but it is given an overly restrictive
type, accepting only functions with equal domain and codomain.
The problem, again, is that the type system does not use the infor-
mation provided by the pattern of the first branch to deduce that
that branch always returns an empty list (rather than a generic α
list). Also in this case alias patterns could be used to patch this
specific example, but do not work in general.

EXAMPLE 3: rough approximations. During type reconstruc-
tion for pattern matching, OCaml uses the patterns themselves to
determine the type of the matched expression. However, it might
have to resort to approximations: there might be no type which
corresponds precisely to the set of values matched by the patterns.
Consider, for instance, the following function [from 18].

# let f x = match x with

| (`A, _) → 1 | (`B, _) → 2

| (_, `A) → 3 | (_, `B) → 4;;

val f : [> `A | `B ] * [> `A | `B ] → int

The type chosen by OCaml states that the function can be applied to
any pair whose both components have a type greater than `A | `B.
As a result, it can be applied to (`C, `C), whose components
have type `A | `B | `C. This type therefore makes matching non-
exhaustive: the domain also contains values that are not captured
by any pattern (this is reported with a warning). Other choices
could be made to ensure exhaustiveness, but they all pose different
problems: choosing [< `A | `B ] * [< `A | `B ] → int makes
the last two branches become redundant; choosing instead a type
such as [> `A | `B ] * [< `A | `B ] → int (or vice versa) is
unintuitive as it breaks symmetry.

These rough approximations arise from the lack of full-fledged
union types. Currently, OCaml only allows unions of variant types.
If we could build a union of product types, then we could pick
the type ([< `A | `B ] * [> ]) | ([> ] * [< `A | `B ]) (where
[> ] is “any variant”): exactly the set we need. More generally, true
union types (and singleton types for constants) remove the need of
any approximation for the set of values matched by the patterns
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of a match expression, meaning we are never forced to choose—
possibly inconsistently in different cases—between exhaustiveness
and non-redundancy.

Although artificial, the three examples above provide a good
overview of the kind of problems of the current formalization of
polymorphic variants. Similar, but more “real life”, examples of
problems that our system solves can be found on the Web [e.g.,
8–11, 21, 29].

Contributions. The main technical contribution of this work is
the definition of a type system for a fragment of ML with poly-
morphic variants and pattern matching. Our system aims to replace
the parts of the current type checker of OCaml that deal with these
features. This replacement would result in a conservative exten-
sion of the current type checker (at least, for the parts that concern
variants and pattern matching), since our system types (with the
same or more specific types) all programs OCaml currently does;
it would also be more expressive since it accepts more programs,
while preserving type safety. The key of our solution is the ad-
dition of semantic subtyping—i.e., of unconstrained set-theoretic
unions, intersections, and negations—to the type system. By adding
it only in the type checker—thus, without touching the current syn-
tax of types the OCaml programmer already knows—it is possible
to solve all problems we illustrated in Examples 1 and 2. By a slight
extension of the syntax of types—i.e., by permitting unions “|” not
only of variants but of any two types—and no further modification
we can also solve the problem described in Example 3. We also
show that adding intersection and negation combinators, as well
as singletons, to the syntax of types can be advantageous (cf. Sec-
tions 6.1 and 8). Therefore, the general contribution of our work is
to show a way to add full-fledged union, intersection, and differ-
ence types to implicitly-typed languages that use HM type system.

Apart from the technical advantages and the gain in expressive-
ness, we think that the most important advantage of our system is
that it is simpler, more natural, and arguably more intuitive than
the current one (which uses a system of kinding constraints). Prop-
erties such as “a given branch of a match expression will be exe-
cuted for all values that can be produced by the matched expres-
sion, that can be captured by the pattern of the branch, and that
cannot be captured by the patterns of the preceding branches” can
be expressed precisely and straightforwardly in terms of union, in-
tersection, and negation types (i.e., the type of the matched expres-
sion, intersected by the type of the values matched by the pattern,
minus the union of all the types of the values matched by any pre-
ceding pattern: see rule Ts-Match in Figure 2). The reason for this
is that in our system we can express much more information at the
level of types, which also means we can do without the system of
kinding constraints. This is made possible by the presence of set-
theoretic type connectives. Such a capability allows the type sys-
tem to model pattern matching precisely and quite intuitively: we
can describe exhaustiveness and non-redundancy checking in terms
of subtype checking, whereas in OCaml they cannot be defined at
the level of types. Likewise, unions and intersections allow us to
encode bounded quantification—which is introduced in OCaml by
structural polymorphism—without having to add it to the system.
As a consequence, it is in general easy in our system to understand
the origin of each constraint generated by the type checker.

Our work also presents several side contributions. First, it ex-
tends the type reconstruction of Castagna et al. [6] to pattern match-
ing and let-polymorphism and, above all, proves it to be sound and
complete with respect to our system (reconstruction in Castagna
et al. [6] is only proven sound). Second, it provides a technique for
a finer typing of pattern matching that applies to types other than
polymorphic variants (e.g., the typing of map in Example 2) and
languages other than OCaml (it is implemented in the development
branch of CDuce [1, 7]). Third, the K system we define in Sec-

tion 3 is a formalization of polymorphic variants and full-fledged
pattern matching as they are currently implemented in OCaml: to
our knowledge, no published formalization is as complete as K.

Outline. Section 2 defines the syntax and semantics of the lan-
guage we will study throughout this work. Sections 3 and 4 present
two different type systems for this language.

In particular, Section 3 briefly describes the K type system we
have developed as a formalization of how polymorphic variants
are typed in OCaml. Section 4 describes the S type system, which
employs set-theoretic types with semantic subtyping: we first give
a deductive presentation of the system, and then we compare it to K

to show that S can type every program that the K system can type.
Section 5 defines a type reconstruction algorithm that is sound and
complete with respect to the S type system.

Section 6 presents three extensions or modifications of the sys-
tem: the first is the addition of overloaded functions; the second
is a refinement of the typing of pattern matching, which we need
to type precisely the functions g and map of Example 2; the third
is a restriction which solves a discrepancy between our model and
OCaml (the lack of type tagging at runtime in the OCaml imple-
mentation).

Finally, Section 7 compares our work with other formalizations
of polymorphic variants and with previous work on systems with
set-theoretic type connectives, and Section 8 concludes the presen-
tation and points out some directions for future research.

For space reasons we omitted all the proofs as well as some
definitions. They can be found in the Appendix.

2. The language of polymorphic variants

In this section, we define the syntax and semantics of the language
with polymorphic variants and pattern matching that we study
in this work. In the sections following this one we will define
two different type systems for it (one with kinds in Section 3,
the other with set-theoretic types in Section 4), as well as a type
reconstruction algorithm (Section 5).

2.1 Syntax

We assume that there exist a countable set X of expression vari-
ables, ranged over by x, y, z, . . . , a set C of constants, ranged over
by c, and a set L of tags, ranged over by t̀ag. Tags are used to label
variant expressions.

Definition 2.1 (Expressions). An expression e is a term inductively
generated by the following grammar:

e ::= x | c | λx. e | e e | (e,e) | t̀ag(e) | match e with (pi→ei)i∈I

where p ranges over the set P of patterns, defined below. We write
E to denote the set of all expressions.

We define fv(e) to be the set of expression variables occurring
free in the expression e, and we say that e is closed if and only
if fv(e) is empty. As customary, we consider expressions up to α-
renaming of the variables bound by abstractions and by patterns.

The language is a λ-calculus with constants, pairs, variants, and
pattern matching. Constants include a dummy constant ( ) (‘unit’)
to encode variants without arguments; multiple-argument variants
are encoded with pairs. Matching expressions specify one or more
branches (indexed by a set I) and can be used to encode let-

expressions: let x = e0 in e1
def
= match e0 with x → e1 .

Definition 2.2 (Patterns). A pattern p is a term inductively gener-
ated by the following grammar:

p ::= | x | c | (p, p) | t̀ag(p) | p&p | p|p

such that (i) in a pair pattern (p1, p2) or an intersection pattern
p1&p2, capt(p1) ∩ capt(p2) = ∅; (ii) in a union pattern p1|p2,
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v/ = [ ]

v/x = [v/x]

v/c =

{

[ ] if v = c

Ω otherwise

v/(p1, p2) =

{

ς1 ∪ ς2 if v = (v1, v2) and ∀i. vi/pi = ςi
Ω otherwise

v/ t̀ag(p1) =

{

ς1 if v = t̀ag(v1) and v1/p1 = ς1
Ω otherwise

v/p1&p2 =

{

ς1 ∪ ς2 if ∀i. v/pi = ςi
Ω otherwise

v/p1|p2 =

{

v/p1 if v/p1 6= Ω

v/p2 otherwise

Figure 1. Semantics of pattern matching.

capt(p1) = capt(p2), where capt(p) denotes the set of expression
variables occurring as sub-terms in a pattern p (called the capture
variables of p). We write P to denote the set of all patterns.

Patterns have the usual semantics. A wildcard “ ” accepts any
value and generates no bindings; a variable pattern accepts any
value and binds the value to the variable. Constants only accept
themselves and do not bind. Pair patterns accept pairs if each sub-
pattern accepts the corresponding component, and variant patterns
accept variants with the same tag if the argument matches the inner
pattern (in both cases, the bindings are those of the sub-patterns).
Intersection patterns require the value to match both sub-patterns
(they are a generalization of the alias patterns p as x of OCaml),
while union patterns require it to match either of the two (the left
pattern is tested first).

2.2 Semantics

We now define a small-step operational semantics for this calculus.
First, we define the values of the language.

Definition 2.3 (Values). A value v is a closed expression induc-
tively generated by the following grammar.

v ::= c | λx. e | (v, v) | t̀ag(v)

We now formalize the intuitive semantics of patterns that we
have presented above.

Bindings are expressed in terms of expression substitutions,
ranged over by ς: we write [v1/x1, . . . , vn/xn] for the substitution
that replaces free occurrences of xi with vi, for each i. We write eς
for the application of the substitution ς to an expression e; we write
ς1 ∪ ς2 for the union of disjoint substitutions.

The semantics of pattern matching we have described is formal-
ized by the definition of v/p given in Figure 1. In a nutshell, v/p
is the result of matching a value v against a pattern p. We have ei-
ther v/p = ς , where ς is a substitution defined on the variables in
capt(p), or v/p = Ω. In the former case, we say that v matches p
(or that p accepts v); in the latter, we say that matching fails.

Note that the unions of substitutions in the definition are always
disjoint because of our linearity condition on pair and intersection
patterns. The condition that sub-patterns of a union pattern p1|p2
must have the same capture variables ensures that v/p1 and v/p2
will be defined on the same variables.

Finally, we describe the reduction relation. It is defined by the
following two notions of reduction

(λx. e) v  e[v/x]

match v with (pi → ei)i∈I  ejς
if v/pj = ς and
∀i < j. v/pi = Ω

applied with a leftmost-outermost strategy which does not reduce
inside λ-abstractions nor in the branches of match expressions.

The first reduction rule is the ordinary rule for call-by-value β-
reduction. It states that the application of an abstraction λx. e to a
value v reduces to the body e of the abstraction, where x is replaced
by v. The second rule states that a match expression on a value v
reduces to the branch ej corresponding to the first pattern pj for
which matching is successful. The obtained substitution is applied
to ej , replacing the capture variables of pj with sub-terms of v. If
no pattern accepts v, the expression is stuck.

3. Typing variants with kinding constraints

In this section, we formalize K, the type system with kinding
constraints for polymorphic variants as featured in OCaml; we
will use it to gauge the merits of S, our type system with set-
theoretic types. This formalization is derived from, and extends,
the published systems based on structural polymorphism [17, 19].
In our ken, no formalization in the literature includes polymorphic
variants, let-polymorphism, and full-fledged pattern matching (see
Section 7), which is why we give here a new one. While based
on existing work, the formalization is far from being trivial (which
with hindsight explains its absence), and thus we needed to prove
all its properties from scratch. For space reasons we outline just the
features that distinguish our formalization, namely variants, pattern
matching, and type generalization for pattern capture variables. The
Appendix presents the full definitions and proofs of all properties.

The system consists essentially of the core ML type system with
the addition of a kinding system to distinguish normal type vari-
ables from constrained ones. Unlike normal variables, constrained
ones cannot be instantiated into any type, but only into other con-
strained variables with compatible constraints. They are used to
type variant expressions: there are no ‘variant types’ per se. Con-
straints are recorded in kinds and kinds in a kinding environment
(i.e., a mapping from type variables to kinds) which is included
in typing judgments. An important consequence of using kinding
constraints is that they implicitly introduce (a limited form of) re-
cursive types, since a constrained type variable may occur in its
constraints.

We assume that there exists a countable set V of type variables,
ranged over by α, β, γ, . . . . We also consider a finite set B of basic
types, ranged over by b, and a function b(·) from constants to basic
types. For instance, we might take B = {bool, int, unit}, with
btrue = bool, b( ) = unit, and so on.

Definition 3.1 (Types). A type τ is a term inductively generated by
the following grammar.

τ ::= α | b | τ → τ | τ × τ

The system only uses the types of core ML: all additional
information is encoded in the kinds of type variables.

Kinds have two forms: the unconstrained kind “•” classifies
“normal” variables, while variables used to type variants are given
a constrained kind. Constrained kinds are triples describing which
tags may or may not appear (a presence information) and which
argument types are associated to each tag (a typing information).
The presence information is split in two parts, a lower and an upper
bound. This is necessary to provide an equivalent to both covariant
and contravariant subtyping—without actually having subtyping
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in the system—that is, to allow both variant values and functions
defined on variant values to be polymorphic.

Definition 3.2 (Kinds). A kind κ is either the unconstrained kind
“•” or a constrained kind, that is, a triple (L, U, T ) where:

– L is a finite set of tags { t̀ag1, . . . , t̀agn};

– U is either a finite set of tags or the set L of all tags;

– T is a finite set of pairs of a tag and a type, written { t̀ag1 : τ1,
. . . , t̀agn : τn} (its domain dom(T ) is the set of tags occurring
in it);

and where the following conditions hold:
– L ⊆ U , L ⊆ dom(T ), and, if U 6= L, U ⊆ dom(T );
– tags in L have a single type in T , that is, if t̀ag ∈ L, whenever
both t̀ag : τ1 ∈ T and t̀ag : τ2 ∈ T , we have τ1 = τ2.

In OCaml, kinds are written with the typing information inlined
in the lower and upper bounds. These are introduced by > and <

respectively and, if missing, ∅ is assumed for the lower bound and
L for the upper. For instance, [> `A of int | `B of bool ] as α

of OCaml is represented here by assigning to the variable α the kind
({ À, B̀},L, { À : int, B̀ : bool}); [< `A of int | `B of bool ] as β

corresponds to β of kind (∅, { À, B̀}, { À : int, B̀ : bool}); finally
[< `A of int | `B of bool & unit > `A ] as γ corresponds to γ
of kind ({ À}, { À, B̀}, { À : int, B̀ : bool, B̀ : unit}).

Definition 3.3 (Type schemes). A type scheme σ is of the form
∀A.K ⊲ τ , where:

– A is a finite set {α1, . . . , αn} of type variables;

– K is a kinding environment, that is, a map from type variables
to kinds;

– dom(K) = A.

We identify a type scheme ∀∅.∅ ⊲ τ , which quantifies no vari-
able, with the type τ itself. We consider type schemes up to renam-
ing of the variables they bind and disregard useless quantification
(i.e., quantification of variables that do not occur in the type).

Type schemes single out, by quantifying them, the variables
of a type which can be instantiated. In ML without kinds, the
quantified variables of a scheme can be instantiated with any type.
The addition of kinds changes this: variables with constrained kinds
may only be instantiated into other variables with equally strong or
stronger constraints. This relation on constraints is formalized by
the following entailment relation:

(L,U, T ) � (L′, U ′, T ′) ⇐⇒ L ⊇ L′ ∧ U ⊆ U ′ ∧ T ⊇ T ′ ,

where κ1 � κ2 means that κ1 is a constraint stronger than κ2. This
relation is used to select the type substitutions (ranged over by θ)
that are admissible, that is, that are sound with respect to kinding.

Definition 3.4 (Admissibility of a type substitution). A type sub-
stitution θ is admissible between two kinding environments K and
K′, written K ⊢ θ : K′, if and only if, for every type variable
α such that K(α) = (L, U, T ), αθ is a type variable such that
K′(αθ) = (L′, U ′, T ′) and (L′, U ′, T ′) � (L,U, T θ).

In words, whenever α is constrained in K, then αθ must be a
type variable constrained in K′ by a kind that entails the substitu-
tion instance of the kind of α in K.

The set of the instances of a type scheme are now obtained by
applying only admissible substitutions.

Definition 3.5 (Instances of a type scheme). The set of instances
of a type scheme ∀A.K′ ⊲ τ in a kinding environment K is

instK(∀A.K′ ⊲ τ ) = { τθ | dom(θ) ⊆ A ∧ K,K′ ⊢ θ : K } .

As customary, this set is used in the type system rule to type
expression variables:

Tk-Var
τ ∈ instK(Γ(x))

K; Γ ⊢
K
x : τ

Notice that typing judgments are of the form K; Γ ⊢
K
e : τ : the

premises include a type environment Γ but also, which is new, a
kinding environment K (the K subscript in the turnstile symbol is
to distinguish this relation from ⊢

S
, the relation for the set-theoretic

type system of the next section).
The typing rules for constants, abstractions, applications, and

pairs are straightforward. There remain the rules for variants and
for pattern matching, which are the only interesting ones.

Tk-Tag
K; Γ ⊢

K
e : τ K(α) � ({ t̀ag},L, { t̀ag : τ})

K; Γ ⊢
K

t̀ag(e) : α

The typing of variant expressions uses the kinding environment.
Rule Tk-Tag states that t̀ag(e) can be typed by any variable α such
that α has a constrained kind in K which entails the “minimal”
kind for this expression. Specifically, if K(α) = (L,U, T ), then
we require t̀ag ∈ L and t̀ag : τ ∈ T , where τ is a type for e. Note
that T may not assign more than one type to t̀ag, since t̀ag ∈ L.

The typing of pattern matching is by far the most complex part
of the type system and it is original to our system.

Tk-Match

K; Γ ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I K ⊢ pi : τ0 ⇒ Γi K; Γ, genK;Γ(Γi) ⊢K ei : τ

K; Γ ⊢
K
match e0 with (pi → ei)i∈I : τ

Let us describe each step that the rule above implies. First the rule
deduces the type τ0 of the matched expression (K; Γ ⊢

K
e0 : τ0).

Second, for each pattern pi, it generates the type environment Γi

which assigns types to the capture variables of pi, assuming pi
is matched against a value known to be of type τ0. This is done
by deducing the judgment K ⊢ pi : τ0 ⇒ Γi, whose inference
system is mostly straightforward (see Figure 8 in the Appendix);
for instance, for variable patterns we have:

TPk-Var
K ⊢ x : τ ⇒ {x : τ}

The only subtle point of this inference system is the rule for
patterns of the form t̀ag(p)

TPk-Tag

K ⊢ p : τ ⇒ Γ K(α) = (L,U, T )
( t̀ag ∈ U implies t̀ag : τ ∈ T )

K ⊢ t̀ag(p) : α ⇒ Γ

which—after generating the environment for the capture variables
of p—checks whether the type of the matched expression is a
variant type (i.e., a variable) with the right constraints for t̀ag.

Third, the rule Tk-Match types each branch ei with type τ , in a
type environment updated with genK;Γ(Γi), that is, with the gener-
alization of the Γi generated by K ⊢ pi : τ0 ⇒ Γi. The definition
of generalization is standard: it corresponds to quantifying all the
variables that do not occur free in the environment Γ. The subtle
point is the definition of the free variables of a type (and hence of
an environment), which we omit for space reasons. It must navi-
gate the kinding environment K to collect all variables which can
be reached by following the constraints; hence, the gen function
takes as argument K as well as Γ.

Finally, the premises of the rule also include the exhaustiveness
condition τ0 4K { pi | i ∈ I }, which checks whether every
possible value that e0 can produce matches at least one pattern pi.
The definition of exhaustiveness is quite convoluted.

Definition 3.6 (Exhaustiveness). We say that a set of patterns P
is exhaustive with respect to a type τ in a kinding environment K,
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and we write τ 4K P , when, for every K′, θ, and v,

(K ⊢ θ : K′ ∧K′;∅ ⊢
K
v : τθ) =⇒ ∃p ∈ P, ς. v/p = ς .

In words, P is exhaustive when every value that can be typed
with any admissible substitution of τ is accepted by at least one
pattern in P . OCaml does not impose exhaustiveness—it just sig-
nals non-exhaustiveness with a warning—but our system does. We
do so in order to have a simpler statement for soundness and to fa-
cilitate the comparison with the system of the next section. We do
not discuss how exhaustiveness can be effectively computed; for
more information on how OCaml checks it, see Garrigue [18] and
Maranget [20].

We conclude this section by stating the type soundness property
of the K type system.

Theorem 3.1 (Progress). Let e be a well-typed, closed expression.
Then, either e is a value or there exists an expression e′ such that
e e′.

Theorem 3.2 (Subject reduction). Let e be an expression and τ a
type such that K; Γ ⊢

K
e : τ . If e e′, then K; Γ ⊢

K
e′ : τ .

Corollary 3.3 (Type soundness). Let e be a well-typed, closed
expression, that is, such that K;∅ ⊢

K
e : τ holds for some τ . Then,

either e diverges or it reduces to a value v such that K;∅ ⊢
K
v : τ .

4. Typing variants with set-theoretic types

We now describe S, a type system for the language of Section 2
based on set-theoretic types. The approach we take in its design is
drastically different from that followed for K. Rather than adding
a kinding system to record information that types cannot express,
we directly enrich the syntax of types so they can express all the
notions we need. Moreover, we add subtyping—using a semantic
definition—rather than encoding it via instantiation. We exploit
type connectives and subtyping to represent variant types as unions
and to encode bounded quantification by union and intersection.

We argue that S has several advantages with respect to the pre-
vious system. It is more expressive: it is able to type some programs
that K rejects though they are actually type safe, and it can derive
more precise types than K. It is arguably a simpler formalization:
typing works much like in ML except for the addition of subtyp-
ing, we have explicit types for variants, and we can type pattern
matching precisely and straightforwardly. Indeed, as regards pat-
tern matching, an advantage of the S system is that it can express
exhaustiveness and non-redundancy checking as subtyping checks,
while they cannot be expressed at the level of types in K.

Naturally, subtyping brings its own complications. We do not
discuss its definition here, since we reuse the relation defined by
Castagna and Xu [4]. The use of semantic subtyping makes the
definition of a typing algorithm challenging: Castagna et al. [5, 6]
show how to define one in an explicitly-typed setting. Conversely,
we study here an implicitly-typed language and hence study the
problem of type reconstruction (in the next section).

While this system is based on that described by Castagna et al.
[5, 6], there are significant differences which we discuss in Sec-
tion 7. Notably, intersection types play a more limited role in our
system (no rule allows the derivation of an intersection of arrow
types for a function), making our type reconstruction complete.

4.1 Types and subtyping

As before, we consider a set V of type variables (ranged over by α,
β, γ, . . . ) and the sets C, L, and B of language constants, tags, and
basic types (ranged over by c, t̀ag, and b respectively).

Definition 4.1 (Types). A type t is a term coinductively produced
by the following grammar:

t ::= α | b | c | t → t | t× t | t̀ag(t) | t ∨ t | ¬t | 0

which satisfies two additional constraints:

• (regularity) the term must have a finite number of different sub-
terms;

• (contractivity) every infinite branch must contain an infinite
number of occurrences of atoms (i.e., a type variable or the
immediate application of a type constructor: basic, constant,
arrow, product, or variant).

We introduce the following abbreviations:

t1 ∧ t2
def
= ¬(¬t1 ∨ ¬t2) t1 \ t2

def
= t1 ∧ (¬t2) 1

def
= ¬0 .

With respect to the types in Definition 3.1, we add several new
forms. We introduce set-theoretic connectives (union, intersection,
and negation), as well as bottom (the empty type 0) and top (1)
types. We add general (uniform) recursive types by interpreting
the grammar coinductively, while K introduces recursion via kinds.
Contractivity is imposed to bar out ill-formed types such as those
fulfilling the equation t = t ∨ t (which does not give any infor-
mation on the set of values it represents) or t = ¬t (which cannot
represent any set of values).

We introduce explicit types for variants. These types have the
form t̀ag(t): the type of variant expressions with tag t̀ag and an

argument of type t.3 Type connectives allow us to represent all
variant types of K by combining types of this form, as we describe
in detail below. Finally, we add singleton types for constants (e.g., a
type true which is a subtype of bool), which we use to type pattern
matching precisely.

Variant types and bounded quantification. K uses constrained
variables to type variants; when these variables are quantified in
a type scheme, their kind constrains the possible instantiations of
the scheme. This is essentially a form of bounded quantification:
a variable of kind (L,U, T ) may only be instantiated by other
variables which fall within the bounds—the lower bound being
determined by L and T , the upper one by U and T .

In S, we can represent these bounds as unions of variant types
t̀ag(t). For instance, consider in K a constrained variable α of

kind ({ À}, { À, B̀}, { À : bool, B̀ : int}). If we quantify α, we can
then instantiate it with variables whose kinds entail that of α.
Using our variant types and unions, we write the lower bound as
tL = À(bool) and the upper one as tU = À(bool)∨ B̀(int). In our
system, α should be a variable with bounded quantification, which
can only be instantiated by types t such that tL ≤ t ≤ tU.

However, we do not need to introduce bounded quantification as
a feature of our language: we can use type connectives as proposed
in [4] (cf. Footnote 4 therein) to encode it. The possible instantia-
tions of α (with the bounds above) and the possible instantiations of
(tL ∨β)∧ tU, with no bound on β, are equivalent. We use the latter
form: we internalize the bounds in the type itself by union and in-
tersection. In this way, we need no system of constraints extraneous
to types.

Subtyping. There exists a subtyping relation between types. We
write t1 ≤ t2 when t1 is a subtype of t2; we write t1 ≃ t2 when
t1 and t2 are equivalent with respect to subtyping, that is, when
t1 ≤ t2 and t2 ≤ t1. The definition and properties of this relation
are studied in Castagna and Xu [4], except for variant types which,
for this purpose, we encode as pairs (cf. Footnote 3).

3 We could encode t̀ag(t) by the product t̀ag × t. Although we have
preferred to add explicit variant types, we still use this encoding to derive
their subtyping properties: see Petrucciani [23] for a detailed explanation.
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Ts-Var
t ∈ inst(Γ(x))

Γ ⊢
S
x : t

Ts-Const
Γ ⊢

S
c : c

Ts-Abstr
Γ, {x : t1} ⊢

S
e : t2

Γ ⊢
S
λx. e : t1 → t2

Ts-Appl
Γ ⊢

S
e1 : t

′ → t Γ ⊢
S
e2 : t

′

Γ ⊢
S
e1 e2 : t

Ts-Pair
Γ ⊢

S
e1 : t1 Γ ⊢

S
e2 : t2

Γ ⊢
S
(e1, e2) : t1 × t2

Ts-Tag
Γ ⊢

S
e : t

Γ ⊢
S

t̀ag(e) : t̀ag(t)

Ts-Match

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I Γ, genΓ(ti//pi) ⊢S ei : t
′
i

Γ ⊢
S
match e0 with (pi → ei)i∈I :

∨

i∈I t
′
i

Ts-Subsum
Γ ⊢

S
e : t′ t′ ≤ t

Γ ⊢
S
e : t

Figure 2. Typing relation of the S type system.

In brief, subtyping is given a semantic definition, in the sense
that t1 ≤ t2 holds if and only if Jt1K ⊆ Jt2K, where J·K is an in-
terpretation function mapping types to sets of elements from some
domain (intuitively, the set of values of the language). The inter-
pretation is “set-theoretic” as it interprets union types as unions,
negation as complementation, and products as Cartesian products.

In general, in the semantic-subtyping approach, we consider a
type to denote the set of all values that have that type (we will say
that some type “is” the set of values of that type). In particular, for
arrow types, the type t1 → t2 is that of function values (i.e., λ-
abstractions) which, if they are given an argument in Jt1K and they
do not diverge, yield a result in Jt2K. Hence, all types of the form
0 → t, for any t, are equivalent (as only diverging expressions can
have type 0); any of them is the type of all functions. Conversely,
1 → 0 is the type of functions that (provably) diverge on all
inputs: a function of this type should yield a value in the empty
type whenever it terminates, and that is impossible.

The presence of variables complicates the definition of semantic
subtyping. Here, we just recall from Castagna and Xu [4] that
subtyping is preserved by type substitutions: t1 ≤ t2 implies
t1θ ≤ t2θ for every type substitution θ.

4.2 Type system

We present S focusing on the differences with respect to the system
of OCaml (i.e., K); full definitions are in the Appendix. Unlike in
K, type schemes here are defined just as in ML as we no longer
need kinding constraints.

Definition 4.2 (Type schemes). A type scheme s is of the form
∀A. t, where A is a finite set {α1, . . . , αn} of type variables.

As in K, we identify a type scheme ∀∅. t with the type t itself,
we consider type schemes up to renaming of the variables they
bind, and we disregard useless quantification.

We write var(t) for the set of type variables occurring in a type
t; we say they are the free variables of t, and we say that t is ground
or closed if and only if var(t) is empty. The (coinductive) definition
of var can be found in Castagna et al. [5, Definition A.2].

Unlike in ML, types in our system can contain variables which
are irrelevant to the meaning of the type. For instance, α × 0 is
equivalent to 0 (with respect to subtyping), as we interpret product
types into Cartesian products. Thus, α is irrelevant in α × 0.
To capture this concept, we introduce the notion of meaningful
variables in a type t. We define these to be the set

mvar(t) = {α ∈ var(t) | t[0/α] 6≃ t } ,

where the choice of 0 to replace α is arbitrary (any other closed
type yields the same definition). Equivalent types have exactly
the same meaningful variables. To define generalization, we allow
quantifying variables which are free in the type environment but are

meaningless in it (intuitively, we act as if types were in a canonical
form without irrelevant variables).

We extend var to type schemes as var(∀A. t) = var(t) \A, and
do likewise for mvar.

Type substitutions are defined in a standard way by coinduction;
there being no kinding system, we do not need the admissibility
condition of K.

We define type environments Γ as usual. The operations of gen-
eralization of types and instantiation of type schemes, instead, must
account for the presence of irrelevant variables and of subtyping.

Generalization with respect to Γ quantifies all variables in a type
except for those that are free and meaningful in Γ:

genΓ(t) = ∀A. t , where A = var(t) \ mvar(Γ) .

We extend gen pointwise to sets of bindings {x1 : t1, . . . , xn : tn}.
The set of instances of a type scheme is given by

inst(∀A. t) = { tθ | dom(θ) ⊆ A } ,

and we say that a type scheme s1 is more general than a type
scheme s2—written s1 ⊑ s2—if

∀t2 ∈ inst(s2). ∃t1 ∈ inst(s1). t1 ≤ t2 . (1)

Notice that the use of subtyping in the definition above general-
izes the corresponding definition of ML (which uses equality) and
subsumes the notion of “admissibility” of K by a far simpler and
more natural relation (cf. Definitions 3.4 and 3.5).

Figure 2 defines the typing relation Γ ⊢
S
e : t of the S type

system (we use the S subscript in the turnstile symbol to distinguish
this relation from that for K). All rules except that for pattern
matching are straightforward. Note that Ts-Const is more precise
than in K since we have singleton types, and that Ts-Tag uses the
types we have introduced for variants.

The rule Ts-Match involves two new concepts that we present
below. We start by typing the expression to be matched, e0, with
some type t0. We also require every branch ei to be well-typed with
some type t′i: the type of the whole match expression is the union of
all t′i. We type each branch in an environment expanded with types
for the capture variables of pi: this environment is generated by the
function ti//pi (described below) and is generalized.

The advantage of our richer types here is that, given any pattern,
the set of values it accepts is always described precisely by a type.

Definition 4.3 (Accepted type). The accepted type *p+ of a pattern
p is defined inductively as:

* + = *x+ = 1 *c+ = c

*(p1, p2)+ = *p1+ × *p2+ * t̀ag(p)+ = t̀ag(*p+)

*p1&p2+ = *p1+ ∧ *p2+ *p1|p2+ = *p1+ ∨ *p2+ .

For well-typed values v, we have v/p 6= Ω ⇐⇒ ∅ ⊢
S
v : *p+.

We use accepted types to express the condition of exhaustiveness:
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JαKK =

{

α if K(α) = •

(lowK(L, T ) ∨ α) ∧ uppK(U, T ) if K(α) = (L,U, T )

JbKK = b

Jτ1 → τ2KK = Jτ1KK → Jτ2KK

Jτ1 × τ2KK = Jτ1KK × Jτ2KK

where: lowK(L, T ) =
∨

t̀ag∈L t̀ag(
∧

t̀ag : τ∈T JτKK)

uppK(U,T ) =

{∨

t̀ag∈U t̀ag(
∧

t̀ag : τ∈T JτKK) if U 6= L
∨

t̀ag∈dom(T ) t̀ag(
∧

t̀ag : τ∈T JτKK) ∨ (1V \
∨

t̀ag∈dom(T ) t̀ag(1)) if U = L

Figure 3. Translation of k-types to s-types.

t0 ≤
∨

i∈I*pi+ ensures that every value e0 can reduce to (i.e., every
value in t0) will match at least one pattern (i.e., is in the accepted
type of some pattern). We also use them to compute precisely the
subtypes of t0 corresponding to the values which will trigger each
branch. In the rule, ti is the type of all values which will be selected
by the i-th branch: those in t0 (i.e., generated by e0), not in any
*pj+ for j < i (i.e., not captured by any previous pattern), and in
*pi+ (i.e., accepted by pi). These types ti allow us to express non-
redundancy checks: if ti ≤ 0 for some i, then the corresponding
pattern will never be selected (which likely means the programmer

has made some mistake and should receive a warning).4

The last element we must describe is the generation of types for
the capture variables of each pattern by the ti//pi function. Here,
our use of ti means we exploit the shape of the pattern pi and of the
previous ones to generate more precise types; environment genera-
tion in K essentially uses only t0 and is therefore less precise.

Environment generation relies on two functions π1 and π2

which extract the first and second component of a type t ≤ 1 × 1.
For instance, if t = (α×β)∨(bool×int), we have π1(t) = α∨bool

and π2(t) = β ∨ int. Given any tag t̀ag, π t̀ag does likewise for
variant types with that tag. See Castagna et al. [5, Appendix C.2.1]
and Petrucciani [23] for the full details.

Definition 4.4 (Pattern environment generation). Given a pattern p
and a type t ≤ *p+, the type environment t//p generated by pattern
matching is defined inductively as:

t// = ∅ t//(p1, p2) = π1(t)//p1 ∪ π2(t)//p2

t//x = {x : t} t// t̀ag(p) = π t̀ag(t)//p

t//c = ∅ t//p1&p2 = t//p1 ∪ t//p2

t//p1|p2 = (t ∧ *p1+)//p1 ∨∨ (t \ *p1+)//p2

where (Γ ∨∨ Γ′)(x) = Γ(x) ∨ Γ′(x).

The S type system is sound, as stated by the following properties.

Theorem 4.1 (Progress). Let e be a well-typed, closed expression
(i.e., ∅ ⊢

S
e : t holds for some t). Then, either e is a value or there

exists an expression e′ such that e e′.

Theorem 4.2 (Subject reduction). Let e be an expression and t a
type such that Γ ⊢

S
e : t. If e e′, then Γ ⊢

S
e′ : t.

Corollary 4.3 (Type soundness). Let e be a well-typed, closed
expression, that is, such that ∅ ⊢

S
e : t holds for some t. Then,

either e diverges or it reduces to a value v such that ∅ ⊢
S
v : t.

4 We can also exploit redundancy information to exclude certain branches
from typing (see Section 6.1), though it is not always possible during type
reconstruction.

4.3 Comparison with K

Our type system S extends K in the sense that every well-typed
program of K is also well-typed in S: we say that S is complete
with respect to K.

To show completeness, we define a translation J·KK which maps
k-types (i.e., types of K) to s-types (types of S). The translation
is parameterized by a kinding environment to make sense of type
variables.

Definition 4.5 (Translation of types). Given a k-type τ in a non-
recursive kinding environment K, its translation is the s-type JτKK
defined inductively by the rules in Figure 3.

We define the translation of type schemes as J∀A.K′ ⊲ τKK =
∀A. JτKK,K′ and that of type environments by translating each type
scheme pointwise.

The only complex case is the translation of a constrained
variable. We translate it to the same variable, in union with its
lower bound and in intersection with its upper bound. Lower
bounds and finite upper ones (i.e., those where U 6= L) are
represented by a union of variant types. In K, a tag in U may
be associated with more than one argument type, in which case
its argument should have all these types. This is a somewhat
surprising feature of the type system in OCaml—for details,
see Garrigue [17, 19]—but here we can simply take the in-
tersection of all argument types. For instance, the OCaml type
[< `A of int | `B of unit > `A ] as α, represented in K by the
type variable α with kind ({ À}, { À, B̀}, { À : int, B̀ : unit}), is
translated into ( À(int) ∨ α) ∧ ( À(int) ∨ B̀(unit)).

The translation of an upper bound U = L is more involved.
Ideally, we need the type

∨

t̀ag∈dom(T ) t̀ag(
∧

t̀ag : τ∈T JτKK) ∨
∨

t̀ag/∈dom(T ) t̀ag(1)

which states that tags mentioned in T can only appear with argu-
ments of the proper type, whereas tags not in T can appear with any
argument. However, the union on the right is infinite and cannot be
represented in our system; hence, in the definition in Figure 3 we

use its complement with respect to the top type of variants 1V.5

In practice, a type (tL ∨ α) ∧ tU can be replaced by its lower
(respectively, upper) bound if α only appears in covariant (resp.,
contravariant) position.

We state the completeness property as follows.

5 The type 1V can itself be defined by complementation as

¬
(

(
∨

b∈B b) ∨ (0 → 1) ∨ (1 × 1)
)

:

the type of values which are not constants, nor abstractions, nor pairs.
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TRs-Var
x : t ⇒ {x ≤̇ t}

TRs-Const
c : t ⇒ {c ≤̇ t}

TRs-Abstr
e : β ⇒ C

λx. e : t ⇒ {def {x : α} in C, α → β ≤̇ t}

TRs-Appl
e1 : α → β ⇒ C1 e2 : α ⇒ C2

e1 e2 : t ⇒ C1 ∪ C2 ∪ {β ≤̇ t}
TRs-Pair

e1 : α1 ⇒ C1 e2 : α2 ⇒ C2

(e1, e2) : t ⇒ C1 ∪ C2 ∪ {α1 × α2 ≤̇ t}

TRs-Tag
e : α ⇒ C

t̀ag(e) : t ⇒ C ∪ { t̀ag(α) ≤̇ t}
TRs-Match

e0 : α ⇒ C0 ti = (α \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I ti///pi ⇒ (Γi, Ci) ei : β ⇒ C′
i

C′
0 = C0 ∪ (

⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+}

match e0 with (pi → ei)i∈I : t ⇒ {let [C′
0](Γi in C′

i)i∈I , β ≤̇ t}

Figure 4. Constraint generation rules.

Theorem 4.4 (Preservation of typing). Let e be an expression, K
a non-recursive kinding environment, Γ a k-type environment, and

τ a k-type. If K; Γ ⊢
K
e : τ , then JΓKK ⊢

S
e : JτKK .

Notice that we have defined J·KK by induction. Therefore,
strictly speaking, we have only proved that S deduces all the judge-
ments provable for non-recursive types in K. Indeed, in the state-

ment we require the kinding environment K to be non-recursive6 .
We conjecture that the result holds also with recursive kindings and
that it can be proven by coinductive techniques.

5. Type reconstruction

In this section, we study type reconstruction for the S type system.
We build on the work of Castagna et al. [6], who study local type
inference and type reconstruction for the polymorphic version of
CDuce. In particular, we reuse their work on the resolution of
the tallying problem, which plays in our system the same role as
unification in ML.

Our contribution is threefold: (i) we prove type reconstruction
for our system to be both sound and complete, while in Castagna
et al. [6] it is only proven to be sound for CDuce (indeed, we rely on
the restricted role of intersection types in our system to obtain this
result); (ii) we describe reconstruction with let-polymorphism and
use structured constraints to separate constraint generation from
constraint solving; (iii) we define reconstruction for full pattern
matching. Both let-polymorphism and pattern matching are omitted
in Castagna et al. [6].

Type reconstruction for a program (a closed expression) e con-
sists in finding a type t such that ∅ ⊢

S
e : t can be derived: we see it

as finding a type substitution θ such that ∅ ⊢
S
e : αθ holds for some

fresh variable α. We generalize this to non-closed expressions and
to reconstruction of types that are partially known. Thus, we say
that type reconstruction consists—given an expression e, a type en-
vironment Γ, and a type t—in computing a type substitution θ such
that Γθ ⊢

S
e : tθ holds, if any such θ exists.

Reconstruction in our system proceeds in two main phases. In
the first, constraint generation (Section 5.1), we generate from
an expression e and a type t a set of constraints that record the
conditions under which e may be given type t. In the second phase,
constraint solving (Sections 5.2–5.3), we solve (if possible) these
constraints to obtain a type substitution θ.

We keep these two phases separate following an approach in-
spired by presentations of HM(X) [25]: we use structured con-
straints which contain expression variables, so that constraint gen-
eration does not depend on the type environment Γ that e is to be
typed in. Γ is used later for constraint solving.

6 We say K is non-recursive if it does not contain any cycle α, α1, . . . ,
αn, α such that the kind of each variable αi contains αi+1.

Constraint solving is itself made up of two steps: constraint
rewriting (Section 5.2) and type-constraint solving (Section 5.3).
In the former, we convert a set of structured constraints into a
simpler set of subtyping constraints. In the latter, we solve this set
of subtyping constraints to obtain a set of type substitutions; this
latter step is analogous to unification in ML and is computed using
the tallying algorithm of Castagna et al. [6]. Constraint rewriting
also uses type-constraint solving internally; hence, these two steps
are actually intertwined in practice.

5.1 Constraint generation

Given an expression e and a type t, constraint generation computes
a finite set of constraints of the form defined below.

Definition 5.1 (Constraints). A constraint c is a term inductively
generated by the following grammar:

c ::= t ≤̇ t | x ≤̇ t | def Γ in C | let [C](Γi in Ci)i∈I

where C ranges over constraint sets, that is, finite sets of con-
straints, and where the range of every type environment Γ in con-
straints of the form def or let only contains types (i.e., trivial type
schemes).

A constraint of the form t ≤̇ t′ requires tθ ≤ t′θ to hold for the

final substitution θ. One of the form x ≤̇ t constrains the type of x
(actually, an instantiation of its type scheme with fresh variables)
in the same way. A definition constraint defΓ in C introduces new
expression variables, as we do in abstractions; these variables may
then occur in C. We use def constraints to introduce monomorphic
bindings (environments with types and not type schemes).

Finally, let constraints introduce polymorphic bindings. We use
them for pattern matching: hence, we define them with multiple
branches (the constraint sets Ci’s), each with its own environment
(binding the capture variables of each pattern to types). To solve
a constraint let [C0](Γi in Ci)i∈I , we first solve C0 to obtain
a substitution θ; then, we apply θ to all types in each Γi and we
generalize the resulting types; finally, we solve each Ci (in an
environment expanded with the generalization of Γiθ).

We define constraint generation as a relation e : t ⇒ C, given
by the rules in Figure 4. We assume all variables introduced by
the rules to be fresh (see the Appendix for the formal treatment of
freshness: cf. Definition A.39 and Figures 13 and 14). Constraint
generation for variables and constants (rules TRs-Var and TRs-

Const) just yields a subtyping constraint. For an abstraction λx. e
(rule TRs-Abstr), we generate constraints for the body and wrap
them into a definition constraint binding x to a fresh variable α;
we add a subtyping constraint to ensure that λx. e has type t by
subsumption. The rules for applications, pairs, and tags are similar.

For pattern-matching expressions (rule TRs-Match), we use an
auxiliary relation t///p ⇒ (Γ, C) to generate the pattern type
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∀i ∈ I Γ ⊢ ci  Di

Γ ⊢ { ci | i ∈ I } 
⋃

i∈I Di Γ ⊢ t ≤̇ t′  {t ≤̇ t′}

Γ(x) = ∀{α1, . . . , αn}. tx

Γ ⊢ x ≤̇ t {tx[β1/α1, . . . , βn/αn] ≤̇ t}

Γ,Γ′ ⊢ C  D

Γ ⊢ def Γ′
in C  D

Γ ⊢ C0  D0 θ0 ∈ tally(D0)
∀i ∈ I Γ, genΓθ0

(Γiθ0) ⊢ Ci  Di

Γ ⊢ let [C0](Γi in Ci)i∈I  equiv(θ0) ∪
⋃

i∈I Di

Figure 5. Constraint rewriting rules.

environment Γ, together with a set of constraints C in case the
environment contains new type variables. The full definition is in
the Appendix; as an excerpt, consider the rules for variable and tag
patterns.

t///x ⇒ ({x : t},∅)

α///p ⇒ (Γ, C)

t/// t̀ag(p) ⇒ (Γ, C ∪ {t ≤̇ t̀ag(α)})

The rule for variable patterns produces no constraints (and the
empty environment). Conversely, the rule for tags must introduce
a new variable α to stand for the argument type: the constraint
produced mirrors the use of the projection operator π t̀ag in the
deductive system. To generate constraints for a pattern-matching
expression, we generate them for the expression to be matched
and for each branch separately. All these are combined in a let

constraint, together with the constraints generated by patterns and

with α ≤̇
∨

i∈I *pi+, which ensures exhaustiveness.

5.2 Constraint rewriting

The first step of constraint solving consists in rewriting the con-
straint set into a simpler form that contains only subtyping con-

straints, that is, into a set of the form {t1 ≤̇ t′1, . . . , tn ≤̇ t′n}
(i.e., no let, def, or expression variable). We call such sets type-
constraint sets (ranged over by D).

Constraint rewriting is defined as a relation Γ ⊢ C  D:
between type environments, constraints or constraint sets, and type-
constraint sets. It is given by the rules in Figure 5.

We rewrite constraint sets pointwise. We leave subtyping con-
straints unchanged. In variable type constraints, we replace the vari-
able x with an instantiation of the type scheme Γ(x) with the vari-
ables β1, . . . , βn, which we assume to be fresh. We rewrite def

constraints by expanding the environment and rewriting the inner
constraint set.

The complex case is that of let constraints, which is where
rewriting already performs type-constraint solving. We first rewrite
the constraint set C0. Then we extract a solution θ0—if any
exists—by the tally algorithm (described below). The algorithm
can produce multiple alternative solutions: hence, this step is non-
deterministic. Finally, we rewrite each of the Ci in an expanded
environment. We perform generalization, so let constraints may
introduce polymorphic bindings. The resulting type-constraint set
is the union of the type-constraint sets obtained for each branch
plus equiv(θ0), which is defined as

equiv(θ0) =
⋃

α∈dom(θ0)
{α ≤̇ αθ0, αθ0 ≤̇ α} .

We add the constraints of equiv(θ0) because tallying might
generate multiple incompatible solutions for the constraints in D0.
The choice of θ0 is arbitrary, but we must force subsequent steps of
constraint solving to abide by it. Adding equiv(θ0) ensures that
every solution θ to the resulting type-constraint set will satisfy
αθ ≃ αθ0θ for every α, and hence will not contradict our choice.

5.3 Type-constraint solving

Castagna et al. [6] define the tallying problem as the problem—
in our terminology—of finding a substitution that satisfies a given
type-constraint set.

Definition 5.2. We say that a type substitution θ satisfies a type-

constraint set D, written θ 
 D, if tθ ≤ t′θ holds for every t ≤̇ t′

in D. When θ satisfies D, we say it is a solution to the tallying
problem of D.

The tallying problem is the analogue in our system of the uni-
fication problem in ML. However, there is a very significant dif-
ference: while unification admits principal solutions, tallying does
not. Indeed, the algorithm to solve the tallying problem for a type-
constraint set produces a finite set of type substitutions. The algo-
rithm is sound in that all substitutions it generates are solutions. It
is complete in the sense that any other solution is less general than
one of those in the set: we have a finite number of solutions which
are principal when taken together, but not necessarily a single so-
lution that is principal on its own.

This is a consequence of our semantic definition of subtyp-
ing. As an example, consider subtyping for product types: with a
straightforward syntactic definition, a constraint t1 × t′1 ≤ t2 × t′2
would simplify to the conjunction of two constraints t1 ≤ t2 and
t′1 ≤ t′2. With semantic subtyping—where products are seen as
Cartesian products—that simplification is sound, but it is not the
only possible choice: either t1 ≤ 0 or t′1 ≤ 0 is also enough to
ensure t1 × t′1 ≤ t2 × t′2, since both ensure t1 × t′1 ≃ 0. The three
possible choices can produce incomparable solutions.

Castagna et al. [6, Section 3.2 and Appendix C.1] define a
sound, complete, and terminating algorithm to solve the tallying
problem, which can be adapted to our types by encoding variants
as pairs. We refer to this algorithm here as tally (it is Sol∅ in the
referenced work) and state its properties.

Property 5.3 (Tallying algorithm). There exists a terminating al-
gorithm tally such that, for any type-constraint set D, tally(D) is
a finite, possibly empty, set of type substitutions.

Theorem 5.1 (Soundness and completeness of tally). Let D be a
type-constraint set. For any type substitution θ:

– if θ ∈ tally(D), then θ 
 D;

– if θ 
 D, then ∃θ′ ∈ tally(D), θ′′.∀α ∈ dom(θ).αθ ≃ αθ′θ′′.

Hence, given a type-constraint set, we can use tally to either find
a set of solutions or determine it has no solution: tally(D) = ∅
occurs if and only if there exists no θ such that θ 
 D.

5.3.1 Properties of type reconstruction

Type reconstruction as a whole consists in generating a constraint
set C from an expression, rewriting this set into a type-constraint
set D (which can require solving intermediate type-constraint sets)
and finally solving D by the tally algorithm. Type reconstruction is
both sound and complete with respect to the deductive type system
S. We state these properties in terms of constraint rewriting.
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Theorem 5.2 (Soundness of constraint generation and rewriting).
Let e be an expression, t a type, and Γ a type environment. If
e : t ⇒ C, Γ ⊢ C  D, and θ 
 D, then Γθ ⊢

S
e : tθ.

Theorem 5.3 (Completeness of constraint generation and rewrit-
ing). Let e be an expression, t a type, and Γ a type environment.
Let θ be a type substitution such that Γθ ⊢

S
e : tθ.

Let e : t ⇒ C. There exist a type-constraint set D and a
type substitution θ′, with dom(θ) ∩ dom(θ′) = ∅, such that
Γ ⊢ C  D and (θ ∪ θ′) 
 D.

These theorems and the properties above express soundness and
completeness for the reconstruction system. Decidability is a direct
consequence of the termination of the tallying algorithm.

5.3.2 Practical issues

As compared to reconstruction in ML, our system has the disad-
vantage of being non-deterministic: in practice, an implementation
should check every solution that tallying generates at each step
of type-constraint solving until it finds a choice of solution which
makes the whole program well-typed. This should be done at ev-
ery step of generalization (that is, for every match expression) and
might cripple efficiency. Whether this is significant in practice or
not is a question that requires further study and experimentation.
Testing multiple solutions cannot be avoided since our system does
not admit principal types. For instance the function

let f(x,y) = (function (`A,`A)|(`B,`B)→`C)(x,y)

has both type (`A,`A)→`C and type (`B,`B)→`C (and neither is
better than the other) but it is not possible to deduce for it their least
upper bound (`A,`A)∨(`B,`B)→`C (which would be principal).

Multiple solutions often arise by instantiating some type vari-
ables by the empty type. Such solutions are in many cases sub-
sumed by other more general solutions, but not always. For in-
stance, consider the α list data-type (encoded as the recursive
type X = (α,X)∨[]) together with the classic map function over
lists (the type of which is (α→ β)→α list→ β list). The appli-
cation of map to the successor function succ : int→ int has type
int list→ int list, but also type []→ [] (obtained by instantiat-
ing all the variables of the type of map by the empty type). The
latter type is correct, cannot be derived (by instantiation and/or
subtyping) from the former, but it is seldom useful (it just states
that map(succ) maps the empty list into the empty list). As such, it
should be possible to define some preferred choice of solution (i.e.,
the solution that does not involve empty types) which is likely to be
the most useful in practice. As it happens, we would like to try to
restrict the system so that it only considers solutions without empty
types. While it would make us lose completeness with respect to S,
it would be interesting to compare the restricted system with ML
(with respect to which it could still be complete).

6. Extensions

In this section, we present three extensions or modifications to the
S type system; the presentation is just sketched for space reasons:
the details of all three can be found in the Appendix.

The first is the introduction of overloaded functions typed via
intersection types, as done in CDuce. The second is a refinement
of the typing of pattern matching, which we have shown as part
of Example 2 (the function g and our definition of map). Finally,
the third is a restriction of our system to adapt it to the semantics
of the OCaml implementation which, unlike our calculus, cannot
compare safely untagged values of different types at runtime.

6.1 Overloaded functions

CDuce allows the use of intersection types to type overloaded
functions precisely: for example, it can type the negation function

not
def
= λx. match x with true → false | false → true

with the type (true → false) ∧ (false → true), which is more
precise than bool → bool. We can add this feature by changing the
rule to type λ-abstractions to

∀j ∈ J. Γ, {x : t′j} ⊢ e : tj

Γ ⊢ λx. e :
∧

j∈J t′j → tj

which types the abstraction with an intersection of arrow types, pro-
vided each of them can be derived for it. The rule above roughly
corresponds to the one introduced by Reynolds for the language
Forsythe [26]. With this rule alone, however, one has only the so-
called coherent overloading [24], that is, the possibility of assign-
ing different types to the same piece of code, yielding an intersec-
tion type. In full-fledged overloading, instead, different pieces of
code are executed for different types of the input. This possibility
was first introduced by CDuce [1, 14] and it is obtained by typ-
ing pattern matching without taking into account the type of the
branches that cannot be selected for a given input type. Indeed, the
function “not” above cannot be given the type we want if we just
add the rule above: it can neither be typed as true → false nor as
false → true.

To use intersections effectively for pattern matching, we need
to exclude redundant patterns from typing. We do so by changing
the rule Ts-Match (in Figure 2): when for some branch i we have
ti ≤ 0, we do not type that branch at all, and we do not consider
it in the result type (that is, we set t′i = 0). In this way, if we take
t′j = true, we can derive tj = false (and vice versa). Indeed, if
we assume that the argument is true, the second branch will never
be selected: it is therefore sound not to type it at all. This typing
technique is peculiar to CDuce’s overloading. However, functions
in CDuce are explicitly typed. As type reconstruction is undecid-
able for unrestricted intersection type systems, this extension would
make annotations necessary in our system as well. We plan to study
the extension of our system with intersection types for functions
and to adapt reconstruction to also consider explicit annotations.

6.2 Refining the type of expressions in pattern matching

Two of our motivating examples concerning pattern matching
(from Section 1, Example 2) involved a refinement of the typing of
pattern matching that we have not described yet, but which can be
added as a small extension of our S system.

Recall the function g defined as λx. match x with À →
id2 x | → x, where id2 has domain À ∨ B̀. Like OCaml, S
requires the type of x to be a subtype of À ∨ B̀, but this constraint
is unnecessary because id2 x is only computed when x = À. To
capture this, we need pattern matching to introduce more precise
types for variables in the matched expression; this is a form of
occurrence typing [28] or flow typing [22].

We first consider pattern matching on a variable. In an expres-
sion match x with (pi → ei)i∈I we can obtain this increased preci-
sion by using the type ti—actually, its generalization—for x while
typing the i-th branch. In the case of g, the first branch is typed as-
suming x has type t0 ∧ À, where t0 is the type we have derived for
x. As a result, the constraint t0 ∧ À ≤ À ∨ B̀ does not restrict t0.

We can express this so as to reuse pattern environment genera-
tion. Let L·M : E → P be a function such that LxM = x and LeM =
when e is not a variable. Then, we obtain the typing above if we
use

Γ, genΓ(ti//Le0M), genΓ(ti//pi)

as the type environment in which we type the i-th branch, rather
than Γ, genΓ(ti//pi).

We generalize this approach to refine types also for variables
occurring inside pairs and variants. To do so, we redefine L·M.
On variants, we let L t̀ag(e)M = t̀ag(LeM). On pairs, ideally we

11



want L(e1, e2)M = (Le1M, Le2M): however, pair patterns cannot have
repeated variables, while (e1, e2) might. We therefore introduce
a new form of pair pattern 〈p1, p2〉 (only for internal use) which
admits repeated variables: environment generation for such patterns
intersects the types it obtains for each occurrence of a variable.

6.3 Applicability to OCaml

A thesis of this work is that the type system of OCaml—specifically,
the part dealing with polymorphic variants and pattern matching—
could be profitably replaced by an alternative, set-theoretic system.
Of course, we need the set-theoretic system to be still type safe.

In Section 4, we stated that S is sound with respect to the
semantics we gave in Section 2. However, this semantics is not
precise enough, as it does not correspond to the behaviour of the
OCaml implementation on ill-typed terms.7

Notably, OCaml does not record type information at runtime:
values of different types cannot be compared safely and constants
of different basic types might have the same representation (as, for
instance, 1 and true). Consider as an example the two functions

λx. match x with true → true | → false

λx. match x with (true, true) → true | → false .

Both can be given the type 1 → bool in S, which is indeed safe
in our semantics. Hence, we can apply both of them to 1, and
both return false. In OCaml, conversely, the first would return true

and the second would cause a crash. The types bool → bool and
bool×bool → bool, respectively, would be safe for these functions
in OCaml.

To model OCaml more faithfully, we define an alternative se-
mantics where matching a value v against a pattern p can have three
outcomes rather than two: it can succeed (v/p = ς), fail (v/p =
Ω), or be undefined (v/p = ℧). Matching is undefined whenever
it is unsafe in OCaml: for instance, 1/true = 1/(true, true) = ℧
(see Appendix A.5.3 for the full definition).

We use the same definition as before for reduction (see Sec-
tion 2.2). Note that a match expression on a value reduces to the
first branch for which matching is successful if the result is Ω for
all previous branches. If matching for a branch is undefined, no
branch after it can be selected; hence, there are fewer possible re-
ductions with this semantics.

Adapting the type system requires us to restrict the typing of
pattern matching so that undefined results cannot arise. We define
the compatible type ⌈p⌉ of a pattern p as the type of values v which
can be safely matched with it: those for which v/p 6= ℧. For
instance, ⌈1⌉ = int. The rule for pattern matching should require
that the type t0 of the matched expression be a subtype of all ⌈pi⌉.

Note that this restricts the use of union types in the system. For
instance, if we have a value of type bool ∨ int, we can no longer
use pattern matching to discriminate between the two cases. This is
to be expected in a language without runtime type tagging: indeed,
union types are primarily used for variants, which reintroduce tag-
ging explicitly. Nevertheless, having unions of non-variant types in
the system is still useful, both internally (to type pattern matching)
and externally (see Example 3 in Section 1, for instance).

7. Related work

We discuss here the differences between our system and other
formalizations of variants in ML. We also compare our work with
the work on CDuce and other union/intersection type systems.

7 We can observe this if we bypass type-checking, for instance by using
Obj.magic for unsafe type conversions.

7.1 Variants in ML: formal models and OCaml

K is based on the framework of structural polymorphism and more
specifically on the presentations by Garrigue [17, 19]. There exist
several other systems with structural polymorphism: for instance,
the earlier one by Garrigue [16] and more expressive constraint-
based frameworks, like the presentation of HM(X) by Pottier and
Rémy [25]. We have chosen as a starting point the system which
corresponds most closely to the actual implementation in OCaml.

With respect to the system in Garrigue [17, 19], K differs mainly
in three respects. First, Garrigue’s system describes constraints
more abstractly and can accommodate different forms of polymor-
phic typing of variants and of records. We only consider variants
and, as a result, give a more concrete presentation. Second, we
model full pattern matching instead of “shallow” case analysis.
To our knowledge, pattern matching on polymorphic variants in
OCaml is only treated in Garrigue [18] and only as concerns some
problems with type reconstruction. We have chosen to formalize it
to compare K to our set-theoretic type system S, which admits a
simpler formalization and more precise typing. However, we have
omitted a feature of OCaml that allows refinement of variant types
in alias patterns and which is modeled in Garrigue [17] by a split

construct. While this feature makes OCaml more precise than K, it
is subsumed in S by the precise typing of capture variables. Third,
we did not study type inference for K. Since S is more expres-
sive than K and since we describe complete reconstruction for it,
extending Garrigue’s inference system to pattern matching was un-
necessary for the goals of this work.

As compared to OCaml itself (or, more precisely, to the frag-
ment we consider) our formalization is different because it requires
exhaustiveness; this might not always by practical in K, but non-
exhaustive pattern matching is no longer useful once we introduce
more precise types, as in S. Other differences include not consider-
ing variant refinement in alias patterns, as noted above, and the han-
dling of conjunctive types, where OCaml is more restrictive than
we are in order to infer more intuitive types [as discussed in 18,
Section 4.1].

7.2 S and the CDuce calculus

S reuses the subtyping relation defined by Castagna and Xu [4]
and some of the work described in Castagna et al. [5, 6] (notably,
the encoding of bounded polymorphism via type connectives and
the algorithm to solve the tallying problem). Here, we explore the
application of these elements to a markedly different language.

Castagna et al. [5, 6] study polymorphic typing for the CDuce
language, which features type-cases. Significantly, such type-cases
can discriminate between functions of different types; pattern
matching in ML cannot (indeed, it cannot distinguish between
functions and non-functional values). As a result, the runtime se-
mantics of CDuce is quite involved and, unlike ours, not type-
erasing; our setting has allowed us to simplify the type system
too. Moreover, most of the work in Castagna et al. [5, 6] studies
an explicitly-typed language (where functions can be typed with
intersection types). In contrast, our language is implicitly typed.
We focus our attention on type reconstruction and prove it sound
and complete, thanks to the limited use we make of intersections.
We have also introduced differences in presentation to conform our
system to standard descriptions of the Hindley-Milner system.

7.3 Union types and pattern matching

The use of union and intersection types in ML has been studied in
the literature of refinement type systems. For example, the theses
of Davies [12] and Dunfield [13] describe systems where declared
datatypes (such as the ordinary variants of OCaml) are refined by
finite discriminated unions. Here we study a very different setting,
because we consider polymorphic variants and, above all, we focus
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on providing complete type reconstruction, while the cited works
describe forms of bidirectional type checking which require type
annotations. Conversely, our system makes a more limited use
of intersection types, since it does not allow the derivation of
intersection types for functions. Refinement type systems are closer
in spirit to the work on CDuce which is why we refer the reader to
Section 7 on related work in Castagna et al. [5] for a comprehensive
comparison.

For what concerns programming languages we are not aware of
any implicitly-typed language with full-fledged union types. The
closest match to our work is probably Typed Racket [27, 28] which
represents datatypes as unions of tagged types, as we do. However
it does not perform type reconstruction: it is an explicitly-typed
language with local type inference, that is, the very same setting
studied for CDuce in Castagna et al. [6] whose Section 6 contains a
thorough comparison with the type system of Typed Racket. Typed
Racket also features occurrence typing, which refines the types of
variables according to the results of tests (combinations of predi-
cates on base types and selectors) to give a form of flow sensitiv-
ity. We introduced a similar feature in Section 6.2: we use pattern
matching and hence consider tests which are as expressive as theirs,
but we do not allow them to be abstracted out as functions.

8. Conclusion

This work shows how to add general union, intersection and dif-
ference types in implicitly-typed languages that traditionally use
the HM type system. Specifically, we showed how to improve the
current OCaml type system of polymorphic variants in four dif-
ferent aspects: its formalization, its meta-theoretic properties, the
expressiveness of the system, and its practical ramifications. These
improvements are obtained by a drastic departure from the current
unification-based approach and by the injection in the system of
set-theoretic types and semantic subtyping.

Our approach arguably improves the formalization of polymor-
phic variants: in our system we directly encode all meta-theoretic
notions in a core—albeit rich—type theory, while the current
OCaml system must introduce sophisticated “ad hoc” construc-
tions (e.g., the definition of constrained kind, cf. Definition 3.2) to
simulate subtyping. This is why, in our approach, bounded poly-
morphism can be encoded in terms of union and intersection types,
and meta-theoretic properties such as exhaustiveness and redun-
dancy in pattern matching can be internalized and expressed in
terms of types and subtyping. Likewise, the most pleasant surprise
of our formalization is the definition of the generality relation ⊑ on
type schemes (cf. equation (1)): the current OCaml formalization
requires complicated definitions such as the admissibility of type
substitutions, while in our system it turns out to be the straightfor-
ward and natural generalization to subtyping of the usual relation
of ML. A similar consideration can be done for unification, which
is here generalized by the notion of tallying.

It could be objected that what we have done is just to push
complexities down in the theory of semantic subtyping. However,
the theory of semantic subtyping is well developed and tested, and,
above all, it was defined independently from polymorphic variants.
The fact that polymorphic variants can be encoded in semantic
subtyping without any real modification of the latter looks to us
as a further proof of the relevance of our solution. In the end
we obtain a type system which is very natural: if we abstract the
technicalities of the rule for pattern matching, the type system
really is what one expects it to be: all (and only) the classic typing
rules plus a subsumption rule. And even the rule Ts-Match, the most
complicated one, is at the end what one should expect it to be: (1)
type the matched expression e0, (2) check whether the patterns are
exhaustive, (3) for each branch (3.i) compute the set of the results
of e0 that are captured by the pattern of the branch, (3.ii) use them

to deduce the type of the capture variables of the pattern (3.iii)
generalize the types of these variables in order to type the body
of the branch, and (4) return the union of the types of the branches.

The advantages of our approach are not limited to the for-
malization. The resulting system is more expressive—it types
more programs while preserving static type safety—and natu-
ral, insofar as it removes the pathological behaviours we out-
lined in the introduction as well as problems found in real life
[e.g., 21, 29]. The solution can be even more satisfactory if we
extend the current syntax of OCaml types. For instance, Nicol-
let [21] shows the OCaml function function `A → `B | x → x

which transforms `A into `B and leaves any other constructor un-
changed. OCaml gives to this function the somewhat nonsensical
type ([> `A | `B ] as α) → α. Our reconstruction algorithm de-
duces instead the type α→ (`B | (α\`A)): it correctly deduces
that the result can be either `B or the variant in input, but can never
be `A [for further examples of the use of difference types see 8, 11].
If we want to preserve the current syntax of OCaml types, this type
should be approximated as ([> `B ] as α) → α; however, if we
extend the syntax with differences (that in our system come for
free), we gain the expressiveness that the kinding approach can
only achieve with explicit row variables and that is needed, for
instance, to encode exceptions [2]. But we can do more: by allow-
ing also intersections in the syntax of OCaml types we could type
Nicollet’s function by the type (`A → `B) & ((α\`A) → (α\`A)),
which is exact since it states that the function maps `A to `B and
leaves any argument other than `A unchanged. As an aside, notice
that types of this form provide an exact typing of exception han-
dlers as intended by Blume et al. [2] (Nicollet’s function can be
seen as a handler that catches the exception `A yielding `B and lets
all other values pass through).

Finally, our work improves some aspects of the theory of se-
mantic subtyping as well: our type reconstruction copes with let-
polymorphism and pattern matching and it is proven to be not only
sound but also complete, all properties that the system in Castagna
et al. [6] does not possess. Furthermore, the refinement we pro-
posed in Section 6.2 applies to CDuce patterns as well, and it has
already been implemented in the development version of CDuce.

This work is just the first step of a long-term research. Our
short-term plan is to finish an ongoing implementation and test it,
especially as concerns messages to show to the programmer. We
also need to extend the subtyping relation used here to cope with
types containing cyclic values (e.g., along the lines of the work of
Bonsangue et al. [3]): the subtyping relation of Castagna and Xu
[4] assumes that types contain only finite values, but cyclic values
can be defined in OCaml.

The interest of this work is not limited to polymorphic variants.
In the long term we plan to check whether building on this work it is
possible to extend the syntax of OCaml patterns and types, so as to
encode XML document types and provide the OCaml programmer
with processing capabilities for XML documents like those that can
be found in XML-centred programming languages such as CDuce.
Likewise we want to explore the addition of intersection types to
OCaml (or Haskell) in order to allow the programmer to define
refinement types and check how such an integration blends with
existing features, notably GADTs.
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A. Appendix

In this Appendix, we present full definitions of the language and type systems we have described,
together with complete proofs of all results.

A.1 The language of polymorphic variants

A.1.1 Syntax

We assume that there exist a countable set X of expression variables, ranged over by x, y, z, . . . , a
set C of constants, ranged over by c, and a set L of tags, ranged over by t̀ag.

Definition A.1 (Expressions). An expression e is a term inductively generated by the following
grammar:

e ::= x | c | λx. e | e e | (e, e) | t̀ag(e) | match e with (pi → ei)i∈I

where p ranges over the set P of patterns, defined below. We write E to denote the set of all
expressions.

We define fv(e) to be the set of expression variables occurring free in the expression e, and we
say that e is closed if and only if fv(e) is empty.

As customary, we consider expressions up to α-renaming of the variables bound by abstractions
and by patterns.

Definition A.2 (Patterns). A pattern p is a term inductively generated by the following grammar:

p ::= | x | c | (p, p) | t̀ag(p) | p&p | p|p

such that

• in a pair pattern (p1, p2) or an intersection pattern p1&p2, capt(p1) ∩ capt(p2) = ∅;

• in a union pattern p1|p2, capt(p1) = capt(p2),

where capt(p) denotes the set of expression variables occurring as sub-terms in a pattern p (called
the capture variables of p).

We write P to denote the set of all patterns.

A.1.2 Semantics

Definition A.3 (Values). A value v is a closed expression inductively generated by the following
grammar.

v ::= c | λx. e | (v, v) | t̀ag(v)

Definition A.4 (Expression substitution). An expression substitution ς is a partial mapping of
expression variables to values. We write [ vi/xi | i ∈ I ] for the substitution which replaces free
occurrences of xi with vi, for each i ∈ I . We write eς for the application of the substitution to an
expression e. We write ς1 ∪ ς2 for the union of disjoint substitutions.

Definition A.5 (Semantics of pattern matching). We write v/p for the result of matching a value
v against a pattern p. We have either v/p = ς , where ς is a substitution defined on the variables
in capt(p), or v/p = Ω. In the former case, we say that v matches p (or that p accepts v); in the
latter, we say that matching fails.

The definition of v/p is given inductively in Figure 6.

Definition A.6 (Evaluation contexts). Let the symbol [ ] denote a hole. An evaluation context E is

a term inductively generated by the following grammar.

E ::= [ ] | E e | v E | (E, e) | (v,E) | t̀ag(E) | match E with (pi → ei)i∈I

We write E[ e ] for the expression obtained by replacing the hole in E with the expression e.

Definition A.7 (Reduction). The reduction relation between expressions is given by the rules in
Figure 7.

A.2 Typing variants with kinding constraints

A.2.1 Definition of the K type system

We assume that there exists a countable set V of type variables, ranged over by α, β, γ, . . . . We
also consider a finite set B of basic types, ranged over by b, and a function b(·) from constants to
basic types.

Definition A.8 (Types). A type τ is a term inductively generated by the following grammar.

τ ::= α | b | τ → τ | τ × τ
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v/ = [ ]

v/x = [v/x]

v/c =

{

[ ] if v = c

Ω otherwise

v/(p1, p2) =

{

ς1 ∪ ς2 if v = (v1, v2) and ∀i. vi/pi = ςi
Ω otherwise

v/ t̀ag(p1) =

{

ς1 if v = t̀ag(v1) and v1/p1 = ς1
Ω otherwise

v/p1&p2 =

{

ς1 ∪ ς2 if ∀i. v/pi = ςi
Ω otherwise

v/p1|p2 =

{

v/p1 if v/p1 6= Ω

v/p2 otherwise

Figure 6. Semantics of pattern matching.

R-Appl
(λx. e) v  e[v/x]

R-Match
v/pj = ς ∀i < j. v/pi = Ω

match v with (pi → ei)i∈I  ejς
j ∈ I

R-Ctx
e  e′

E[ e ]  E[ e′ ]

Figure 7. Small-step reduction relation.

Definition A.9 (Kinds). A kind κ is either the unconstrained kind “•” or a constrained kind, that
is, a triple (L,U, T ) where:

• L is a finite set of tags { t̀ag1, . . . , t̀agn};

• U is either a finite set of tags or the set L of all tags;

• T is a finite set of pairs of a tag and a type, written { t̀ag1 : τ1, . . . , t̀agn : τn} (its domain
dom(T ) is the set of tags occurring in it);

and where the following conditions hold:

• L ⊆ U , L ⊆ dom(T ), and, if U 6= L, U ⊆ dom(T );
• tags in L have a single type in T , that is, if t̀ag ∈ L, whenever both t̀ag : τ1 ∈ T and

t̀ag : τ2 ∈ T , we have τ1 = τ2.

Definition A.10 (Kind entailment). The entailment relation · � · between constrained kinds is
defined as

(L,U, T ) � (L′, U ′, T ′) ⇐⇒ L ⊇ L′ ∧ U ⊆ U ′ ∧ T ⊇ T ′ .

Definition A.11 (Kinding environments). A kinding environment K is a partial mapping from type
variables to kinds. We write kinding environments as K = {α1 :: κ1, . . . , αn :: κn}. We write
K,K′ for the updating of the kinding environment K with the new bindings in K′. It is defined as
follows.

(K,K′)(α) =

{

K′(α) if α ∈ dom(K′)

K(α) otherwise

We say that a kinding environment is closed if all the type variables that appear in the types
in its range also appear in its domain. We say it is canonical if it is infinite and contains infinitely
many variables of every kind.

Definition A.12 (Type schemes). A type scheme σ is of the form ∀A.K ⊲ τ , where:

• A is a finite set {α1, . . . , αn} of type variables;

• K is a kinding environment such that dom(K) = A.
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We identify a type scheme ∀∅.∅ ⊲ τ , which quantifies no variable, with the type τ itself. We
consider type schemes up to renaming of the variables they bind and disregard useless quantification
(i.e., quantification of variables that do not occur in the type).

Definition A.13 (Free variables). The set of free variables varK(σ) of a type scheme σ with respect
to a kinding environment K is the minimum set satisfying the following equations.

varK(∀A.K′ ⊲ τ ) = varK,K′(τ ) \A

varK(α) =

{

{α} ∪
⋃

t̀ag : τ∈T varK(τ ) if K(α) = (L,U, T )

{α} otherwise

varK(b) = ∅

varK(τ1 → τ2) = varK(τ1) ∪ varK(τ2)

varK(τ1 × τ2) = varK(τ1) ∪ varK(τ2)

We say that a type τ is ground or closed if and only if var∅(τ ) is empty. We say that a type or a
type scheme is closed in a kinding environment K if all its free variables are in the domain of K.

Definition A.14 (Type substitutions). A type substitution θ is a finite mapping of type variables to
types. We write [ τi/αi | i ∈ I ] for the type substitution which simultaneously replaces αi with τi,
for each i ∈ I . We write τθ for the application of the substitution θ to the type τ , which is defined
as follows.

αθ =

{

τ ′ if τ ′
/α ∈ θ

α otherwise

bθ = b

(τ1 → τ2)θ = (τ1θ) → (τ2θ)

(τ1 × τ2)θ = (τ1θ)× (τ2θ)

We extend the var operation to substitutions as

varK(θ) =
⋃

α∈dom(θ)

varK(αθ) .

We extend application of substitutions to the typing component of a constrained kind (L,U, T ):
Tθ is given by the pointwise application of θ to all types in T . We extend it to kinding environments:
Kθ is given by the pointwise application of θ to the typing component of every constrained kind
in the range of K. We extend it to type schemes ∀A.K ⊲ τ : by renaming quantified variables, we
assume A ∩ (dom(θ) ∪ var∅(θ)) = ∅, and we have (∀A.K ⊲ τ )θ = ∀A.Kθ ⊲ τθ.

We write θ1 ∪ θ2 for the union of disjoint substitutions and θ1 ◦ θ2 for the composition of
substitutions.

Definition A.15 (Admissibility of a type substitution). A type substitution θ is admissible between
two kinding environments K and K′, written K ⊢ θ : K′, if and only if, for every type variable
α such that K(α) = (L,U, T ), αθ is a type variable such that K′(αθ) = (L′, U ′, T ′) and
(L′, U ′, T ′) � (L, U, T θ).

Definition A.16 (Type environments). A type environment Γ is a partial mapping from expression
variables to type schemes. We write type environments as Γ = {x1 : σ1, . . . , xn : σn}.

We write Γ,Γ′ for the updating of the type environment Γ with the new bindings in Γ′. It is
defined as follows.

(Γ,Γ′)(x) =

{

Γ′(x) if x ∈ dom(Γ′)

Γ(x) otherwise

We extend the var operation to type environments as

varK(Γ) =
⋃

σ∈range(Γ)

varK(σ) .

Definition A.17 (Generalization). We define the generalization of a type τ with respect to a kinding
environment K and a type environment Γ as the type scheme

genK;Γ(τ ) = ∀A.K′ ⊲ τ

where A = varK(τ ) \ varK(Γ) and K′ = {α :: K(α) | α ∈ A }.
We extend this definition to type environments which only contain types (i.e., trivial type

schemes) as

genK;Γ({xi : τi | i ∈ I }) = {xi : genK;Γ(τi) | i ∈ I } .
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TPk-Wildcard
K ⊢ : τ ⇒ ∅

TPk-Var
K ⊢ x : τ ⇒ {x : τ}

TPk-Const
K ⊢ c : bc ⇒ ∅

TPk-Pair
K ⊢ p1 : τ1 ⇒ Γ1 K ⊢ p2 : τ2 ⇒ Γ2

K ⊢ (p1, p2) : τ1 × τ2 ⇒ Γ1 ∪ Γ2

TPk-Tag
K ⊢ p : τ ⇒ Γ K(α) = (L,U, T ) ( t̀ag ∈ U implies t̀ag : τ ∈ T )

K ⊢ t̀ag(p) : α ⇒ Γ

TPk-And
K ⊢ p1 : τ ⇒ Γ1 K ⊢ p2 : τ ⇒ Γ2

K ⊢ p1&p2 : τ ⇒ Γ1 ∪ Γ2

TPk-Or
K ⊢ p1 : τ ⇒ Γ K ⊢ p2 : τ ⇒ Γ

K ⊢ p1|p2 : τ ⇒ Γ

Figure 8. Pattern environment generation for K.

Tk-Var
τ ∈ instK(Γ(x))

K; Γ ⊢
K
x : τ

Tk-Const
K; Γ ⊢

K
c : bc

Tk-Abstr
K; Γ, {x : τ1} ⊢

K
e : τ2

K; Γ ⊢
K
λx. e : τ1 → τ2

Tk-Appl
K; Γ ⊢

K
e1 : τ

′ → τ K; Γ ⊢
K
e2 : τ

′

K; Γ ⊢
K
e1 e2 : τ

Tk-Pair
K; Γ ⊢

K
e1 : τ1 K; Γ ⊢

K
e2 : τ2

K; Γ ⊢
K
(e1, e2) : τ1 × τ2

Tk-Tag
K; Γ ⊢

K
e : τ K(α) � ({ t̀ag},L, { t̀ag : τ})

K; Γ ⊢
K

t̀ag(e) : α

Tk-Match

K; Γ ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I K ⊢ pi : τ0 ⇒ Γi K; Γ, genK;Γ(Γi) ⊢K ei : τ

K; Γ ⊢
K
match e0 with (pi → ei)i∈I : τ

Figure 9. Typing relation for K.

Definition A.18 (Instances of a type scheme). The set of instances of a type scheme ∀A.K′ ⊲ τ in
a kinding environment K is defined as

instK(∀A.K′ ⊲ τ ) = { τθ | dom(θ) ⊆ A ∧ K,K′ ⊢ θ : K } .

We say that a type scheme σ1 is more general than a type scheme σ2 in K, and we write
σ1 ⊑K σ2, if instK(σ1) ⊇ instK(σ2).

We extend this notion to type environments as

Γ1 ⊑K Γ2 ⇐⇒ dom(Γ1) = dom(Γ2) ∧ ∀x ∈ dom(Γ1). Γ1(x) ⊑K Γ2(x) .

Definition A.19 (Pattern environment generation). The environment generated by pattern matching
is given by the relation K ⊢ p : τ ⇒ Γ (the pattern p can match type τ in K, producing the bindings
in Γ), defined by the rules in Figure 8.

Definition A.20 (Exhaustiveness). We say that a set of patterns P is exhaustive with respect to a
type τ in a kinding environment K, and we write τ 4K P , when

∀K′, θ, v. (K ⊢ θ : K′ ∧ K′;∅ ⊢
K
v : τθ) =⇒ ∃p ∈ P, ς. v/p = ς .

Definition A.21 (Typing relation). The typing relation K; Γ ⊢
K
e : τ (e is given type τ in the

kinding environment K and the type environment Γ) is defined by the rules in Figure 9, where we
require K to be closed and Γ and τ to be closed with respect to K. We also assume that K is
canonical.

A.2.2 Properties of the K type system

Lemma A.1 (Generation for values). Let v be a value. Then:

• if K; Γ ⊢
K
v : b, then v = c for some constant c such that bc = b;

• if K; Γ ⊢
K
v : τ1 → τ2, then v is of the form λx. e and K; Γ, {x : τ1} ⊢

K
e : τ2;

• if K; Γ ⊢
K
v : τ1 × τ2, then v is of the form (v1, v2), K; Γ ⊢

K
v1 : τ1, and K; Γ ⊢

K
v2 : τ2;
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• if K; Γ ⊢
K

v : α, then v is of the form t̀ag(v1), K(α) = (L,U, T ), t̀ag ∈ L, and
K; Γ ⊢

K
v1 : τ1 for the only type τ1 such that t̀ag : τ1 ∈ T .

Proof. The typing rules are syntax-directed, so the last rule applied to type a value is fixed by
its form. All these rules derive types of different forms, thus the form of the type assigned to a
value determines the last rule used. In each case the premises of the rule entail the consequences
above.

Lemma A.2 (Correctness of environment generation). Let p be a pattern and v a value such that
v/p = ς . If K; Γ ⊢

K
v : τ and K ⊢ p : τ ⇒ Γ′, then, for all x ∈ capt(p), K; Γ ⊢

K
xς : Γ′(x).

Proof. By induction on the derivation of K ⊢ p : τ ⇒ Γ′. We reason by cases on the last applied
rule.

Cases TPk-Wildcard and TPk-Const There is nothing to prove since capt(p) = ∅.

Case TPk-Var We have

v/x = [v/x] K ⊢ x : τ ⇒ {x : τ}

and must prove K; Γ ⊢
K
x[v/x] : {x : τ}(x), which we know by hypothesis.

Case TPk-Pair We have

K ⊢ (p1, p2) : τ1 × τ2 ⇒ Γ′
1 ∪ Γ′

2 K ⊢ p1 : τ1 ⇒ Γ′
1 K ⊢ p2 : τ2 ⇒ Γ′

2 .

By Lemma A.1, K; Γ ⊢
K
v : τ1 × τ2 implies v = (v1, v2) and K; Γ ⊢

K
vi : τi for both i.

Furthermore, (v1, v2)/(p1, p2) = ς = ς1 ∪ ς2, and vi/pi = ςi for both i. For each capture
variable x, we can apply the induction hypothesis to the sub-pattern which contains x and
conclude.

Case TPk-Tag We have

K ⊢ t̀ag(p1) : α ⇒ Γ′ K ⊢ p1 : τ1 ⇒ Γ′

K(α) = (L,U, T ) ( t̀ag ∈ U implies t̀ag : τ1 ∈ T ) .

Since v/ t̀ag(p1) = ς , we know v = t̀ag(v1). Hence, by Lemma A.1, we have t̀ag ∈ L
and K; Γ ⊢

K
v1 : τ

′
1 with t̀ag : τ ′

1 ∈ T . Since t̀ag ∈ U , we also have t̀ag : τ1 ∈ T and hence
τ1 = τ ′

1 (as t̀ag is also in L and can only have a single type in T ).
We therefore know K ⊢ p1 : τ1 ⇒ Γ′ and K; Γ ⊢

K
v1 : τ1, as well as v1/p1 = ς . We can

apply the induction hypothesis to conclude.

Cases TPk-And and TPk-Or Straightforward application of the induction hypothesis, to both
sub-patterns for intersections and to the one that is actually selected for unions.

Lemma A.3 (Stability of environment generation under type substitutions). If K ⊢ p : τ ⇒ Γ,
then K′ ⊢ p : τθ ⇒ Γθ for every type substitution θ such that K ⊢ θ : K′.

Proof. By induction on the derivation of K ⊢ p : τ ⇒ Γ. We reason by cases on the last applied
rule.

Cases TPk-Wildcard, TPk-Var, and TPk-Const Straightforward.

Case TPk-Pair We have

K ⊢ (p1, p2) : τ1 × τ2 ⇒ Γ1 ∪ Γ2 K ⊢ p1 : τ1 ⇒ Γ1 K ⊢ p2 : τ2 ⇒ Γ2 .

By the induction hypothesis we derive both K′ ⊢ p1 : τ1θ ⇒ Γ1θ and K′ ⊢ p2 : τ2θ ⇒
Γ2θ, then we apply TPk-Pair again to conclude.

Case TPk-Tag We have

K ⊢ t̀ag(p1) : α ⇒ Γ K ⊢ p1 : τ1 ⇒ Γ

K(α) = (L,U, T ) ( t̀ag ∈ U implies t̀ag : τ1 ∈ T ) .

By the induction hypothesis we derive K′ ⊢ p1 : τ1θ ⇒ Γθ. Since K ⊢ θ : K′, αθ
must be a variable β such that K′(β) = (L′, U ′, T ′). To apply TPk-Tag and conclude, we
must establish that, if t̀ag ∈ U ′, then t̀ag : τ1θ ∈ T ′. Since admissibility also implies
(L′, U ′, T ′) � (L, U, T θ), we have U ′ ⊆ U and Tθ ⊆ T ′. Hence, if t̀ag ∈ U ′, then t̀ag ∈ U ,
in which case t̀ag : τ1 ∈ T and therefore t̀ag : τ1θ ∈ Tθ, and t̀ag : τ1θ ∈ T ′.

Cases TPk-And and TPk-Or Straightforward application of the induction hypothesis, analogously
to the case of pair patterns.
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Lemma A.4 (Stability of exhaustiveness under type substitutions). If τ 4K P , then τθ 4K′ P for
any type substitution θ such that K ⊢ θ : K′.

Proof. We must prove, for every K′′, θ′ such that K′ ⊢ θ′ : K′′ and every v such that K′′;∅ ⊢
K

v : τθθ′, that there exists a p ∈ P which accepts v. This holds because θ′ ◦ θ is such that
K ⊢ θ′ ◦ θ : K′′: for any α such that K(α) = (L,U, T ), we have K′(αθ) = (L′, U ′, T ′)
and hence K′′(αθθ′) = (L′′, U ′′, T ′′); we have (L′, U ′, T ′) � (L, U, T θ) and (L′′, U ′′, T ′′) �
(L′, U ′, T ′θ′) and therefore (L′′, U ′′, T ′′) � (L,U, T θθ′). The conclusion follows by the defini-
tion of τ 4K P .

Lemma A.5. If varK(Γ1) ⊆ varK(Γ2), then, for every type τ , genK;Γ1
(τ ) ⊑K genK;Γ2

(τ ).

Proof. An instance of genK;Γ2
(τ ) is a type τθ such that dom(θ) ⊆ varK(τ ) \ varK(Γ2) and

K ⊢ θ : K. It is also an instance of genK;Γ1
(τ ), with the same θ, since varK(τ ) \ varK(Γ2) ⊆

varK(τ ) \ varK(Γ1).

Lemma A.6 (Weakening). Let K be a kinding environment and Γ1, Γ2 two type environments such
that Γ1 ⊑K Γ2 and varK(Γ1) ⊆ varK(Γ2). If K; Γ2 ⊢

K
e : τ , then K; Γ1 ⊢

K
e : τ .

Proof. By induction on the derivation of K; Γ2 ⊢
K
e : τ . We reason by cases on the last applied rule.

Case Tk-Var We have:

K; Γ2 ⊢
K
x : τ τ ∈ instK(Γ2(x))

and hence, since Γ1 ⊑K Γ2, we have τ ∈ instK(Γ1(x)) and apply Tk-Var to conclude.

Case Tk-Const Straightforward.

Case Tk-Abstr We have:

K; Γ2 ⊢
K
λx. e1 : τ1 → τ2 K; Γ2, {x : τ1} ⊢

K
e1 : τ2 .

Since Γ1 ⊑K Γ2, we have Γ1, {x : τ1} ⊑K Γ2, {x : τ1}, and, since varK(Γ1) ⊆ varK(Γ2),
we have varK(Γ1, {x : τ1}) ⊆ varK(Γ2, {x : τ1}). Thus we may derive K; Γ1, {x : τ1} ⊢

K

e1 : τ2 by the induction hypothesis and apply Tk-Abstr to conclude.

Cases Tk-Appl, Tk-Pair, and Tk-Tag Straightforward application of the induction hypothesis.

Case Tk-Match We have

K; Γ2 ⊢
K
match e0 with (pi → ei)i∈I : τ

K; Γ2 ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I. K ⊢ pi : τ0 ⇒ Γi K; Γ2, genK;Γ2
(Γi) ⊢K ei : τ .

By the induction hypothesis, we derive K; Γ1 ⊢
K
e0 : τ0.

For every branch, note that by Lemma A.5 varK(Γ1) ⊆ varK(Γ2) implies genK;Γ1
(τ ) ⊑K

genK;Γ2
(τ ) for any τ . Hence, we have Γ1, genK;Γ1

(Γi) ⊑K Γ2, genK;Γ2
(Γi). Additionally,

since varK(genK;Γ1
(Γi)) ⊆ varK(Γ1), we have varK(Γ1, genK;Γ1

(Γi)) ⊆ varK(Γ2, genK;Γ2
(Γi)).

Hence we may apply the induction hypothesis for all i to derive K; Γ1, genK;Γ1
(Γi) ⊢

K

ei : τ and then apply Tk-Match to conclude.

Lemma A.7 (Stability of typing under type substitutions). Let K, K′ be two closed, canonical
kinding environments and θ a type substitution such that K ⊢ θ : K′. If K; Γ ⊢

K
e : τ , then

K′; Γθ ⊢
K
e : τθ.

Proof. By induction on the derivation of K; Γ ⊢
K
e : τ . We reason by cases on the last applied rule.

Case Tk-Var We have

K; Γ ⊢
K
x : τ τ ∈ instK(Γ(x))

Γ(x) = ∀A.Kx ⊲ τx τ = τxθx dom(θx) ⊆ A K,Kx ⊢ θx : K

and must show

K′; Γθ ⊢
K
x : τθ .

By α-renaming we can assume that θ does not involve A, that is, A ∩ dom(θ) = ∅ and
A∩ var∅(θ) = ∅, and also that A∩ (dom(K′)∪ var∅(K

′)) = ∅, that is, that the variables in
A are not assigned a kind in K′ nor do they appear in the types in the typing component of the
kinds in K′.

Under these assumptions, (Γθ)(x) = ∀A.Kxθ ⊲ τxθ. We must show that τθ = τxθθ
′
x for a

substitution θ′x such that dom(θ′x) ⊆ A and K′,Kxθ ⊢ θ′x : K
′.
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Let θ′x = [ αθxθ/α | α ∈ A ]. First, we show that τxθθ
′
x = τxθxθ = τθ, by showing that, for

any α, αθθ′x = αθxθ. If α ∈ A, then αθθ′x = αθ′x = αθxθ (θ is not defined on the variables
in A). If α /∈ A, then αθθ′x = αθ (θ never produces any variable in A) and αθxθ = αθ as
α /∈ dom(θx).

Since dom(θ′x) ⊆ A holds, we only need to establish that K′,Kxθ ⊢ θ′x : K
′. This requires

proving, for each α such that (K′, Kxθ)(α) = (L, U, T ), that αθ′x is a type variable such that
K′(αθ′x) = (L′, U ′, T ′) and (L′, U ′, T ′) � (L,U, T θ′x).

Such an α can either be in the domain of Kxθ (if and only if it is in A) or in the domain of
K′. In the latter case, we have αθ′x = α, since α /∈ A, and hence its kind in K′ is the same as
in K′,Kxθ. We must prove (L,U, T ) � (L, U, T θ′x), which holds because the variables in A
do not appear in T since (L, U, T ) ∈ range(K′).

In the former case, we have (Kxθ)(α) = (L,U, T ) and hence Kx(α) = (L, U, T1), with
T = T1θ. Also, αθ′x = αθxθ. Since K,Kx ⊢ θx : K, K(αθx) = (L2, U2, T2). Then,
since K ⊢ θ : K′, K′(αθxθ) = (L′, U ′, T ′). We know (L2, U2, T2) � (L,U, T1θx) and
(L′, U ′, T ′) � (L2, U2, T2θ). Both L′ ⊇ L and U ′ ⊆ U hold by transitivity. We show
T ′ ⊇ Tθ′x holds as well. If t̀ag : τ ∈ Tθ′x, since T = T1θ, then t̀ag : τ1 ∈ T1 and
τ = τ1θθ

′
x = τ1θxθ. We thus have t̀ag : τ1θx ∈ T1θx and therefore t̀ag : τ1θx ∈ T2 and

t̀ag : τ1θxθ ∈ T ′.

Case Tk-Const Straightforward.

Case Tk-Abstr We have:

K; Γ ⊢
K
λx. e1 : τ1 → τ2 K; Γ, {x : τ1} ⊢

K
e1 : τ2 .

By the induction hypothesis we have K′; Γθ, {x : τ1θ} ⊢
K
e1 : τ2θ. Then by Tk-Abstr we

derive K′; Γθ ⊢
K
λx. e1 : (τ1 → τ2)θ, since (τ1 → τ2)θ = (τ1θ) → (τ2θ).

Cases Tk-Appl and Tk-Pair Straightforward application of the induction hypothesis.

Case Tk-Match For the sake of clarity, we first prove the simpler case corresponding to (the
encoding of) let, where—simplifying environment generation—we have

K; Γ ⊢
K
match e0 with x → e1 : τ K; Γ ⊢

K
e0 : τ0 K; Γ, genK;Γ({x : τ0}) ⊢K e1 : τ

and must show

K′; Γθ ⊢
K
match e0 with x → e1 : τθ

which we prove by establishing, for some type τ̂0, that

K′; Γθ ⊢
K
e0 : τ̂0 K′; Γθ, genK′;Γθ({x : τ̂0}) ⊢K e1 : τθ .

Let A = {α1, . . . , αn} = varK(τ0) \ varK(Γ). We assume that the variables in A do not
appear in the kinds of variables not in A, that is, that if K(α) = (L,U, T ) and α /∈ A, then
varK(T ) ∩ A = ∅.

This assumption is justified by the following observations. The variables in A only appear
quantified in the environment used for the typing derivation for e1. Therefore we may assume
that they do not appear in τ : if they do, it is because they have been chosen when instantiating
some type scheme and, since K is canonical, we might have chosen some other variable of
the same kind. As for the occurrences of the variables in A in the derivation for e0, a similar
reasoning applies. These variables do not appear free in the environment (neither directly in a
type in Γ, nor in the kinds of variables which appear free in Γ). Therefore, if they occur in τ0
it is because they have been chosen either during instantiation of a type scheme or when typing
an abstraction, and in both cases we might have chosen a different variable.

Now we rename these variables so that θ will not have effect on them. Let B =
{β1, . . . , βn} be a set of type variables such that B ∩ (dom(θ) ∪ var∅(θ)) = ∅ and
B ∩ var∅(Γ) = ∅. Let θ0 = [β1/α1, . . . , βn/αn] and θ′ = θ ◦ θ0. Since K′ is canonical,
we can choose each βi so that, if K(αi) = •, then K′(βi) = •, and if K(αi) = (L,U, T ),
then K(βi) = (L,U, T θ′). As for A, we choose B so that the kinds in K′ for variables not in
B do not contain variables of B.

We show K ⊢ θ′ : K′. For each α such that K(α) = (L,U, T ), if α ∈ A then α = αi

for some i, αθ′ = βi and kind entailment holds straightforwardly by our choice of βi. If
α /∈ A, then αθ′ = αθ and the admissibility of θ implies K′(αθ) = (L′, U ′, T ′) and
(L′, U ′, T ′) � (L, U, T θ). We have Tθ = Tθ′ because of our assumption on A.

Since θ′ is admissibile, by the induction hypothesis applied to θ′, we derive K; Γθ′ ⊢
K

e0 : τ0θ
′. Since the variables in A do not appear in Γ, we have Γθ′ = Γθ. We choose τ̂0 to be

τ0θ
′.
We apply the induction hypothesis to the derivation for e1, this time using θ as the substitu-

tion. Now we have:

K′; Γθ ⊢
K
e0 : τ0θ

′ K′; Γθ, (genK;Γ({x : τ0}))θ ⊢
K
e1 : τθ .
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We apply weakening (Lemma A.6) to derive from the latter the typing we need, that is,

K′; Γθ, genK′;Γθ({x : τ0θ
′}) ⊢

K
e1 : τθ .

To do so we must show

Γθ, genK′;Γθ({x : τ0θ
′}) ⊑K′ Γθ, (genK;Γ({x : τ0)})θ

varK′(Γθ, genK′;Γθ({x : τ0θ
′})) ⊆ varK′ (Γθ, (genK;Γ({x : τ0)})θ) .

The latter holds because varK′(Γθ, genK′;Γθ({x : τ0θ
′})) ⊆ varK′(Γθ).

As for the former, we prove genK′;Γθ({x : τ0θ
′}) ⊑K′ (genK;Γ({x : τ0)})θ. We have

genK;Γ({x : τ0}) = ∀A.Kx ⊲ τ0 Kx = {α :: K(α) | α ∈ A } .

By α-renaming of the quantified variables we can write

genK;Γ({x : τ0}) = ∀B.K⋆
x ⊲ τ0θ0

K⋆
x = {βi :: • | αi :: • ∈ Kx } ∪ {βi :: (L,U, T θ0) | αi :: (L,U, T ) ∈ A }

and, since θ does not involve B,

(genK;Γ({x : τ0}))θ = ∀B.K⋆
xθ ⊲ τ0θ0θ = ∀B.K′

x ⊲ τ0θ
′

K′
x = {β :: K′(β) | β ∈ B } .

The other type scheme is

genK′;Γθ(τ0θ
′) = ∀C.K′

C ⊲ τ0θ
′

C = varK′(τ0θ
′) \ varK′(Γθ) K′

C = { β :: K′(β) | β ∈ C } .

We show B ⊆ C, which concludes the proof (because the kinding environments are
both restrictions of K′). Consider βi ∈ B. We have αi ∈ varK(τ0) \ varK(Γ). Then
βi = αiθ

′ ∈ varK′(τ0θ
′). Furthermore βi /∈ varK′(Γθ) holds because Γθ does not contain

variables in B (Γ does not contain them and θ does not introduce them) and variables in B do
not appear in the kinds of other variables which are not themselves in B.

We now consider the rule Tk-Match in its generality. We have

K; Γ ⊢
K
match e0 with (pi → ei)i∈I : τ

K; Γ ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I. K ⊢ pi : τ0 ⇒ Γi K; Γ, genK;Γ(Γi) ⊢K ei : τ

and must show

K′; Γθ ⊢
K
match e0 with (pi → ei)i∈I : τθ

which we prove by establishing, for some τ̂0 and { Γ̂i | i ∈ I }, that

K′; Γθ ⊢
K
e0 : τ̂0 τ̂0 4K′ { pi | i ∈ I }

∀i ∈ I. K′ ⊢ pi : τ̂0 ⇒ Γ̂i K′; Γθ, genK′;Γθ(Γ̂i) ⊢K ei : τθ .

For the derivation for e0 we proceed as above and have τ̂0 = τ0θ
′. By Lemma A.4 we have

τ0θ
′ 4K′ { pi | i ∈ I }. By Lemma A.3, we have K′ ⊢ pi : τ0θ

′ ⇒ Γiθ
′ and thus take

Γ̂i = Γiθ
′.

We proceed as before also for the derivations for each branch. The difference is that, to
apply weakening, we must prove the two premises for the environments and not for τ0 alone.
The condition on variables is straightforward, as before. For the other we prove, for each
x ∈ capt(pi) and assuming Γi(x) = τx,

Γθ, genK′;Γθ(τxθ
′) ⊑K′ Γθ, (genK;Γ(τx))θ .

We show it as for τ0 above: varK(τx) is always a subset of varK(τ0) because environment
generation does not introduce new variables.

Lemma A.8 (Expression substitution). Let x1, . . . , xn be distinct variables and v1, . . . , vn values.
Let Γ′ = {x1 : σ1, . . . , xn : σn} and ς = [v1/x1, . . . , vn/xn].

If K; Γ,Γ′ ⊢
K
e : τ and, for all k ∈ {1, . . . , n} and for all τk ∈ instK(σk), K; Γ ⊢

K
vk : τk,

then K; Γ ⊢
K
eς : τ .

Proof. By induction on the derivation of K; Γ,Γ′ ⊢
K
e : τ . We reason by cases on the last applied

rule.

Case Tk-Var We have

K; Γ,Γ′ ⊢
K
x : τ τ ∈ instK((Γ,Γ′)(x)) .
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Either x = xk for some k or not. In the latter case, xς = x, x /∈ dom(Γ′) and hence
(Γ,Γ′)(x) = Γ(x). Then, since τ ∈ instK((Γ,Γ′)(x)), τ ∈ instK(Γ(x)) and Tk-Var can be
applied.

If x = xk, then (Γ,Γ′)(x) = Γ′(x) = σk. We must then prove K; Γ ⊢
K
vk : τ , which we

know by hypothesis since τ ∈ instK(σk).

Case Tk-Const Straightforward.

Case Tk-Abstr We have

K; Γ,Γ′ ⊢
K
λx. e1 : τ1 → τ2 K; Γ,Γ′, {x : τ1} ⊢

K
e1 : τ2 .

Byα-renaming we can assume x /∈ dom(Γ′); then (λx. e1)ς = λx. (e1ς) and Γ,Γ′, {x : τ1} =
Γ, {x : τ1},Γ

′. Therefore we have K; Γ, {x : τ1},Γ
′ ⊢

K
e1 : τ2 and, by the induction hypothe-

sis, K; Γ, {x : τ1} ⊢
K
e1ς : τ2. We apply Tk-Abstr to conclude.

Cases Tk-Appl, Tk-Pair, and Tk-Tag Straightforward application of the induction hypothesis.

Case Tk-Match We have

K; Γ,Γ′ ⊢
K
match e0 with (pi → ei)i∈I : τ

K; Γ,Γ′ ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I. K ⊢ pi : τ0 ⇒ Γi K; Γ,Γ′, genK;Γ,Γ′(Γi) ⊢K ei : τ .

We assume by α-renaming that no capture variable of any pattern is in the domain
of Γ′. Then, (match e0 with (pi → ei)i∈I)ς = match e0ς with (pi → eiς)i∈I and
Γ,Γ′, genK;Γ,Γ′(Γi) = Γ, genK;Γ,Γ′(Γi),Γ

′ for any i.
By the induction hypothesis, we derive K; Γ ⊢

K
e0ς : τ0 and K; Γ, genK;Γ,Γ′(Γi) ⊢K eiς : τ

for all i. From the latter, we prove K; Γ, genK;Γ(Γi) ⊢
K
eiς : τ by weakening (Lemma A.6):

we have genK;Γ(Γi) ⊑K genK;Γ,Γ′(Γi) by Lemma A.5—since varK(Γ) ⊆ varK(Γ,Γ′)—and

clearly we have varK(Γ, genK;Γ(Γi)) ⊆ varK(Γ, genK;Γ,Γ′(Γi)) since varK(genK;Γ(Γi)) ⊆
varK(Γ).

Theorem A.9 (Progress). Let e be a well-typed, closed expression. Then, either e is a value or
there exists an expression e′ such that e e′.

Proof. By hypothesis we have K;∅ ⊢
K
e : τ . The proof is by induction on its derivation; we reason

by cases on the last applied rule.

Case Tk-Var This case does not occur because variables are not closed.

Case Tk-Const In this case e is a constant c and therefore a value.

Case Tk-Abstr In this case e is an abstraction λx. e1. Since it is also closed, it is a value.

Case Tk-Appl We have

K;∅ ⊢
K
e1 e2 : τ K;∅ ⊢

K
e1 : τ

′ → τ K;∅ ⊢
K
e2 : τ

′ .

By the induction hypothesis, each of e1 and e2 either is a value or may reduce. If e1  e′1,
then e1 e2  e′1 e2. If e1 is a value and e2  e′2, then e1 e2  e1 e

′
2.

If both are values then, by Lemma A.1, e1 has the form λx. e3 for some e3. Then, we can
apply R-Appl and e1 e2  e3[e2/x].

Case Tk-Pair We have

K;∅ ⊢
K
(e1, e2) : τ1 × τ2 K;∅ ⊢

K
e1 : τ1 K;∅ ⊢

K
e2 : τ2 .

By the induction hypothesis, each of e1 and e2 either is a value or may reduce. If e1  e′1,
then (e1, e2)  (e′1, e2). If e1 is a value and e2  e′2, then (e1, e2)  (e1, e

′
2). If both are

values, then (e1, e2) is also a value.

Case Tk-Tag We have

K;∅ ⊢
K

t̀ag(e1) : α K;∅ ⊢
K
e1 : τ1 .

Analogously to the previous case, by the induction hypothesis we have that either e1 is
a value or e1  e′1. In the former case, t̀ag(e1) is a value as well. In the latter, we have
t̀ag(e1) t̀ag(e′1).

Case Tk-Match We have

K;∅ ⊢
K
match e0 with (pi → ei)i∈I : τ K;∅ ⊢

K
e0 : τ0 τ0 4K { pi | i ∈ I } .

By the inductive hypothesis, either e0 is a value or it may reduce. In the latter case, if
e0  e′0, then match e0 with (pi → ei)i∈I  match e′0 with (pi → ei)i∈I .
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If e0 is a value, on the other hand, the expression may reduce by application of R-Match.
Since τ0 4K { pi | i ∈ I } and e0 is a value of type τ0 (and therefore satisfies the premises of
the definition of exhaustiveness, with θ = [ ] and K = K′), there exists at least an i ∈ I such
that e0/pi = ς for some substitution ς . Let j be the least of these i and ςj the corresponding
substitution; then match e0 with (pi → ei)i∈I  ejςj .

Theorem A.10 (Subject reduction). Let e be an expression and τ a type such that K; Γ ⊢
K
e : τ . If

e e′, then K; Γ ⊢
K
e′ : τ .

Proof. By induction on the derivation of K; Γ ⊢
K
e : τ . We reason by cases on the last applied rule.

Cases Tk-Var, Tk-Const, and Tk-Abstr These cases may not occur: variables, constants, and
abstractions never reduce.

Case Tk-Appl We have

K; Γ ⊢
K
e1 e2 : τ K; Γ ⊢

K
e1 : τ

′ → τ K; Γ ⊢
K
e2 : τ

′ .

e1 e2  e′ occurs in any of three ways: (i) e1  e′1 and e′ = e′1 e2; (ii) e1 is a value,
e2  e′2 and e′ = e1 e′2; (iii) both e1 and e2 are values, e1 is of the form λx. e3, and
e′ = e3[e2/x].

In the first case, we derive by the induction hypothesis that K; Γ ⊢
K
e′1 : τ

′ → τ and conclude
by applying Tk-Appl again. The second case is analogous.

In the third case, we know by Lemma A.1 that K; Γ, {x : τ ′} ⊢
K
e3 : τ . We also know that

e2 is a value such that K; Γ ⊢
K
e2 : τ

′. Then, by Lemma A.8, K; Γ ⊢
K
e3[e2/x] : τ .

Case Tk-Pair We have

K; Γ ⊢
K
(e1, e2) : τ1 × τ2 K; Γ ⊢

K
e1 : τ1 K; Γ ⊢

K
e2 : τ2 .

(e1, e2)  e′ occurs either because e1  e′1 and e′ = (e′1, e2), or because e1 is a value,
e2  e′2, and e′ = (e1, e

′
2). In either case, the induction hypothesis allows us to derive that

the type of the component that reduces is preserved; therefore, we can apply Tk-Pair again to
conclude.

Case Tk-Tag Analogously to the previous case, a variant expression only reduces if its argument
does, so we apply the induction hypothesis and Tk-Tag to conclude.

Case Tk-Match We have

K; Γ ⊢
K
match e0 with (pi → ei)i∈I : τ

K; Γ ⊢
K
e0 : τ0 ∀i ∈ I. K ⊢ pi : τ0 ⇒ Γi K; Γ, genK;Γ(Γi) ⊢K ei : τ .

match e0 with (pi → ei)i∈I  e′ occurs either because e0  e′0 and e′ = match e′0 with

(pi → ei)i∈I or because e0 is a value and e′ = ejς , where e0/pj = ς and, for all i < j,
e0/pi = Ω. In the former case, we apply the induction hypothesis and conclude by Tk-Match.

In the latter case, ς is a substitution from the capture variables of pj to values, and we know
by Lemma A.2 that, for all x ∈ capt(pj), K; Γ ⊢

K
xς : Γj(x). We show that, additionally,

K; Γ ⊢
K
xς : τx holds for every τx ∈ instK(genK;Γ(Γj(x))). Every such τx is equal to

Γj(x)θ for a θ such that dom(θ) ⊆ varK(Γj(x)) \ varK(Γ) and K ⊢ θ : K (the kinding
environment captured by generalization is just a subset of K). Then, K; Γ ⊢

K
xς : Γj(x)θ holds

by Lemma A.14, since Γθ = Γ (the substitution does not change any free variable of Γ).
From K; Γ, genK;Γ(Γj) ⊢

K
ej : τ and from the fact that we have K; Γ ⊢

K
xς : τx for

all x ∈ dom(Γj) and all τx ∈ instK(genK;Γ(Γj(x))), we derive K; Γ ⊢
K

ejς : τ by
Lemma A.8.

Corollary A.11 (Type soundness). Let e be a well-typed, closed expression, that is, such that
K;∅ ⊢

K
e : τ holds for some τ . Then, either e diverges or it reduces to a value v such that

K;∅ ⊢
K
v : τ .

Proof. Consequence of Theorem A.9 and Theorem A.10.

A.3 Typing variants with set-theoretic types

A.3.1 Definition of the S type system

We consider a set V of type variables (ranged over by α, β, γ, . . . ) and the sets C, L, and B of
language constants, tags, and basic types (ranged over by c, t̀ag, and b respectively).

Definition A.22 (Types). A type t is a term coinductively produced by the following grammar:

t ::= α | b | c | t → t | t× t | t̀ag(t) | t ∨ t | ¬t | 0

which satisfies two additional constraints:
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• (regularity) the term must have a finite number of different sub-terms;

• (contractivity) every infinite branch must contain an infinite number of occurrences of atoms
(i.e., a type variable or the immediate application of a type constructor: basic, constant, arrow,
product, or variant).

We introduce the following abbreviations:

t1 ∧ t2
def
= ¬(¬t1 ∨ ¬t2) t1 \ t2

def
= t1 ∧ (¬t2) 1

def
= ¬0 .

Definition A.23 (Type schemes). A type scheme s is of the form ∀A. t, where A is a finite set
{α1, . . . , αn} of type variables.

We identify a type scheme ∀∅. t with the type t itself. Furthermore, we consider type schemes
up to renaming of the variables they bind, and we disregard useless quantification.

Definition A.24 (Free variables). We write var(t) for the set of type variables occurring in a type
t; we say they are the free variables of t, and we say that t is ground or closed if and only if var(t)
is empty.

We extend the definition to type schemes as var(∀A. t) = var(t) \ A.

The (coinductive) definition of var can be found in Castagna et al. [5, Definition A.2].

Definition A.25 (Meaningful variables). We define the set mvar(t) of meaningful variables of a
type t as

mvar(t) = {α ∈ var(t) | t[0/α] 6≃ t } .

We extend the definition to type schemes as mvar(∀A. t) = mvar(t) \ A.

Definition A.26 (Type substitutions). A type substitution θ is a finite mapping of type variables to
types. We write [ ti/αi | i ∈ I ] for the type substitution which simultaneously replaces αi with ti,
for each i ∈ I . We write tθ for the application of the substitution θ to the type t; application is
defined coinductively by the following equations.

αθ =

{

t′ if t′/α ∈ θ

α otherwise

bθ = b

cθ = c

(t1 → t2)θ = (t1θ) → (t2θ)

(t1 × t2)θ = (t1θ)× (t2θ)

( t̀ag(t))θ = t̀ag(tθ)

(t1 ∨ t2)θ = (t1θ) ∨ (t2θ)

(¬t)θ = ¬(tθ)

0θ = 0

We extend the var operation to substitutions as

var(θ) =
⋃

α∈dom(θ)

var(αθ) .

and we extend mvar likewise.
We extend application of substitutions to type schemes ∀A. t: by renaming quantified variables,

we assume A ∩ (dom(θ) ∪ var(θ)) = ∅, and we have (∀A. t)θ = ∀A. tθ.
We write θ1 ∪ θ2 for the union of disjoint substitutions and θ1 ◦ θ2 for the composition of

substitutions.

Definition A.27 (Type environments). A type environment Γ is a partial mapping from expression
variables to type schemes. We write type environments as Γ = {x1 : s1, . . . , xn : sn}.

We write Γ,Γ′ for the updating of the type environment Γ with the new bindings in Γ′. It is
defined as follows.

(Γ,Γ′)(x) =

{

Γ′(x) if x ∈ dom(Γ′)

Γ(x) otherwise

We extend the var operation to type environments as

var(Γ) =
⋃

s∈range(Γ)

var(s) ,

and we extend mvar likewise.
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Definition A.28 (Generalization). We define the generalization of a type t with respect to the type
environment Γ as the type scheme

genΓ(t) = ∀A. t

where A = var(t) \ mvar(Γ).
We extend this definition to type environments which only contain types (i.e., trivial type

schemes) as

genΓ({xi : ti | i ∈ I }) = {xi : genΓ(ti) | i ∈ I } .

Definition A.29 (Instances of a type scheme). The set of instances of a type scheme ∀A. t is defined
as

inst(∀A. t) = { tθ | dom(θ) ⊆ A } .

We say that a type scheme s1 is more general than a type scheme s2, and we write s1 ⊑ s2, if

∀t2 ∈ inst(s2). ∃t1 ∈ inst(s1). t1 ≤ t2 .

We extend this notion to type environments as

Γ1 ⊑ Γ2 ⇐⇒ dom(Γ1) = dom(Γ2) ∧ ∀x ∈ dom(Γ1). Γ1(x) ⊑ Γ2(x) .

Definition A.30 (Accepted type). The accepted type *p+ of a pattern p is defined inductively as:

* + = *x+ = 1 *c+ = c

*(p1, p2)+ = *p1+ × *p2+ * t̀ag(p)+ = t̀ag(*p+)

*p1&p2+ = *p1+ ∧ *p2+ *p1|p2+ = *p1+ ∨ *p2+ .

The projection operators π1 and π2 for product types are defined by Castagna et al. [5, Appendix
C.2.1]. We do not repeat the definition, but we state below the properties we need in the proofs.
The projection operators for variant types correspond to π2 if we encode variant types as pairs; we
therefore rephrase the same properties for them.

Property A.31 (Projections of product types). There exist two functions π1 and π2 which, given a
type t ≤ 1 × 1, yield types π1(t) and π2(t) such that:

• t ≤ π1(t)× π2(t);
• if t ≤ t1 × t2, then πi(t) ≤ ti;
• if t ≤ t′ ≤ 1 × 1, then πi(t) ≤ πi(t

′);
• for all type substitutions θ, πi(tθ) ≤ πi(t)θ.

Property A.32 (Projections of variant arguments). For every tag t̀ag there exists a function π t̀ag

which, given a type t ≤ t̀ag(1), yields a type π t̀ag(t) such that:

• t ≤ t̀ag(π t̀ag(t));
• if t ≤ t̀ag(t′), then π t̀ag(t) ≤ t′;
• if t ≤ t′ ≤ t̀ag(1), then π t̀ag(t) ≤ π t̀ag(t

′);
• for all type substitutions θ, π t̀ag(tθ) ≤ π t̀ag(t)θ.

Definition A.33 (Pattern environment generation). Given a pattern p and a type t ≤ *p+, the type
environment t//p generated by pattern matching is defined inductively as:

t// = ∅

t//x = {x : t}

t//c = ∅

t//(p1, p2) = π1(t)//p1 ∪ π2(t)//p2

t// t̀ag(p) = π t̀ag(t)//p

t//p1&p2 = t//p1 ∪ t//p2

t//p1|p2 = (t ∧ *p1+)//p1 ∨∨ (t \ *p1+)//p2 ,

where (Γ ∨∨ Γ′)(x) = Γ(x) ∨ Γ′(x).

Definition A.34 (Typing relation). The typing relation Γ ⊢
S
e : t (e is given type t in the type

environment Γ) is defined by the rules in Figure 10.

A.3.2 Properties of the S type system

Lemma A.12 (Generation for values). Let v be a value. Then:

• if Γ ⊢
S
v : c, then v = c;

• if Γ ⊢
S
v : b, then v = c for some c such that bc ≤ b;

• if Γ ⊢
S
v : t1 → t2, then v is of the form λx. e and Γ, {x : t1} ⊢

S
e : t2;
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Ts-Var
t ∈ inst(Γ(x))

Γ ⊢
S
x : t

Ts-Const
Γ ⊢

S
c : c

Ts-Abstr
Γ, {x : t1} ⊢

S
e : t2

Γ ⊢
S
λx. e : t1 → t2

Ts-Appl
Γ ⊢

S
e1 : t

′ → t Γ ⊢
S
e2 : t

′

Γ ⊢
S
e1 e2 : t

Ts-Pair
Γ ⊢

S
e1 : t1 Γ ⊢

S
e2 : t2

Γ ⊢
S
(e1, e2) : t1 × t2

Ts-Tag
Γ ⊢

S
e : t

Γ ⊢
S

t̀ag(e) : t̀ag(t)

Ts-Match

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I Γ, genΓ(ti//pi) ⊢S ei : t
′
i

Γ ⊢
S
match e0 with (pi → ei)i∈I :

∨

i∈I t
′
i

Ts-Subsum
Γ ⊢

S
e : t′ t′ ≤ t

Γ ⊢
S
e : t

Figure 10. Typing relation of the S type system.

• if Γ ⊢
S
v : t1 × t2, then v is of the form (v1, v2), Γ ⊢

S
v1 : t1, and Γ ⊢

S
v2 : t2;

• if Γ ⊢
S
v : t̀ag(t1), then v is of the form t̀ag(v1) and Γ ⊢

S
v1 : t1.

Proof. By induction on the typing derivation: values must be typed by an application of the rule
corresponding to their form to appropriate premises, possibly followed by applications of Ts-
Subsum.

The base cases are straightforward. In the inductive step, we just apply the induction hypothesis;
for abstractions, the result follows from the behaviour of subtyping on arrow types.

We state the next three lemmas without proof, as they rely on the model of types which we have
not discussed. Details can be found in Frisch et al. [15] and Castagna and Xu [4], as well as in Alain

Frisch’s PhD thesis.8

Lemma A.13. For each i ∈ I , let pi be a pattern. If Γ ⊢
S
v :

∨

i∈I*pi+, then there exists an i ∈ I
such that Γ ⊢

S
v : *pi+.

Lemma A.14. Let t be a type. Let t′ be a type such that either t′ = *p+ or t′ = ¬*p+, for some
pattern p. If Γ ⊢

S
v : t and Γ ⊢

S
v : t′, then Γ ⊢

S
v : t ∧ t′.

Lemma A.15. Let v be a well-typed value (i.e., ∅ ⊢
S
v : t holds for some t) and p a pattern. Then:

• ∅ ⊢
S
v : *p+ holds if and only if v/p = ς for some substitution ς;

• ∅ ⊢
S
v : ¬*p+ holds if and only if v/p = Ω.

Lemma A.16. Let p be a pattern and t, t′ two types. If t ≤ t′ ≤ *p+, then, for all x ∈ capt(p),
(t//p)(x) ≤ (t′//p)(x).

Proof. By structural induction on p.

Cases p = and p = c There is nothing to prove since capt(p) = ∅.

Case p = x We must prove (t//x)(x) ≤ (t′//x)(x), that is, t ≤ t′, which we know by
hypothesis.

Case p = (p1, p2) Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi);
then, (t//p)(x) = (πi(t)//pi)(x) and (t′//p)(x) = (πi(t

′)//pi)(x). Since t ≤ t′ implies
πi(t) ≤ πi(t

′) by Property A.31, we can apply the induction hypothesis to conclude.

Case p = t̀ag(p) Analogous to the previous case, because t ≤ t′ implies π t̀ag(t) ≤ π t̀ag(t
′) by

Property A.32.

Case p = p1&p2 Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi);
then, (t//p)(x) = (t//pi)(x) and (t′//p)(x) = (t′//pi)(x). We apply the induction hypothesis
to conclude.

8 A. Frisch. Théorie, conception et réalisation d’un langage de programmation adapté à XML. PhD thesis,
Université Paris 7 – Denis Diderot, 2004.
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Case p = p1|p2 Every x ∈ capt(p) is both in capt(p1) and in capt(p2). We have that
(t//p)(x) = (t∧*p1+//p1)(x)∨(t\*p1+//p2)(x) and likewise for t′. Since t∧*p1+ ≤ t′∧*p1+
and t \ *p1+ ≤ t′ \ *p1+, we can apply the induction hypothesis to both sub-patterns to derive
(t∧ *p1+//p1)(x) ≤ (t′ ∧ *p1+//p1)(x) and (t\ *p1+//p2)(x) ≤ (t′ \ *p1+//p2)(x). Then we
have (t ∧ *p1+//p1)(x) ∨ (t \ *p1+//p2)(x) ≤ (t′ ∧ *p1+//p1)(x) ∨ (t′ \ *p1+//p2)(x).

Lemma A.17 (Correctness of environment generation). Let p be a pattern and v a value such that
Γ ⊢

S
v : t for some t ≤ *p+. Then, for all x ∈ capt(p), Γ ⊢

S
x(v/p) : (t//p)(x).

Proof. By structural induction on p.

Cases p = and p = c There is nothing to prove since capt(p) = ∅.

Case p = x We must prove Γ ⊢
S
x[v/x] : (t//x)(x), which is the hypothesis Γ ⊢

S
v : t.

Case p = (p1, p2) We have t ≤ 1×1, hence t ≤ π1(t)×π2(t); then, since Γ ⊢
S
v : π1(t)×π2(t)

by subsumption, we have by Lemma A.12 that v = (v1, v2) and that Γ ⊢
S
vi : π1(t) for both i.

Moreover, t ≤ *(p1, p2)+ = *p1+ × *p2+. Hence, by Property A.31, πi(t) ≤ *pi+ for both i.
Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi); then,

x(v/p) = x(vi/pi) and (t//p)(x) = (πi(t)//pi)(x). We apply the induction hypothesis to
conclude.

Case p = t̀ag(p) Analogous to the previous case.

Case p = p1&p2 Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi);
then, we can directly apply the induction hypothesis since t ≤ *p1&p2+ implies t ≤ *p1+ and
t ≤ *p2+.

Case p = p1|p2 Either v/p = v/p1 or v/p = v/p2 (in which case v/p1 = Ω).

Case v/p = v/p1 By Lemma A.15 we have Γ ⊢
S
v : *p1+; by Lemma A.14 we have

Γ ⊢
S
v : t ∧ *p1+. Since t ∧ *p1+ ≤ *p1+, by the induction hypothesis we have, for

all x ∈ capt(p1) = capt(p), Γ ⊢
S
x(v/p) : (t ∧ *p1+//p1)(x) and, by subsumption,

Γ ⊢
S
x(v/p) : (t ∧ *p1+//p1)(x) ∨ (t \ *p1+//p2)(x).

Case v/p = v/p2 By Lemma A.15 and Lemma A.14, we have Γ ⊢
S
v : t\*p1+. Additionally,

t\*p1+ ≤ *p2+ holds because it is equivalent to t ≤ *p1+∨*p2+. Therefore by the induction
hypothesis we have, for all x ∈ capt(p1) = capt(p), Γ ⊢

S
x(v/p) : (t \ *p1+//p2)(x) and,

by subsumption, Γ ⊢
S
x(v/p) : (t ∧ *p1+//p1)(x) ∨ (t \ *p1+//p2)(x).

Lemma A.18. Let p be a pattern, t a type such that t ≤ *p+, and θ a type substitution. Then, for
all x ∈ capt(p), (tθ//p)(x) ≤ ((t//p)(x))θ.

Proof. By structural induction on p.

Cases p = and p = c There is nothing to prove since capt(p) = ∅.

Case p = x We must prove (tθ//x)(x) ≤ (t//x)(x)θ, which is tθ ≤ tθ.

Case p = (p1, p2) Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi);
then, (tθ//p)(x) = (πi(tθ)//pi)(x) and (t//p)(x)θ = (πi(t)//pi)(x)θ.

Since πi(tθ) ≤ πi(t)θ, by Lemma A.16 we have (πi(tθ)//pi)(x) ≤ (πi(t)θ//pi)(x). By
the induction hypothesis we have (πi(t)θ//pi)(x) ≤ (πi(t)//pi)(x)θ.

Case p = t̀ag(p) Analogous to the previous case, since π t̀ag(tθ) ≤ π t̀ag(t)θ.

Case p = p1&p2 Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Assume x ∈ capt(pi);
then, (tθ//p)(x) = (tθ//pi)(x) and (t//p)(x)θ = (t//pi)(x)θ. We conclude by the induction
hypothesis.

Case p = p1|p2 Every x ∈ capt(p) is both in capt(p1) and in capt(p2). We have (tθ//p)(x) =
((t ∧ *p1+)θ//p1)(x) ∨ ((t \ *p1+)θ//p2)(x)—pattern types are closed, so we can apply θ
to them too—and (t//p)(x)θ = (t ∧ *p1+//p1)(x)θ ∨ (t \ *p1+//p2)(x)θ. We conclude by
applying the induction hypothesis to both members of the union.

Lemma A.19. Let t1 and t2 be equivalent types (t1 ≃ t2). Then, mvar(t1) = mvar(t2).

Proof. Since subtyping is preserved by type substitutions, for every α we have t1[0/α] ≃ t2[0/α].
If α ∈ mvar(t1), we have t1[0/α] 6≃ t1 by the definition of mvar. This necessarily implies
t2[0/α] 6≃ t2, otherwise we would have t1[0/α] ≃ t1 by transitivity.

28



Lemma A.20. Let t be a type and θ a type substitution such that dom(θ) ∩ mvar(t) = ∅. Then
tθ ≃ t.

Proof. Let t′ = t[0/α1, . . . , 0/αn] where {α1, . . . , αn} = var(t) \ mvar(t). We have t ≃ t′ and
var(t′) = mvar(t). Since substitutions preserve subtyping (and hence equivalence), we have also
tθ ≃ t′θ. But t′θ = t′ ≃ t; hence, we reach the conclusion by the transitivity of equivalence.

Lemma A.21. Let Γ1, Γ2 be two type environments such that mvar(Γ1) ⊆ mvar(Γ2) and t1, t2
two types such that t1 ≤ t2. Then, genΓ1

(t1) ⊑ genΓ2
(t2).

Proof. An instance of genΓ2
(t2) is a type t2θ2 such that dom(θ2) ⊆ var(t2)\mvar(Γ2). Let θ1 be

the restriction of θ2 to the variables in var(t1) \mvar(Γ1). Then, t1θ1 is an instance of genΓ1
(t1).

We have t1θ1 = t1θ2 because the two substitutions differ only on variables in var(t2) \ var(t1)
(which do not appear in t1 at all) or in mvar(Γ1) \ mvar(Γ2) (which is empty). Finally, we have
t1θ2 ≤ t2θ2 because subtyping is preserved by substitutions.

Lemma A.22 (Weakening). Let Γ1, Γ2 be two type environments such that Γ1 ⊑ Γ2 and
mvar(Γ1) ⊆ mvar(Γ2). If Γ2 ⊢

S
e : t, then Γ1 ⊢

S
e : t.

Proof. By induction on the derivation of Γ2 ⊢
S
e : t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ2 ⊢
S
x : t t ∈ inst(Γ2(x))

and hence, since Γ1 ⊑ Γ2, there exists a t′ ∈ inst(Γ1(x)) such that t′ ≤ t. We apply Ts-Var to
derive Γ1 ⊢

S
x : t′ and Ts-Subsum to conclude.

Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ2 ⊢
S
λx. e1 : t1 → t2 Γ2, {x : t1} ⊢

S
e1 : t2 .

Since Γ1 ⊑ Γ2, we have Γ1, {x : t1} ⊑ Γ2, {x : t1}; since mvar(Γ1) ⊆ mvar(Γ2), we have
mvar(Γ1, {x : t1}) ⊆ mvar(Γ2, {x : t1}). We derive Γ1, {x : t1} ⊢

S
e1 : t2 by the induction

hypothesis and apply Ts-Abstr to conclude.

Cases Ts-Appl, Ts-Pair, Ts-Tag, and Ts-Subsum Straightforward application of the induction
hypothesis.

Case Tk-Match We have

Γ2 ⊢
S
match e0 with (pi → ei)i∈I : t

Γ2 ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γ2, genΓ2
(ti//pi) ⊢S ei : t

′
i t =

∨

i∈I t
′
i .

By the induction hypothesis, we derive Γ1 ⊢
S
e0 : t0.

For any branch, note that mvar(Γ1) ⊆ mvar(Γ2) implies genΓ1
(t) ⊑ genΓ2

(t) for any

t by Lemma A.21. Hence, we have Γ1, genΓ1
(ti//pi) ⊑ Γ2, genΓ2

(ti//pi). Additionally,

since mvar(genΓ1
(ti//pi)) ⊆ mvar(Γ1) ⊆ mvar(Γ2), we have mvar(Γ1, genΓ1

(ti//pi)) ⊆
mvar(Γ2, genΓ2

(ti//pi)).
Hence we may apply the induction hypothesis for all i to derive Γ1, genΓ1

(ti//pi) ⊢S ei : t
′
i

and then apply Ts-Match to conclude.

Lemma A.23 (Stability of typing under type substitutions). Let θ be a type substitution. If Γ ⊢
S
e : t,

then Γθ ⊢
S
e : tθ.

Proof. By induction on the derivation of Γ ⊢
S
e : t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ ⊢
S
x : t t ∈ inst(Γ(x)) Γ(x) = ∀A. tx t = txθx dom(θx) ⊆ A

and must show Γθ ⊢
S
x : tθ.

By α-renaming we assume A∩(dom(θ)∪var(θ)) = ∅. Under this assumption, (Γθ)(x) =
∀A. txθ. We must show that tθ = txθθ

′
x for a substitution θ′x such that dom(θ′x) ⊆ A.

Let θ′x = [ αθxθ/α | α ∈ A ]. We show that tθθ′x = txθxθ = tθ, by showing that, for every
α, αθθ′x = αθxθ. If α ∈ A, then αθθ′x = αθ′x = αθxθ (θ is not defined on the variables
in A). If α /∈ A, then αθθ′x = αθ (θ never produces any variable in A) and αθxθ = αθ as
α /∈ dom(θx).
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Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ ⊢
S
λx. e1 : t1 → t2 Γ, {x : t1} ⊢

S
e1 : t2 .

By the induction hypothesis we have Γθ, {x : t1θ} ⊢
S
e1 : t2θ. Then by Ts-Abstr we derive

Γθ ⊢
S
λx. e1 : (t1θ) → (t2θ), which is Γθ ⊢

S
λx. e1 : (t1 → t2)θ.

Cases Ts-Appl, Ts-Pair, and Ts-Tag Straightforward application of the induction hypothesis.

Case Ts-Match We have

Γ ⊢
S
match e0 with (pi → ei)i∈I : t

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γ, genΓ(ti//pi) ⊢S ei : t
′
i t =

∨

i∈I t
′
i

and must show Γθ ⊢
S
match e0 with (pi → ei)i∈I : tθ.

We prove it by establishing, for some types t̂0 and t̂i, t̂′i for each i, that

Γθ ⊢
S
e0 : t̂0 t̂0 ≤

∨

i∈I*pi+ t̂i = (t̂0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γθ, genΓθ(t̂i//pi) ⊢S ei : t̂
′
i

∨

i∈I t̂
′
i ≤ tθ .

Let A = {α1, . . . , αn} = var(t0) \ mvar(Γ). Let B = {β1, . . . , βn} be a set of type
variables such that B ∩ (dom(θ) ∪ var(θ) ∪ var(Γ)) = ∅. Let θ0 = [β1/α1, . . . , βn/αn] and
θ′ = θ ◦ θ0.

By the induction hypothesis, using θ′, we derive Γθ′ ⊢
S
e0 : t0θ

′. From it, we derive
Γθ ⊢

S
e0 : t0θ

′ by weakening (Lemma A.22); we prove the required premises below. We take

t̂0 = t0θ
′: note that the exhaustiveness condition is satisfied because substitutions preserve

subtyping (and all accepted types of patterns are closed). We have t̂i = tiθ
′ for all i.

For all branches, we have Γ, genΓ(ti//pi) ⊢S ei : t
′
i and, by the induction hypothesis using

θ, we can derive Γθ, (genΓ(ti//pi))θ ⊢
S
ei : t

′
iθ.

We apply Lemma A.22 to derive Γθ, genΓθ(tiθ
′//pi) ⊢

S
ei : t

′
iθ (we prove the required

premises below). We take t̂′i = t′iθ.

Proof of Γθ ⊢
S
e0 : t0θ

′ from Γθ′ ⊢
S
e0 : t0θ

′ We prove this by Lemma A.22, which requires
us to show Γθ ⊑ Γθ′ and mvar(Γθ) ⊆ mvar(Γθ′). We show this by showing, for every
(x : ∀Ax. tx) ∈ Γ—assume by α-renaming Ax∩(dom(θ)∪var(θ)∪A∪B) = ∅—, txθ ≃
txθ

′, which implies both ∀Ax. txθ ⊑ ∀Ax. txθ
′ and mvar(∀Ax. txθ) ⊆ mvar(∀Ax. txθ

′)
(by Lemma A.21 and Lemma A.19).

We have txθ0 ≃ tx by Lemma A.20: dom(θ0) ∩ mvar(tx) = ∅ because every α ∈
mvar(tx) is either in Ax or mvar(Γ), and in both cases this means it cannot be in dom(θ0).
Hence—since substitutions preserve subtyping—we have also txθ

′ = txθ0θ ≃ txθ.

Proof of Γθ, genΓθ(tiθ
′//pi) ⊢

S
ei : t

′
iθ from Γθ, (genΓ(ti//pi))θ ⊢

S
ei : t

′
iθ To apply

Lemma A.22, we must show

genΓθ(tiθ
′//pi) ⊑ (genΓ(ti//pi))θ

mvar(Γθ, genΓθ(tiθ
′//pi)) ⊆ mvar(Γθ, (genΓ(ti//pi))θ) .

The latter holds because every variable in mvar(Γθ, genΓθ(tiθ
′//pi)) is in mvar(Γθ).

For the former, we prove that, for every x ∈ capt(pi),

genΓθ((tiθ
′//pi)(x)) ⊑ (genΓ((ti//pi)(x)))θ .

Let

t′x = (tiθ
′//pi)(x) tx = (ti//pi)(x) ;

the statement becomes

genΓθ(t
′
x) ⊑ (genΓ(tx))θ .

We have genΓ(tx) = ∀Ax. tx, where Ax = var(tx) \ mvar(Γ). Since var(tx) ⊆
var(ti) = var(t0), Ax ⊆ A. Let J = { j | αj ∈ Ax }; thus J ⊆ {1, . . . , n} and
Ax = A|J = {αj | j ∈ J }. Let B|J = {βj | j ∈ J }. We have genΓ(tx) = ∀B|J . txθ0
by α-renaming (we are substituting also the αi such that i /∈ J , but it makes no difference
as they not in tx). Thus—since B ∩ (dom(θ) ∪ var(θ)) = ∅—we have

(genΓ(tx))θ = ∀B|J . txθ0θ = ∀B|J . txθ
′ .

The instances of this type scheme are all types txθ
′θx, with dom(θx) ⊆ B|J . Given

such a type, we must construct an instance of genΓθ(t
′
x) that is a subtype of it. Let θ′x be
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the restriction of θx to variables in var(t′x) \ mvar(Γθ). Then t′xθ
′
x is a valid instance of

genΓθ(t
′
x). We prove t′xθ

′
x ≤ txθ

′θx.
We have t′xθ

′
x = t′xθx: the two substitutions differ only on variables in B|J \ var(t′x)

(variables which do not appear in the type at all) and on variables in B|J∩mvar(Γθ) (which
is empty, because B was chosen fresh). By Lemma A.16, we have t′x = (tiθ

′//pi)(x) ≤
(ti//pi)(x)θ

′: hence, t′xθx = (tiθ
′//pi)(x)θx ≤ (ti//pi)(x)θ

′θx = txθ
′θx.

Case Ts-Subsum The conclusion follows from the induction hypothesis since substitutions
preserve subtyping.

Corollary A.24. Let Γ be a type environment and θ a type substitution such that dom(θ) ∩
mvar(Γ) = ∅. If Γ ⊢

S
e : t, then Γ ⊢

S
e : tθ.

Proof. From Γ ⊢
S
e : t we derive Γθ ⊢

S
e : tθ by Lemma A.23. Then, we show Γ ⊑ Γθ and

mvar(Γ) ⊆ mvar(Γθ), which allow us to apply Lemma A.22 to derive Γ ⊢
S
e : tθ.

To show the two conditions above, we show that, for every (x : ∀A. t) ∈ Γ—assume by α-
renaming A ∩ (dom(θ) ∪ var(θ)) = ∅—, ∀A. t ⊑ ∀A. tθ and mvar(∀A. t) ⊆ mvar(∀A. tθ).

We show t ≃ tθ, which implies both (by Lemma A.21 and Lemma A.19). The equivalence
holds by Lemma A.20: dom(θ) ∩ mvar(t) = ∅ because every α ∈ mvar(t) is either in A or
mvar(Γ), and in both cases this means it cannot be in dom(θ).

Lemma A.25 (Expression substitution). Let x1, . . . , xn be distinct variables and v1, . . . , vn values.
Let Γ′ = {x1 : s1, . . . , xn : sn} and ς = [v1/x1, . . . , vn/xn].

If Γ,Γ′ ⊢
S
e : t and, for all k ∈ {1, . . . , n} and for all tk ∈ inst(sk), Γ ⊢

S
vk : tk, then

Γ ⊢
S
eς : t.

Proof. By induction on the derivation of Γ,Γ′ ⊢
S
e : t. We reason by cases on the last applied rule.

Case Ts-Var We have

Γ,Γ′ ⊢
S
x : t t ∈ inst((Γ,Γ′)(x)) .

Either x = xk for some k or not. In the latter case, xς = x, x /∈ dom(Γ′) and hence
(Γ,Γ′)(x) = Γ(x). Then, since t ∈ inst((Γ,Γ′)(x)), t ∈ inst(Γ(x)) and we can apply Ts-Var.

If x = xk, then (Γ,Γ′)(x) = Γ′(x) = sk. We must then prove Γ ⊢
S
vk : t, which we know

by hypothesis since t ∈ inst(sk).

Case Ts-Const Straightforward.

Case Ts-Abstr We have

Γ,Γ′ ⊢
S
λx. e1 : t1 → t2 Γ,Γ′, {x : t1} ⊢

S
e1 : t2 .

By α-renaming we can assume x /∈ dom(Γ,Γ′); then (λx. e1)ς = λx. (e1ς) and
Γ,Γ′, {x : t1} = Γ, {x : t1},Γ

′. Therefore we have Γ, {x : t1},Γ
′ ⊢

S
e1 : t2 and hence

Γ, {x : t1} ⊢
S
e1ς : t2 by the induction hypothesis. We apply Ts-Abstr to conclude.

Cases Ts-Appl, Ts-Pair, Ts-Tag, and Ts-Subsum Straightforward application of the induction
hypothesis.

Case Ts-Match We have

Γ,Γ′ ⊢
S
match e0 with (pi → ei)i∈I : t

Γ,Γ′ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γ,Γ′, genΓ,Γ′(ti//pi) ⊢S ei : t
′
i t =

∨

i∈I t
′
i .

We assume by α-renaming that no capture variable of any pattern is in the domain of
Γ or Γ′. Then, (match e0 with (pi → ei)i∈I)ς = match e0ς with (pi → eiς)i∈I and
Γ,Γ′, genΓ,Γ′(ti//pi) = Γ, genΓ,Γ′(ti//pi),Γ

′ for any i.
By the induction hypothesis, we derive Γ ⊢

S
e0ς : t0 and Γ, genΓ,Γ′(ti//pi) ⊢

S
eiς : t

′
i for

all i. From the latter, we prove Γ, genΓ(ti//pi) ⊢
S
eiς : t

′
i by weakening (Lemma A.22): we

have genΓ(ti//pi) ⊑ genΓ,Γ′(ti//pi) by Lemma A.21—since mvar(Γ) ⊆ mvar(Γ,Γ′) – and

clearly we have mvar(Γ, genΓ(ti//pi)) ⊆ mvar(Γ, genΓ,Γ′(ti//pi)) since mvar(genΓ(ti//pi)) ⊆
mvar(Γ).

Theorem A.26 (Progress). Let e be a well-typed, closed expression (i.e., ∅ ⊢
S
e : t holds for some

t). Then, either e is a value or there exists an expression e′ such that e e′.

Proof. By hypothesis we have ∅ ⊢
S
e : t. The proof is by induction on its derivation; we reason by

cases on the last applied rule.
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Case Ts-Var This case does not occur because variables are not closed.

Case Ts-Const In this case e is a constant c and therefore a value.

Case Ts-Abstr In this case e is an abstraction λx. e1. Since it is also closed, it is a value.

Case Ts-Appl We have

∅ ⊢
S
e1 e2 : t ∅ ⊢

S
e1 : t

′ → t ∅ ⊢
S
e2 : t

′ .

By the induction hypothesis, each of e1 and e2 either is a value or may reduce. If e1  e′1,
then e1 e2  e′1 e2. If e1 is a value and e2  e′2, then e1 e2  e1 e

′
2.

If both are values then, by Lemma A.12, e1 has the form λx. e3 for some e3. Then, we can
apply R-Appl and e1 e2  e3[e2/x].

Case Ts-Pair We have

∅ ⊢
S
(e1, e2) : t1 × t2 ∅ ⊢

S
e1 : t1 ∅ ⊢

S
e2 : t2 .

By the induction hypothesis, each of e1 and e2 either is a value or may reduce. If e1  e′1,
then (e1, e2)  (e′1, e2). If e1 is a value and e2  e′2, then (e1, e2)  (e1, e

′
2). If both are

values, then (e1, e2) is also a value.

Case Ts-Tag We have

∅ ⊢
S

t̀ag(e1) : t̀ag(t1) ∅ ⊢
S
e1 : t1 .

Analogously to the previous case, by the induction hypothesis we have that either e1 is
a value or e1  e′1. In the former case, t̀ag(e1) is a value as well. In the latter, we have
t̀ag(e1) t̀ag(e′1).

Case Ts-Match We have

∅ ⊢
S
match e0 with (pi → ei)i∈I : t ∅ ⊢

S
e0 : t0 t0 ≤

∨

i∈I*pi+ .

By the inductive hypothesis, either e0 is a value or it may reduce. In the latter case, if
e0  e′0, then match e0 with (pi → ei)i∈I  match e′0 with (pi → ei)i∈I .

If e0 is a value, on the other hand, the expression may reduce by application of R-Match.
Since t0 ≤

∨

i∈I*pi+, ∅ ⊢
S
e0 :

∨

i∈I*pi+ holds by subsumption. Hence, since e0 is a value,

∅ ⊢
S
e0 : *pi+ holds for at least one i (by Lemma A.13); for each such i we have e0/pi = ςi

(by Lemma A.15). Let j be the least of these i; then match e0 with (pi → ei)i∈I  ejςj .

Case Ts-Subsum Straightforward application of the induction hypothesis.

Theorem A.27 (Subject reduction). Let e be an expression and t a type such that Γ ⊢
S
e : t. If

e e′, then Γ ⊢
S
e′ : t.

Proof. By induction on the derivation of Γ ⊢
S
e : t. We reason by cases on the last applied rule.

Cases Ts-Var, Ts-Const, and Ts-Abstr These cases do not occur: variables, constants, and
abstractions never reduce.

Case Ts-Appl We have

Γ ⊢
S
e1 e2 : t Γ ⊢

S
e1 : t

′ → t Γ ⊢
S
e2 : t

′ .

e1 e2  e′ occurs in any of three ways: (i) e1  e′1 and e′ = e′1 e2; (ii) e1 is a value,
e2  e′2 and e′ = e1 e′2; (iii) both e1 and e2 are values, e1 is of the form λx. e3, and
e′ = e3[e2/x].

In the first case, we derive by the induction hypothesis that Γ ⊢
S
e′1 : t

′ → t and conclude by
applying Ts-Appl again. The second case is analogous.

In the third case, we know by Lemma A.12 that Γ, {x : t′} ⊢
S
e3 : t. We also know that e2 is

a value such that Γ ⊢
S
e2 : t

′. Then, by Lemma A.25, Γ ⊢
S
e3[e2/x] : t.

Case Ts-Pair We have

Γ ⊢
S
(e1, e2) : t1 × t2 Γ ⊢

S
e1 : t1 Γ ⊢

S
e2 : t2 .

(e1, e2)  e′ occurs either because e1  e′1 and e′ = (e′1, e2), or because e1 is a value,
e2  e′2, and e′ = (e1, e

′
2). In either case, the induction hypothesis allows us to derive that

the type of the component that reduces is preserved; therefore, we can apply Ts-Pair again to
conclude.

Case Ts-Tag Analogously to the previous case, a variant expression only reduces if its argument
does, so we apply the induction hypothesis and Ts-Tag to conclude.
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R-Fix
Y (λx. e)  e[Y (λx. e)/x]

Tk-Fix
K; Γ ⊢

K
e : τ → τ

K; Γ ⊢
K
Y e : τ

Ts-Fix
Γ ⊢

S
e : t → t

Γ ⊢
S
Y e : t

Figure 11. Rules for the fixed-point combinator.

Case Ts-Match We have

Γ ⊢
S
match e0 with (pi → ei)i∈I : t

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γ, genΓ(ti//pi) ⊢S ei : t
′
i t =

∨

i∈I t
′
i .

The reduction match e0 with (pi → ei)i∈I  e′ occurs either because e0  e′0 and
e′ = match e′0 with (pi → ei)i∈I or because e0 is a value and e′ = ejς , where e0/pj = ς and,
for all i < j, e0/pi = Ω. In the former case, we apply the induction hypothesis and conclude
by Ts-Match.

In the latter case, ς is a substitution from the capture variables of pj to values. We can derive

Γ ⊢
S
e0 : *pj+ ∀i < j. Γ ⊢

S
e0 : ¬*pi+

by Lemma A.15 and thence Γ ⊢
S
e0 : tj by Lemma A.14. Therefore, by Lemma A.17, we have

that, for all x ∈ capt(pj), Γ ⊢
S
xς : (tj//pj)(x). Let Γ′ = tj//pj .

We show that, additionally, Γ ⊢
S
xς : tx holds for every tx ∈ inst(genΓ(Γ

′(x))). Every such
tx is equal to Γ′(x)θ for a θ such that dom(θ) ⊆ var(Γ′(x))\mvar(Γ). Then, Γ ⊢

S
xς : Γ′(x)θ

holds by Corollary A.24, since dom(θ) ∩ mvar(Γ) = ∅ (the substitution does not change any
meaningful variable of Γ).

From Γ, genΓ(Γ
′) ⊢

S
ej : t

′
j and from the fact that we have Γ ⊢

S
xς : tx for all x ∈ capt(pj)

and all tx ∈ inst(genΓ(Γ
′(x))), we derive Γ ⊢

S
ejς : t

′
j by Lemma A.25 and then conclude by

subsumption.

Case Ts-Subsum Straightforward application of the induction hypothesis.

Corollary A.28 (Type soundness). Let e be a well-typed, closed expression, that is, such that
∅ ⊢

S
e : t holds for some t. Then, either e diverges or it reduces to a value v such that ∅ ⊢

S
v : t.

Proof. Consequence of Theorem A.26 and Theorem A.27.

A.3.3 Completeness of S with respect to K

In the proof of completeness, we consider a calculus and type systems extended with the addition
of a fixed-point combinator Y: this simplifies the proof (as it allows us to assume that all arrow
types are inhabited) and it would be desirable anyway in order to use the system in pratice. We add
a new production Y e to the grammar defining expressions, a new production YE to the grammar
of evaluation contexts, and the new reduction rule R-Fix in Figure 11. We extend K and S with the
addition, respectively, of the rules Tk-Fix and Ts-Fix in Figure 11.

As mentioned in Section 4.3, we prove completeness of S with respect to K using inductive
techniques which do not account for the presence of recursion in kinds: we therefore have to restrict
ourselves to only consider kinding environments which do not feature recursion, (the non-recursive
environments defined below). We conjecture that coinductive techniques could be used instead to
prove the result for general kinding environments.

Definition A.35 (Non-recursive kinding environments). We say that a kinding environment K is
non-recursive if, for all α such that K(α) = (L, U, T ), we have α /∈

⋃

t̀ag : τ∈T varK(τ ).

Definition A.36. We define a function w which, given a k-type τ in a non-recursive kinding
environment K, yields the measure w(τ,K) of τ in K. It is defined by the following equations.

w(α,K) =

{

1 +
∑

t̀ag : τ∈T w(τ,K) if K(α) = (L, U, T )

1 otherwise

w(b,K) = 1

w(τ1 → τ2,K) = w(τ1,K) + w(τ2,K) + 1

w(τ1 × τ2,K) = w(τ1,K) + w(τ2,K) + 1

Definition A.37 (Translation of types). Given a k-type τ in a non-recursive kinding environment
K, its translation is the s-type JτKK defined inductively by the rules in Figure 12.

33



JαKK =

{

α if K(α) = •

(lowK(L, T ) ∨ α) ∧ uppK(U,T ) if K(α) = (L,U, T )

JbKK = b

Jτ1 → τ2KK = Jτ1KK → Jτ2KK

Jτ1 × τ2KK = Jτ1KK × Jτ2KK

where:

lowK(L, T ) =
∨

t̀ag∈L t̀ag(
∧

t̀ag : τ∈T JτKK)

uppK(U, T ) =

{∨

t̀ag∈U t̀ag(
∧

t̀ag : τ∈T JτKK) if U 6= L
∨

t̀ag∈dom(T ) t̀ag(
∧

t̀ag : τ∈T JτKK) ∨ (1V \
∨

t̀ag∈dom(T ) t̀ag(1)) if U = L

Figure 12. Translation of k-types to s-types.

We define the translation of type schemes as J∀A.K′ ⊲ τKK = ∀A. JτKK,K′ and of type
environments by translating each type scheme pointwise.

Lemma A.29. For any k-type τ in a non-recursive kinding environment K, we have var(JτKK) ⊆
varK(τ ). Likewise, for any k-scheme σ and k-type environment Γ, we have var(JσKK) ⊆ varK(σ)
and var(JΓKK) ⊆ varK(Γ).

Proof. The translation does not introduce new variables, therefore we can show var(JτKK) ⊆
varK(τ ) by induction on w(τ,K). We extend this straightforwardly to type schemes and envi-
ronments.

Lemma A.30. Let p be a pattern and t ≤ *p+ an s-type. If K ⊢ p : τ ⇒ Γ and t ≤ JτKK , then,
for all x ∈ capt(p), (t//p)(x) ≤ JΓ(x)KK .

Proof. By structural induction on p.

Cases p = and p = c There is nothing to prove since capt(p) = ∅.

Case p = x We have

K ⊢ p : τ ⇒ {x : τ} t//x = {x : t}

and must prove {x : t}(x) ≤ J{x : τ}(x)KK , that is, t ≤ JτKK , which is true by hypothesis.

Case p = (p1, p2) We have

K ⊢ p : τ1 × τ2 ⇒ Γ Γ = Γ1 ∪ Γ2 ∀i. K ⊢ pi : τi ⇒ Γi

t//p = π1(t)//p1 ∪ π2(t)//p2 .

Since t ≤ Jτ1KK × Jτ2KK , by Property A.31 we have πi(t) ≤ JτiKK . Likewise, πi(t) ≤
*pi+. We apply the induction hypothesis to conclude.

Case p = t̀ag(p1) We have

K ⊢ p : α ⇒ Γ K ⊢ p1 : τ1 ⇒ Γ

K(α) = (L,U, T ) ( t̀ag ∈ U implies t̀ag : τ1 ∈ T ) t//p = π t̀ag(t)//p1 .

Since t ≤ * t̀ag(p1)+ = t̀ag(*p1+), by Property A.32 we have π t̀ag(t) ≤ *p1+. We next
prove π t̀ag(t) ≤ Jτ1KK , which allows us to apply the induction hypothesis and conclude.

The translation of α is JαKK = (lowK(L, T ) ∨ α) ∧ uppK(U, T ). We have t ≤ JαKK
and hence t ≤ uppK(U,T ). Since t ≤ t̀ag(1), t ≤ uppK(U, T ) ∧ t̀ag(1). We distribute the
intersection over the summands of uppK(U, T ), which is a union.

If t̀ag /∈ U (in which case U 6= L), then all summands have the form t̀ag1(τ
′) and for each

t̀ag1 we have t̀ag1 6= t̀ag: hence, the intersection is empty and thus we have t ≤ 0 ≃ t̀ag(0).
Then π t̀ag(t) ≤ 0 ≤ Jτ1KK .

If t̀ag ∈ U , then necessarily t̀ag ∈ dom(T ) holds as well. In that case the intersection
uppK(U,T )∧ t̀ag(1) is equivalent to t̀ag(

∧

t̀ag : τ ′∈T Jτ ′KK). Hence t ≤ t̀ag(
∧

t̀ag : τ ′∈T Jτ ′KK)

and π t̀ag(t) ≤
∧

t̀ag : τ ′∈T Jτ ′KK . Since t̀ag : τ1 ∈ T ,
∧

t̀ag : τ ′∈T Jτ ′KK ≤ Jτ1KK , from which

follows π t̀ag(t) ≤ Jτ1KK .

Case p = p1&p2 We directly apply the induction hypothesis to both sub-patterns and conclude.
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Case p = p1|p2 We have

K ⊢ p : τ ⇒ Γ ∀i. K ⊢ pi : τ ⇒ Γ

t//p = (t ∧ *p1+)//p1 ∨∨ (t \ *p1+)//p2 .

Since t ∧ *p1+ and t \ *p1+ are subtypes of t, they are also subtypes of JτKK . We can apply
the induction hypothesis and, for each x, derive both that (t ∧ *p1+//p1)(x) ≤ JΓ(x)KK and
that (t \ *p1+//p2)(x) ≤ JΓ(x)KK . Hence, (t//p)(x) ≤ JΓ(x)KK .

Lemma A.31 (Translation of type substitutions). Let K, K′ be two non-recursive kinding environ-
ments such that dom(K′) ∩ (dom(K) ∪ var∅(K)) = ∅. Let θ be a k-type substitution such that
dom(θ) ⊆ dom(K′) and K,K′ ⊢ θ : K.

Let θ′ be the s-type substitution defined as [ JαθKK/α | α ∈ dom(K′) ]. For every k-type τ , we
have JτKK,K′θ′ ≃ JτθKK .

Proof. By complete induction on w(τ, (K,K′)). We proceed by cases on τ and assume that the
lemma holds for all τ ′ such that w(τ ′, (K,K′)) < w(τ, (K,K′)).

Case τ = α, with (K,K′)(α) = • We have JαKK,K′ = α, hence JαKK,K′θ′ = αθ′. Either

α ∈ dom(K) or α ∈ dom(K′) (the domains are disjoint). In the former case, αθ = α and
αθ′ = α. Thus we have JαKK,K′θ′ = α = JαθKK . In the latter, αθ′ = JαθKK holds by

definition of θ′.

Case τ = α, with K(α) = (L,U, T ) and α /∈ dom(K′) We have JαKK,K′ = JαKK because no

variable in the kind of α is in dom(K′). For the same reason, since the translation does not add
variables, JαKK,K′θ′ = JαKK . Additionally, αθ = α, so also JαθKK = JαKK .

Case τ = α, with K′(α) = (L′, U ′, T ′) Because K,K′ ⊢ θ : K, we know that αθ is some
variable β such that K(β) = (L, U, T ) and (L,U, T ) � (L′, U ′, T ′θ).

We have

JαθKK = JβKK = (lowK(L, T ) ∨ β) ∧ uppK(U, T )

and

JαKK,K′θ′ =
(

(lowK,K′ (L′, T ′) ∨ α) ∧ uppK,K′(U
′, T ′)

)

θ′

= (lowK,K′ (L′, T ′)θ′ ∨ αθ′) ∧ uppK,K′(U
′, T ′)θ′

=
(

lowK,K′ (L′, T ′)θ′ ∨
(

(lowK(L, T ) ∨ β) ∧ uppK(U,T )
)

)

∧ uppK,K′(U
′, T ′)θ′ .

Let us define

l = lowK(L, T ) u = uppK(U, T )

l′ = lowK,K′ (L′, T ′)θ′ u′ = uppK,K′(U
′, T ′)θ′

and assume that the following hold (we prove them below):

l ≤ u l′ ≤ u′ l′ ≤ l u ≤ u′ .

Then we have also l′ ≤ u by transitivity. Whenever t ≤ t′, we have t ∧ t′ ≃ t and t ∨ t′ ≃ t′.
Thus we have the following equivalences:

JαKK,K′θ′ = (l′ ∨ ((l ∨ β) ∧ u)) ∧ u′

≃ (l′ ∧ u′) ∨ ((l ∨ β) ∧ u ∧ u′) distributivity

≃ l′ ∨ ((l ∨ β) ∧ u) l′ ≤ u′
and u ≤ u′

≃ (l′ ∨ l ∨ β) ∧ (l′ ∨ u) distributivity

≃ (l ∨ β) ∧ u l′ ≤ l and l′ ≤ u

by which we conclude.
We now prove our four assumptions. The first, l ≤ u, holds because L ⊆ U and

L ⊆ dom(T ): hence each branch of l appears in u as well. The second is analogous.
For the other assumptions, note that Jτ ′KK,K′θ′ ≃ Jτ ′θKK holds for all τ ′ in the range of

T ′. To prove l′ ≤ l, note that L′ ⊆ L and T ′θ ⊆ T . In l′, we distribute the application of
θ′ over all the summands of the union and inside all variant type constructors. Then, we show
t̀ag(

∧

t̀ag : τ ′∈T ′Jτ
′KK,K′θ′) ≤ l for each t̀ag ∈ L′. We have t̀ag(

∧

t̀ag : τ ′∈T ′Jτ
′KK,K′θ′) ≃

t̀ag(
∧

t̀ag : τ ′∈T ′Jτ
′θKK) = t̀ag(

∧

t̀ag : τ ′θ∈T ′θJτ
′θKK). Since L′ ⊆ L, there is a summand of

l with the same tag. Since t̀ag is in the lower bound, it has a single type in both T and T ′ and,
since T ′θ ⊆ T , the type it has in T must be τ ′θ.

To prove u ≤ u′, note that U ⊆ U ′. If U = L, then U ′ = L. Then both u and u′ are unions
of two types: the union of tags mentioned respectively in T and T ′ and the rest. For each t̀ag, if
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t̀ag /∈ dom(T ), then t̀ag /∈ dom(T ′), in which case both u and u′ admit it with any argument
type. If t̀ag ∈ dom(T ), either t̀ag ∈ dom(T ′) or not. In the former case, u admits a smaller
argument type than u′ because T ′θ ⊆ T . The same occurs in the latter case, since u′ admits
t̀ag with any argument type.

If U 6= L, then U ′ could be L or not. In either case we can prove, for each t̀ag ∈ U , that u′

admits t̀ag with a larger argument type than u does.

Case τ = b Straightforward, since a basic type is translated into itself and is never affected by
substitutions.

Case τ = τ1 → τ2 By the induction hypothesis we have JτiKK,K′θ′ ≃ JτiθKK for both i. Then

Jτ1 → τ2KK,K′θ′ = (Jτ1KK,K′θ′) → (Jτ2KK,K′θ′) ≃ Jτ1θKK → Jτ2θKK

= J(τ1θ) → (τ2θ)KK = J(τ1 → τ2)θKK .

Case τ = τ1 × τ2 Analogous to the previous case.

Lemma A.32. If ∅ ⊢
S
v : JτKK , then there exists a value v′ such that K;∅ ⊢

K
v′ : τ and, for every

pattern p, v/p = Ω ⇐⇒ v′/p = Ω.

Proof. By structural induction on v.
Note that values are always typed by an application of the typing rule corresponding to

their form (Ts-Const, Ts-Abstr, Ts-Pair, or Ts-Tag) to appropriate premises, possibly followed by
applications of Ts-Subsum. Hence, if ∅ ⊢

S
v : t, there is a type t′ ≤ t such that ∅ ⊢

S
v : t′ and that

the last typing rule used to derive ∅ ⊢
S
v : t′ is one of the four above, given by the form of v.

Case v = c We have JτKK ≥ c. Hence τ = bc, as the translation of any other τ is disjoint from
c. Then we can take v′ = v.

Case v = (v1, v2) We have JτKK ≥ t1 × t2 for some t1 and t2. Hence τ = τ1 × τ2: any other
τ would translate to a type disjoint from all products. Therefore ∅ ⊢

S
v : Jτ1KK × Jτ2KK . By

Lemma A.12 we have ∅ ⊢
S
vi : JτiKK for both i; then by the induction hypothesis we find v′i

for both i and let v′ = (v′1, v
′
2).

Case v = t̀ag(v1) We have JτKK ≥ t̀ag(t1) and ∅ ⊢
S
v : t̀ag(t1) for some t1 � 0 (since t1

types the value v1). Therefore, by the same reasoning as above, τ = α with K(α) = (L,U, T ).
Since JτKK ≥ t̀ag(t1), we have t̀ag ∈ L and therefore t̀ag : τ1 ∈ T for some τ1 such that
t1 ≤ Jτ1KK . Then we have ∅ ⊢

S
v1 : Jτ1KK ; we may apply the induction hypothesis to find a

value v′1 and let v′ = t̀ag(v′1).

Case v = λx. e Note that an abstraction is only accepted by patterns which accept any value, so
any two abstractions fail to match exactly the same patterns.

We have ∅ ⊢
S
v : t1 → t2 for some t1 → t2 ≤ JτKK . Hence we know τ is of the

form τ1 → τ2; thus we have ∅ ⊢
S
v : Jτ1KK → Jτ2KK . We take v′ to be the function

λx. Y (λf. λx. f x) x, which never terminates and can be assigned any arrow type.

Lemma A.33. Let K be a kinding environment, τ a k-type, and P a set of patterns. If τ 4K P ,
then JτKK ≤

∨

p∈P *p+.

Proof. By contradiction, assume that τ 4K P holds but JτKK �
∨

p∈P *p+. The latter condition

implies that there exists a value v in the interpretation of JτKK which is not in the interpretation
of

∨

p∈P *p+. Because the definition of accepted type is exact with respect to the semantics of

pattern matching, we have v/p = Ω for all p ∈ P . We also have ∅ ⊢
S
v : JτKK since v is in

the interpretation of that type (typing is complete with respect to the interpretation if we restrict
ourselves to translations of k-types).

By Lemma A.32, from v we can build a value v′ such that K;∅ ⊢
K
v′ : τ and, for every pattern

p, v/p = Ω ⇐⇒ v′/p = Ω. We reach a contradiction, since τ 4K P and K;∅ ⊢
K
v′ : τ imply

that there exists a p ∈ P such that v′/p 6= Ω, whereas we have v/p = Ω for all p ∈ P .

Theorem A.34 (Preservation of typing). Let e be an expression, K a non-recursive kinding
environment, Γ a k-type environment, and τ a k-type. If K; Γ ⊢

K
e : τ , then JΓKK ⊢

S
e : JτKK .

Proof. By induction on the derivation of K; Γ ⊢
K
e : τ . We reason by cases on the last applied rule.

Case Tk-Var We have

K; Γ ⊢
K
x : τ τ ∈ instK(Γ(x)) hence

Γ(x) = ∀A.Kx ⊲ τx τ = τxθ dom(θ) ⊆ A K,Kx ⊢ θ : K
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and must show JΓKK ⊢
S
x : JτKK . Since JΓKK(x) = ∀A. JτxKK,Kx

, by Ts-Var we can derive
JτxKK,Kx

θ′ for any s-type substitution θ′ with dom(θ′) ⊆ A.
Consider the s-type substitution θ′ = [ JαθKK/α | α ∈ A ]. We have JτxKK,Kx

θ′ ≃ JτxθKK
by Lemma A.31 (we can assume the conditions on the domain of Kx to hold by renaming the
variables in A). Hence, we derive JτxKK,Kx

θ′ by Ts-Var and then JτxθKK by subsumption.

Case Tk-Const We have

K; Γ ⊢
K
c : bc JbcKK = bc

and may derive JΓKK ⊢
S
c : c by Ts-Const and JΓKK ⊢

S
c : bc by subsumption.

Case Tk-Abstr We have

K; Γ ⊢
K
λx. e1 : τ1 → τ2 K; Γ, {x : τ1} ⊢

K
e1 : τ2 Jτ1 → τ2KK = Jτ1KK → Jτ2KK .

By the induction hypothesis we derive JΓKK , {x : Jτ1KK} ⊢
S
e1 : Jτ2KK , then we apply Ts-

Abstr.

Cases Tk-Appl, Tk-Pair, and Tk-Fix Straightforward application of the induction hypothesis.

Case Tk-Tag We have

K; Γ ⊢
K

t̀ag(e1) : α K; Γ ⊢
K
e1 : τ1 K(α) = (L,U, T ) t̀ag ∈ L t̀ag : τ1 ∈ T

JαKK = (lowK(L, T ) ∨ α) ∧ uppK(U, T ) .

We derive JΓKK ⊢
S
e1 : Jτ1KK by the induction hypothesis, then JΓKK ⊢

S
t̀ag(e1) : t̀ag(Jτ1KK)

by Ts-Tag. We show that t̀ag(Jτ1KK) ≤ JαKK holds: hence, we may derive the supertype by
subsumption.

Since t̀ag ∈ L and hence t̀ag ∈ dom(T ), both lowK(L, T ) and uppK(U, T ) contain a
summand t̀ag(

∧

t̀ag : τ ′∈T Jτ ′KK). Since t̀ag : τ1 ∈ T and no other type may be associated to

t̀ag, the intersection has a single factor Jτ1KK . Thus we have both t̀ag(Jτ1KK) ≤ lowK(L, T )
and t̀ag(Jτ1KK) ≤ uppK(U, T ); hence, t̀ag(Jτ1KK) ≤ JαKK .

Case Tk-Match We have

K; Γ ⊢
K
match e0 with (pi → ei)i∈I : τ

K; Γ ⊢
K
e0 : τ0 τ0 4K { pi | i ∈ I }

∀i ∈ I. K ⊢ pi : τ0 ⇒ Γi K; Γ, genK;Γ(Γi) ⊢K ei : τ

and must show

JΓKK ⊢
S
match e0 with (pi → ei)i∈I : JτKK

which we prove by establishing, for some types t0 and ti, t
′
i for each i, that

JΓKK ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. JΓKK , genJΓKK
(ti//pi) ⊢S ei : t

′
i

∨

i∈I t
′
i ≤ JτKK .

and then applying Ts-Match, followed by Ts-Subsum if necessary.
By the induction hypothesis we derive JΓKK ⊢

S
e0 : Jτ0KK and hence have t0 = Jτ0KK . By

Lemma A.33, we have t0 ≤
∨

i∈I*pi+. For every branch, ti ≤ t0 and ti ≤ *pi+: therefore, we

can apply Lemma A.30 and derive that (ti//pi)(x) ≤ JΓi(x)KK holds for every x ∈ capt(pi).
For each branch, we derive JΓKK , JgenK;Γ(Γi)KK ⊢

S
ei : JτKK by the induction hypothesis.

We derive JΓKK , genJΓKK
(ti//pi) ⊢S ei : JτKK by Lemma A.22 by proving JΓKK , genJΓKK

(ti//pi) ⊑
JΓKK , JgenK;Γ(Γi)KK and mvar(JΓKK , genJΓKK

(ti//pi)) ⊆ mvar(JΓKK , JgenK;Γ(Γi)KK).
The latter is straightforward. For the former, for each x ∈ capt(pi)—say Γi(x) = τx and
(ti//pi)(x) = tx—we must show genJΓKK

(tx) ⊑ JgenK;Γ(τx)KK . This holds because

tx ≤ JτxKK and because, by Lemma A.29, var(JΓKK) ⊆ varK(Γ).
We can thus choose t′i = JτKK for all branches, satisfying

∨

i∈I t
′
i ≤ JτKK .

A.4 Type reconstruction

A.4.1 Definition of type reconstruction for S

Definition A.38 (Constraints). A constraint c is a term inductively generated by the following
grammar:

c ::= t ≤̇ t | x ≤̇ t | def Γ in C | let [C](Γi in Ci)i∈I

where C ranges over constraint sets, that is, finite sets of constraints, and where the range of
every type environment Γ in constraints of the form def or let only contains types (i.e., trivial type
schemes).

We give different definitions of constraint generation and rewriting here than those in Section 5,
because we keep track explicitly of the new variables introduced during the derivation, rather than
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t/// ⇒∅ (∅,∅) t///x ⇒∅ ({x : t},∅) t///c ⇒∅ (∅,∅)

α1///p1 ⇒A1
(Γ1, C1) α2///p2 ⇒A2

(Γ2, C2)

t///(p1, p2) ⇒A1⊎A2⊎{α1,α2} (Γ1 ∪ Γ2, C1 ∪ C2 ∪ {t ≤̇ α1 × α2})
A1, A2, α1, α2 ♯ t

α///p ⇒A (Γ, C)

t/// t̀ag(p) ⇒A⊎{α} (Γ, C ∪ {t ≤̇ t̀ag(α)})
A,α ♯ t

t///p1 ⇒A1
(Γ1, C1) t///p2 ⇒A2

(Γ2, C2)

t///p1&p2 ⇒A1⊎A2
(Γ1 ∪ Γ2, C1 ∪ C2)

(t ∧ *p1+)///p1 ⇒A1
(Γ1, C1) (t \ *p1+)///p2 ⇒A2

(Γ2, C2)

t///p1|p2 ⇒A1⊎A2
({x : Γ1(x) ∨ Γ2(x) | x ∈ capt(p1) }, C1 ∪ C2)

Figure 13. Constraint generation for pattern environments.

TRs-Var
x : t ⇒∅ {x ≤̇ t}

TRs-Const
c : t ⇒∅ {c ≤̇ t}

TRs-Abstr
e : β ⇒A C

λx. e : t ⇒A⊎{α,β} {def {x : α} in C, α → β ≤̇ t}
A, α, β ♯ t

TRs-Appl
e1 : α → β ⇒A1

C1 e2 : α ⇒A2
C2

e1 e2 : t ⇒A1⊎A2⊎{α,β} C1 ∪ C2 ∪ {β ≤̇ t}
A1, A2, α, β ♯ t

TRs-Pair
e1 : α1 ⇒A1

C1 e2 : α2 ⇒A2
C2

(e1, e2) : t ⇒A1⊎A2⊎{α1,α2} C1 ∪ C2 ∪ {α1 × α2 ≤̇ t}
A1, A2, α1, α2 ♯ t

TRs-Tag
e : α ⇒A C

t̀ag(e) : t ⇒A⊎{α} C ∪ { t̀ag(α) ≤̇ t}
A,α ♯ t

TRs-Match

e0 : α ⇒A0
C0 ti = (α \

∨

j<i*pj+) ∧ *pi+

∀i ∈ I ti///pi ⇒Ai
(Γi, Ci) ei : β ⇒A′

i
C′

i

C′
0 = C0 ∪ (

⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+}
A = A0 ⊎ (

⊎

i∈I Ai) ⊎ (
⊎

i∈I A
′
i) ⊎ {α, β}

match e0 with (pi → ei)i∈I : t ⇒A {let [C′
0](Γi in C′

i)i∈I , β ≤̇ t}
A ♯ t

Figure 14. Constraint generation rules with explicit variable introduction.

informally requiring them to be fresh. For instance, in e : t ⇒A C, A is the set of variables which
appear in C but not in t. We will omit it for soundness proofs, where it is not relevant.

We use the symbol ⊎ to denote the union of two disjoint sets. Therefore, when we write A1⊎A2,
we require A1 and A2 to be disjoint. When we require this for sets of type variables, the condition
is always satisfiable by an appropriate choice of variables, since there is an infinite supply to choose
from.

Definition A.39 (Freshness). We say that a type variable α is fresh with respect to a set of type
variables A, and write α ♯ A, if α /∈ A. We write A ♯ A′ if ∀α ∈ A. α ♯ A′.

We extend this to define freshness with respect to types, type environments, and type substitu-
tions: we write α ♯ t if α ♯ var(t), α ♯ Γ if α ♯ var(Γ), and α ♯ θ if α ♯ (dom(θ) ∪ var(θ)).

Definition A.40 (Environment generation for pattern matching). The environment generation
relation for pattern matching t///p ⇒A (Γ, C) is defined by the rules in Figure 13.

Definition A.41 (Constraint generation). The constraint generation relation e : t ⇒A C is defined
by the rules in Figure 14.
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∀i ∈ I Γ ⊢ ci  Ai
Di

Γ ⊢ { ci | i ∈ I } ⊎
i∈I

Ai

⋃

i∈I Di Γ ⊢ t ≤̇ t′  ∅ {t ≤̇ t′}

Γ(x) = ∀{α1, . . . , αn}. tx

Γ ⊢ x ≤̇ t {β1,...,βn} {tx[β1/α1, . . . , βn/αn] ≤̇ t}

Γ,Γ′ ⊢ C  A D

Γ ⊢ def Γ′
in C  A D

Γ ⊢ C0  A0
D0 θ0 ∈ tally(D0)

∀i ∈ I Γ, genΓθ0
(Γiθ0) ⊢ Ci  Ai

Di

A = A0 ⊎ (
⊎

i∈I Ai) ⊎ var(θ0)

Γ ⊢ let [C0](Γi in Ci)i∈I  A equiv(θ0) ∪
⋃

i∈I Di

Figure 15. Constraint rewriting rules with explicit variable introduction.

Note that all rules include a constraint of the form (·) ≤̇ t. We add this constraint everywhere
to streamline the proofs; in practice, it can be dropped from TRs-Appl and TRs-Match by using
directly t instead of β to generate constraints for the sub-expressions.

Definition A.42 (Type-constraint set). A type-constraint set D is a set of constraints of the form

t ≤̇ t′, where t and t′ are types.
We say that a type substitution θ satisfies a type-constraint set D, written θ 
 D, if tθ ≤ t′θ

holds for every t ≤̇ t′ in D.

Definition A.43 (Equivalent type-constraint set). The equivalent type-constraint set equiv(θ) of a
type substitution θ is defined as

equiv(θ) =
⋃

α∈dom(θ){α ≤̇ αθ, αθ ≤̇ α} .

Definition A.44 (Constraint rewriting). The constraint rewriting relation Γ ⊢ c  A D between
type environments, constraints or constraint sets, and type-constraint sets is defined by the rules in
Figure 15.

Definition A.45 (Tallying problem). Let D be a type-constraint set. A type substitution θ is a
solution to the tallying problem of D if it satisfies D, that is, if θ 
 D.

Property A.46 (Tallying algorithm). There exists a terminating algorithm tally such that, for any
type-constraint set D, tally(D) is a finite, possibly empty, set of type substitutions.

Theorem A.35 (Soundness and completeness of tally). Let D be a type-constraint set. For any
type substitution θ:

• if θ ∈ tally(D), then θ 
 D;

• if θ 
 D, then ∃θ′ ∈ tally(D), θ′′. ∀α /∈ var(θ′). αθ ≃ αθ′θ′′.

Furthermore, if θ ∈ tally(D), then dom(θ) is the set of variables appearing in D and var(θ) is
a set of fresh variables of the same cardinality. In the completeness property above, for θ′′ we can
take θ ∪ θ′′′ where dom(θ′′′) = var(θ′).

A.4.2 Properties of type reconstruction for S

Lemma A.36. Given a constraint set C, we write var(C) for the set of variables appearing in it.
The following properties hold:

• whenever t///p ⇒A (Γ, C), we have var(C) ⊆ var(t) ∪A, var(Γ) ⊆ var(t) ∪A, and A ♯ t;
• whenever e : t ⇒A C, we have var(C) ⊆ var(t) ∪A and A ♯ t;
• whenever Γ ⊢ C  A D, we have var(D) ⊆ var(C) ∪ var(Γ) ∪A.

Proof. Straightforward proofs by induction on the derivations.

Lemma A.37 (Correctness of environment reconstruction). Let p be a pattern and t, t′ two types,
with t′ ≤ *p+. Let t///p ⇒ (Γ, C). If θ is a type substitution such that θ 
 C and t′ ≤ tθ, then,
for all x ∈ capt(p), (t′//p)(x) ≤ Γ(x)θ.

Proof. By structural induction on p.

Cases p = and p = c There is nothing to prove since capt(p) = ∅.

Case p = x We have

t///x ⇒ ({x : t},∅) (t′//x)(x) = t′

and must show t′ ≤ tθ, which we know by hypothesis.
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Case p = (p1, p2) We have

t///p ⇒ (Γ1 ∪ Γ2, C1 ∪ C2 ∪ {t ≤̇ α1 × α2}) ∀i. αi///pi ⇒ (Γi, Ci) .

Each x ∈ capt(p) is either in capt(p1) or in capt(p2). Let x ∈ capt(pi); then, we
must show (πi(t

′)//pi)(x) ≤ Γi(x)θ. This follows from the induction hypothesis, since
t′ ≤ tθ ≤ α1θ × α2θ implies πi(t

′) ≤ αiθ by Property A.31.

Case p = t̀ag(p1) We have

t/// t̀ag(p) ⇒ (Γ, C ∪ {t ≤̇ t̀ag(α)}) α///p ⇒ (Γ, C) .

Analogous to the previous case. We can apply the induction hypothesis, because t′ ≤ tθ ≤
t̀ag(α)θ implies π t̀ag(t

′) ≤ αθ by Property A.32.

Case p = p1&p2 Every x ∈ capt(p) is either in capt(p1) or in capt(p2). Let x ∈ capt(pi);
then, we apply the induction hypothesis to pi to conclude.

Case p = p1|p2 We have

t///p1|p2 ⇒ ({x : Γ1(x) ∨ Γ2(x) | x ∈ capt(p1) }, C1 ∪ C2)

(t ∧ *p1+)///p1 ⇒ (Γ1, C1) (t \ *p1+)///p2 ⇒ (Γ2, C2) .

By the induction hypothesis applied to both p1 and p2 we derive, for all x,

(t′ ∧ *p1+//p1)(x) ≤ Γ1(x)θ (t′ \ *p1+//p2)(x) ≤ Γ2(x)θ

from which we can conclude

(t′//p)(x) = (t′ ∧ *p1+//p1)(x) ∨ (t′ \ *p1+//p2)(x) ≤ Γ1(x)θ ∨ Γ2(x)θ .

Lemma A.38 (Precise solution to environment reconstruction constraints). Let p be a pattern, t a
type, and θ a type substitution such that tθ ≤ *p+. Let t///p ⇒A (Γ, C), with A ♯ dom(θ).

There exists a type substitution θ′ such that dom(θ′) = A, that (θ ∪ θ′) 
 C, and that, for all
x ∈ capt(p), Γ(x)(θ ∪ θ′) ≤ (tθ//p)(x).

Proof. By structural induction on p.

Cases p = and p = c In both cases we take θ′ = [ ].

Case p = x We have

t///x ⇒∅ ({x : t},∅) .

We take θ′ = [ ] and have t(θ ∪ θ′) ≤ tθ.

Case p = (p1, p2) We have

t///(p1, p2) ⇒A1⊎A2⊎{α1,α2} (Γ1 ∪ Γ2, C1 ∪ C2 ∪ {t ≤̇ α1 × α2})

α1///p1 ⇒A1
(Γ1, C1) α2///p2 ⇒A2

(Γ2, C2) A1, A2, α1, α2 ♯ t .

Let θ⋆ = θ ∪ [π1(tθ)/α1, π2(tθ)/α2]. We have tθ′ = tθ and tθ′ ≤ *(p1, p2)+ = *p1+× *p2+;
thus, by Property A.31, πi(tθ

′) ≤ *pi+. We also have Ai ♯ dom(θ⋆), αi for both i, since
{α1, α2} is disjoint from each Ai.

We can therefore apply the induction hypothesis to pi, αi, and θ⋆, for both i. We derive
from each that there is a substitution θ′i with domain Ai, such that (θ⋆ ∪ θ′i) 
 Ci and, for all
x ∈ capt(pi), Γi(x)(θ

⋆ ∪ θ′i) ≤ (αiθ
⋆//pi)(x).

We take θ′ = [π1(tθ)/α1, π2(tθ)/α2]∪ θ′1∪ θ′2. We have (θ∪ θ′) 
 C1∪C2∪{t ≤̇ α1×α2}
since it satisfies C1 and C2 and since tθ ≤ (α1 × α2)θ

′ = π1(tθ)× π2(tθ).

Case p = t̀ag(p1) We have

t/// t̀ag(p1) ⇒A1⊎{α} (Γ1, C1 ∪ {t ≤̇ t̀ag(α)}) α///p1 ⇒A1
(Γ1, C1) A1, α ♯ t .

Analogously to the previous case, we construct θ⋆ = θ∪ [π t̀ag(tθ)/α] and apply the induction
hypothesis to p1, α, and θ⋆. We derive θ′1 and take θ′ = [π t̀ag(tθ)/α] ∪ θ′1.

Case p = p1&p2 We have

t///p1&p2 ⇒A1⊎A2
(Γ1 ∪ Γ2, C1 ∪ C2) t///p1 ⇒A1

(Γ1, C1) t///p2 ⇒A2
(Γ2, C2) .

For both i, we apply the induction hypothesis to pi, t, and θ to derive θ′i. We take θ′ =
θ′1 ∪ θ′2.
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Case p = p1|p2 We have

t///p1|p2 ⇒A1⊎A2
({x : Γ1(x) ∨ Γ2(x) | x ∈ capt(x) }, C1 ∪ C2)

(t ∧ *p1+)///p1 ⇒A1
(Γ1, C1) (t \ *p1+)///p2 ⇒A2

(Γ2, C2) .

We apply the induction hypothesis to p1, t ∧ *p1+, and θ to derive θ′1. We apply it to p2,
t \ *p1+, and θ to derive θ′2; here, note that tθ ≤ *p1+ ∨ *p2+ implies tθ \ *p1+ ≤ *p2+.

We take θ′ = θ′1 ∪ θ′2. We have (θ ∪ θ′) 
 C since it satisfies C1 and C2. Furthermore, for
all x, we have Γ1(x)(θ ∪ θ′1) ≤ (tθ ∧ *p1+//p1)(x) and Γ2(x)(θ∪ θ′2) ≤ (tθ \ *p1+//p2)(x).
Then, Γ(x)(θ∪θ′) = Γ1(x)(θ∪θ′)∨Γ2(x)(θ∪θ′) = Γ1(x)(θ∪θ′1)∨Γ2(x)(θ∪θ′2), since A1

and A2 are disjoint and both are disjoint from var(t). Finally, Γ1(x)(θ∪θ′1)∨Γ2(x)(θ∪θ′2) ≤
(tθ//p)(x).

Theorem A.39 (Soundness of constraint generation and rewriting). Let e be an expression, t a
type, and Γ a type environment. If e : t ⇒ C, Γ ⊢ C  D, and θ 
 D, then Γθ ⊢

S
e : tθ.

Proof. By structural induction on e.

Case e = x We have

x : t ⇒ {x ≤̇ t}

Γ ⊢ {x ≤̇ t} {tx[β1/α1, . . . , βn/αn] ≤̇ t} Γ(x) = ∀{α1, . . . , αn}. tx .

Let A = {α1, . . . , αn}. By α-renaming we assume A ♯ θ; then we have (Γθ)(x) =
(∀A. tx)θ = ∀A. (txθ). Consider the substitution θx = [β1θ/α1, . . . , βnθ/αn]. It has domain
A, so we can derive Γθ ⊢

S
x : txθθx.

We show txθθx = tx[β1/α1, . . . , βn/αn]θ by showing αθθx = α[β1/α1, . . . , βn/αn]θ holds
for all α ∈ var(tx). Either α ∈ A or not. In the first case, α = αi for some i; then
αθθx = αθx = βiθ and α[β1/α1, . . . , βn/αn]θ = βiθ. In the latter, α 6= αi for all i; then
αθθx = αθ, since var(αθ) ∩ dom(θx) = ∅ and α[β1/α1, . . . , βn/αn]θ = αθ.

Therefore we derive Γθ ⊢
S

x : tx[β1/α1, . . . , βn/αn]θ by Ts-Var. Finally, since θ 

tx[β1/α1, . . . , βn/αn] ≤̇ t, we derive Γθ ⊢

S
x : tθ by subsumption.

Case e = c We have

c : t ⇒ {c ≤̇ t} Γ ⊢ {c ≤̇ t} {c ≤̇ t} .

Analogously to the previous case, we first apply Ts-Const and then conclude by subsumption.

Case e = λx. e1 We have

λx. e1 : t ⇒ {def {x : α} in C1, α → β ≤̇ t} e1 : β ⇒ C1

Γ ⊢ {def {x : α} in C1, α → β ≤̇ t} D1 ∪ {α → β ≤̇ t} Γ, {x : α} ⊢ C1  D1 .

By the induction hypothesis we derive Γθ, {x : αθ} ⊢
S
e1 : βθ. We apply Ts-Abstr to derive

Γθ ⊢
S
λx. e1 : (α → β)θ. Since θ 
 D, we have (α → β)θ ≤ tθ. Hence, we derive by

subsumption Γθ ⊢
S
λx. e1 : tθ.

Case e = e1 e2 We have

e1 e2 : t ⇒ C1 ∪ C2 ∪ {β ≤̇ t} e1 : α → β ⇒ C1 e2 : α ⇒ C2

Γ ⊢ C1 ∪ C2 ∪ {β ≤̇ t} D1 ∪D2 ∪ {β ≤̇ t} Γ ⊢ C1  D1 Γ ⊢ C2  D2 .

We derive Γθ ⊢
S
e1 : (αθ) → (βθ) and Γθ ⊢

S
e2 : αθ by the induction hypothesis. Then by

Ts-Appl we derive Γθ ⊢
S
e1 e2 : βθ, and finally—since βθ ≤ tθ—we conclude by subsumption.

Case e = (e1, e2) We have

(e1, e2) : t ⇒ C1 ∪ C2 ∪ {α1 × α2 ≤̇ t} e1 : α1 ⇒ C1 e2 : α2 ⇒ C2

Γ ⊢ C1 ∪ C2 ∪ {α1 × α2 ≤̇ t} D1 ∪D2 ∪ {α1 × α2 ≤̇ t}

Γ ⊢ C1  D1 Γ ⊢ C2  D2 .

We have Γθ ⊢
S
ei : αiθ for both i by the induction hypothesis. Then, we derive Γθ ⊢

S

(e1, e2) : (α1 × α2)θ by Ts-Pair, and finally conclude by subsumption.

Case e = t̀ag(e1) We have

t̀ag(e1) : t ⇒ C C = C1 ∪ { t̀ag(α) ≤̇ t} e1 : α ⇒ C1

Γ ⊢ C  D D = D1 ∪ { t̀ag(α) ≤̇ t} Γ ⊢ C1  D1 .

Analogous to the previous case. We apply the induction hypothesis, then Ts-Tag, then
subsumption.
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Case e = match e0 with (pi → ei)i∈I We have

match e0 with (pi → ei)i∈I : t ⇒ C

C = {let [C′
0](Γi in C′

i)i∈I , β ≤̇ t}

C′
0 = C0 ∪ (

⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+} e0 : α ⇒ C0

∀i ∈ I ti = (α \
∨

j<i*pj+) ∧ *pi+ ti///pi ⇒ (Γi, Ci) ei : β ⇒ C′
i

Γ ⊢ C  D

Γ ⊢ C′
0  D′

0 Γ ⊢ C0  D0 D′
0 = D0 ∪ (

⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+}

θ0 ∈ tally(D′
0) ∀i ∈ I. Γ, genΓθ0

(Γiθ0) ⊢ C′
i  D′

i

D = equiv(θ0) ∪ (
⋃

i∈I D
′
i) ∪ {β ≤̇ t}

and we must show Γθ ⊢
S
match e0 with (pi → ei)i∈I : tθ.

We prove it by establishing, for some types t̂0 and t̂i, t̂′i for each i, that

Γθ ⊢
S
e0 : t̂0 t̂0 ≤

∨

i∈I*pi+ t̂i = (t̂0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I. Γθ, genΓθ(t̂i//pi) ⊢S ei : t̂
′
i

∨

i∈I t̂
′
i ≤ tθ .

Since θ0 ∈ tally(D′
0), θ0 
 D′

0 and thus θ0 
 D0. Then, from

e0 : α ⇒ C0 Γ ⊢ C0  D0 θ0 
 D0

we derive Γθ0 ⊢
S
e0 : αθ0 by the induction hypothesis.

Let A = var(αθ0) \ mvar(Γθ0) = {α1, . . . , αn}. Let B = {β1, . . . , βn} be a set of type
variables such that B ♯ Γ, θ, θ0 and let θ⋆ = [β1/α1, . . . , βn/αn]. We derive Γθ0 ⊢

S
e0 : αθ0θ

⋆

by Corollary A.24, since θ⋆ does not act on meaningful variables of Γθ0. By Lemma A.23,
we derive Γθ0θ ⊢

S
e0 : αθ0θ

⋆θ; by Lemma A.22, Γθ ⊢
S
e0 : αθ0θ

⋆θ (we prove the required
premises below).

We take t̂0 = αθ0θ
⋆θ. We have αθ0θ

⋆θ ≤
∨

i∈I*pi+ because θ0 
 D′
0 implies αθ0 ≤

∨

i∈I*pi+ and because subtyping is preserved by substitutions (recall that the accepted types of

patterns are closed). We also have t̂i = tiθ0θ
⋆θ for all i.

For each branch i, from

ei : β ⇒ C′
i Γ, genΓθ0

(Γiθ0) ⊢ C′
i  D′

i θ 
 D′
i

we derive Γθ, (genΓθ0
(Γiθ0))θ ⊢

S
ei : βθ by the induction hypothesis. We derive by Lemma A.22

Γθ, genΓθ(t̂i//pi) ⊢
S
ei : βθ (we prove the premises below). Thus we have t̂′i = βθ for every

branch; we apply Ts-Match to derive Γθ ⊢
S
match e0 with (pi → ei)i∈I : βθ, then subsumption

to derive Γθ ⊢
S
match e0 with (pi → ei)i∈I : tθ.

Proof of Γθ ⊢
S
e0 : αθ0θ

⋆θ from Γθ0θ ⊢
S
e0 : αθ0θ

⋆θ To apply Lemma A.22, we must show

Γθ ⊑ Γθ0θ mvar(Γθ) ⊆ mvar(Γθ0θ) .

To prove Γθ ⊑ Γθ0θ, consider an arbitrary (x : ∀Ax. tx) ∈ Γ. By α-renaming, we assume
Ax ♯ θ, θ0; then, we must prove ∀Ax. txθ ⊑ ∀Ax. txθ0θ. For every γ, γθ ≃ γθ0θ since
θ 
 equiv(θ0). Hence, txθ ≃ txθ0θ.

Since txθ ≃ txθ0θ implies mvar(txθ) = mvar(txθ0θ) by Lemma A.19, this also shows
mvar(Γθ) ⊆ mvar(Γθ0θ).

Proof of Γθ, genΓθ(t̂i//pi) ⊢S ei : βθ from Γθ, (genΓθ0
(Γiθ0))θ ⊢

S
ei : βθ By Lemma A.22, we

can prove the result by showing

Γθ, genΓθ(t̂i//pi) ⊑ Γθ, (genΓθ0
(Γiθ0))θ

mvar(Γθ, genΓθ(t̂i//pi)) ⊆ mvar(Γθ, (genΓθ0
(Γiθ0))θ) .

The second condition is straightforward. For the first, we prove, for every x ∈ capt(pi),
genΓθ((t̂i//pi)(x)) ⊑ (genΓθ0

(Γiθ0(x)))θ. Let Γi(x) = tx. Then, genΓθ0
(Γiθ0(x)) =

∀A. txθ0, where A is var(αθ0) \ mvar(Γθ0) as defined above (not all variables in A appear
in txθ0, but schemes are defined disregarding useless quantification). By α-renaming, we have
genΓθ0

(Γiθ0(x)) = ∀B. txθ0θ
⋆ and, since B ♯ θ, (genΓθ0

(Γiθ0(x)))θ = ∀B. txθ0θ
⋆θ.

Since t̂i ≤ t̂0 = αθ0θ
⋆θ and since θ ◦ θ⋆ ◦ θ0 
 Ci (because θ0 
 Ci), by Lemma A.37

we have (t̂i//pi)(x) ≤ txθ0θ
⋆θ. Then, genΓθ((t̂i//pi)(x)) ⊑ ∀B. txθ0θ

⋆θ holds because all

variables in B may be quantified when generalizing (t̂i//pi)(x), since no βi appears in Γθ.

Theorem A.40 (Completeness of constraint generation and rewriting). Let e be an expression, t a
type, and Γ a type environment. Let θ be a type substitution such that Γθ ⊢

S
e : tθ.
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Let e : t ⇒A C, with A ♯ Γ, dom(θ). There exist a type-constraint set D, a set of fresh type
variables A′, and a type substitution θ′, with dom(θ′) = A ∪ A′, such that Γ ⊢ C  A′ D and
(θ ∪ θ′) 
 D.

Proof. By structural induction on e.

Case e = x We have

x : t ⇒∅ {x ≤̇ t}

Γθ ⊢
S
x : tθ (Γθ)(x) = ∀Ax. tx dom(θx) ⊆ Ax txθxθ ≤ tθ .

Given Ax = {α1, . . . , αn}, we pick a set A′ = {β1, . . . , βn} of fresh variables. Let

θ̂ = [ βi/αi | αi ∈ Ax ]. We have Γ ⊢ {x ≤̇ t} A′ {txθ̂ ≤̇ t}.

We pick θ′ = [ αiθxθ/βi | βi ∈ A′ ]. It remains to prove that (θ ∪ θ′) 
 {txθ̂ ≤̇ t}, that is,
that

txθ̂(θ ∪ θ′) ≤ t(θ ∪ θ′) = tθ

(the equality above holds because the variables in A′ are fresh).

We prove txθ̂(θ ∪ θ′) = txθxθ (from which we can conclude because txθxθ ≤ tθ). We

prove it by showing γθ̂(θ ∪ θ′) = γθxθ for every γ ∈ var(tx). If γ ∈ Ax, then γ = αi for

some i. Then, γθ̂ = βi and γθ̂(θ∪θ′) = αiθxθ. If γ /∈ Ax, then γθ̂(θ∪θ′) = γθ (the variables
θ′ is defined on do not appear in tx); likewise, γθxθ = γθ since θx is only defined on variables
in Ax.

Case e = c We have

c : t ⇒∅ {c ≤̇ t} Γθ ⊢
S
c : tθ c ≤ tθ .

We have Γ ⊢ {c ≤̇ t}  ∅ {c ≤̇ t}. Let θ′ = [ ]. We have (θ ∪ θ′) 
 {c ≤̇ t} because
cθ = c ≤ tθ.

Case e = λx. e1 We have

λx. e1 : t ⇒A1⊎{α,β} {def {x : α} in C1, α → β ≤̇ t} e1 : β ⇒A1
C1 A1, α, β ♯ t

Γθ ⊢
S
λx. e1 : tθ Γθ, {x : t1} ⊢

S
e1 : t2 t1 → t2 ≤ tθ .

Let θ⋆ = θ ∪ [t1/α, t2/β]. Note that Γθ⋆ = Γθ and tθ⋆ = tθ, because {α1, α2} ♯ Γ, t.
We have (Γ, {x : α})θ⋆ ⊢

S
e1 : βθ

⋆, e1 : β ⇒A1
C1, and A1 ♯ dom(θ⋆). By the induction

hypothesis, therefore, Γ, {x : α} ⊢ C1  A′
1
D1 and (θ⋆ ∪ θ′1) 
 D1, for some D1, A′

1, θ′1
such that dom(θ′1) = A1 ∪ A′

1 and that the variables in A′
1 are fresh.

Γ, {x : α} ⊢ C1  A′
1
D1 implies Γ ⊢ def {x : α} in C1  A′

1
D1. Hence, we have

Γ ⊢ C  A′
1
D = D1 ∪ {α → β ≤̇ t}. Let θ′ = [t1/α, t2/β] ∪ θ′1. It is defined on the correct

domain and it solves the constraints, since it solves D1 and since (α → β)θ′ = t1 → t2 ≤ tθ.

Case e = e1 e2 We have

e1 e2 : t ⇒A1⊎A2⊎{α,β} C1 ∪ C2 ∪ {β ≤̇ t}

e1 : α → β ⇒A1
C1 e2 : α ⇒A2

C2 A1, A2, α, β ♯ t

Γθ ⊢
S
e1 e2 : tθ Γθ ⊢

S
e1 : t1 → t2 Γθ ⊢

S
e2 : t1 t2 ≤ tθ .

Let θ⋆ = θ ∪ [t1/α, t2/β]. Note that Γθ⋆ = Γθ and tθ⋆ = tθ, since α, β ♯ Γ, t.
We have Γθ ⊢

S
e1 : (α → β)θ⋆, e1 : α → β ⇒A1

C1, and A1 ♯ dom(θ⋆). By the induction
hypothesis, therefore, Γ ⊢ C1  A′

1
D1 and (θ⋆ ∪ θ′1) 
 D1, for some D1 and θ′1 with

dom(θ′1) = A1 ∪A′
1.

Likewise, by applying the induction hypothesis to the derivation for e2, we derive Γ ⊢
C2  A′

2
D2 and (θ⋆ ∪ θ′2) 
 D2, for some D2 and θ′2 with dom(θ′2) = A2 ∪A′

2.

We can thus conclude that Γ ⊢ C  A′
1
∪A′

2
D = D1 ∪ D2 ∪ {β ≤̇ t}. Let θ′ =

[t1/α, t2/β] ∪ θ′1 ∪ θ′2. It is defined on the correct domain and θ ∪ θ′ solves the constraints:
it solves both D1 and D2, and β(θ ∪ θ′) = βθ′ = t2 ≤ tθ = t(θ ∪ θ′).

Case e = (e1, e2) We have

(e1, e2) : t ⇒A1⊎A2⊎{α1,α2} C1 ∪ C2 ∪ {α1 × α2 ≤̇ t}

e1 : α1 ⇒A1
C1 e2 : α2 ⇒A2

C2 A1, A2, α1, α2 ♯ t

Γθ ⊢
S
(e1, e2) : tθ Γθ ⊢

S
e1 : t1 Γθ ⊢

S
e2 : t2 t1 × t2 ≤ tθ .

Analogous to the previous case. We define θ⋆ = θ ∪ [t1/α1, t2/α2] and proceed as above.
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Case e = t̀ag(e1) We have

t̀ag(e1) : t ⇒A1⊎{α} C1 ∪ { t̀ag(α) ≤̇ t} e1 : α ⇒A1
C1 A1, α ♯ t

Γθ ⊢
S

t̀ag(e) : tθ Γθ ⊢
S
e1 : t1 t̀ag(t1) ≤ tθ .

Analogous to the two previous cases. Here we define θ⋆ = θ ∪ [t1/α].

Case e = match e0 with (pi → ei)i∈I We have

match e0 with (pi → ei)i∈I : t ⇒A {let [C′
0](Γi in C

′
i), β ≤̇ t}

e0 : α ⇒A0
C0 ti = (α \

∨

j<i*pj+) ∧ *pi+

∀i ∈ I ti///pi ⇒Ai
(Γi, Ci) ei : β ⇒A′

i
C′

i

C′
0 = C0 ∪ (

⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+}

A = A0 ⊎ (
⊎

i∈I Ai) ⊎ (
⊎

i∈I A
′
i) ⊎ {α, β}

Γθ ⊢
S
match e0 with (pi → ei)i∈I : tθ

Γθ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ t⋆i = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I Γθ, genΓθ(t
⋆
i //pi) ⊢S ei : t

′
i t′ =

∨

i∈I t
′
i ≤ tθ .

Let θ⋆ = θ ∪ [t0/α]. Then we have

e0 : α ⇒A0
C0 Γθ⋆ ⊢

S
e0 : αθ

⋆ A0 ♯ Γ, dom(θ⋆)

and, by the induction hypothesis, we find D0, A′
0 (containing fresh variables), and θ′0 such that

Γ ⊢ C0  A′
0
D0 θ⋆ ∪ θ′0 
 D0 dom(θ′0) = A0 ∪A′

0 .

From Γ ⊢ C0  A′
0
D0 we can derive

Γ ⊢ C′
0  A′

0
D′

0 = D0 ∪ (
⋃

i∈I Ci) ∪ {α ≤̇
∨

i∈I*pi+}

because subtyping constraints are always rewritten to themselves.
For each branch i, note that tiθ

⋆ = t⋆i . By Lemma A.38, we can find θ⋆i such that

dom(θ⋆i ) = Ai θ⋆ ∪ θ⋆i 
 Ci ∀x ∈ capt(pi). Γ(x)(θ⋆ ∪ θ⋆i ) ≤ (t⋆i //pi)(x) .

Note also that θ⋆ 
 α ≤̇
∨

i∈I*pi+. We therefore have θ⋆ ∪ θ′0 ∪ (
⋃

i∈I θ
⋆
i ) 
 D′

0. Let

θ⋆⋆ = θ⋆ ∪ θ′0 ∪ (
⋃

i∈I θ
⋆
i ).

By the properties of tallying, if var(D′
0) = {α1, . . . , αn} and given a set B = {α′

1, . . . , α
′
n}

of fresh variables, there exist two substitutions θ0 ∈ tally(D′
0) and θ′′0 such that

dom(θ0) = var(D′
0) var(θ0) = B dom(θ′′0 ) = B

∀γ /∈ var(θ0). γθ0(θ
⋆⋆ ∪ θ′′0 ) ≃ γθ⋆⋆ .

Let θ⊤ = θ⋆⋆ ∪ [t
′
/β] ∪ θ′′0 . To apply the induction hypothesis for a branch i, we need

ei : β ⇒A′
i
C′

i (Γ, genΓθ0
(Γiθ0))θ

⊤ ⊢
S
ei : βθ

⊤ A′
i ♯ Γ, genΓθ0

(Γiθ0), dom(θ⊤) .

We derive the typing judgment above by subsumption and by weakening (we prove the
premises below). As for the freshness condition, note that the variables in Γθ0 are all either in
Γ or in var(θ0); in the latter case, they are fresh by our choice of B.

By applying the induction hypothesis to each branch i, we therefore find Di, A
′′
i (of fresh

variables), and θ′i such that

Γ, genΓθ0
(Γiθ0) ⊢ C′

i  A′′
i
Di θ⊤ ∪ θ′i 
 Di dom(θ′i) = A′

i ∪A′′
i .

Hence, we have

Γθ ⊢ {let [C′
0](Γi in C′

i), β ≤̇ t} A′ equiv(θ0) ∪ (
⋃

i∈I Di) ∪ {β ≤̇ t} ,

where A′ = A′
0 ∪ (

⋃

i∈I A
′′
i ) ∪ var(θ0).

We take θ′ = [t0/α, t
′
/β] ∪ θ′0 ∪ (

⋃

i∈I θ
⋆
i ) ∪ θ′′0 ∪ (

⋃

i∈I θ
′
i). It has the correct domain; we

must only show

θ ∪ θ′ 
 equiv(θ0) ∪ (
⋃

i∈I Di) ∪ {β ≤̇ t} .

The last constraint is satisfied since β(θ ∪ θ′) = t′ ≤ tθ. Constraints in equiv(θ0) are of
the form α ≤ αθ0 or αθ0 ≤ α, for α ∈ dom(θ0). Since these α are not in var(θ0), we have

αθ0(θ
⋆⋆∪θ′′0 ) ≃ αθ⋆⋆ and hence αθ0(θ∪θ′) ≃ α(θ∪θ′). For each i, since θ⊤∪θ′i 
 Di, we

have also θ ∪ θ′ 
 Di (the other substitutions we add are not defined on the variables in Di).

Proof of (Γ, genΓθ0
(Γiθ0))θ

⊤ ⊢
S
ei : βθ

⊤ from Γθ, genΓθ(t
⋆
i //pi) ⊢S ei : t

′
i FromΓθ, genΓθ(t

⋆
i //pi) ⊢S

ei : t
′
i, we derive Γθ, genΓθ(t

⋆
i //pi) ⊢

S
ei : βθ

⊤ by subsumption, since t′i ≤ t′ = βθ⊤. We
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then apply Lemma A.22, which requires us to show the two premises

(Γ, genΓθ0
(Γiθ0))θ

⊤ ⊑ Γθ, genΓθ(t
⋆
i //pi)

mvar((Γ, genΓθ0
(Γiθ0))θ

⊤) ⊆ mvar(Γθ, genΓθ(t
⋆
i //pi)) .

Note that Γθ = Γθ⊤ since the two substitutions only differ on variables introduced by
constraint generation or tallying. Simplifying, we need to show

genΓθ0
(Γiθ0)θ

⊤ ⊑ genΓθ(t
⋆
i //pi) mvar((genΓθ0

(Γiθ0))θ
⊤) ⊆ mvar(Γθ) .

To prove the former, consider x ∈ capt(pi) and let Γi(x) = tx. We must show

genΓθ0
(txθ0)θ

⊤ ⊑ genΓθ((t
⋆
i //pi)(x)). We have

genΓθ0
(txθ0) = ∀Bx. txθ0 Bx = var(txθ0) \ mvar(Γθ0) .

Note that all variables in var(txθ0) are in var(θ0): this is because all variables in var(tx) occur
in D′

0 (α occurs in the exhaustiveness constraint, variables introduced by pattern environment
generation occur in Ci) and hence are in the domain of θ0. Then, Bx ⊆ B: its elements are
some of the α′

i in B. Consider a set B′
x = {α′′

i | α′
i ∈ Bx } of fresh variables and the renaming

θ̃ = [ α
′′
i/α′

i
| α′

i ∈ Bx ]: we have

genΓθ0
(txθ0) = ∀B′

x. txθ0θ̃ Bx = var(txθ0) \ mvar(Γθ0)

and, since the variables in B′
x are fresh,

(genΓθ0
(txθ0))θ

⊤ = ∀B′
x. txθ0θ̃θ

⊤ .

Consider an arbitrary instance (t⋆i //pi)(x)θ̂ of genΓθ((t
⋆
i //pi)(x)); we have dom(θ̂) ⊆

var((t⋆i //pi)(x))\mvar(Γθ). We must show that there exists an instance of (genΓθ0
(txθ0))θ

⊤

which is a subtype of it. We take the instance txθ0θ̃θ
⊤θ̌, with θ̌ = [ βiθ

⊤θ̂/β′
i
| β′

i ∈ B′
x ]. We

have txθ0θ̃θ
⊤θ̌ = txθ0θ

⊤θ̂: for each α′
i ∈ var(txθ0),

α′
iθ̃θ

⊤θ̌ = α′′
i θ

⊤θ̌ = α′′
i θ̌

(since all α′′
i are fresh), and α′′

i θ̌ = α′
iθ

⊤θ̂. We have txθ0θ
⊤θ̂ ≃ txθ

⊤θ̂ and txθ
⊤θ̂ ≤

(t⋆i //pi)(x)θ̂ since txθ
⊤ ≤ (t⋆i //pi)(x).

As for the condition on variables, we have mvar((genΓθ0
(Γiθ0))θ

⊤) ⊆ var((genΓθ0
(Γiθ0))θ

⊤).

Since var(genΓθ0
(Γiθ0)) ⊆ mvar(Γθ0), var((genΓθ0

(Γiθ0))θ
⊤) ⊆ mvar(Γθ0θ

⊤) =
mvar(Γθ).

A.5 Extensions

We give full definitions for the three variants of the S system that we have sketched in Section 6.

A.5.1 Overloaded functions

To remove the restriction on the use of intersection types for functions, we change the typing rule
Ts-Abstr: we allow the derivation of an intersection of arrow types for a λ-abstraction if each of
these types is derivable. The modified rule is the following.

Ts-Abstr
∀j ∈ J. Γ, {x : t′j} ⊢ e : tj

Γ ⊢ λx. e :
∧

j∈J t′j → tj

Furthermore, we change the typing rule for pattern matching so that redundant branches are
excluded from typing. This is necessary to use intersections effectively for pattern matching: in
practice, to be able to assign to a function defined by pattern matching one arrow type for each
branch.

Ts-Match

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I

{

t′i = 0 if ti ≤ 0

Γ, genΓ(ti//pi) ⊢S ei : t
′
i otherwise

Γ ⊢
S
match e0 with (pi → ei)i∈I :

∨

i∈I t
′
i

Finally, we also change the rule Ts-Var for variables: we allow a variable to be typed with any
intersection of instantiations, rather than just with a single instantiation.

Ts-Var
∀i ∈ I. ti ∈ inst(Γ(x))

Γ ⊢
S
x :

∧

i∈I ti

This allows us to instantiate type schemes which express parametric polymorphism (for instance,
∀α. α → α) into types which express ad hoc polymorphism (e.g., (bool → bool) ∧ (int → int)).
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A.5.2 Refining the type of expressions in pattern matching

The extension we present here improves the typing of pattern matching by introducing more precise
types for some variables in the matched expression when typing the branches. These refined types
take into account which patterns have been selected and which have not; they are introduced for
variables that appear in the matched expression, possibly below pairs or variant constructors, but
not inside applications or match constructs.

We reuse pattern environment generation to describe the derivation of these refined types.
However, we need to introduce a new production for patterns to use when translating expressions
to patterns:

p ::= · · · | 〈p, p〉 .

Patterns of the form 〈p, p〉 should not occur in programs; they are only for internal use in the type
system. Unlike normal pair patterns, these patterns may include repeated variables.

We need not define the dynamic semantics of these patterns, as it won’t be used. We define their
accepted type as *〈p1, p2〉+ = *p1+ × *p2+ and environment generation as

t//〈p1, p2〉 = π1(t)//p1 ∧∧ π2(t)//p2 ,

where ∧∧, defined as

(Γ ∧∧ Γ′)(x) =











Γ(x) if x ∈ dom(Γ) \ dom(Γ′)

Γ′(x) if x ∈ dom(Γ′) \ dom(Γ)

Γ(x) ∧ Γ′(x) if x ∈ dom(Γ) ∩ dom(Γ′)

is the pointwise intersection of type environments.
We define a translation L·M of expressions to patterns. It preserves variables and variants, converts

pairs to the new form, and turns everything else into a wildcard.

LeM =



















x if e = x

〈Le1M, Le2M〉 if e = (e1, e2)

t̀ag(Le1M) if e = t̀ag(e1)

otherwise

We change the typing rule for pattern matching as follows.

Ts-Match

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ∧ *Le0M+ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I Γ, genΓ(ti//Le0M), genΓ(ti//pi) ⊢S ei : t
′
i

Γ ⊢
S
match e0 with (pi → ei)i∈I :

∨

i∈I t
′
i

The main difference is the addition of the type environment genΓ(ti//Le0M) which provides
the refined types for the variables in Le0M. This environment is added before the usual one for the
pattern pi: hence, the capture variables of pi still take precedence.

We also add the requirement t0 ≤ *Le0M+ to ensure ti//*e0+ is well defined. This is not
restrictive because any well-typed e can be typed with a subtype of *LeM+.

A.5.3 Applicability to OCaml

We change the semantics of pattern matching to include undefined results. These occur when
matching constants of different basic types or when matching different constructors (for instance,
a constant and a pair). We use the following definition.

Definition A.47 (Semantics of pattern matching). We write v/p for the result of matching a value
v against a pattern p. We have either v/p = ς , where ς is a substitution defined on the variables in
capt(p), v/p = Ω, or v/p = ℧. In the first case, we say that v matches p (or that p accepts v); in
the second, we say that matching fails; in the third, we say that it is undefined.

The definition of v/p is given inductively in Figure 16.

Recall that the function b(·) (used here for v/c) assigns a basic type bc to each constant c.
The notions of reduction are unchanged, but the rule R-Match is made more restrictive by the

changed definition of v/p: a match expression reduces only if matching succeeds for a branch and
fails—but is never undefined—for all previous branches. The type system should therefore ensure
that, in a well-typed expression match v with (pi → ei)i∈I , v/pi = ℧ never happens. While this is
true for K, S has to be restricted to ensure this.

We first define the compatible type ⌈p⌉ of a pattern p inductively as follows:

⌈ ⌉ = ⌈x⌉ = 1 ⌈c⌉ = bc

⌈(p1, p2)⌉ = ⌈p1⌉ × ⌈p2⌉ ⌈ t̀ag(p)⌉ = t̀ag(⌈p⌉) ∨ (1V \ t̀ag(1))

⌈p1&p2⌉ = ⌈p1⌉ ∧ ⌈p2⌉ ⌈p1|p2⌉ = ⌈p1⌉ ∨ ⌈p2⌉ ,
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v/ = [ ]

v/x = [v/x]

v/c =











[ ] if v = c

Ω if v ∈ C, bv = bc, and v 6= c

℧ otherwise

v/(p1, p2) =











ς1 ∪ ς2 if v = (v1, v2) and ∀i. vi/pi = ςi
Ω if v = (v1, v2), ∃i. vi/pi = Ω, and ∀i. vi/pi 6= ℧
℧ otherwise

v/ t̀ag(p1) =











ς1 if v = t̀ag(v1) and v1/p1 = ς1
Ω if v = t̀ag(v1) and v1/p1 = Ω or if v = t̀ag1(v1) and t̀ag1 6= t̀ag

℧ otherwise

v/p1&p2 =











ς1 ∪ ς2 if ∀i. v/pi = ςi
Ω if ∃i. v/pi = Ω and ∀i. v/pi 6= ℧
℧ otherwise

v/p1|p2 =

{

v/p1 if v/p1 6= Ω

v/p2 otherwise

Figure 16. Semantics of pattern matching including undefined results.

where 1V is the top type for variants, defined in Section 4.3, Footnote 5. For all well-typed values
v, Γ ⊢

S
v : ⌈p⌉ holds if and only if v/p 6= ℧.

We change the rule for pattern matching by requiring the type t0 we assign to the matched
expression to be a subtype of all compatible types ⌈pi⌉.

Ts-Match

Γ ⊢
S
e0 : t0 t0 ≤

∨

i∈I*pi+ ∧
∧

i∈I⌈pi⌉ ti = (t0 \
∨

j<i*pj+) ∧ *pi+

∀i ∈ I Γ, genΓ(ti//pi) ⊢S ei : t
′
i

Γ ⊢
S
match e0 with (pi → ei)i∈I :

∨

i∈I t
′
i

Note that this condition is somewhat more restrictive than necessary: patterns which follow a
catch-all (wildcard or variable) pattern—or in general that are useless because previous patterns
already cover all cases—can be left out of the intersection. The precise condition would be

t0 ≤
∨

i∈I

(

*pi+ ∧
∧

j<i⌈pj⌉
)

,

but we choose the simpler condition since they only differ in case there is redundancy.
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