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We give a recurrence criterion for a Markov chain in Z d+1 in a medium stratified by parallel affine hyperplanes. The asymptotics of the random walk is governed by some notion of directional flux variance, describing the dispersive power of some associated average flow. The result admits a geometrical interpretation, surprisingly intrinsically non-Euclidean. Some applications and open questions are discussed.

Introduction

We study the recurrence properties of an inhomogeneous Markov chain (S n ) n≥0 in Z d ×Z, where d ≥ 1. Starting the random walk at 0, let S n = (S 1 n , S 2 n ) ∈ Z d × Z. We call "vertical" the quantities relative to the second coordinate. The environment is invariant under Z d -translations, i.e. the collection of transitions laws is stratified with respect to the affine hyperplanes (Z d × {n}) n∈Z . We make no hypothesis on the relative dependence between transitions laws in distinct hyperplanes.

A planar random walk of this type was proposed by Campanino and Petritis [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF] in 2003, as a simplified probabilistic version of PDE transport models in stratified porous medium considered by Matheron and de Marsily [START_REF] Matheron | Is transport in porous media always diffusive ? A counterexample[END_REF]. Following this line of research, we focus on a more general case in Z d+1 . For the sequel we fix Euclidean Norms and denote scalar product by a dot.

Let us state the model. For each vertical n ∈ Z, let reals p n , q n , r n with p n + q n + r n = 1 and a probability measure µ n with support in Z d . We suppose that for some δ > 0 and all n ∈ Z : 1) min{p n , q n , r n } ≥ δ, 2) k∈Z d k max (d,3) µ n (k) ≤ 1/δ, 3) the eigenvalues of the real symmetric matrix k∈Z d kk T µ n (k) are ≥ δ. Equivalently :

k∈Z d (t.k) 2 µ n (k) ≥ δ t 2 , t ∈ R d .
Notice that the last condition implies that the subgroup of (Z d , +) generated by supp(µ n ) is ddimensional. The transition laws are then defined, for all (m, n) ∈ Z d × Z and k ∈ Z d , by : The model of Campanino-Petritis corresponds to taking d = 1, with p n = q n = p ∈ (0, 1) and µ n = δ εn , fixing some sequence (ε n ) n∈Z of ±1. Campanino and Petritis [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF] for instance show recurrence when ε n = (-1) n and transience for ε n = 1 n≥0 -1 n<0 or when the (ε n ) are typical realizations of i.i.d. random variables with law (δ 1 +δ -1 )/2. In some neighbourhood of this setting, several variations, extensions and second order questions were subsequently considered by various authors; see the introduction of [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF]. In [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF], a recurrence criterion was given for the model introduced above when d = 1, assuming the local vertical symmetries p n = q n , n ∈ Z. In this family of random walks, planar simple random walk, hardly recurrent, is the most recurrent one. This explains the prevalence of transience results on the Campanino-Petritis model. Mention that for the latter, a growth condition larger than log n on ε 1 + • • • + ε n is sufficient to ensure transience.

Pushing to some natural limit the method used in [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF], we establish in this article a recurrence criterion for the model described above. This furnishes a large class of recurrent random walks in Z 2 and Z 3 . The mechanism governing the asymptotic behaviour of the random walk reveals some familiarity with classical Electromagnetism, involving notions such as flux variations. The latter represent the dispersive properties of some average flow associated with the random walk. Variations are measured in a probabilistic sense, via some empirical variances. We also provide a geometrical interpretation of the recurrence criterion. Surprisingly it involves hyperbolic geometry, stereographic projections and some kind of anisotropic pseudosphere.

2 Statement of the result 2.1 Notations and result Definition 2.1

• For n ∈ Z, let m n = k∈Z d kµ n (k) be the expectation of µ n .

• For n ∈ Z, let p n = p n /(p n + q n ), q n = q n /(p n + q n ).

• For n ∈ Z, let a n = q n /p n = q n /p n and b n = 1/p n = 1 + a n .

• Set :

ρ n =    a 1 • • • a n , n ≥ 1, 1, n = 0, (1/a n+1 ) • • • (1/a -1 )(1/a 0 ) n ≤ -1.
• For n ≥ 0, let :

v + (n) = 0≤k≤n ρ k and v -(n) = a 0 -n-1≤k≤-1 ρ k ,
as well as :

w + (n) = 0≤k≤n (1/ρ k ) and w -(n) = (1/a 0 ) -n-1≤k≤-1 (1/ρ k ).
We denote by θ the "left shift" on indices. Given f = f ((q i /p i ) i∈Z ), set θf = f ((q i+1 /p i+1 ) i∈Z ). In particular the cocycle relation for (ρ n ) reads as :

∀(n, k) ∈ Z 2 , ρ n+k = ρ n θ n ρ k .
We next need a definition of inverse function for non-decreasing functions defined on the set of non-negative integers N = {0, 1, • • • } and having values in R + ∪ {+∞}.

Definition 2.2

Let f : N → R + ∪ {+∞}, non-decreasing. For x ∈ R, let f -1 (x) = sup{n ∈ N | f (n) ≤ x}, with sup{N} = +∞ and sup{ø} = 0.

We next turn to notions related to directional fluxes and their variations. • For m ≥ 0, n ≥ 0, let ψ(-m, n) be the positive (maybe +∞) quantity such that :

ψ 2 (-m, n) = nw + • v -1 + (n) + mw -• v -1 -(m).
We also set ψ(n) = ψ(-n, n), ψ + (n) = ψ(0, n), ψ -(n) = ψ(-n, 0), for n ≥ 0.

• For u ∈ S d-1 + , m ≥ 0, n ≥ 0, let ϕ u (-m, n) be the positive (maybe +∞) quantity such that :

ϕ 2 u (-m, n) = ψ 2 (-m, n) + -v -1 -(m)≤k≤l≤v -1 + (n)
T l k (u).

Set for n ≥ 0, ϕ u (n) = ϕ u (-n, n) and ϕ u,

+ (n) = ψ 2 (-n, n)+ -v -1 -(n)≤k≤l≤v -1
+ (n),kl>0 T l k (u). Introduce also :

ϕ u,++ (n) = ψ 2 (0, n)+ 1≤k≤l≤v -1 + (n) T l k (u) and ϕ u,+-(n) = ψ 2 (-n, 0)+ -v -1 -(n)≤k≤l≤-1 T l k (u).
The aim of the article is to prove the following result.

Theorem 2.4

The random walk is recurrent if and only if :

n≥1 n -d-1 S d-1 + (ϕ -1 u (n)) 2 ϕ -1 u,+ (n) du = +∞.

Geometrical interpretation; corollaries

Let us detail a geometrical interpretation of the above result. What comes out of the computations is the integral :

u∈S d-1 + ,0<t<1 (ϕ -1 u (1/t)) 2 ϕ -1 u,+ (1/t) t d-1 dudt.
It will be explained later why this quantity has the same order as the one appearing in the statement of the theorem. The term (ϕ -1 u (1/t)) 2 /ϕ -1 u,+ (1/t) essentially comes from a stereographic projection. We draw below a picture when d = 2 (hence in R 3 ) showing that the previous integral is the volume of some anisotropic version of Beltrami's pseudosphere. The classical pseudosphere is a model in R 3 of a part of the hyperbolic plane (the whole hyperbolic plane cannot be represented in R 3 ; theorem of Hilbert, 1901). Here is a way of visualizing this integral (d = 2) :

-Draw the vertical line passing at 0, directed by e 3 , the third vector of the canonical basis of R 3 . Fix u ∈ S 1 + . Let P 0 = u ⊥ be the vectorial plane orthogonal to u. For 0 < t < 1, let P t be the affine plane parallel to P 0 and passing through tu.

-We parametrize points on the left half of P 0 in polar coordinates ρe iα , with 0 ≤ α ≤ π and ρ > 0, as shown, starting from the Northern part of the vertical axis and turning counterclockwise.

-At each ρe iα we plug in direction u (therefore orthogonally to the plane P 0 ) the length 1/ϕ u (-ρ sin(α/2), ρ cos(α/2)). When 0 ≤ α ≤ π and ρ > 0, the [-ρ sin(α/2), ρ cos(α/2)] describe all the intervals in the vertical direction containing the point 0. We hence obtain a surface above the left half of P 0 in direction u, parametrized by ρ > 0 and 0 ≤ α ≤ π.

-For 0 < t < 1, the plane P t cuts this surface along some dashed line shown on the picture. The point on this line and in the horizontal plane has coordinates (t, -√ 2 ϕ -1 u (1/t), 0) in the basis (u, u , e 3 ), where u = e 3 ∧ u. The point on the level line lying on the vertical line passing through (t, 0, 0) has components (t, 0, ϕ -1 u,++ (1/t)). -A little of geometry, related to some kind of stereographic projection, shows how to obtain z t equal to (ϕ -1 u (1/t)) 2 /ϕ -1 u,++ (1/t) up to multiplicative constants on the picture, at a point of coordinates (t, 0, z t ), still with respect to (u, u , e 3 ). We use that ϕ

-1 u (x) ≤ ϕ -1 u,+ (x) ≤ ϕ -1 u,+± (x)
, giving that the orthogonal triangle in P t with vertices (t, -√ 2 ϕ -1 u (1/t), 0), (t, 0, 0) and (t, 0, ϕ -1 u,++ (1/t)) has a vertical edge larger or equal to the horizontal side.

-In the plane generated by u and e 3 we have a function t -→ z t , 0 < t < 1. The integral of this function is the top of the hatched area and has order :

0<t<1 (ϕ -1 u (1/t)) 2 ϕ -1 u,++ (1/t) dt.
Do next the same work on the Southern side and obtain a similar area (not equal to previous one in general) corresponding to :

0<t<1 (ϕ -1 u (1/t)) 2 ϕ -1 u,+-(1/t) dt.
When summing the two last integrals, one globally obtains the full hatched area, in the plane generated by e 3 and u and this has order :

0<t<1 (ϕ -1 u (1/t)) 2 ϕ -1 u,+ (1/t)
dt.

-Rotating the picture with respect to u ∈ S 1 + , one gets a three-dimensional object, looking like some half pseudosphere. The corresponding volume equals, up to constants the volume of the integral we wish to illustrate.

Let us precise that when the random walk goes frankly in some direction u ∈ S 1 , then for all v ∈ S 1 + not orthogonal to u, some pinching effect occurs towards the horizontal plane in the sliced picture in direction v, making the area (and thus the global volume) smaller. We now discuss some consequences of the theorem.

Corollary 2.5

For the general model, a sufficient condition for transience is :

n≥1 S d-1 + 1 (ϕ u (n)) d du < +∞.
It is true under the condition n≥1 ψ(n) -d < +∞, depending only on the vertical. The latter is satisfied in the following cases :

-

d ≥ 3, -d = 2 and w + • v -1 + (n) + w -• v -1 -(n) ≥ (log n) 1+ε and in particular if p n = q n , n ∈ Z, -d = 1 and w + • v -1 + (n) + w -• v -1 -(n) ≥ n(log n) 2+ε .
In the antisymmetric case, an explicit criterion is available. Proposition 2.6 Antisymmetric case. Suppose that m -n = -m n and ρ -n = ρ n , n ≥ 0. The random walk is transient if and only if :

n≥1 S d-1 + 1 (ϕ u,++ (n)) d du < +∞.
In particular, let m n = -m -n = c = 0, n ≥ 1, with m 0 = 0, and suppose that c 1 n α ≤ ρ n ≤ c 2 n α , n ≥ 0, where α ∈ R. Then :

-If d = 1, the random walk is recurrent if and only if α ≥ 1.

-If d = 2, the random walk is recurrent if and only if α ≥ 3.

There would be many other cases to consider. The Campanino-Petritis model, i.e. d = 1, p n = q n and µ n = δ εn , in the case when ε n = 1 n≥0 -1 n<0 corresponds to the first example with ρ n = 1, so α = 0, and the random walk is transient. As already indicated in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF], the parameters are largely interior to the transience domain. Remark that in the antisymmetric case when d = 1, taking µ n = δ 1 , µ -n = δ -1 , for n ≥ 1, and ρ n ∼ n α , n ≥ 1, since horizontal steps are restricted to +1 in the North and to -1 in the South, the random walk (recurrent or transient) necessarily makes spirals.

α > 1 +1 -1 +1 -1 α < 1
In contrast with the flat case (p n = q n , n ∈ Z), one can for this model in some sense "suppress" the vertical dimension for some values of the parameters. Indeed, when n∈Z (1/ρ n ) < +∞, the vertical component is positive recurrent, hence admits an invariant probability measure. In this sense, the random walk is then "essentially" d-dimensional. When d = 1, this is a kind of random walk in a half-pipe. This explains the critical values of d appearing in the corollary and in particular the fact that the random walk (in Z d+1 ) can be recurrent when d = 2.

Proposition 2.7 Suppose that n∈Z (1/ρ n ) < +∞ and d = 1. i) If n∈Z (m n /ρ n ) = 0, then the random walk is transient. ii) If n∈Z (m n /ρ n ) = 0 and p -n = q n , r -n = r n , µ n = µ -n , for n ≥ 0, then the random walk is recurrent.
Hence, when n∈Z (1/ρ n ) < +∞, the finiteness condition for transience is replaced by some non-zero condition. Fixing d = 1 and, breaking momentarily the assumptions, suppose that brutally ρ 1 = ρ -1 = +∞ (giving ρ k = +∞, k = 0). One then recovers that the condition m 0 = 0 is necessary and sufficient for transience, which is a standard result for one-dimensional i.i.d random walk with integrable step.

Notice in such a model the important role of a single hyperplane, as the latter can modify the asymptotics. This is not true if n∈Z 1/ρ n , for example if p n = q n , n ∈ Z, and d = 1, where changing one line did not modify the asymptotics (see the introduction in [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF]).

We give an application to a random walk in a half-pipe, with independent level lines.

Corollary 2.8

Let d = 1 and n∈Z (1/ρ n ) < +∞. Suppose that the (m n ) n∈Z are a typical realization of some independent uniformly bounded random variables, at least one having a density. Then, almostsurely, the associated random walk is transient. Indeed, it is clear from the hypotheses that the random variable ω -→ n∈Z (m n (ω)/ρ n ) admits a density, so equals 0 with zero probability. We next apply the result of the previous proposition. In this picture in R 3 of the Z 2 -half-pipe, we have drawn the points (k, l) ∈ Z 2 at height ρ l . The quantity ρ l can be considered as the "level of the sea" at (k, l). The borders of the half-pipe are very steep due to the condition n∈Z (1/ρ n ) < +∞.

Preliminaries

Sleszynski-Pringsheim continued fractions

Formally, a general finite continued fraction is written as follows :

[(c 1 , d 1 ); (c 2 , d 2 ); • • • ; (c n , d n )] = c 1 d 1 + c 2 d 2 + • • • • • • + c n d n .
We shall consider finite continued fractions corresponding to the application to some z 0 ∈ C in the unit disk of functions of the form z -→ c/(d + z), with complex numbers c = 0 and d so that |c| + 1 ≤ |d|, hence preserving the closed unit disk. Such finite continued fractions are usually called finite Sleszynski-Pringsheim (SP) continued fractions.

Infinite SP-continued fractions, written [(c 1 , d 1 ); (c 2 , d 2 ); • • • ], also converge, by the Sleszynski-Pringsheim theorem (see [START_REF] Lorentzen | Continued fractions with applications[END_REF]). We will reproduce the arguments proving this result.

For n ≥ 0, the finite continued fraction [(c 1 , d 1 ); (c 2 , d 2 ); • • • ; (c n , d n )] can be reduced as a fraction A n /B n , where the (A n ) and (B n ) satisfy the recursive relations :

   A n = d n A n-1 + c n A n-2 , n ≥ 1, A -1 = 1, A 0 = 0, B n = d n B n-1 + c n B n-2 , n ≥ 1, B -1 = 0, B 0 = 1.
In our setting it will be directly checked that B n is never zero for n ≥ 0. We require the following classical determinant. For n ≥ 1 :

A n B n-1 -A n-1 B n = (-c n )(A n-1 B n-2 -A n-2 B n-1 ) = • • • = (-1) n c 1 • • • c n (A 0 B -1 -A -1 B 0 ) = (-1) n+1 c 1 • • • c n .
This gives the following representation as a series :

[(c 1 , d 1 ); (c 2 , d 2 ); • • • ; (c n , d n )] = A n B n = n k=1 A k B k - A k-1 B k-1 = n k=1 (-1) k+1 c 1 • • • c k B k B k-1 . (1) 
We now focus on a particular class of SP-continued fractions that will appear frequently.

Lemma 3.1 Assume that lim n→+∞ v + (n) = +∞. 1. Let (γ n ) n≥1 and (γ n ) n≥1 be sequences of complex numbers with 0 < |γ n | ≤ 1, |γ n | ≤ 1.
Then :

[(a 1 , b 1 /γ 1 ); (-a 2 , b 2 /γ 2 ); • • • ; (-a n-1 , b n-1 /γ n-1 ); (-a n , b n /γ n -γ n )] is well-defined. It converges to [(a 1 , b 1 /γ 1 ); (-a 2 , b 2 /γ 2 ); • • • ; (-a n , b n /γ n ); • • • ],
as n → +∞, an infinite SP-continued fraction. The latter is the limit of A n /B n , as n → +∞, where :

         A n = b n γ n A n-1 -a n A n-2 , n ≥ 2, A -1 = 1, A 0 = 0, A 1 = a 1 , B n = b n γ n B n-1 -a n B n-2 , n ≥ 2, B -1 = 0, B 0 = 1, B 1 = b 1 /γ 1 . (2) 
2. Set v + (-1) = 0. The solutions (B n ) of (2) check :

|B n | -|B n-1 | ≥ a n (|B n-1 | -|B n-2 |), n ≥ 1.
As a result,

|B n | ≥ v + (n), n ≥ -1. If the 0 < γ n ≤ 1 are real, then B n > B n-1 > • • • > B -1 = 0. When γ n = 1, n ≥ 1, then B n = v + (n), n ≥ -1, as well as A n = v + (n) -1, n ≥ 0. 3. In (2), n -→ |B n |/v + (n), n ≥ 0, is non-decreasing. Also, for n ≥ 1 : k>n ρ k |B k B k-1 | ≤ v + (n) |B n | 2 ≤ 1 |B n | .
Proof of the lemma :

The solutions of (2

) check |B n | ≥ b n |B n-1 | -a n |B n-2 |, n ≥ 1. Hence : |B n | -|B n-1 | ≥ a n (|B n-1 | -|B n-2 |), n ≥ 1. When iterating, |B n | -|B n-1 | ≥ ρ n . Thus |B n | ≥ v + (n).
In point 1., the finite continued fraction is well-defined because

a k = 0, |b k /γ k |-a k ≥ b k -a k = 1 and |γ n | ≤ 1. We obtain from (1) : [(a 1 , b 1 /γ 1 ); (-a 2 , b 2 /γ 2 ); • • • ; (-a n , b n /γ n -γ n )] = n-1 k=1 ρ k B k B k-1 + ρ n B n-1 Bn , (3) 
where Bn = (b n /γ n -γ n )B n-1 -a n B n-2 . We get :

| Bn | ≥ (b n -1)|B n-1 | -a n |B n-2 | ≥ a n (|B n-1 | -|B n-2 |) ≥ a n ρ n-1 = ρ n .
In (3) the first term in the right-hand side is absolutely convergent, because, as

|B k | ≥ v + (k) : k≥1 ρ k |B k B k-1 | ≤ k≥1 v + (k) -v + (k -1) v + (k)v + (k -1) = k≥1 1 v + (k -1) - 1 v + (k) = 1.
As |B n-1 | → +∞, we conclude that the right-hand side in (3) converges to k≥1 ρ k /(B k B k-1 ).

When the γ n are real, write

B n -B n-1 = (1-γn)bn γn B n-1 + a n (B n-1 -B n-2 ). The condition "B n > B n-1 ≥ 0" is then transmitted recursively. If γ n = 1, then B n -B n-1 = a n (B n-1 -B n-2 ), giving B n = v + (n), n ≥ 0. Similarly, A n = v + (n) -1, n ≥ 0, as : A n -A n-1 = a n (A n-1 -A n-2 ) = • • • = a n • • • a 2 (A 1 -A 0 ) = ρ n and A 0 = 0.
For the last point, we first show that n -→ |B n |/v + (n), n ≥ 0, is non-decreasing. We will require it in the equivalent form

|B n |/(|B n+1 | -|B n |) ≤ v + (n)/(v + (n + 1) -v + (n)). Write : v + (n)|B n+1 | -v + (n + 1)|B n | ≥ v + (n) (b n+1 |B n | -a n+1 |B n-1 |) -v + (n + 1)|B n | ≥ a n+1 (v + (n -1)|B n | -v + (n)|B n-1 |) ≥ • • • ≥ ρ n+1 (|B 0 |v + (-1) -v + (0)|B -1 |) = 0.
Finally, using the previous results, for n ≥ 1 :

k>n ρ k |B k B k-1 | = k>n ρ k 1 |B k-1 | - 1 |B k | 1 |B k | -|B k-1 | ≤ k>n ρ k 1 |B k-1 | - 1 |B k | 1 a k • • • a n+2 (|B n+1 | -|B n |) ≤ ρ n+1 |B n+1 | -|B n | k>n 1 |B k-1 | - 1 |B k | ≤ v + (n + 1) -v + (n) |B n+1 | -|B n | 1 |B n | ≤ v + (n) |B n | 2 .
This completes the proof of the lemma.

Asymptotical behavior of the vertical component

The question of the recurrence/transience of the vertical component of the random walk is classical. Indeed the vertical component restricted to the subsequence of vertical movements is the random walk on Z with transition probabilities P n,n-1 = q n and P n,n+1 = p n , n ∈ Z.

Lemma 3.2

The Markov chain on Z so that P n,n+1 = p n and P n,n-1 = q n , n ∈ Z, is recurrent if and only if

lim n→+∞ v + (n) = +∞ and lim n→+∞ v -(n) = +∞.
Proof of the lemma :

Fix N > 1 and let f (k) = P k (exit [0, N ] on the left side), 0 ≤ k ≤ N . The Markov property implies that k -→ f (k) is harmonic in the interior of this interval. Precisely, for 1 ≤ k ≤ N -1 : f (k) = p k f (k + 1) + q k f (k -1). Let g(k) = f (k) -f (k -1). We obtain g(k) = (p k /q k )g(k + 1) and therefore g(k) = ρ k-1 g(1), 1 ≤ k ≤ N . As a result : -1 = N k=1 g(k) = -P 1 (exit [0, N ] at N ) 1≤k≤N ρ k-1 . Hence P 1 (reach 0) = 1 ⇔ lim n→+∞ v + (n) = +∞. Idem P -1 (reach 0) = 1 ⇔ lim n→+∞ v -(n) = +∞.
This furnishes the desired result.

The previous criterion can be reformulated using trees. Let us say that a random variable X has the geometrical law

G(p), 0 < p < 1, if P(X = n) = p n (1 -p), n ≥ 0. Lemma 3.3 Consider the Galton-Watson tree (Z + n ) n≥1 with Z + 1 = 1 and, independently, the law of the number of children at level n+1 of an individual at level n ≥ 1 is G(p n ). Then this tree is finite almost-surely if and only if lim n→+∞ v + (n) = +∞.
Proof of the lemma :

As usual, since {Z + n = 0} ⊂ {Z + n+1 = 0}, the almost-sure finiteness is equivalent to P(Z + n = 0) → 1. Fix 0 < s < 1 and recall that E(s Z + n ) -s ≤ P(Z + n = 0) ≤ E(s Z + n ). Taking n ≥ 2 : E s Z + n = E 1 -p n-1 1 -sp n-1 Z + n-1 = E a n-1 b n-1 -s Z + n-1 .
Iterating (using a n-1 /(b n-1 -s) in place of s), we obtain the following SP-continued fraction :

E s Z + n = [(a 1 , b 1 ); (-a 2 , b 2 ); • • • ; (-a n-2 , b n-2 ); (-a n-1 , b n-1 -s)] .
This corresponds to γ k = 1 and γ n = s in lemma 3.1. From lemma 3.1 and relation (3) :

E s Z + n = v + (n -2) -1 v + (n -2) + ρ n-1 v + (n -1) Bn-1 , with Bn-1 = (b n-1 -s)v + (n-2)-a n-1 v + (n-3), so that Bn-1 ≥ ρ n-1 and Bn-1 ≥ (1-s)v + (n-2). If v + (n) → +∞, then E(s Z + n ) → 1 uniformly in 0 < s < 1, giving P(Z + n = 0) → 1. If v + (n) → n→+∞ b ∈ (0, +∞), then ρ n → 0 and for fixed 0 < s < 1 we have lim inf n Bn-1 ≥ (1 -s)b > 0, so that E(s Z + n ) tends to (b -1)/b < 1, giving lim n P(Z + n = 0) = (b -1)/b.
Remark. -There is naturally a symmetric result for the Southern direction of the vertical component. One introduces, with decreasing indices n ≤ -1, the Galton-Watson tree (Z - n ) n≤-1 with Z - -1 = 1 such that, independently, the law of the number of children at level n -1 of an individual at level n is G(q n ). The tree is almost-surely finite if and only if lim k→+∞ v -(k) = +∞.

Reduction to an i.i.d. random walk in Z d

For the rest of the article we therefore suppose the vertical component recurrent. Equivalently, from the previous section, this means lim

n→+∞ v ± (n) = +∞. Just observe that if for example v + is bounded by some v + (∞) < ∞, then +∞ = ϕ u (n) = ϕ u,+ (n) = ψ(n) for n > v + (∞)
, so the reversed functions are bounded quantities and the integral involved in the theorem is finite. The same happens if v -is bounded.

We can now introduce the random times 0 = σ 0 < τ 0 < σ 1 < τ 1 < • • • , where :

τ k = min{n > σ k | S 2 n = 0}, σ k+1 = {n > τ k | S 2 n = 0}. Introduce the Z d -displacement D n = S 1 σn -S 1 σn-1 .
As the environment is invariant under Z dtranslations, the (D n ) n≥1 are globally independent and identically distributed. The following lemma is essentially contained in [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF].

Lemma 4.1 Let T 0 = 0 and T n = D 1 + • • • + D n , n ≥ 1. The random walk (S n ) n≥0 is recurrent is Z d+1 if and only if (T n ) n≥0 is recurrent in Z d .
Proof of the lemma :

If (T n ) n≥0 is recurrent in Z d , then (S n ) is recurrent in Z d+1
, as S σn = (T n , 0). In case of transience of (T n ), using again the invariance of the environment under Z d -translations, we have :

∃C, ∀x ∈ Z d , n≥1 P (T n = x) ≤ C.
Let Γ ∼ G(r 0 ) and ξ k ∼ µ 0 , for k ≥ 1, so that ((ξ k ) k≥1 , Γ) are globally independent and also from the sequence (T n ). Remark that (S 1 l ) l∈[σ k ,τ k ) and (T k + 1≤m≤l ξ m ) 0≤l≤Γ have the same law. Introduce the real random variable :

H = 1≤k≤Γ ξ k .
Observe now that S n can be 0 only for n in some [σ k , τ k ) and that :

P(∃n ∈ [σ k , τ k ), S n = 0) ≤ P(H ≥ T k ).
This provides :

k≥1 P(∃n ∈ [σ k , τ k ), S n = 0) ≤ k≥1 P(H ≥ T k ) ≤ x∈Z d k≥1 P(T k = x)P (H ≥ x ) ≤ C x∈Z d P(H ≥ x ) ≤ C E(H d ).
Finally, this gives :

E(H d ) = n≥0 P(Γ = n)E      1≤k≤n ξ k   d    ≤ (1 -r 0 ) n≥0 r n 0 n d-1 E   1≤k≤n ξ k d   ≤ (1 -r 0 ) n≥0 r n 0 n d E( ξ 1 d ) < ∞.
By the Borel-Cantelli lemma, (S n ) is transient. This completes the proof of the lemma.

This reduces the problem of the recurrence of (S n ) to that of (T n ). Set :

D = D 1 and χ D (t) = E(e it.D ), t ∈ R d .
We shall use the following theorem, the strong form of the Chung-Fuchs recurrence criterion, giving an analytical recurrence criterion for a i.i.d. random walk in Z d . See Spitzer [START_REF] Spitzer | Principles of random walks[END_REF]. Recall that S d-1 + denotes the half unit sphere and let B d (0, η) be the ball of center 0 and radius η > 0 in R d .

Theorem 4.2

Suppose that the subgroup of (Z d , +) generated by the support of the law of D is Z d . Then the random walk (T n ) n≥0 is transient if and only if for some η > 0 :

B d (0,η) Re 1 1 -χ D (x) dx < +∞. ( 4 
)
Notice that one can restrict the integral to the half unit ball S d-1

+ .]0, η[. Forgetting the multiplicative constant coming from the change of variables in polar coordinates, we next decompose the integral in the form :

S d-1 + ×]0,η[ Re 1 1 -χ D (ut) t d-1 dudt, with (u, t) ∈ S d-1 + ×]0, η[.
From our assumptions, the subgroup G D of (Z d , +) generated by the support of the law of D is d-dimensional. Observe that (T n ) lives in G D and recall that G D admits a basis over Z.

Reparametrizing G D corresponds to making a linear change of variables in [START_REF] Gall | Random trees and applications[END_REF]. The properties of dominated variations shown below in lemma 6.1 imply that we can assume that G D = Z d from the beginning. This is what we do in the sequel.

The only singularity of 1/(1 -χ D ) in R d /Z d is now 0. Fixing 0 < η < 1/2 small enough, we take u ∈ S d-1 + and 0 < t < η.

Local time and contour of a Galton-Watson tree

For u ∈ S d-1 + we study the behavior near 0 + of t -→ χ D (ut). Let us introduce the onedimensional random walk (Y n ) n≥0 on Z such that Y 0 = 0 and P n,n-1 = q n and P n,n+1 = p n , for n ∈ Z. This is (S 2 n ) n≥0 restricted to the sequence of vertical jumps. Let σ = min{k ≥ 1 | Y k = 0} be the return time to 0. Grouping in packets the successive Z d -steps of the random walk, observe that D can be written as :

D = σ-1 k=0 Γ k m=1 ξ (k) m ,
where, conditionally on the (Y l ) l≥0 , the ((ξ

(k) m ) m≥1,k≥0 , (Γ k ) k≥0 ) are independent with ξ (k) m ∼ µ Y k and Γ k ∼ (G(r Y k ))
, for all k ≥ 0. To detail χ D , define for n ∈ Z :

ϕ n (ut) = E exp itu. Γ m=1 ξ m , t ∈ R, (5) 
with random variables Γ ∼ G(r n ) and ξ m ∼ µ n , for m ≥ 1, all being independent. Conditioning on the (Y l ) l≥0 , we obtain the equality :

χ D (ut) = E σ-1 k=0 ϕ Y k (ut) = ϕ 0 (ut)E σ-1 k=1 ϕ Y k (ut) .
The only remaining alea is that of the (Y l ) l≥0 . Introduce the conditional expectations :

E + (.) = E(. | Y 1 = 1) and E -(.) = E(. | Y 1 = -1). Setting χ ± D (ut) = E ± σ-1 k=1 ϕ Y k (ut)
, this leads to :

χ D (ut) = ϕ 0 (ut)(p 0 χ + D (ut) + q 0 χ - D (ut)). ( 6 
)
We next restrict the analysis to χ + D , the case of χ - D being symmetric. Introducing the local times

N n = #{1 ≤ k ≤ σ -1, Y k = n}, n ≥ 1, we obtain : χ + D (ut) = E +   n≥1 (ϕ n (ut)) Nn   .
The alea now is on the (N n ) n≥1 . To describe these local times, one classically introduces (cf [START_REF] Gall | Random trees and applications[END_REF] for instance) the Galton-Watson tree (Z + n ) n≥1 with Z + 1 = 1 such that, independently, the law of the number of children at level n + 1 of an individual at level n is G(p n ). This tree is almost-surely finite, from the hypothesis lim n→+∞ v + (n) = +∞. As shown on the left-hand side of the picture, we make the contour process of the tree, starting from the root of the tree and turning clockwise. We associate to each ascending/descending movement a +1/ -1 step. This gives the picture on the right-hand side, where we recover a positive excursion of the random walk

(Y n ) in the time interval [1, σ -1].
Observe that the total number of visits of the random walk at level n ≥ 1 is

N n = Z + n + Z + n+1 . This furnishes : n≥1 (ϕ n (ut)) Nn = n≥1 (ϕ n (ut)) Z + n +Z + n+1 = ϕ 1 (ut) n≥1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1 .
Finally :

χ + D (ut) = ϕ 1 (ut)E +   n≥1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1   .

Development of χ + D in SP-continued fraction

We now express χ + D as a SP-continued fraction. For N ≥ 1 set :

χ +,N D (ut) = ϕ 1 (ut)E + N n=1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1 . (7) 
Let (R

(n) k ) n≥1,k≥1 be independent random variables such that R (n) k ∼ G(p n ).
Then (Z + n ) n≥1 admits the following classical description :

Z + 1 = 1, Z + n+1 = Z + n k=1 R (n) k , n ≥ 1.
Recall that the generating function of

G(p n ) is s -→ q n /(1 -p n s) = a n /(b n -s), 0 ≤ s ≤ 1.
Using conditioning on the first step, this allows to write :

χ +,N D (ut) = ϕ 1 (ut)E + N -1 n=1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1 (ϕ N (ut)ϕ N +1 (ut)) Z + N +1 = ϕ 1 (ut)E + N -1 n=1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1 a N b N -ϕ N (ut)ϕ N +1 (ut) Z + N = ϕ 1 (ut)E + N -2 n=1 [ϕ n (ut)ϕ n+1 (ut)] Z + n+1 a N ϕ N -1 (ut)ϕ N (ut) b N -ϕ N (ut)ϕ N +1 (ut) Z + N . Replacing ϕ N ϕ N +1 of the first line by the quantity a N ϕ N -1 ϕ N b N -ϕ N ϕ N +1
, we iterate and obtain :

χ +,N D = ϕ 1 a 1 b 1 - ϕ1ϕ2a2 b2•••- ϕ N -1 ϕ N a N b N -ϕ N ϕ N +1 .
Dividing by ϕ 1 , • • • , ϕ N at each successive level, using that the ϕ n are close to 1, hence not 0, uniformly in n and u ∈ S d-1 + for small t, we get :

χ +,N D (ut) = [(a 1 , b 1 /ϕ 1 (ut)); (-a 2 , b 2 /ϕ 2 (ut)); • • • ; (-a N , b N /ϕ N (ut) -ϕ N +1 (ut))].
Now in [START_REF] Spitzer | Principles of random walks[END_REF], χ +,N D converges pointwise to χ D by dominated convergence. Hence, by lemma (3.1) :

χ + D (ut) = [(a 1 , b 1 /ϕ 1 (ut)); (-a 2 , b 2 /ϕ 2 (ut)); • • • ; (-a n , b n /ϕ n (ut)) • • • ].
A similar expression is true for χ - D (ut). We have in fact shown something slightly stronger : Lemma 4.3 Let (γ n ) n≥1 be a sequence of complex numbers with 0 < |γ n | ≤ 1. Then :

E + σ-1 k=1 γ Y k = γ 1 E + n≥1 [γ n γ n+1 ] Z + n+1 = [(a 1 , b 1 /γ 1 ); (-a 2 , b 2 /γ 2 ); • • • ; (-a n , b n /γ n ); • • • ].

Another reduction

Let E n (ut) = k∈Z d e itu.k µ n (k), t ∈ R. From (5), ϕ n (ut) = (1 -r n )/(1 -r n E n (ut)), giving : 1 ϕ n (ut) = 1 -itu.m n r n 1 -r n + O(t 2 ),
with O uniform in n and u ∈ S d-1 + . We shall replace below the ϕ n (ut) by the ψ n (ut) in the recursive relation [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF] satisfied by the (B n ), where :

Definition 4.4 For n ∈ Z, u ∈ S d-1 + and t ∈ R, set η n = r n m n /p n and 1 ψ n (ut) = 1 -itu.η n p n 1 -r n = 1 -itu.η n /b n . Lemma 4.5 Let c = δ 3 /4 > 0.
For small t > 0, uniformly in n and u ∈ S d-1

+ : |ϕ n (ut)| ≤ 1 -ct 2 . ( 8 
)
Proof of the lemma :

Let M 2,n (u) = k∈Z d (k.u) 2 µ n (k), m n (u) = m n .u and V ar n (u) = M 2,n (u) -m n (u) 2 . A computa- tion gives : |ϕ n (ut)| = 1 - t 2 2 r n (1 -r n ) 2 (M 2,n (u) -r n V ar n (u)) + O(t 3 ),
with O uniform in n and u ∈ S d-1 , due to the uniformly bounded third moment of µ n . Using the hypotheses, we have δ 2 ≤ δM 2,n (u) ≤ M 2,n (u) -r n V ar n (u). Hence :

|ϕ n (ut)| ≤ 1 - t 2 δ 3 2 + O(t 3 ) ≤ 1 - t 2 δ 3 4 ,
for t small enough, uniformly in n and u ∈ S d-1 + .

Lemma 4.6 Let R + (t) = 1 -E + ((1 -t 2 ) σ-1 ) and f + (ut) = E + ( σ-1 k=1 ψ Y k (ut)).
1. For all C ≥ 1, for x > 0 large enough :

ψ -1 + (Cx) ≤ 2C 2 ψ -1 + (x).
2. There exists α ≥ 1 so that for small t > 0 :

1 α ≤ R + (t)ψ -1 + (1/t) ≤ α.
3. There exist constants C 1 > 0, C 2 > 0 so that for small t > 0, uniformly in u ∈ S d-1

+ : 1 -|χ + D (ut)| ≥ C 1 R + (t) and χ + D (ut) -f + (ut) ≤ C 2 R + (t).
Proof of the lemma :

1. Recall that ψ 2 + (n) = nw + • v -1 + (n), so n -→ ψ 2 + (n)/n is non-decreasing. Let C ≥ 1 and x > 0. Set n = ψ -1 + (x) and suppose that n ≥ 1. By definition, ψ + (n) ≤ x < ψ + (n + 1). Similarly, let n + p = ψ -1
+ (Cx). Then :

ψ -1 + (Cx) ψ -1 + (x) = n + p n ≤ 2 n + p n + 1 ≤ 2 ψ 2 + (n + p) ψ 2 + (n + 1) ≤ 2 C 2 x 2 x 2 = 2C 2 .

As a preliminary point, for

n ≥ 1, let Θ + (n) > 0 be such that Θ 2 + (n) = 1≤k≤l≤n (ρ l /ρ k ). Fix constants c > 0, c > 0 so that cw + (k) ≤ 1≤u≤k (1/ρ u ) and v + (k + 1) ≤ c v + (k), for all k ≥ 1.
We claim that there exists C > 0 so that for all x > 0 large enough :

(1/C)v + • Θ -1 + (x) ≤ ψ -1 + (x) ≤ Cv + • Θ -1 + (x).
The second inequality follows from the remark that Θ

+ • v -1 + ≤ ψ + , giving v -1 + • ψ -1 + ≤ Θ -1 + , and the fact that v + (v -1 + (x)) ≥ c
x, for some constant c > 0. For the first one, let x > 0 and n = Θ -1 + (x). For any 1 ≤ m ≤ n :

x 2 ≥ (v + (n) -v + (m)) 1≤k≤m (1/ρ k ) ≥ c(v + (n) -v + (m))w + (m). Choose m ≤ n so that v + (m) ≤ v + (n)/2 < v + (m + 1)
. Hence, as m = v -1 + (v + (m)) :

x 2 ≥ (c/2)v + (m)w + (m) ≥ (c/2)ψ 2 + (v + (m)).
We obtain, using at the end the first point of the lemma :

v + (n)/(2c ) ≤ v + (m) ≤ ψ -1 + (x/ c/2 ) ≤ (4/c)ψ -1 + (x).
This completes the proof of the claim.

Let us now turn to the evaluation of R + (t). Using lemmas 4.3 and 3.1 we have :

E + ((1 -t 2 ) σ-1 ) = lim n→+∞ α n (t) β n (t) = n≥1 ρ n β n β n-1 ,
where β -1 = 0, β 0 = 1 and

β n = (b n /(1 -t 2 ))β n-1 -a n β n-2 .
We omit the dependence in t. The (α n ) satisfy the same recursive relation with this time α -1 = 1 and α 0 = 0. First, as there is a constant C > 0 so that for all n ≥ 1, Θ + (n) ≤ Θ + (n + 1) ≤ CΘ + (n), we deduce that for any constant c > 0 (chosen later), there exists a constant c > 0 so that for small enough t > 0 there is an integer N (t) so that :

c t 2 ≤ Θ 2 + (N (t)) ≤ c t 2 . Next, using lemma 3.1 : R + (t) - β N (t) (t) -α N (t) (t) β N (t) (t) ≤ n>N (t) ρ n β n (t)β n-1 (t) ≤ 1 β N (t) . (9) 
We shall show that there exists a constant ε > 0 so that 1

+ ε ≤ β N (t) (t) -α N (t) (t) ≤ 1/ε and next that v + (N (t)) ≤ β N (t) (t) ≤ v + (N (t)
)/ε. These two properties imply that R + (t) has exact order 1/v + (N (t)) and so 1/ψ -1 + (1/t), by the claim and the first point. We have b n /(1 -t 2 ) = b n + t 2 c n (t), with (1/α) ≤ c n (t) ≤ α, for some constant α > 0. Next :

β n β n-1 = b n + t 2 c n (t) -a n 1 0 • • • b 1 + t 2 c 1 (t) -a 1 1 0 1 0 . Setting C n = b n -a n 1 0 , B = 1 0 0 0 and since β n (0) = v + (n)
, we obtain :

β n = v + (n) + n r=1 t 2r 1≤k1<•••<kr≤n c k1 (t) • • • c kr (t) e 1 , C n • • • C kr+1 B • • • BC k1-1 • • • C 1 e 1 = v + (n) + n r=1 t 2r 1≤k1<•••<kr≤n (c k1 • • • c kr )(t)v + (k 1 -1)θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ).
Idem, since α n = a 1 θβ n-1 :

α n = v + (n) -1 + n r=1 t 2r 2≤k1<•••<kr≤n (c k1 • • • c kr )(t)(v + (k 1 -1) -1)θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ).
This furnishes :

β n -α n = 1 + n r=1 t 2r 1≤k1<•••<kr≤n (c k1 • • • c kr )(t)θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ).
As a result

β n ≤ v + (n)(1 + 1≤r≤n α r t 2r (Θ 2 + (n)) r ) and β n -α n ≥ 1 + t 2 Θ 2 + (n)/α.
We simply choose 0 < c ≤ α/2 to get the desired result.

We have χ

+ D (ut) = E + ( σ-1 k=1 ϕ Y k (ut)). By (8), |χ + D (ut)| ≤ E + ((1 -ct 2 ) σ-1
). This gives the first inequality, as the first point of the lemma says that R + ( √ c t) ≤ CR + (t), for some constant C depending on c. Concerning the second inequality :

χ + D (ut) -f + (ut) = E + σ-1 k=1 ϕ Y k (ut) -E + σ-1 k=1 ψ Y k (ut) = E + σ-1 k=1 k-1 l=1 ϕ Y l (ut)(ϕ Y k (ut) -ψ Y k (ut)) σ-1 l=k+1 ψ Y l (ut)
.

≤ E + σ-1 k=1 k-1 l=1 |ϕ Y l (ut)||ϕ Y k (ut) -ψ Y k (ut)| σ-1 l=k+1 |ψ Y l (ut)| .
Using now that for some C > 0 and small enough t > 0, uniformly in n and u ∈ S d-1 + , |ϕ n (ut)ψ n (ut)| ≤ Ct 2 , as well as |ϕ n (ut)| ≤ 1 -ct 2 and |ψ n (ut)| ≤ 1, we get for small t > 0 :

χ + D (ut) -f + (ut) ≤ Ct 2 E + σ-1 k=1 (1 -ct 2 ) k-1 = Ct 2 E + 1 -(1 -ct 2 ) σ-1 ct 2 = C c R + ( √ c t).
The conclusion now comes from the first point of the lemma.

Precise analysis of some convergents

As a summary, from the previous section, uniformly in u ∈ S d-1

+ : χ + D (ut) = f + (ut) + O(R + (t)), with f + (ut) = lim n→+∞ A n (ut)/B n (ut)
, where now :

B n (ut) B n-1 (ut) = b n -itu.η n -a n 1 0 • • • b 1 -itu.η 1 -a 1 1 0 1 0 , together with A n (ut) = a 1 θB n-1 (ut).
Recall the definitions R l k (u) = k≤r≤l η r .u(ρ l /ρ r ) and

T l k (u) = (R l k (u)) 2 ρ k-1 /ρ l , k ≤ l. For fixed u ∈ S d-1
+ , notice that these quantities depend only on the data in [k, l].

Definition 5.1

We fix u ∈ S d-1 + . Omitting the dependence with respect to u, set :

∆ n r = 1≤k1<•••<kr≤n R k1 1 R k2 k1+1 • • • R kr kr-1+1 , with ∆ n 0 = 1 and ∆ n r = 0 if r > n or r < 0.
Proceeding as in the previous section, setting η k = u.η k , we develop :

B n (ut) = v + (n) + n r=1 (-it) r 1≤k1<•••<kr≤n η k1 • • • η kr v + (k 1 -1)θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ), A n (ut) = v + (n) -1 + n r=1 (-it) r 2≤k1<•••<kr≤n η k1 • • • η kr (v + (k 1 -1) -1)θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ).
We therefore obtain :

B n (ut) -A n (ut) = 1 + n r=1 (-it) r 1≤k1<•••<kr≤n η k1 • • • η kr θ k1 v + (k 2 -k 1 -1) • • • θ kr v + (n -k r ).
In the last sum, fix k 2 , • • • , k r and write :

1≤k1<k2 η k1 θ k1 v + (k 2 -k 1 -1) = 1≤k1<k2 η k1 k1≤l<k2 ρ l ρ k1 = 1≤l<k2 1≤k1≤l η k1 ρ l ρ k1 = 1≤l<k2 R l 1 .
Successively iterate this manipulation for k 2 , • • • , k r in the formula for B n (ut) -A n (ut). Then :

B n (ut) -A n (ut) = 1 + n r=1 (-it) r 1≤k1<•••<kr≤n R k1 1 R k2 k1+1 • • • R kr kr-1+1 = n r=0 (-it) r ∆ n r .
Similarly, using as first step that

1≤k1<k2 η k1 v + (k 1 -1)θ k1 v + (k 2 -k 1 -1) = 0≤s<l<k2 ρ s R l s+1 : B n (ut) = v + (n) + n r=1 (-it) r 0≤k1<•••<kr+1≤n ρ k1 R k2 k1+1 • • • R kr+1 kr+1 = n r=0 (-it) r 0≤k≤n ρ k θ k ∆ n-k r . Proposition 5.2 Set 2 (k,l) = 2 if k = l and 1 if k = l.
We have the following exact computations :

1. |B n (ut) -A n (ut)| 2 = n r=0 t 2r K r (n), with : K r (n) = 1≤l1<k2≤l2<•••<kr≤lr<kr+1≤n+1 T l1 1 • • • T lr kr ρ kr+1-1 2 Hr((ki),(lj ))
,

where H r ((k i ), (l j )) := #{1 ≤ i ≤ r | l i + 1 < k i+1 }. 2. |B n (ut)| 2 = n r=0 t 2r L r (n), with L r (n) = 0≤k≤l≤n ρ k ρ l 2 (k,l) θ l K r (n -l).

Re((B

n -A n ) Bn )(ut) = n r=0 t 2r M r (n), with M r (n) = 0≤k≤n ρ k θ k K r (n -k). 4. Im(A n (ut) Bn (ut)) = n-1 r=0 t 2r+1 N r (n), with N r (n) = 1≤k≤l≤n R k 1 2 (k,l) ρ l θ l K r (n -l). When r > n or r < 0, set K r (n) = L r (n) = M r (n) = 0. Idem N r (n) = 0, r ≥ n or r < 0. Remark. -Recall that R l k and T l k and therefore K r (n), L r (n), M r (n), N r (n) depend on u ∈ S d-1 +
but that the dependence is omitted in the notations.

Proof of the proposition :

1. Since B n (ut) -A n (ut) = 0≤r≤n (-it) r ∆ n r , this gives : |B n (ut) -A n (ut)| 2 = (B n (ut) -A n (ut))(B n (ut) -A n (ut)) = n r=0 t 2r r p=-r ∆ n r+p ∆ n r-p (-i) r+p i r-p ,
using the conventions for ∆ n r concerning the value of r with respect to n.

Hence |B n (ut)-A n (ut)| 2 = n r=0 t 2r K r (n), with K 0 (n) = 1 and : K r (n) = r p=-r (-1) p ∆ n r+p ∆ n r-p , r ≥ 1.
We will show that :

K 1 (n) = 1≤k≤l≤n T k 1 ρ l 2 (k,l) , (10) 
together with the following recursive relation, for r ≥ 2 :

K r (n) = 1≤k≤l≤n T k 1 ρ l θ l K r-1 (n -l)2 (k,l) . (11) 
This then gives the announced formula. For the initial relation :

K 1 (n) = (∆ n 1 ) 2 -2∆ n 2 =   1≤k≤n R k 1   2 -2 1≤k<l≤n R k 1 R l k+1 = 1≤k≤n (R k 1 ) 2 + 2 1≤k<l≤n R k 1 (R l 1 -R l k+1 ). Observing that R k 1 (R l 1 -R l k+1 ) = (R k 1 ) 2 (ρ l /ρ k ) = T k 1 ρ l ,
this proves (10). Let us now turn to the proof of (11). Taking first general p ≥ 1 and q ≥ 1, we write :

∆ n p ∆ n q = 1≤k1<•••<kp≤n 1≤k 1 <•••<k q ≤n (R k1 1 • • • R kp kp-1+1 )(R k 1 1 • • • R k q k q-1 +1 ).
Distinguishing the cases k 1 = k 1 , k 1 < k 1 and k 1 < k 1 , we decompose :

∆ n p ∆ n q = 1≤k≤n (R k 1 ) 2 θ k ∆ n-k p-1 θ k ∆ n-k q-1 + 1≤k1<•••<kp≤n k1<k 1 <•••<k q ≤n R k1 1 (R k2 k1+1 • • • R kp kp-1+1 )(R k1 1 ρ k 1 ρ k1 + R k 1 k1+1 )(R k 2 k 1 +1 • • • R k q k q-1 +1 ) + 1≤k 1 <•••<k q ≤n k 1 <k1<•••<kp≤n (R k 1 1 ρ k1 ρ k 1 + R k1 k 1 +1 )(R k2 k1+1 • • • R kp kp-1+1 )(R k 1 1 • • • R k q k q-1 +1 ).
Regrouping terms, this is rewritten as :

∆ n p ∆ n q = 1≤k≤n (R k 1 ) 2   θ k ∆ n-k p-1 k≤l≤n θ l ∆ n-l q-1 ρ l ρ k + θ k ∆ n-k q-1 k<l≤n θ l ∆ n-l p-1 ρ l ρ k   + 1≤k≤n R k 1 θ k ∆ n-k p-1 θ k ∆ n-k q + θ k ∆ n-k p θ k ∆ n-k q-1 .
Taking r ≥ 2, insert the latter in K r (n) = -r+1≤p≤r-1 (-1) p ∆ n r+p ∆ n r-p + 2(-1) r ∆ n 2r and get :

K r (n) = 1≤k≤n (R k 1 ) 2 -r+1≤p≤r-1 (-1) p   θ k ∆ n-k r+p-1 k≤l≤n θ l ∆ n-l r-p-1 ρ l ρ k + θ k ∆ n-k r-p-1 k<l≤n θ l ∆ n-l r+p-1 ρ l ρ k   + 2(-1) r ∆ n 2r + 2 1≤k≤n R k 1   -r+1≤p≤r-1 (-1) p θ k ∆ n-k r+p-1 θ k ∆ n-k r-p   .
The last line is

2 1≤k≤n R k 1 [ -r+1≤p≤r (-1) p θ k ∆ n-k r+p-1 θ k ∆ n-k r-p ].
The bracketed sum is 0, for instance when doing the change of variable p -→ -p + 1. Separating now the term with k = l in the first sum above and recognizing θ k K r-1 (n -k), we obtain :

K r (n) = 1≤k≤n (R k 1 ) 2   θ k K r-1 (n -k) + 2 -r+1≤p≤r-1 (-1) p θ k ∆ n-k r+p-1 k<l≤n θ l ∆ n-l r-p-1 ρ l ρ k   .
Setting m = n -k and Z r (m) = -r≤p≤r (-1) p ∆ m r+p 1≤l≤m θ l ∆ m-l r-p ρ l , we therefore have :

K r (n) = 1≤k≤n (R k 1 ) 2 θ k K r-1 (n -k) + 2θ k Z r-1 (n -k) .
We shall show that :

Z r (m) = 1≤k≤m θ k K r (m -k)ρ k , r ≥ 1. ( 12 
)
To complete the proof of (11), we simply apply this to Z r-1 (n -k) in the previous equality. First of all, with 0 ≤ p ≤ r -1 :

∆ m r+p 1≤l≤m θ l ∆ m-l r-p ρ l = 1≤k1<•••<kr+p≤m 1≤l1<l2<•••<lr-p+1≤m R k1 1 • • • R kr+p kr+p-1+1 R l2 l1+1 • • • R lr-p+1 lr-p+1 ρ l1 = 1≤k1<•••<kr+p≤m k1≤l1<•••<lr-p+1≤m R k1 1 R k2 k1+1 • • • R kr+p kr+p-1+1 R l2 l1+1 • • • R lr-p+1 lr-p+1 ρ l1 + 1≤l1<•••<lr-p+1≤m l1<k1<•••<kr+p≤m (R l1 1 ρ k1 ρ l1 + R k1 l1+1 )R k2 k1+1 • • • R kr+p kr+p-1+1 R l2 l1+1 • • • R lr-p+1 lr-p+1 ρ l1 .
Written in a more concise way :

∆ m r+p 1≤l≤m θ l ∆ m-l r-p ρ l = 1≤k≤m R k 1   θ k ∆ m-k r+p-1 k≤l≤m θ l ∆ m-l r-p ρ l + θ k ∆ m-k r-p k<l≤m θ l ∆ m-l r+p-1 ρ l   + 1≤k≤m θ k ∆ m-k r+p θ k ∆ m-k r-p ρ k .
This allows to write :

Z r (m) = (-1) r   ∆ m 2r 1≤l≤m ρ l + 1≤l≤m θ l ∆ m-l 2r ρ l   + 1≤k≤m -r+1≤p≤r-1 (-1) p θ k ∆ m-k r+p θ k ∆ m-k r-p ρ k + 1≤k≤m R k 1 -r+1≤p≤r-1 (-1) p   θ k ∆ m-k r+p-1 k≤l≤m θ l ∆ m-l r-p ρ l + θ k ∆ m-k r-p k<l≤m θ l ∆ m-l r+p-1 ρ l   .
Recognizing some θ k K r (m -k), we get :

Z r (m) = (-1) r   ∆ m 2r 1≤l≤m ρ l - 1≤l≤m θ l ∆ m-l 2r ρ l   + 1≤k≤m θ k K r (m -k)ρ k + 1≤k≤m R k 1 -r+1≤p≤r-1 (-1) p   θ k ∆ m-k r+p-1 k≤l≤m θ l ∆ m-l r-p ρ l   + 1≤k≤m R k 1 -r+2≤p≤r (-1) p+1   θ k ∆ m-k r+p-1 k<l≤m θ l ∆ m-l r-p ρ l   .
Consequently :

Z r (m) = 1≤k≤m θ k K r (m -k)ρ k + (-1) r   ∆ m 2r 1≤l≤m ρ l - 1≤l≤m θ l ∆ m-l 2r ρ l   + (-1) r+1 1≤k≤m R k 1   θ k ∆ m-k 2r-1 k≤l≤m ρ l + k<l≤m θ l ∆ m-l 2r-1 ρ l   + 1≤k≤m R k 1 -r+1≤p≤r (-1) p   θ k ∆ m-k r+p-1 k≤l≤m θ l ∆ m-l r-p ρ l -θ k ∆ m-k r+p-1 k<l≤m θ l ∆ m-l r-p ρ l   . The last line is 1≤k≤m R k 1 [ -r+1≤p≤r (-1) p θ k ∆ m-k r+p-1 θ k ∆ m-k r-p ρ k ].
For the same reason as before, the inside brackets are 0. Therefore it finally remains to show that the sum of the second and third terms is also 0, in other words that :

∆ m 2r 1≤l≤m ρ l - 1≤l≤m θ l ∆ m-l 2r ρ l - 1≤k≤m R k 1   θ k ∆ m-k 2r-1 k≤l≤m ρ l + k<l≤m θ l ∆ m-l 2r-1 ρ l   = 0. Equivalently : 1≤k≤m R k 1 θ k ∆ m-k 2r-1 1≤k<l ρ l - 1≤l≤m θ l ∆ m-l 2r ρ l - 1≤k≤m R k 1 k<l≤m θ l ∆ m-l 2r-1 ρ l = 0.
In the last term, replace R k 1 by (R l 1 -R l k+1 )ρ k /ρ l . It remains to show that :

- 1≤l≤m θ l ∆ m-l 2r ρ l + 1≤k≤m R k 1 θ k ∆ m-k 2r-1 1≤l<k ρ l - 1≤k<l≤m R l 1 θ l ∆ m-l 2r-1 ρ k + 1≤k<l≤m R l k+1 θ l ∆ m-l 2r-1 ρ k = 0.
As this is true, this completes the proof of this first point.

Let us define ∆n

r = 0≤k≤n ρ k θ k ∆ n-k r
, so that B n (ut) = 0≤r≤n (-it) r ∆n r . As for |B n (ut) -A n (ut)| 2 in the first point, we have :

|B n (ut)| 2 = 0≤r≤n t 2r L r (n), where L r (n) = -r≤p≤r (-1) p ∆n r+p ∆n r-p .
In order to compute L r (n), notice first that :

∆n r+p ∆n r-p = 0≤k≤n ρ k   θ k ∆ n-k r+p k≤l≤n θ l ∆ n-l r-p ρ l + θ k ∆ n-k r-p k<l≤n θ l ∆ n-l r+p ρ l   .
Replacing in L r (n), this allows to write, using the expressions of K r (n) and Z r (n) given in (12) :

L r (n) = 0≤k≤n ρ k -r≤p≤r (-1) p   θ k ∆ n-k r+p k≤l≤n ρ l θ l ∆ n-l r-p + θ k ∆ n-k r-p k<l≤n ρ l θ l ∆ n-l r+p   = 0≤k≤n (ρ k ) 2 θ k K r (n -k) + 2 0≤k≤n (ρ k ) 2 θ k Z r (n -k) (13) = 0≤k≤n ρ k   ρ k θ k K r (n -k) + 2 k<l≤n ρ l θ l K r (n -l)   = 0≤k≤n ρ k θ k K r (n -k) 0≤l≤k 2 (l,k) ρ l .
This completes the proof of this point.

3. Directly, we obtain :

(B n -A n )(ut)B n (ut) = 0≤r≤n (-it) r ∆ n r 0≤r ≤n (it) r ∆n r . ( 14 
)
When developing and taking the real part, only terms with r + r even intervene. This gives :

Re((B n -A n )B n )(ut) = 0≤r≤n t 2r   -r≤p≤r (-i) r+p i r-p ∆ n r+p ∆n r-p   = 0≤r≤n t 2r M r (n),
with this time :

M r (n) = -r≤p≤r (-1) p ∆ n r+p ∆n r-p . Since ∆n r = ∆ n r + 1≤k≤n ρ k θ k ∆ n-k r
, using K r (n) and the value of Z r (n) in (12), we have :

M r (n) = K r (n) + Z r (n) = 0≤k≤n ρ k θ k K r (n -k).
This ends the proof of this point.

4. In the same way as for 3., when taking the imaginary part in ( 14), only terms with r + r odd come into play. Consequently :

Im(A n B n )(ut) = - 1 i 0≤r≤n-1 t 2r+1   -r-1≤p≤r (-i) r+p+1 i r-p ∆ n r+p+1 ∆n r-p   = 0≤r≤n-1 t 2r+1 N r (n),
with this time :

N r (n) = -r-1≤p≤r (-1) p ∆ n r+p+1 ∆n r-p .
Using again that ∆n

r = 0≤k≤n ρ k θ k ∆ n-k r
, we get :

N r (n) = 0≤k≤n -r-1≤p≤r (-1) p ∆ n r+p+1 θ k ∆ n-k r-p ρ k .
Notice that the term corresponding to k = 0 equals 0, for symmetry reasons as before. It remains :

N r (n) = (-1) r+1 1≤k≤n θ k ∆ n-k 2r+1 ρ k + 1≤l≤n R l 1 -r≤p≤r (-1) p θ l ∆ n-l r+p l<k≤n θ k ∆ n-k r-p ρ k + 1≤k≤n -r≤p≤r (-1) p θ k ∆ n-k r-p ρ k k≤l≤n R l 1 θ l ∆ n-l r+p = 1≤k≤n R k 1 ρ k θ k K r (n -k) + 1≤l≤n R l 1 ρ l θ l Z r (n -l) + O r (n), (15) 
where we introduce :

O r (n) = (-1) r+1 1≤k≤n θ k ∆ n-k 2r+1 ρ k + 1≤k≤n -r≤p≤r (-1) p θ k ∆ n-k r-p ρ k k<l≤n R l 1 θ l ∆ n-l r+p .
To compute O r (n), in the last sum decompose

R l 1 = R k 1 (ρ l /ρ k ) + R l k+1 . As a result : O r (n) = 1≤k≤n R k 1 -r≤p≤r (-1) p θ k ∆ n-k r-p k<l≤n θ l ∆ n-l r+p ρ l + (-1) r+1 1≤k≤n θ k ∆ n-k 2r+1 ρ k + 1≤k≤n -r≤p≤r (-1) p θ k ∆ n-k r-p θ k ∆ n-k r+p+1 ρ k = 1≤k≤n R k 1 θ k Z r (n -k)ρ k + 1≤k≤n -r≤p≤r-1 (-1) p θ k ∆ n-k r-p θ k ∆ n-k r+p+1 ρ k .
One more time, the last term is 0. Together with ( 15) and ( 12) we obtain :

N r (n) = 1≤k≤n ρ k R k 1 (θ k K r (n -k) + 2θ k Z r (n -k)) = 1≤k≤l≤n R k 1 θ l K r (n -l)ρ l 2 (k,l) .
This gives the announced formula and concludes the proof of the proposition.

6 Proof of the theorem

Dominated variation

For u ∈ S d-1 + , the inverse functions of n → ϕ u,+ (n) and n → ϕ u (n) check a dominated variation property at infinity (Feller, 1969). Notice that the latter property holds for ψ -1 + and ψ -1 -, as a consequence of the first point of lemma 4.6. Lemma 6.1 1. For any x ≥ 1 and K ≥ 1 :

ψ -1 (Kx) ≤ 2K 2 ψ -1 (x).
2. There exists a constant C(δ) > 0, so that for any u ∈ S d-1

+ , any x ≥ 1 and K ≥ 1 :

ϕ -1 u,+ (Kx) ≤ 2K 2 δ ϕ -1 u,+ (x) and ϕ -1 u (Kx) ≤ K 2 C(δ) ϕ -1 u (x).
Proof of the lemma :

1. Recall that ψ 2 (n) = n w + (n) • v -1 + (n) + w -(n) • v -1 -(n) . For x ≥ 1, let n = ψ -1 (x), ie ψ(n) ≤ x < ψ(n + 1
). This implies that :

ψ(K 2 (n + 1)) ≥ Kψ(n + 1) > Kx. Hence ψ -1 (Kx) ≤ K 2 (n + 1) ≤ 2K 2 n = 2K 2 ψ -1 (x). 2. Let κ u,+ (n) = 1≤k≤l≤n T l k (u) = 0≤k<l≤n ρ k ρ l (ζ l k+1 (u)) 2 , setting ζ l k (u) = l s=k η s .u/ρ s , with ζ l k (u) = 0 if k > l.
We first claim that :

κ u,+ (n) v + (n) = κ u,+ (n -1) v + (n -1) + ρ n v + (n)v + (n -1)   0≤k<n ρ k ζ n k+1 (u)   2 .
In particular, n -→ κ u,+ (n)/v + (n) is non-decreasing. Indeed :

κ u,+ (n) = 0≤k<l≤n ρ k ρ l (ζ n k+1 (u)) 2 + 0≤k<l≤n ρ k ρ l (ζ n l+1 (u)) 2 -2 0≤k<l≤n ρ k ρ l ζ n k+1 (u)ζ n l+1 (u).
This is rewritten as :

κ u,+ (n) = 0≤k<n ρ k (ζ n k+1 (u)) 2 k<l≤n ρ l + 1≤l≤n ρ l (ζ n l+1 (u)) 2 0≤k<l ρ k -   0≤k≤n ρ k ζ n k+1 (u)   2 + 0≤k≤n (ρ k ) 2 (ζ n k+1 (u)) 2 .
In other words :

κ u,+ (n) = v + (n) 0≤k<n ρ k (ζ n k+1 (u)) 2 -   0≤k≤n ρ k ζ n k+1 (u)   2 .
Next, directly from the definition of κ u,+ (n), and then using the previous equality :

κ u,+ (n) -κ u,+ (n -1) = ρ n 0≤k<n ρ k (ζ n k+1 (u)) 2 = ρ n κ u,+ (n) + 0≤k<n ρ k ζ n k+1 (u) 2 v + (n) .
Observe that this is equivalent to the desired claim.

We next use that for all n ≥ 0,

δ ≤ ρ n+1 /ρ n ≤ 1/δ, hence v + (n + 1) ≤ (2/δ)v + (n). As a result v + • v -1 + (n) ≤ n ≤ (2/δ)v + • v -1 + (n).
Hence for x ≥ 1 and K ≥ 1 :

κ u,+ • v -1 + (Kx) ≥ κ u,+ • v -1 + (x) v + • v -1 + (Kx) v + • v -1 + (x) ≥ δK 2 κ u,+ • v -1 + (x).
A similar property is verified for some symmetrically defined function κ u,-• v -1 -. Notice that :

ϕ 2 u,+ (n) = ψ 2 (n) + κ u,+ • v -1 + (n) + κ u,-• v -1 -(n).
Notice that ϕ u,+ (n) → +∞, as n → +∞. As we showed in point one that ψ 2 (Kx) ≥ Kψ 2 (x), we obtain that for x ≥ 1 and K ≥ 1 :

ϕ u,+ (Kx) ≥ (δK/2) ϕ u,+ (x). 
We conclude as in point one. Let x ≥ 1 and n = ϕ -1 u,+ (x) and K ≥ 1. Then ϕ u,+ (n) ≤ x < ϕ u,+ (n + 1), so :

ϕ u,+ ((2K 2 /δ)(n + 1)) ≥ Kϕ u,+ (n + 1) > Kx. Consequently ϕ -1 u,+ (Kx) ≤ ((2K 2 )/δ)ϕ -1 u,+ (x) 
. It remains to show the same result for ϕ u . This way, let κ u (-m, n) = -m≤k≤l≤n T l k (u), for m ≥ 1, n ≥ 1. Then, the computation on κ u,+ shows that :

n -→ κ u (-m, n) (v -(m)/a 0 ) + v + (n) and m -→ κ u (-m, n) (v -(m)/a 0 ) + v + (n)
are non-decreasing. This furnishes that for some constant C(δ) > 0 :

κ u (-v -1 -(Kx), v -1 + (Kx)) ≥ C(δ)K 2 κ u (-v -1 -(x), v -1 + (x)). As ϕ 2 u (n) = ψ 2 (n)+κ u (-v -1 -(n), v -1 + (n))
, we conclude as before. This ends the proof of the lemma.

Order of the real part of 1 -χ D (ut)

With u ∈ S d-1

+ and small t > 0, recall the decomposition χ D (ut) = ϕ 0 (ut)(p 0 χ + D (ut)+q 0 χ - D (ut)) and also that :

χ + D (ut) = f + (ut) + O(R + (t)) and χ - D (ut) = f -(ut) + O(R -(t)),
where the O( ) are uniform in u ∈ S d-1

+ and where R + (t) and R -(t) have respective orders 1/ψ -1 + (1/t) and 1/ψ -1 -(1/t), by lemma 4.6.

Lemma 6.2 Let R(t) = R + (t) + R -(t). 1. We have χ D (ut) = ϕ 0 (ut)(p 0 f + (ut) + q 0 f -(ut)) + O(R(t)).
2. We have

t 2 = O(R + (t)) and t 2 = O(R -(t)). 3. We have tIm(1 -f + (ut)) = O(R + (t)) and tIm(1 -f -(ut)) = O(R -(t)). 4. We have χ D (ut) = (1 + itm 0 .ur 0 /(1 -r 0 ))(p 0 f + (ut) + q 0 f -(ut)) + O(R(t)) and Re(1 -χ D )(ut) = p 0 Re(1 -f + (ut)) + q 0 Re(1 -f -(ut)) + O(R(t)). (16) 
5. There is a constant c > 0 so that for small t > 0, uniformly in u ∈ S d-1

+ : Re(1 -χ D (ut)) ≥ cR(t).
Proof of the lemma :

1. This from χ D (ut) = ϕ 0 (ut)(p 0 χ + D (ut) + q 0 χ - D (ut)) and χ ± D (ut) = f ± (ut) + O(R ± (t)). 2. As ψ 2 + (n) = nw + • v -1 + (n), for some constant c > 0, ψ + (n 2 ) ≥ cn, so ψ -1 + (1/t) ≤ c /t 2 , t > 0, for some constant c > 0. By lemma 4.6, t 2 = O(ψ -1 + (1/t)) = O(R + (t)
), which gives the first property. The other one is proved in the same way.

3. We make use of proposition 5.2 and lemma 3.1. Taking any integer n ≥ 1 and since f + (ut) = A n (ut)/B n (ut) + O(1/v + (n)) (where O( ) is independent on u and t), we have :

Im(f + (ut)) = Im(A n (ut)) Bn (ut)) |B n (ut)| 2 + O(1/v + (n)) = 0≤r≤n-1 t 2r+1 N r (n) 0≤r≤n t 2r L r (n) + O(1/v + (n)). Now, see (13), L r (n) = 0≤l≤k≤n ρ k θ k K r (n -k)2 (l,k) ρ l ≥ 1≤k≤n ρ k v + (k)θ k K r (n -k), where the dependence in u ∈ S d-1
+ is implicit, and :

N r (n) = 1≤k≤l≤n R k 1 θ l K r (n -l)ρ l 2 (k,l) = 1≤k≤n   1≤s≤l≤k η s .u ρ s ρ l 2 (l,k)   ρ k θ k K r (n -k).
As the η n .u are uniformly bounded by some C/2 (as n and u ∈ S d-1

+ vary), we get :

|N r (n)| ≤ Cw + (n) 1≤k≤n v + (k)ρ k θ k K r (n -k) ≤ Cw + (n)L r (n).
We finally obtain |Im(f

+ (ut))| ≤ tw + (n) + O(1/v + (n)). Let n = ψ -1 + (1/t) and n = v -1 + (n ). By definition of ψ + , we have n w + (n) ≤ 1/t 2 . We obtain |Im(f + (ut))| ≤ 1/(tn ) + O(1/n ), which is the desired result. The situation for t|Im(f -(ut))| is similar. 4. Write ϕ 0 (ut) = 1 + itm 0 .ur 0 /(1 -r 0 ) + O(t 2 ), with O( ) uniform in u ∈ S d-1
+ . Using the first point of the lemma, we get :

χ D (ut) = 1 + itm 0 .ur 0 1 -r 0 (p 0 f + (ut) + q 0 f -(ut)) + O(R(t)),
with again an error term uniform in u ∈ S d-1 + . Therefore :

1 -χ D (ut) = p 0 (1 -f + (ut)) + q 0 (1 -f -(ut)) - itm 0 .ur 0 1 -r 0 (p 0 f + (ut) + q 0 f -(ut)) + O(R(t)).
Taking the real part :

Re(1-χ D (ut)) = p 0 Re(1-f + (ut))+q 0 Re(1-f -(ut))+ tm 0 .ur 0 1 -r 0 p 0 Im(f + (ut)) + q 0 Im(f -(ut)) +O(R(t)).
The third point of the lemma then gives (16).

5. By lemma 4.6, for a constant c 1 > 0 independent on u ∈ S d-1 + , we have for small t > 0,

1 -|χ + D (ut)| ≥ c 1 R + (ut). Idem, for some c 2 > 0, we get 1 -|χ - D (ut)| ≥ c 2 R -(ut). As χ D (ut) = ϕ 0 (ut)(p 0 χ + D (ut) + q 0 χ - D (ut)) and |ϕ 0 (ut)| ≤ 1 : Re(1 -χ D (ut)) ≥ 1 -|χ D (ut)| ≥ 1 -|p 0 χ + D (ut) + q 0 χ - D (ut)| ≥ p 0 (1 -|χ + D (ut)|) + q 0 (1 -|χ - D (ut)|) ≥ c 1 p 0 R + (t) + c 2 q 0 R -(t) ≥ cR(t),
for some constant c > 0. This completes the proof of the lemma.

Remark. -Notice that in [START_REF] Brémont | On planar random walks in environments invariant by horizontal translations[END_REF] one always had t = O(R + (t)). This is not true anymore here. For example if k≥1 (1/ρ k ) < ∞, one may check that R + (t) can have order t 2 , as t → 0.

Proposition 6.3

There is a constant C 1 so that for t > 0 small enough, uniformly in u ∈ S d-1

+ : 1 C ≤ ϕ -1 u,+ (1/t)Re(1 -χ D (ut)) ≤ C.

Proof of the proposition :

We still fix u ∈ S d-1 + and t > 0. Recall that f + (ut) = lim n→+∞ A n (ut)/B n (ut), where (A n (ut)) and (B n (ut)) check proposition 5.2. Fixing some n ≥ 1, we use proposition 5.2 and lemma 3.1 :

Re(1 -f + (ut)) = Re(1 -A n (ut)/B n (ut)) -Re k>n ρ k B k (ut)B k-1 (ut) ≤ Re((B n (ut) -A n (ut)) Bn (ut)) |B n (ut)| 2 + 1 v + (n) ≤ v + (n) + 1≤r≤n t 2r M r (n) v + (n) 2 + n r=1 t 2r L r (n) + 1 v + (n) ≤ 1 v + (n)   2 + 1≤r≤n t 2r M r (n) v + (n)   ,
where L r (n) and M r (n) depend on u. By the formula for M r (n) and

K r (n) in proposition 5.2, M r (n) ≤ ( 1≤k≤l≤n T l k (u)) r 2 r v + (n), for r ≥ 1. Hence : M r (v -1 + (n)) ≤ n2 r ϕ 2r u,+ (n).
As a result, for some constant C > 0 independent on u and any n ≥ 1 :

Re(1 -f + (ut)) ≤ C n   1 + 1≤r≤v -1 + (n) (2t 2 ) r ϕ 2r u,+ (n)    .
Choose n = n u (t) = ϕ -1 u,+ (1/(2t)). In particular ϕ 2 u,+ (n) ≤ 1/(4t 2 ). We arrive at :

Re(1 -f + (ut)) ≤ C n   1 + r≥1 2 -r   ≤ 2C n = 2C ϕ -1 u,+ (1/(2t)) ≤ C ϕ -1 u,+ (1/t) ,
for some constant C independent on u, using lemma 6.1. Idem, Re(1

-f -(ut)) ≤ C /ϕ -1 u,+ (1/t). Via now (16), using that R ± (t) = O(1/ψ -1 ± (1/t)) = O(1/ϕ -1 u,+ (1/t))
, this shows the right-hand side inequality of the proposition.

Consider next the other direction. Starting in the same way, for any n ≥ 1, via proposition 5.2 and lemma 3.1 (third point) :

Re(1 -f + (ut)) = Re(1 -A n (ut)/B n (ut)) -Re k>n ρ k B k (ut)B k-1 (ut) ≥ Re((B n (ut) -A n (ut)) Bn (ut)) |B n (ut)| 2 - v + (n) |B n (ut)| 2 = v + (n) + 1≤r≤n t 2r M r (n) |B n (ut)| 2 - v + (n) |B n (ut)| 2 = 1≤r≤n t 2r M r (n) v + (n) 2 + 1≤r≤n t 2r L r (n) . By prop. 5.2, M r (n) = 0≤k≤n ρ k θ k K r (n -k) and L r (n) = 0≤l≤k≤n 2 (l,k) ρ l ρ k θ k K r (n -k), so we have L r (n) ≤ 2v + (n)M r (n). Hence : Re(1 -f + (ut)) ≥ 1 v + (n) 1≤r≤n t 2r M r (n)/v + (n) 1 + 2 1≤r≤n M r (n)/v + (n) ≥ 1 v + (n) t 2 M 1 (n)/v + (n) 1 + 2t 2 M 1 (n)/v + (n) , (17) 
using in the last step that x -→ x/(1 + 2x) is increasing (x > 0). As result, for some constant c > 0 independent on u and all n ≥ 1 :

Re(1 -f + (ut)) ≥ c n ct 2 M 1 (v -1 + (n))/n 1 + 2ct 2 M 1 (v -1 + (n))/n . Let κ u,+ (m) = 1≤k≤l≤m T l k (u)
and assume first that lim m→+∞ κ u,+ (m) = +∞. Note (using proposition 5.2) that M 1 (n) ≥ 1≤m≤n ρ m κ u,+ (m). Therefore :

M 1 (v -1 + (n)) ≥ 1≤m≤v -1 + (n) ρ m κ u,+ (m).
Let c 0 ≥ 2 be such that for all n, v + (n + 1)

≤ c 0 v + (n). Set m u (t) = (κ u,+ • v -1 + ) -1 (1/t 2 ) and next choose n u (t) = c 2 0 m u (t). Let s = v -1 + (m u (t)) and s = v -1 + (n u (t)
). This gives :

v + (s) ≤ m u (t) < v + (s + 1) ≤ c 0 v + (s) and v + (s ) ≤ c 2 0 m u (t) < v + (s + 1) ≤ c 0 v + (s ).
As a result, c 2 0 m u (t) ≥ v + (s ) -v + (s) ≥ (c 0 -1)m u (t) and m u (t) ≥ v + (s) ≥ m u (t)/c 0 . This furnishes the inequalities :

M 1 (v -1 + (n u (t))) n u (t) ≥ s<m≤s ρ m κ + (m) n u (t) ≥ κ u,+ (s + 1) v + (s ) -v + (s) n u (t) ≥ α t 2 with α = (c 0 -1)/c 2 0 .
Consequently, with α = (c 2 α)/(c 2 0 (1 + 2cα)) :

Re(1 -f + (ut)) ≥ c n u (t) cα 1 + 2cα = α (κ u,+ • v -1 + ) -1 (1/t 2 )
.

If now m -→ κ u,+ (m) is bounded, the previous inequality is valid as long as (κ u,+ •v -1 + ) -1 (1/t 2 ) is defined. For smaller t, we have (κ u,+ • v -1 + ) -1 (1/t 2 ) = +∞, so that the previous lower-bound is obvious in this case. Similarly, with κ u,-(m) = -m≤k≤l≤-1 T l k (u), we have :

Re(1 -f -(ut)) ≥ α /(κ u,-• v -1 -) -1 (1/t 2 ).
To prove a lower bound, we use (16), giving for some constant c 3 > 0 independent on u :

Re(1 -χ D (ut)) ≥ p 0 Re(1 -f + (ut)) + q 0 Re(1 -f -(ut)) -c 3 /ψ -1 (1/t). ( 18 
) Recall that ϕ 2 u,+ = ψ 2 + κ u,+ • v -1 + + κ u,-• v -1 -.
Then, for some constant β > 0 independent on u and t, we have :

β ≤ ϕ -1 u,+ (1/t) min{ψ -1 (1/t), (κ u,+ • v -1 + ) -1 (1/t 2 ), (κ u,-• v -1 -) -1 (1/t 2 )} ≤ 1.
Fixing t > 0, suppose for example that (κ u,

+ • v -1 + ) -1 (1/t 2 ) ≤ (κ u,-• v -1 -) -1 (1/t 2 )
. This leads to the following discussion :

-If (1/ψ -1 (1/t)) ≤ p 0 Re(1 -f + (ut))/(2c 3 ) and ψ -1 (1/t) ≥ (κ u,+ • v -1 + ) -1 (1/t 2 ), then : Re(1 -χ D (ut)) ≥ (p 0 /2)Re(1 -f + (ut)) ≥ p 0 α /2 (κ u,+ • v -1 + ) -1 (1/t 2 ) ≥ βp 0 α /2 ϕ -1 u,+ (1/t) . -If (1/ψ -1 (1/t)) ≤ p 0 Re(1 -f + (ut))/(2c 3 ) and ψ -1 (1/t) ≤ (κ u,+ • v -1 + ) -1 (1/t 2 )
, then, by lemma 6.2 and proposition 4.6, for absolute constants c > 0 and c > 0 :

Re(1 -χ D (ut)) ≥ cR(ut) ≥ c /ψ -1 (1/t) ≥ βc /ϕ -1 u,+ (1/t). χ D (ut) -1 = ϕ 0 (ut) b 0 (χ + D (ut) + a χ - D (ut) -b 0 /ϕ 0 (ut)) = ϕ 0 (ut) b 0 (f + (ut) + a 0 f -(ut) -b 0 /ψ 0 (ut)) + O(R(t)) = ϕ 0 (ut) b 0 A + n (ut) B + n (ut) + a 0 A - m (ut) B - m (ut) -b 0 /ψ 0 (ut) + ϕ 0 (ut) b 0 k>n ρ k B + k (ut)B + k-1 (ut) + k>m a 2 0 ρ -k-1 B - k (ut)B - k-1 (ut) + O(R(t)),
with O( ) uniform in u and arbitrary n ≥ 1, m ≥ 1. As a result :

χ D (ut) -1 = ϕ 0 (ut) b 0 B + n (ut)B - m (ut) A + n (ut)B - m (ut) + a 0 A - m (ut)B + n (ut) -(b 0 /ψ 0 (ut))B + n (ut)B - m (ut) + ϕ 0 (ut) b 0 R -m,n (ut) + O(R(t)), (19) 
with Then

|R -m,n (ut)| ≤ (v + (n)/|B + n (ut)| 2 )+a 0 (v -(m)/|B - m ( 
Bm+n+1 (ut) = -a -1 • • • a -m (A + n (ut)B - m (ut)+a 0 A - m (ut)B + n (ut)-(b 0 /ψ 0 (ut))B + n (ut)B - m (ut)).
Proof of the lemma : Fix m ≥ 1. Observe that the two functions n -→ -

Bm+n+1 (ut)/(a -1 • • • a -m ) and n -→ A + n (ut)B - m (ut) + a 0 A - m (ut)B + n (ut) -(b 0 /ψ 0 (ut))B + n (ut)B - m (ut) check the same recursive relation X n = (b n /ψ n (ut))X n-1 -a n X n-2 , for n ≥ 1.
We just need to check that they coincide for the values n = 0 and n = 1.

First, Bm (ut)/(a -1 • • • a -m ) = B - m ( 
ut) and :

A - m (ut) = (1/a -1 )θ -1 B - m-1 (ut) = Bm-1 (ut)/(a -1 • • • a -m ), by lemma 6.4. For n = 0 we have -Bm+1 (ut)/(a -1 • • • a -m ) and a 0 A - m (ut) -(b 0 /ψ 0 (ut))B - m (ut). Since one has : Bm+1 (ut) = (b 0 /ψ 0 (ut)) Bm (ut) -a 0 Bm-1 (ut),
this gives the result for n = 0. For n = 1, we have :

Bm+2 (ut) = b 1 ψ 1 (ut) Bm+1 (ut) -a 1 Bm (ut) = b 1 ψ 1 (ut) b 0 ψ 0 (ut) -a 1 Bm (ut) - b 1 ψ 1 (ut) a 0 Bm-1 (ut).
This has to be compared with a

1 B - m (ut) + a 0 (b 1 /ψ 1 (ut))A - m (ut) -(b 0 /ψ 0 (ut))(b 1 /ψ 1 (ut))B - m ( 
ut). This provides the conclusion of the lemma.

As a consequence of this lemma we obtain :

χ D (ut) -1 = - ϕ 0 (ut) b 0 a 0 ρ -m-1 Bm+n+1 (ut) B + (ut)B - m (ut) -R -m,n (ut) + O(R(t)). (20) 
Now it follows from proposition 5.2 that

|B + n (ut)| 2 = n r=0 t 2r L + r (n), with H r ((k i ), (l j )) := #{0 ≤ i ≤ r | l i + 1 < k i+1 } and : L + r (n) = 0≤l0<k1≤l1<•••<kr≤lr<kr+1≤n+1 ρ l0 T l1 k1 (u) • • • T lr kr (u)ρ kr+1-1 2 Hr((ki),(lj )) .
As a result, setting W -m,n (ut) = a 0 ρ -m-1 Bm+n+1 (ut), we have :

|W -m,n (ut)| 2 = 0≤r≤n+m+1 t 2r U r (u), with H r ((k i ), (l i )) = #{0 ≤ i ≤ r | l i + 1 < k i+1 } and : U r (u) = a 2 0 ρ 2 -m-1 -m-1≤l0<k1≤l1<•••<ks≤ls<ks+1≤n+1 θ -m-1 ρ l0+m+1 T l1 k1 (u) • • • T ls ks (u)θ -m-1 ×ρ ks+1-1+m+1 2 Hs((ki),(li)) .
After a cocycle simplification :

U r (u) = a 2 0 -m-1≤l0<k1≤l1<•••<ks≤ls<ks+1≤n+1 ρ l0 T l1 k1 (u) • • • T ls ks (u)ρ ks+1-1 2 Hs((ki),(li)) . (21) 
6.4 Order of the modulus of 1 -χ D (ut) Proposition 6.6

There is a constant C ≥ 1 so that for t > 0 small enough, uniformly in u ∈ S d-1

+ : 1 C ≤ ϕ -1 u (1/t)|1 -χ D (ut)| ≤ C.

Proof of the proposition :

Let us start from (20). Set :

F (ut) = W -m,n (ut) B + n (ut)B - m (ut) -R -m,n (ut). 
We then have χ

D (ut) -1 = -(ϕ 0 (ut)/b 0 )F (ut) + O(R(t))
, where the last term is uniform in u ∈ S d-1 + . By definition, F (ut) does not depend on m ≥ 1, n ≥ 1 (see (20)). The latter are arbitrary for the moment. Using the upper-bound on R -m,n (ut), we get :

|F (ut)| ≥ |W -m,n (ut)| |B + n (ut)||B - m (ut)| - v + (n) |B + n (ut)| 2 -a 0 v -(m) |B - m (ut)| 2 ≥ 1 |B + n (ut)||B - m (ut)| |W -m,n (ut)| -v + (n) |B - m (ut)| |B + n (ut)| -a 0 v -(m) |B + n (ut)| |B - m (ut)| .
Recall that W 2 -m,n (ut) = 0≤r≤n+m+1 t 2r U r (u), with U s (u) given by (21). In particular :

U 0 (u) = a 2 0   -m-1≤l≤n ρ l   2 = (v -(m) + a 0 v + (n)) 2 .
Introduce Z 2 -m,n (t) such that :

|W -m,n (ut)| 2 -(a 2 0 |B + (ut)| 2 + |B - m (ut)| 2 ) -2a 0 v + (n)v -(m) = Z 2 -m,n (ut).
Then Z 2 -m,n (ut) = 1≤s≤n+m+1 t 2s V s (u), where :

V s (u) = a 2 0 -m-1≤l0<k1≤l1<•••<ks≤ls<ks+1≤n+1 l0<0<ks+1 ρ l0 T l1 k1 (u) • • • T ls ks (u)ρ ks+1-1 2 Hs((ki),(li)) . (22) 
Observe now that :

v + (n) |B - m (ut)| |B + n (ut)| + a 0 v -(m) |B + n (ut)| |B - m (ut)| 2 = v 2 + (n) |B - m (ut)| 2 |B + n (ut)| 2 + a 2 0 v 2 -(m) |B + n (ut)| 2 |B - m (ut)| 2 + 2a 0 v + (n)v -(m) ≤ |B - m (ut)| 2 + a 2 0 |B + n (ut)| 2 + 2a 0 v + (n)v -(m) ≤ |W -m,n (ut)| 2 -Z 2 -m,n (ut) ≤ |W -m,n (ut)| 2 . ( 23 
)
This allows to write :

|F (ut)| ≥ 1 |B + n (ut)||B - m (ut)| |W -m,n (ut)| -v + (n) |B - m (ut)| |B + n (ut)| -a 0 v -(m) |B + n (ut)| |B - m (ut)| ≥ |W -m,n (ut)| 2 -v + (n) |B - m (ut)| |B + n (ut)| + a 0 v -(m) |B + n (ut)| |B - m (ut)| 2 2W -m,n (ut)|B + n (ut)||B - m (ut)| ≥ Z 2 -m,n (ut) 2|W -m,n (ut)||B + n (ut)||B - m (ut)| . ( 24 
)
We now give upper-bounds on |W -m,n (ut)| and

|B + n (ut)||B - m (ut)|. Observe first that L + r (n) ≤ V r (u)v + (n)/(a 0 v -(m)
), for r ≥ 1, so that :

|B + n (ut)| 2 -v + (n) 2 ≤ v + (n) a 0 v -(m) . Similarly, |B - m (ut)| 2 -v -(m) 2 ≤ Z 2 -m,n (ut)v -(m)/(a 0 v + (n))
. We obtain :

|W -m,n (ut)| 2 = (v -(m) + a 0 v + (n)) 2 + a 2 0 (|B + n (ut)| 2 -v + (n) 2 ) + (|B - m (ut)| 2 -v -(m) 2 ) + Z 2 -m,n (ut) ≤ (v -(m) + a 0 v + (n)) 2 + (a 0 v + (n)/v -(m) + v -(m)/(a 0 v + (n)) + 1)Z 2 -m,n (ut) ≤ (v -(m) + a 0 v + (n)) 2 1 + 1 a 0 v -(m)v + (n) Z 2 -m,n (ut) . (25) 
In the same way :

|B + n (ut)| 2 |B - m (ut)| 2 = v + (n) 2 v -(m) 2   1 + 1≤r≤n t 2r L + r (n) v + (n) 2     1 + 1≤r≤m t 2r L - r (n) v -(m) 2   = v + (n) 2 v -(m) 2   1 + 1≤s≤m+n t 2s 0≤r≤s L + r (n)L - s-r (m) v + (n) 2 v -(m) 2   . Notice that 0≤r≤s L + r (n)L - s-r (m) ≤ V s (u)v + (n)v -(m)/a 0 . Therefore :
When -∞<k≤l<+∞ T l k is bounded, the inequality is verified, as κ u (v -1 -(.), v -1 + (.)) -1 (1/t 2 ) = +∞, for small enough t > 0. The previous lower-bound is then obvious in that case.

In order to draw the conclusion, recall that ϕ

2 u (n) = ψ 2 (n) + κ u (-v -1 -(n), v -1 + (n)) and 1 - χ D (ut) = (ϕ 0 (ut)/b 0 )F (ut) + O(R(t)), with O( ) uniform in u ∈ S d-1
+ . Also, by lemma 6.2 :

|1 -χ D (ut)| ≥ Re(1 -χ D (ut)) ≥ c 1 R(ut),
for some absolute constant c 1 > 0. Similarly, for constants c 2 > 0 and c 3 > 0, we have the inequalities c 2 ≤ R(t)ψ -1 (1/t) ≤ c 3 . Then, for constants β > 0 and c 4 > 0 independent on u ∈ S d-1 + , for small t > 0 :

β ≤ ϕ -1 u (1/t) min{ψ -1 (1/t), κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 )} and : |1 -χ D (ut)| ≥ 1 2b 0 |F (ut)| -c 4 R(t) ≥ c 2b 0 κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 ) - c 4 c 3 ψ -1 (1/t) .
Fixing t > 0, we then have the following discussion :

-If c /(2b 0 κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 )) ≥ 2c 3 c 4 /ψ -1 (1/t) and κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 ) ≤ ψ -1 (1/t) : |1 -χ D (ut)| ≥ c 4b 0 κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 ) ≥ c β 4b 0 ϕ -1 u (1/t)
.

-If c /(2b 0 κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 )) ≥ 2c 3 c 4 /ψ -1 (1/t) and κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 ) > ψ -1 (1/t) :

|1 -χ D (ut)| ≥ c 1 c 2 /ψ -1 (1/t) ≥ c 1 c 2 β/ϕ -1 u (1/t).

-If c /(2b 0 κ u (-v -1 -(.), v -1 + (.)) -1 (1/t 2 )) < 2c 3 c 4 /ψ -1 (1/t), then for some absolute constant c 5 > 0 (independent on u), 1/ψ -1 (1/t) ≥ c 5 /ϕ -1 u (1/t). Then, as above :

|1 -χ D (ut)| ≥ c 1 c 2 /ψ -1 (1/t) ≥ c 1 c 2 c 5 ϕ -1 u (1/t).
This completes the proof of the lower bound. We next turn to the proof of the upper-bound. Let us start from the following inequality, for any m ≥ 1, n ≥ 1, using lemma 3.1 :

|1 -χ D (ut)| ≤ 1 b 0 |F (ut)| + O(R(t)) ≤ |W -m,n (ut)| b 0 |B + n (ut)||B - m (ut)| + v + (n) |B + n (ut)| 2 + a 0 v -(m) |B - m (ut)| 2 + O(R(t)),
with O( ) uniform in u ∈ S d-1 + . Observe that from the second line in (24) : Let us recall that Z 2 -m,n (ut) = 1≤s≤m+n+1 t 2s V s (u), where V s (u) is given by relation ( 22), so checks V s (u) ≤ a 0 v -(m)v + (n)κ u (-m, n) s , still setting κ u (-m, n) = -m≤k≤l≤n T l k (u). As a result, for another constant C > 0 independent on u ∈ S d-1 + , small t > 0 and any n ≥ 1 :

v + (n) |B + n (ut)| 2 + a 0 v -(m) |B - m (ut)| 2 ≤ 1 |B + n (ut)||B - m (ut)| v + (n) |B - m ( 
|1 -χ D (ut)| ≤ C n 1 + 1≤s≤v -1 -(n)+v -1 + (n)+1 t 2s (κ u (-v -1 -(n), v -1 + (n))) s + C ϕ -1 u (1/t) ≤ C n 1 + 1≤s≤v -1 -(n)+v -1 + (n)+1 t 2s ϕ 2s u (n) + C ϕ -1 u (1/t)
.

Choose n = ϕ -1 u (1/2t). In particular, ϕ u (n) ≤ 1/(2t). This gives :

|1 -χ D (ut)| ≤ C ϕ -1 u (1/(2t)) 1 + s≥1 (1/2) 2s + C ϕ -1 u (1/t)
.

By lemma 6.1, there is a constant C independent on u ∈ S d-1 + so that for small t > 0 :

|1 -χ D (ut)| ≤ C ϕ -1 u (1/t)
.

This concludes the proof of the proposition.

Conclusion

-Theorem 2.4, corollary 2.5 and proposition 2.6. By propositions 6.3, 6.6 and theorem 4.2, using that Re(1/a) = Re(a)/|a| 2 , the random walk is recurrent if and only if, for some η > 0 :

(u,t)∈S d-1 + ×(0,η) (ϕ -1 u (1/t)) 2 ϕ -1 u,+ (1/t)

t d-1 dudt = +∞. ( 26 
)
For fixed u ∈ S d-1 + , we cut the interval (0, η) in the contiguous intervals [1/(n + 1), 1/n], n ≥ n 0 . The latter have length of order 1/n 2 , so using finally lemma 6.1, the condition is equivalent to the one given in the statement of theorem 2.4.

Concerning proposition 2.6, we first show in the antisymmetric case that ϕ -1 u and ϕ -1 u,++ have the same size, uniformly in u ∈ S d-1 + . By lemma 6.1, it is enough to show that ϕ u ≤ Cϕ u,++ . Observe that p 0 = q 0 and :

ϕ 2 u (n) = ϕ 2 u,+ (n) + -v -1 -(n)≤k≤0≤l≤v -1 + (n) T l k (u) = ϕ 2 u,+ (n) + 0≤k,l≤v -1 + (n) T max(k,l) min(k,l)+1 (u) ≤ 4ϕ 2 u,+ (n) ≤ 8ϕ 2 u,++ (n).
This completes the proof of this claim.

Concerning Corollary 2.5, we always have ϕ -1 u ≤ ϕ -1 u,+ . Then :

S d-1 + ×(0,η) (ϕ -1 u (1/t)) 2 ϕ -1 u,+ (1/t) t d-1 dudt ≤ S d-1 + ×(0,η) ϕ -1 u (1/t)t d-1 dudt. (27) 
In the antisymmetric case, both integrals have the same order. To complete the proofs of proposition 2.6 and corollary 2.5, we just need to show that the second term has the right order. For fixed As a result ϕ 2 u,++ (n) n 1+(1-α)/(1+α) + (c.u)n 4/(1+α) , so ϕ u,++ (n) n 1/(1+α) + (c.u)n 2/(1+α) . We obtain that when d = 1, ϕ u,++ (n) n 2/(1+α) and when d ≥ 2, ϕ d u,++ (n) ≥ cn d/(1+α) . As the exponents are > 1 in each case, the random walk is transient, from corollary 2.5.

-Suppose next that α > 1. Then w + (n) The second term can be written as : In order to show transience we need to control the following quantity : Setting θ = n 1/2-2/(1+α) x, it remains : This completes the proof of the proposition.

n≥1 u∈S 1 + 1 ϕ 2 u,++ (n) 
-Proposition 2.7. Let φ and φ+ be the functions corresponding to the case when m n = 1, n ∈ Z.

Set D = n∈Z (m n /ρ n ). Observe that one always has in the present situation :

ϕ 2 (n) = -v -1 -(n)≤k≤l≤v -1 + (n) ρ k-1 ρ l   k≤r≤l (m r /ρ r )   2 ≤ C -v -1 -(n)≤k≤l≤v -1 + (n) ρ k-1 ρ l ≤ Cn 2 .
Let A > 0 so that v ± (n + 1) ≤ (A/2)v ± (n). In the case when D = 0, one also has :

Definition 2. 3 • 1 += 1 + 2 = ρ k-1 ρ l l s=k r s p s ρ s m s .u 2 .

 31122 Let S d-{x ∈ R d | x = 1, x 1 ≥ 0} be a half unit Euclidean sphere of R d .• For u ∈ S d-and k ≤ l in Z, introduce :

0

  Level line at height t > 0 Area in direction u α ρe iα 1/ϕu(-ρ sin(α/2), ρ cos(α/2)) (on 0 ≤ α ≤ π, ρ > 0)

Lemma 6 . 5

 65 ut)| 2 ), by proposition 3.1, and O( ) uniform in u ∈ S d-1 + . Let n ≥ 1, m ≥ 1 and the following reduced continued fraction : Ãm+n+1 (ut) Bm+n+1 (ut) = [(-a -m , b -m /ψ -m (ut)); (-a -m+1 , b -m+1 /ψ -m+1 (ut)); • • • ; (-a n , b n /ψ n (ut))].

.

  ut)| |B + n (ut)| + a 0 v -(m) |B + n (ut)| |B - m (ut)| ≤ |W -m,n (ut)| |B + n (ut)||B - n (ut)| . Since R(t) = O(1/ψ -1 (1/t)) = O(1/ϕ -1 u (1/t)), uniformly on u ∈ S d-1+ , there exists some absolute constant C > 0 such that for small t > 0 and all m ≥ 1 and n ≥ 1 :|1 -χ D (ut)| ≤ C |W -m,n (ut)| |B + n (ut)||B - m (From (25) and lemma 3.1, we have :|W -m,n (ut)| |B + n (ut)||B - m (ut)| ≤ (v -(m) + a 0 v + (n)) 1 + Z 2 -m,n (ut)/(a 0 v -(m)v + (n)) v + (n)v -(m).

1 ,

 1 v + (n) n 1+α . If d = 1, then ϕ 2 u,++ (n) ≤ C(n + (c, u) 2 n 2 ), so ϕ u,++ (n) = O(n)and the random walk is recurrent. When d = 2 : ϕ 2 u,++ (n) n + (c.u)

2 .

 2 Let 1 < α < 3. Then this term is equivalent to ((α -1) 2 /(α + 1)(3 -α))n 4 . As a result :ϕ 2 u,++ (n) n + (c.u) 2 n 4/(1+α) .

n≥1 π/ 2 0 1 n

 21 + θ 2 n 4/(1+α) dθ.

1 /

 1 2+2/(1+α) < +∞, as 1/2 + 2/(1 + α) > 1.If α = 3, then ϕ 2 u,++ (n) n + (c.u) 2 n ln n ≤ Cn ln n. When α > 3, ϕ 2 u,++ (n) n + (c.u) 2 n ≤ Cn. In any case 1≥1 (1/ϕ 2 u,++ (n)) = +∞, giving recurrence. -If α = 1, then w + (n) ln n, v + (n) n 2 . When d = 1, ϕ 2 u,++ (n) ≤ C(n ln n + n 2 (ln n) 2), so ϕ u,++ (n) = O(n ln n) and the random walk is recurrent. When d = 2, notice that :ϕ 2 u,++ (n) ≥ K(n ln n + (c.u) 2 n 2). In order to show transience, we just need to prove the finiteness of :

-If (1/ψ -1 (1/t)) > p 0 Re(1 -f + (ut))/(2c 3 ), then ψ -1 (1/t) < (2c /(p 0 α ))(κ u,+ • v -1 + ) -1 (1/t 2 ). We obtain the inequality :

.

We conclude as in the previous case, via Re(1 -χ D (ut)) ≥ cR(ut) ≥ c /ψ -1 (1/t). This completes the proof of the proposition.

Preliminaries for estimating the modulus of 1 -χ D (ut)

We still fix u ∈ S d-1

and t > 0. We use proposition 5.2 concerning f + and its symmetric analogue for f -. To precise the dependency with respect to f + or f -, we put a superscript (+ or -) on A n , B n , etc. For example f + (ut) = lim n→+∞ A + n (ut)/B + n (ut). Keeping the same sets of summation, the expressions corresponding to K - r (n), etc, are deduced from proposition 5.2 by replacing (q k , p k ) by (p -k , q -k ). Any ρ k becomes ρ -k-1 q 0 /p 0 . It is worth noticing that T l k (u) is simply transformed into T -k -l (u). Let us begin with a formal computation on reversed continued fractions.

Lemma 6.4

Let n ≥ 1 and consider the formal reduced continued fraction :

Then the reduced reversed continued fraction :

Proof of the lemma :

We have :

Transposing and next conjugating the matrices with diag(1, -1) :

Hence

This proves the lemma.

Let us start from relation [START_REF] Matheron | Is transport in porous media always diffusive ? A counterexample[END_REF],

). This gives, using lemmas 4.6 and 6.2 and taking t > 0 small, independently on u :

Inserting these two upper-bounds in (24) and using in the last step that the function x -→ /(1 + x) is increasing, we obtain :

.

Let us now focus on

, for r ≤ s. We assume first that -∞<k≤l<+∞ T l k (u) = +∞. We obtain :

We next have the existence of a constant c > 0 independent on u ∈ S d-1

+ so that for all n ≥ 1 :

.

Let c 0 ≥ 2 be such that for all n ≥ 0, v + (n + 1)

). This gives :

In the same way, we have :

We obtain :

where α = a 0 (c 0 -1) 2 /c 2 0 . The conclusion for the moment is that there is a constant c > 0 independent on u ∈ S d-1 + so that for small t > 0 :

. u ∈ S d-1 + , up to decreasing η > 0, also taking n 0 independent on u ∈ S d-1 + (as 0 < α ≤ ϕ u (1) ≤ β, for constants α and β, independent on u ∈ S d-1 + ) :

On each domain (1/ϕ u (n + 1), 1/ϕ u (n)), we have ϕ -1 u (1/t) = n. Hence η 0 ϕ -1 u (1/t)t d-1 dt has exact order :

Remark that the right-hand side is bounded from above by (1/d) n≥1 1/(ϕ u (n)) d . Hence :

-

+∞, using at the end Fatou's lemma :

This completes the proofs of corollary 2.5 and of the first part of proposition 2.6. To complete the proof of the latter, we take m 0 = 0 and m n = -m -n = c = 0, n ≥ 1. Then ϕ 2 u,++ (n) has immediately the same order as :

We still denote by ϕ 2 u,++ (n) this quantity. Suppose now that c 1 n α ≤ ρ n ≤ c 2 n α , n ≥ 0. We reason up to multiplicative constants, using the notation .

u,++ (n) ≥ ne cn , for some c > 0, giving transience.

-Suppose that -1 < α < 1. We show transience. We have w

if n is large enough. As a result ϕ(n) and ϕ -1 (n) have order n. The same is true for φ. It remains to show the finiteness of :

because the random walk is obviously transient when m n = 1, n ∈ Z.

When D = 0 and in the antisymmetric case, by corollary 2.5 the criterion reduces to :

The random walk is recurrent. This completes the proof of the proposition.

Remarks

It seems necessary to interpret the recurrence criterion in order to use it in practice. When µ n = δ c , with c = 0, the integral in the criterion is finite, because the random walk is trivially transient. How does one may see it directly ? The question is not clear, even for d = 1 and c = 1.

It would be interesting to consider the case when the (p n , q n , m n ) are a typical realization of an i.i.d. process with m n independent of (p n , q n ), E(log(p n /q n )) = 0, Var(log(p n /q n )) > 0, E(m n ) = 0 and var(m n ) > 0. One needs first of all to study in detail (v ± (n)). The random walk is without any doubt transient.

It would also be of interest to consider the analogous model in Z × Z 2 in a Z 2 -invariant environment. If following the main strategy, the main difficulty in proving a characterization of the asymptotical behaviour is to detail the distribution of the local time during an excursion of simple random walk in the plane. There is no tree-structure behind, but a complicated graph with loops. A first step in this direction seems to be the following model in the plane : P (m,n),(m,n±1) = 1/4, P (m,n),(m+1,n) = p(m, n)/2, P (m,n),(m-1,n) = q(m, n)/2, with p(m, n) + q(m, n) = 1, for example making some hypothesis of stochastic homogeneity on the (q(m, n), p(m, n)) (m,n)∈Z 2 . The vertical component being recurrent, one may study the subsequence of return times on the horizontal axis. This random walk is a one-dimensional random walk in random medium with unbounded jumps. Very few results are known on such a random walk, cf Andjel [START_REF] Andjel | A zero or one law for one dimensional random walks in random environments[END_REF], and they suppose the jump integrable, which is not the case here. The very first step in the proof (lemma 4.1) is already not clear.