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This report addresses the problem of estimating complex components from their mixture in the Time-Frequency (TF) domain. Traditional techniques, which consist in non-iteratively optimizing a cost function measuring the difference between the mixture and the model, do not lead to satisfactorily sounding results. Thus, we propose to optimize this cost function by means of an iterative algorithm, which allows us to incorporate some prior phase information in the procedure. We provide a mathematical proof of the nonincreasing property of the error function over the update rules of this algorithm. In addition, we show that the algorithm must be carefully initialized to avoid getting stuck in a local minimum and to output satisfying results.

Introduction

This document features supplementary materials to the reference paper [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF]. We address the problem of source separation, which consists in extracting the underlying components composing a mixture of audio sources in the TF domain. Since all TF bins are treated independently, the problem here reduces to finding K complex numbers X 1 ,...,X K such that k X k = X, given their magnitude estimates V 1 ,...,V k . To do so, we consider the problem of optimizing a cost function |E| which measures the difference between the observed data and the model. We establish that this function has many global minima. For instance, the estimates provided by the Wiener filtering technique are zeros of the cost function E, although they do not verify | Xk | = V k . Since this technique does not lead to satisfactorily sounding results [START_REF]Phase recovery in NMF for audio source separation: an insightful benchmark[END_REF], we propose to optimize |E[ by means of an iterative procedure. Our approach allows us, through the initialization of the procedure, to incorporate some prior knowledge about the phase of the components, which can increase the quality of the separated components [START_REF]Phase recovery in NMF for audio source separation: an insightful benchmark[END_REF].

We first present in section 2 the problem setting and motivate the need for a novel optimization technique of |E|, different from traditional non-iterative methods. In section 3, we present the algorithm and we provide a mathematical proof that the error function |E| is non-creasing under the corresponding update rules. Section 4 motivates the research of a properly-chosen initialization scheme for the algorithm, and section 5 draws some concluding remarks.

Problem setting

We consider the problem of estimating K complex components X 1 ,...,X K from their sum X = k X k , assuming their magnitudes denoted V 1 ,...,V K are estimated beforehand. This problem can be solved by minimizing the following cost function:

|E| = |X - k X k |. (1) 
This function has many global minima. For instance, if K = 2, let us consider the two complex numbers X 1 = V 1 e iθ1 and X 2 = V 2 e iθ2 which are such that X 1 + X 2 = X = V e iθ . The numbers generated by applying the symmetry of axis X to X 1 and X 2 are X1 e 2θ and X2 e 2θ , where z denotes the complex conjugate of z. Their sum is:

( X1 + X2 )e 2θ = Xe 2θ = V e -θ e 2θ = X. (2) 
Thus, from a first solution to the problem, it is easy to find another one, which motivates the research of a properly-chosen solution. When K ≥ 3, the problem has infinitely many solutions. Wiener-like filtering [START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF] is one of the most commonly-used methods to obtain roots of this function. With this technique, the estimates are:

Xk = V 2 k l V 2 l X, (3) 
and the corresponding error is:

|E| = |X - k Xk | = |X| 1 - k V 2 k l V 2 l = |X||1 -1| = 0. (4) 
However, the Wiener filtering estimates does not verify the condition | Xk | = V k . Besides, as it is stated in the reference document [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF], these estimates do not lead to satisfactorily sounding results when the sources overlap in the TF domain.

It has been shown in a previous work [START_REF]Phase recovery in NMF for audio source separation: an insightful benchmark[END_REF] that incorporating phase information into a source separation framework can improve the quality of the overall separation. We then propose an iterative procedure to minimize the error function |E|. This novel method allows us, through its initialization, to use some prior information about the phase of the components. Indeed, our goal is to get close to a local minima of the cost function using this prior knowledge.

Algorithm 1 Estimation of complex components from their mixture

Inputs: Mixture X ∈ C, magnitudes V k ∈ R + , weights λ k , and initial values Xk ∈ C, ∀k ∈ 1; K , Number of iterations N it . Compute initial error E = X -k Xk . for it = 1 to N it do for k = 1 to K do Y k ← Xk + λ k E, Xk ← Y k |Y k | V k . end for E ← X -k Xk . end for Ouputs: ∀k ∈ 1; K , Xk ∈ C.
Note that alternative methods exist, such as considering the problem of minimizing |E| under some phase constraints. For instance, phase evolution cost functions have been proposed in [START_REF] Bronson | Phase constrained complex NMF: Separating overlapping partials in mixtures of harmonic musical sources[END_REF] and in [START_REF] Magron | Complex NMF under phase constraints based on signal modeling: application to audio source separation[END_REF]. However, as it is shown in the experimental part of the reference paper [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF], the algorithm presented in this paper provides good results with a moderate computational cost. Thus, it seems to be a good candidate for a source separation task.

3 Iterative source separation procedure

Intuitive approach

We present here the intuitive technique that was introduced in the reference paper [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF] for minimizing the cost function |E|. At iteration (it), the error

E (it) = X -k X(it)
k is distributed over the estimates:

Y (it+1) k = X(it) k + λ k E (it) , (5) 
where the parameters λ k are nonnegative weights. In order to preserve the fact that k Y (it) k = X, the weights must verify:

k λ k = 1. (6) 
Intuitively, we look for λ k such that the more important the component k (i.e. the greater V k ), the greater the corresponding weight λ k . Indeed, the components of highest energy are expected to have more impact on the estimation error than the components of lowest energy. Thus, we propose the following definition, which obviously conforms to [START_REF] Kameoka | Complex NMF: A new sparse representation for acoustic signals[END_REF]:

λ k = V 2 k l V 2 l . (7) 
We then present in Algorithm 1 (labeled Algorithm 2 in [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF]) the procedure for estimating the components from a complex mixture X, knowing their magnitudes.

Proof of convergence

We present here the mathematical proof of the non-increasing property of the error in this algorithm. The error at iteration (it + 1) is:

E (it+1) = X - k X(it+1) k = k Y (it+1) k - k X(it+1) k = k Y (it+1) k - X(it+1) k = k X(it) k + λ k E (it) - X(it) k + λ k E (it) | X(it) k + λ k E (it) | V k = k ( X(it) k + λ k E (it) ) 1 - V k | X(it) k + λ k E (it) |
.

Applying the triangle inequality, we have:

E (it+1) ≤ k | X(it) k + λ k E (it) | 1 - V k | X(it) k + λ k E (it) | ≤ k | X(it) k + λ k E (it) | -V k ≤ k | X(it) k + λ k E (it) | -| X(it) k | .
We then use the following property (which is easy to demonstrate using the triangle inequality) :

∀(a, b) ∈ C 2 , ||a| -|b|| ≤ |a -b| . ( 8 
) Let a = X(it) k + λ k E (it) and b = X(it) k .
We then have:

| X(it) k + λ k E (it) | -| X(it) k | ≤ λ k E (it) . (9) 
Using this inequality in the previous calculation, we have:

E (it+1) ≤ k λ k E (it) ≤ E (it) k λ k . ( 10 
)
Since the weights are chosen such that

k λ k = 1, (11) 
we then obtain:

E (it+1) ≤ E (it) . ( 12 
)
This result traduces that the error function |E| is non increasing over iterations. Since |E (it) | is non-increasing and minored by 0, it converges.

Auxiliary function method

A more rigorous method for obtaining the procedure described in Algorithm 1 consists in using the auxiliary function technique. Such technique has been used for estimating the Complex Nonnegative Matrix Factorization (CNMF) model in [START_REF] Kameoka | Complex NMF: A new sparse representation for acoustic signals[END_REF]. We provide here a full mathematical derivation of the procedure using this method. We consider the following cost function:

f (θ) = |E| 2 = |X - k Xk | 2 , ( 13 
) with θ = { Xk , k ∈ 1; K }, under the constraints | Xk | = V k for all k.
The idea is then to introduce a function g(θ, θ) which depends on some new parameters θ, and verify:

f (θ) = min θ g(θ, θ). ( 14 
)
Such a function is called an auxiliary function. It can be shown (for instance in [START_REF] Kameoka | Complex NMF: A new sparse representation for acoustic signals[END_REF]) that f is non-increasing under the following update rules:

θ ← arg min θ g(θ, θ) and θ ← arg min θ g(θ, θ). ( 15 
)
We propose to obtain an auxiliary function for our problem. We introduce the auxiliary variables

θ = {Y k , k ∈ 1; K } such that k Y k = X. We have: |X - k Xk | 2 = | k (Y k -Xk )| 2 . ( 16 
)
We then introduce the nonnegative weights λ k which verify k λ k = 1, and we can write:

|X - k Xk | 2 = k λ k Y k -Xk λ k 2 . ( 17 
)
Applying the Jensen inequality to the convex function |.| 2 , we obtain:

|X - k Xk | 2 ≤ k |Y k -Xk | 2 λ k . ( 18 
)
Thus, f (θ) ≤ g(θ, θ) with:

g(θ, θ) = k |Y k -Xk | 2 λ k , (19) 
and the problem becomes that of minimizing g under the constraints k Y k = X and ∀k, | Xk | = V k . Let us prove that g is an auxiliary function of the objective cost function f , i.e. that it satisfies (14). To do so, we introduce the constraint on the auxiliary variables k Y k = X by means of the Lagrange multipliers:

L(θ, θ, γ) = g(θ, θ) + γ( k Ȳk -X). ( 20 
)
Minimizing g with respect to θ under the constraint k Y k = X leads to finding a saddle point for L. We then calculate the partial derivatives of L with respect to the complex variables Y k (the so-called Wirtinger derivatives). In practice, this is computed by taking the derivative with respect to Ȳk which is treated as a standard real variable, while Y k is treated as a constant [START_REF] Bouboulis | Wirtinger's calculus in general hilbert spaces[END_REF]. We have:

∂L ∂Y k (θ, θ, γ) = 1 λ k (Y k -Xk ) + γ, (21) 
which is set at 0 and leads to:

Y k = Xk + λ k γ. (22) 
Besides, setting the derivative with respect to the Lagrange multiplier γ at zero leads to the constraint k Y k = X. By summing (22) over k and using this constraint, we have:

X = k Y k = k Xk + γ k λ k , (23) 
and since the weights λ k add up to 1, we obtain:

γ = X - k Xk , (24) 
which leads to:

Y k = Xk + λ k (X - k Xk ). (25) 
Thus, g(θ, θ) is minimized for a set of auxiliary parameters θm defined by (25), and is then equal to:

g(θ, θm ) = k | Xk + λ k (X -k Xk ) -Xk | 2 λ k = k λ k |X - k Xk | 2 = |X - k Xk | 2 k λ k = |X - k Xk | 2 = f (θ),
which shows that g is an auxiliary function of f . In accordance with (15), we obtain the update rules on θ and θ by alternatively minimizing g with respect to these variables. As it has already been shown, the update rule on Y k is given by (25). To obtain the update rule on Xk , we introduce the constraints | Xk | = V k , ∀k, by means of the Lagrange multipliers:

H(θ, θ, δ 1 , ..., δ K ) = g(θ, θ) + k δ k (| Xk | 2 -V 2 k ). (26) 
Minimizing g with respect to θ under the constraints | Xk | = V k leads to finding a saddle point for H. We then calculate the partial derivatives of H with respect to the complex variables Xk :

∂H ∂ Xk (θ, θ, δ 1 , ..., δ K ) = 1 λ k ( Xk -Y k ) + δ k Xk , (27) 
and setting this derivative at 0 leads to:

Xk = Y k 1 + λ k δ k . ( 28 
)
Besides, setting the derivatives with respect to the Lagrange multipliers δ k at zero leads to the constraint

|X k | = V k .
By taking the modulus in (28) and using these constraints, we have:

V k = | Xk | = |Y k | |1 + λ k δ k | , ( 29 
) so 1 + λ k δ k = ± |Y k | V k , (30) 
and finally, combining this relation and (28), we have:

Xk = ±V k Y k |Y k | . (31) 
To avoid any ambiguity on the sign in (31), we calculate the value of g for both cases. We have:

|Y k -V k Y k |Y k | | = ||Y k | -V k |, (32) 
and :

|Y k + V k Y k |Y k | | = ||Y k | + V k |. (33) 
Besides, |Y k | ≥ 0 and V k ≥ 0, so we obviously have

||Y k | -V k | ≤ ||Y k | + V k |.
Then, g is minimized with respect to θ when ∀k:

Xk = V k Y k |Y k | . (34) 
Ultimately, the objective function f is minimized by alternatively applying the update rules (25) and (34). This leads to the iterative procedure that is summarized in Algorithm 1.

which is equivalent to V k + λ k (|X|l V l ) ≥ 0 Finally, after normalization, we still have:

X(1) k = V k X |X| = X(0) k . (41) 
In other words, in both cases, the procedure does not modify the components Xk from it initial values.

For those reasons, we propose to initialize this procedure with the phase unwrapping algorithm [START_REF] Magron | Model-based STFT phase recovery for audio source separation[END_REF]. Such an initialization is, in general, not a fixed point of the algorithm, and it leads to a fast convergence and good quality solutions from a perceptual point of view.

Conclusion

In this report, we have addressed the problem of source separation by seeking to minimize the cost function |E|.

To overcome the limitation of existing non-iterative techniques, such as the Wiener filtering, we have introduced an iterative procedure, under which the cost function is non-increasing. We have pointed out the need for a non-trivial initialization of this algorithm, in order to take advantage of some prior phase information about the components. We suggest that the components estimated with the phase unwrapping algorithm is a good candidate for this task, since under this initialization, the error is expected to converge fast, and the solution should have some temporal continuity. Experimental validation is conducted in the reference paper, and show that better results than with the traditional Wiener filtering technique can be reached with this algorithm.

Initialization of the algorithm

The initialization in Algorithm 1 is crucial to ensure that the solution will be physically correct. As stated in section 2, the keystone of our approach is to properly initialize the algorithm in order to exploit prior phase knowledge for improving the quality of the separation. In addition, it contributes to significantly decrease the required number of iterations until convergence.

Intuitively, one can initialize the algorithm with the following scheme, inspired from the Wiener filtering technique: the phase of the mixture is given to each source. However, it corresponds to a fixed point of the algorithm: the components will not be modified over iterations. Indeed, with this initialization:

and the error is equal to:

which leads to:

Therefore, the auxiliary variables Y

(1) k have the seem direction than X if the quantity

) is positive, and the opposite direction otherwise. If |X|l V l ≥ 0, it is obvious that this quantity is positive, then after normalization we have :

Now, let us assume that |X|l V l < 0. Using some simple algebra, we can write:

and since we assumed that |X|l V l < 0, this leads to: