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Abstract—This paper deals with the local optimization of the
periodic or aperiodic ambiguity function of a compkx sequence
by using a gradient method on the phases. It is sk that
efficient equations are obtained for those gradientalculations.

Keywords—Waveform design, Gradient, Ambiguity Functjon
complex sequence.

I.  INTRODUCTION

In radar field, improving the radar performancedihgling
a sequence with optimized ambiguity function iscmmon
purpose. But minimizing the sidelobes of the amitygu
function is a tricky issue.

One solution is to find easily-constructed sequsrsteh as
sequences of the Small Set of Kasami or other kiofds
spreading codes [1] [2]. However it can be notitieat those
sequences have a good Peak to Sidelobe Level (&5the
whole ambiguity function area. But in practice theppler
frequency range can be much smaller than the baltidwf the
probing signal. For example, with a L-band radagrafing at a
wavelength of 0.3 m, an airliner with a radial speé 300 m/s
gives a Doppler frequency of 2 kHz which is muchalen
than the bandwidth of many MHz. Also depending lodé t
signal duration it is not relevant to optimize thieole distance
range. For example, assuming a radar instrumeraeger of
150 km, a pulse repetition interval of 10 ms induan
unambiguous distance range of 1500 km which is nmohe
than the radar instrumented range. Therefore wédingoour
attention on a small area of interest defined gy tlaximum
Doppler frequency and the radar instrumented raagk we
expect to obtain better sidelobe levels (Fig 1.).

According to this remark, another solution is to@ate a
sequence such that the ambiguity function is lgaghtimized.
This kind of waveform design can be achieved byube of
cyclic algorithm, like the one introduced by Sto&a He [3].
However this algorithm is based on the Singular ueal
Decomposition (SVD) of a large matrix with a comypty of
O(N®) (whereN is the number of elements in the sequences).

But recent works [4] have shown the possibilitpptimize
the autocorrelation sidelobe energy by using ariciefit
gradient method which reduces the complexitp{bllog(N)).
In this paper, we extend this approach to the loptimization
of the ambiguity function of aperiodic or periodiomplex
sequences.
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Fig. 1. Expected result on the ambiguity function aftealagptimization.

Il. GRADIENT METHOD FOROPTIMIZING THE MATCHED
FILTERING RESPONSE IN PRESENCE OF[AOPPLER

A. Notations and Purpose

First, define a complex sequenee= {x(m)}N_, of length
N, with x(n) = x, = A,e’®n and its Doppler shift version
xp, = {x(n)e/2"/o"Tp}}_, where f, and T, corresponds
respectively to the Doppler shift and the bit timg, is

supposed to be the predefined waveform envelopecfnstant
modulus or pulsed etc.).

If we define a normalized Doppler shifi such that

) . j211:ﬂ N
fo = NTp thenx;,, can be designed by, = {x(n)e N}n=1'

According to that the correlation of and x,,, expressed as
T, = X * Xp, iS given by:

1, (k) = (x * xp)k
N

. np 1
= Zx(n)x*(n—i—k)e’z"W @)
n=1
One important feature of this function is:
. _ N 2Bk {Vp if aperiodic
7 (k) = rp(=h)e N p €Z otherwise 2)

Now let us define the energy term from which wecgklte the
gradient:

N-1

E, = Z I, () we @3)
k=—N+1

where the exponent allows some control over the sidelobe
level. Wheng = 1, E, corresponds to the weighted integrated
sidelobe level. Otherwise, the larger the expont, more
emphasized the dominant term is, so the gradierdt wi
essentially indicate the gradient of the PSL. Thefficients
wy, control the shape of the correlation sidelobes.



B. Gradient calculations

As x is a complex sequence with predefined envelope, the O (11)
gradient is the derivative of the sidelobe eneigyvith respect p 2q Z Yio | Im (r ()x(i + k)e I ”)

i 9Ep oIm(x; ) kp P
to its phaseéj . =—N+1

)p
_ _ ]21r
But by using the chain rule it can be observed the fm (r”(k) (x(l ke ) )]
derivative with respect to the phase xfcan be done by Putting (10) and11) into the chain rule equation (4) gives the
calculating the derivatives with respect to thelread equation (12) (bottom of the page).
imaginary parts of:

.. _kp N
0E, i) =2 4 R OE, @ By defining y, = {Vkp} -N+1 and @, = {9—12"7},(_1, the
aqbl *) 3Re ( L) Xt alm(x;) equation (12) becomes:
As: o
P _ _ [ o1’ o
oE, (50 oRe (1,(k)) 59, = 2aim [x(l) [((rpormy) = (x26,)). s
—L =2 Z Yip [Re (k) ) ———~— -
0" L, 20 o (o) - eo0s)),, |
dIm (rp (k)) wherea” := {a(N + 1 — k)}}_, is the reverse of; andx oy
+ Im|(r,(k) k=1
p a() is the Hadamard product sfandy.
2(g-1) ORe(x; Then, by setting:
wherey,, , = wk|rp (k)| " and () = {almgx'%' y 9
t — T
= or’ _)*(xo00 +
It can be shown that: By {((y,, p) ( p))Ni (14)
) o @ r
9Re (rp(k)) o ((Yp Tp) * (x p) )N+1—i}i:1
—— 2 =Re (x(i + k)e_ﬂ"ﬁ) AE. N
dRe(x;) (6) 8, = {_p} (15)
) o U k)p 0di),_,
+ Re (x(l ke’ )
( ( )) The previous equation (13) can be converted tactowéorm:
dim(r,(k i
e = —im (x(i + K)e X 8, = —2qim[x < B (16)
e(x;) (—)p () Finally the gradient can be expressed as a sunoroélation
+Im (x(i — ke W ) products that can be efficiently computed usingt Fasurier
And similarly: Transforms (FFT). If we denote I5(.) the discrete Fourier
nd simiarly- Transform operation, it has been shown by Braceime|b]
dRe (r (k)) ) that a correlation in the time domain correspoindgroduct in
p =Im (x(i + k)e—ﬂn%) the frequency domain. And according to our definitof the
oIm(x;) (8)  convolution (1), it can be derived that the contiolu of two
(k) . ; X
+Im (x(l — kel W - P) sequencea andb is equivalent to:
om (7, (K)) - axb=F"(F@F®") (17)
P — Re (x(i + kk—ﬂn%) So that gives a computation & in 0(NlogN) operations
alm(x;) 9)

20 k)p [ll. GRADIENT METHOD FOROPTIMIZING A SET OFDOPPLER
EFFECTS ON THEAMBIGUITY FUNCTION

—Re (x(i k)e’?

From now, we can derive the derivative of the sidelenergy

E, with respect to the real part of, and similarly, the A. Notations and Purpose

derivative with respect to the imaginary pariof In this section the gradient of the cost functielated to the

) ) _ sidelobe energy within the discrete ambiguity fiorctof a
Using equations (4) - (9), it comes: complex sequence is derived. This gradient is ptedeas an

. extension of the previous section for a set of Depp

14
aRe(’; ; 2q Z Yiep [Re (rp(k)x(z + k)e” ’2"_) If we call P the set of Doppler frequency to optimize such
k=—N+1 (10) that:
] 0T AN
+ Re | 1, (k) (x(l — kel "N ) P={p|pe[-N+1:N—-1]} (18)

N-1 N-1
oE o (P * o (=)p\ "
_aq;::—Zqu [x(i)( Z Vip"—p (=K (x(i+k)e"2" N p) + Z VypTp(K) (x(i—k)eﬂ” N p) )] (12)

k=—N+1 k=—N+1



Then, the energy term from which we calculate tredignt
can be expressed as the sum of the partial energgach

Algorithm 1 : The gradient algorithm fooptimizing a set ¢

on the ambiguity function

Randomly initialize the phase of the sequexnce
Define the area of interest: the set of Dopplr,
and the weighting coefficients associateg,,.

Gradient calculations for each Dopp
N
Determination ofy,, r, andg, := {aﬂ} for
a¢i i=1
. aE VN
calculatingd :=={—¢t .
0= {3)

Determination of the descent stepand update «
x:
x = xe /49

Go toStep luntil convergence

Doppler in the seP: Doppler
E=ZEp 19) Step 0 :
pEP
B. Gradient Calculations
According to the above discussion, it is obviousfr(16) Step1:
and (19) that the gradient expression is:
O dE,
= 20
0¢; i 4 0¢; (20)
oE
Therefore by definin
Y 9= {""1’1}1 1 Step 2 :
It comes:
5= 8, (21)
peP Step 3:
Similarly to the previous section, the computatigr can be
done in0O(NlogN) operations by means of FFT .
The algorithm follows naturally from the above dission o -
and it is summarized iAlgorithm 1 (see above) ol
IV. APPLICATIONS § _zoi,
This section provides some applications of thogeré#hms Ej _30,1 _

such that the optimization of the response of théched filter
in presence of Doppler of a complex sequence aadadtal

optimization of the ambiguity function of a compls&quence
in periodic and aperiodic cases.

-40
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-10

A. Optimizing both the response of the matched filter in
presence of a Doppler and the autocorrelation of a
complex sequence in aperiodic and periodic case
The following examples show the sidelobe rejectibat

can be obtained by iterative application of (21AIgorithm 1.
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A random complex sequence is generated as a gtpdint
for the algorithm and then a gradient descent ieday simply
adjusting the descent step during the process. The global
gradient is calculated once in each iteration. Tdriadient
corresponds to the sum pre P of the partial gradient of,,.
Therefore a number efird (P) partial gradients are calculated
within the global gradient. Then the process cammuntil an
exit criterion is met (an upper limit on the numibéiterations,
or a lower threshold in the minimum improvementegtable
between two successive iterations).

Fig. 2.
case
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It is relevant to notice that the optimization bétresponse
of the matched filter with a Doppley optimizes also the
response of the matched filter with a Doppler (because (2)).
Therefore it is sufficient to defineP such thatP =
{p|p €[0: N — 1]} or symmetric.

0
-10
-20

-30
|

amplitude (dB)

The figure (2) shows the improvement after optimizthe “

autocorrelation and one Doppler on the ambiguitycfion

(P ={0;1}) of a complex sequence (of length= 1024)

with a constant weightingw(,,, = 1,Vk,Vp) and a large
exponentq = 4) in the aperiodic case.
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Fig. 3. Matched filter response for a normalized Dopler1}/N, weighted
aperiodic case



TABLE I. PSLIMPROVEMENT OFEXAMPLE A

Case Before After
Aperiodic -21.1dB | -31.3dB
Periodic -21.5dB | -29.9dB
Weighted Aperiodic| -22.5dB | -43.0dB
Weighted Periodic | -21.5dB | -42.2dB

On the other side, the figure (3) represents thprarement
after optimizing the autocorrelation and one Doppia the
ambiguity function P ={0;1}) of a complex sequence
(N =1024) for a local weighting Wy, =1,iflk| <
256 otherwise 0,Vp) and a large exponent & 4) in the
aperiodic case.

The same simulations have been done in the percadie
and the results for both cases are summarizegsie 1.

It is obvious on those examples that the minimoragiives
a good improvement on the PSL. And the smallerhis t
optimization area the better is the improvemeng (s the
system is constrained).

B. Optimizing locally the ambiguity function of a complex
sequence in aperiodic and periodic case

The following examples show the sidelobe rejection 0

possible on the area of interest of the ambiguitction by an
iterative application of (21) iAlgorithm 1.

Figure (4) shows the improvement after optimizingeaof
Doppler on the ambiguity functionP(={0;1;2;3}) of a
complex sequenceN(= 1024) with a constant weighting
(wkp = 1,Vk,Vp) and a large exponentg & 4) in the
aperiodic case.

On the other side, the figure (5) shows the resilithe
optimization in the same configuration except thatocal
weighting is takenwy , = 1,if |k| < 128 otherwise 0, Vp).

The same simulations have been done in the percadie
and are not shown here, but the results are sietiiar.

As we can see, the algorithm well-improves the Rthe
area of interest. As an example, for a sequence fhe Small
Set of Kasami, the PSL is abdtsqrt(N), that corresponds

to —24 dB for a sequence of 1024 elements [1]. So even f

compared to those easily-constructed sequences|ganithm
gives better result. Moreover, this algorithm ighly faster
than the cyclic algorithms introduced by Stoica &l [3].
This is due to the efficient calculations of thadjent whereas
cyclic algorithms are based on SVD operations.

V. CONCLUSION

In this paper, new gradient methods for designimguex
sequences with optimized ambiguity functions weegivetd.
We have shown that the gradient for optimizing thatched
filter response in presence of a Doppler consistsimple
operations: correlations and Hadamard productshilve also
shown that the gradient for optimizing a set of plep on the
ambiguity function is an extension of the previoase;
therefore it is also based on simple correlatiorragons.

Since the correlation can be performed using Fastriér
Transforms, the result is that the gradient cancbaputed
with O(Nlog(N)) operations. This important result offers the
possibility to optimize quite long sequences wighatively a
short time of computation compared to existing rod¢h

Moreover, these algorithms optimize quite well BfeL in
the area of interest thanks adequate weightingreftie, they
can be used for designing sequences for radarcagiphs.
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Fig. 4. Ambiguity function obtained when optimizing a set Doppler
P ={0;1;2;3}/N on the whole distance range in aperiodic case.
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