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Abstract—Anomaly detection aims to detect sources with different
spectral characteristics from the background in an hyperspectral image.
Classical tools for anomaly detection and estimation are known to have
poor performance when they are used on high dimensional hyperspectral
image since typically both the number of available sample and their
size are large for this kind of imaging. New estimation methods for the
number of anomalies, adapted to large dimensional systems, are required.
This article points out the limits of classical methods such as Akaike
Information Criterion (AIC) or Minimum Description Length (MDL)
criteria and it proposes a new estimator based on Random Matrix Theory
results better adapted for hyperspectral imaging. Finally, the proposed
method is validated on both Monte-Carlo simulations and on experimental
data.

I. INTRODUCTION

A hyperspectral image is made of hundreds of images corre-
sponding to the same spatial area but for different wavelengths.
This kind of imaging is particularly informative especially since the
spectral resolution of these images is important. Thus, it enables to
evaluate the kind of material or object present on an image more
precisely than with only one image in one spectral band provided the
materials spectral characteristics are known [1]. Since hyperspectral
images contain a wide range of information, this requires adapted
statistical tools. According to the application, different techniques
are used to process these information. Among them, unmixing prob-
lems [2] and detection issues [1] are often encountered. Unmixing
consists in extracting the different materials that are present in one
area of the hyperspectral image when the spatial resolution is not
sufficiently precise. As for detection issues, which aim at finding a
particular object on a particular background, anomalies [3] are to be
distinguished from target: an anomaly is characterized by a statistical
break in the background, and differs from target detection by the
lack of knowledge of the source (the target or the anomaly) spectral
characteristics.

This paper focuses on the anomaly detection problem. In hy-
perspectral imaging, this problem is valuable in multiple fields such
as defense (surveillance) [4], environment (rare mineral localisation,
etc), astronomy (with spectroscopy), etc. (see e.g. [1], [5]).

The commonly used statistical model for anomaly detection
problems is a Gaussian modeling [6] of dimensions (m,N), where
N corresponds to the spatial dimension (number of observations)
and m is the spectral dimension (size of the observation vector). This
Gaussian process drives the statistical background of the hyperspectral
image while when unknown anomalies are present, it modifies this
background. One way to detect an anomaly is to consider the associ-
ated binary hypothesis test and derive the corresponding Likelihood
Ratio Test (LRT) for the model. This consists in comparing the
Mahalanobis distance of the observation vector to a threshold λ [7].

However, in practice, the properties of the Gaussian noise, namely its
statistical mean and its covariance matrix are unknown and estimators
are required. Classically, the corresponding Maximum Likelihood
Estimators (MLE) are used, i.e. the Sample Mean Vector (SMV)
and the Sample Covariance Matrix (SCM). Then the Mahalanobis
distribution follows a T 2 Hotelling distribution [8] and characteristics
of the test, such as the Probability of False Alarm (PFA) can be
estimated. But if m and N are large, with cN = m/N not small
and cN → c, c > 0, Random Matrix Theory (RMT) shows that the
Mahalanobis distance is no longer T 2-distributed, making difficult to
set the threshold λ for a given PFA. Moreover, the SCM does not
converge to the true covariance matrix [9]. In such cases, performance
of classical methods like the Minimum Description Length [10], [11]
and AIC criteria [12], used to estimate the number of anomalies
present in the scene, are degraded.

To fill this gap, in this paper, we propose to use recent results of
RMT to derive a better estimator for the number of anomalies. More
precisely, we propose an efficient way of setting the corresponding
hypothesis test that allows to estimate the number of anomalies.
[13] compares other classical methods with a RMT method but
without introducing a hypothesis test. The paper is organized as
follows: Section II introduces the problem formulation and presents
the contribution of this work, i.e. the algorithm for estimating the
number of sources in cases of both white and correlated noise. Then,
Section III presents some Monte-Carlo simulations and experiments
on real data that validate the proposed methodology. Finally, Section
IV draws some conclusions and perspectives of this work.

Notations : vectors and matrix are in boldface, matrix in capitals
and vectors in small letters, H the Hermitian operator and T the
transpose.

II. ESTIMATION OF THE NUMBER OF ANOMALIES

The main objective for anomaly detection is to decide if there
are some anomalies present in a set of N spectral m-vectors (which
can belong to the whole hyperspectral image or only to a part of this
image) and to estimate their number, that is, the Intrinsic Dimension,
defined as the dimension of the signal subspace [13]. In other
words, the problem is to detect K anomalies among N observations.
Consequently, we consider the following statistical model based on
the set of N observation vectors yi:

• We assume that there are K′ observations yi containing
anomalies, let’s say the K′ first ones, i.e. for i = 1, . . . ,K′,



one has,

yi =

Ki∑
j=1

αj pj + xi , i ∈ [1,K′] ,

where each pj is the unknown m-vector characterizing the
spectral information of the jth anomaly with amplitude αj
and where {xi}i=1,N ’s are assumed to be m-dimensional
independent complex1 zero-mean Gaussian vectors with
covariance matrix Σ. The total number K of anomalies leads
to the following constraint

∑K′

i=1Ki = K

• Other observations contain only noise, i.e.

yi = xi , i ∈ [K′ + 1, N ] .

In this paper, we propose two methodologies to estimate K when
Σ = σ2 I and Σ 6= σ2 I respectively.

Let us consider the SCM of the N -sample (y1, . . . ,yN ), defined
as

M̂ =
1

N

N∑
i=1

yi y
H
i ,

and its ordered eigenvalues λ̂0 ≥ ... ≥ λ̂m−1. Many techniques based
on the eigenvalues of the SCM can be used for estimating the number
of sources. The two well known LRT techniques are AIC [12], [14]
and MDL [10] but are only valid in the classical asymptotic regime
(fixed m and N →∞).

The proposed approach is to consider, in the large dimensional
regime (m,N → ∞ with m/N → c > 0 and for fixed K), the
following set of multiple hypothesis test for k ∈ {0, ...,min(m,N)−
1} [15]: {

H0 : at most k anomalies present
H1 : at least k + 1 anomalies present

Interestingly, the PFA associated to each test which is the probability
to detect at least k+1 anomalies whereas there are at most k anoma-
lies, does not depend on K. Indeed, the test is based the knowledge
of the distribution of the empirical eigenvalues λ̂0 ≥ ... ≥ λ̂m−1 of
M̂ when no anomaly is present. So, the PFA is the same for all K.

A. White Gaussian noise

Let us first assume that Σ = σ2 I. In this case, the test consists
in comparing the kth eigenvalue λ̂k of the SCM M̂ to a threshold
[16]:

λ̂k
H1

≷
H0

ζN . (1)

Under H0, the distribution of λ̂k, which is the highest "noise"
eigenvalue, has been studied and is known to follow the Tracy-Widom
distribution, modulated by two parameters : σN and bN , with a rate
of convergence of O(m2/3). This result allows to theoretically set
the threshold for a given PFA as follows [16]:

ζN = σ̂2(k)

(
bN +

σN

m2/3

(
F−1
TW (1− α)

))
,

1Notice that in hyperspectral image each spectral component of a given
pixel vector is real and positive as it represents reflectance or radiance. A
global mean vector estimation and a simple Hilbert transform can render them
zero-mean complex vector.

where FTW stands for the CDF of the Tracy-Widom distribution, α
the desired PFA, bN = (1 +

√
cN )2 and σN = (1 +

√
cN )4/3

√
cN

with cN = m/N and where σ̂2(k) is a consistent estimate of σ2 [15]

σ̂2(k) =
1

m− k

m∑
i=k+1

λ̂i .

TABLE I. K̂est PERFORMANCES FOR PFA = 0.01, 100 SIMULATIONS
FOR EACH SNR VALUES, 10 ITERATIONS FOR THE THRESHOLD CALCUL,

K = 4, m = 200, N = 400.

SNR (dB) 32 28 27 26 24 18
K̂estmean 4.00 4.00 3.34 2.12 0.47 0

C 0 0 0.66 1.88 3.53 4.00
V ar 0 0 0.27 0.25 0.27 0

K̂MDL 0.10 0 0 0 0 0
V arMDL 0.09 0 0 0 0 0
K̂AIC 4.00 3.64 1.8 0.27 0 0

V arAIC 0 0.23 0.40 0.20 0 0

The estimated number of anomalies K̂est is then given by

K̂est = argmin
k

(
λ̂k < ζN

)
.

Notice that the PFA is the same for each test since it depends
only on largest noise eigenvalue distribution. This approach, although
base on hypothesis tests, allows to provide a consistent (in large
dimensional regime) estimator of K.

This method is now compared to the classical MDL and AIC
criteria. Each anomaly k ∈ [1,K] is simply modeled by the spectral

information pk =
(
1, e2i π k/m, . . . , e2i π k (m−1)/m

)T
(each pk is

orthogonal to each others, and hence all the anomalies span a K
dimensional subspace). For this simulations, we use σ2 = 1, K = 4
and we set αk = α > 0 for all k. This implies that all anomalies
have the same SNR equal to 10 log10(α

2).
For performance analysis, one computes the following quantities,

for Ns Monte-Carlo simulations:

• K̂estmean =
1

Ns

Ns∑
n=1

K̂
(n)
est , where K̂

(n)
est is the estimate

obtained at the nth simulation, C =
1

Ns

Ns∑
n=0

∣∣∣4− K̂(n)
est

∣∣∣,
• V ar =

1

Ns

Ns∑
n=0

(
K̂

(n)
est − K̂estmean

)2
.

Tables I and II reveal the performance of the proposed method
compared with the MDL and AIC criteria. For sufficiently powerful
anomalies, K̂est is very close to the true value of K even for small
PFA, AIC provides also good results for high SNR but its performance
decreases for smaller SNR. Finally, MDL needs a very high SNR to
have a non-null estimation.

TABLE II. K̂est PERFORMANCES FOR SNR = 26 DB, 100
SIMULATIONS FOR EACH PFA VALUE, 10 ITERATIONS FOR THE

THRESHOLD COMPUTATION, K = 4, m = 200, N = 400.

PFA 1 0.005 0.001
K̂estmean 4.56 3.20 3.08

C 0.55 0.80 0.92
V ar 0.25 0.30 0.25

K̂MDL 0 0 0
K̂AIC 1.7 1.7 1.7

Then, Figure 1 displays the estimation of K, namely K̂estmean

versus the PFA for the proposed approach, MDL and AIC estimators



for K = 4 anomalies, each one with a SNR of 26 dB (αk = 1.8). Of
course, AIC and MDL results do not depend on the PFA since it is
not based on a hypothesis test. The proposed method really improves
the estimation accuracy compared to MDL and/or AIC which both
under estimate the number of anomalies. Notice that the region of
interest in the one for small PFA (close to zero).
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Fig. 1. K̂est versus PFA for m = 250, N = 300, SNR= 26 dB and K = 4
anomalies. In dashed line, the standard deviation for 100 simulations.

B. Correlated Gaussian noise

When the true noise covariance matrix is known, the sample
covariance matrix can be whitened by its inverse and the problem
fall back to the classical situation of a signal corrupted by a white
noise. But in real hyperspectral images, the noise is often correlated
and its covariance matrix is not known. Let us now assume that the
noise is composed of independent Gaussian vectors, with covariance
matrix Σ 6= σ2 I. Let us now consider two cases:

• When a pure noise sequence is available, then it is possible
to estimate the covariance matrix with the SCM and whiten
the signal. In this case, the model is a so-called F-matrix,
and does not provide a Marcenko Pastur limit, so the test
given by (1) no longer holds and results of Section II cannot
be be theoretically applied. However, it was shown in [17]
that, for proper corrected versions of bN and σN , the test
(1) was still valid. Another algorithm is developed in [18],
based on the decomposition of the covariance matrix.

• No pure noise sequence is available. In this case, one has to
propose another approach. The idea is to find a gap between
the distances of two consecutive eigenvalues provided that
under some assumptions this gap takes place between the
highest noise eigenvalue and the lowest anomaly eigenvalue.

Using the assumptions of [9], the strongest is that the signal and
the noise cannot be simultaneously correlated, the estimator of K is
as follows:

K̂N =arg max
k∈{0,...,L−1}

(
λ̂k−1

λ̂k
> 1 + ε

)
, with L ≥ K

and λ̂−1 = +∞.
(2)

However, the threshold ε can not be theoretically obtained as
previously and has to be heuristically estimated. In this work, we
propose a way of deriving this threshold for a given PFA. The only

PFA of interest is the one associated to the test where k = K with K
the true number of anomalies. It is important to notice that this test
does not depend on K. Consequently, the PFA can be calculated for
K = 0 and the threshold is empirically computed from only noise
eigenvalues for a given PFA, as explained in the next section.

III. EXPERIMENTAL RESULTS

A. Monte-Carlo simulations
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Fig. 2. PFA (log10 scale) versus threshold ε (equation (2))

This section presents some Monte-Carlo simulations to validate
the previous results. First, let us consider a correlated Gaussian
noise for which a pure-noise sequence is available. The results are
contained in Table III. The observation are whitened thanks to the
SCM computed on the pure noise sequence.

TABLE III. K = 4, PFA = 0.01, m = 400, N = 4000

SNR 44 45 46 46.4 47
K̂estimean 0 1.2 3.1 4 4

V ar 0 0.16 0.16 0 0
K̂MDL 0 0 0 0 0
K̂AIC 0 0 2 2.9 4

V arAIC 0 0 0.16 0.16 0

For simplicity reason, we have directly applied the test (non-
optimal one) given by (1). First, due to the covariance whitening,
one can see that the SNR of each anomaly needs to be higher for
achieving similar performance. But again, the proposed test enables
to detect the correct number of anomalies from SNR= 46.4 dB while
the AIC and MDL underestimate this number. Method proposed for
corrected version of bN and σN in [17] should give better results.

Then, when no pure-noise samples are available, Figure 2 displays
the PFA versus the threshold ε of equation (2). This is obtained for
K = 0 (only noise eigenvalues), with 3000 Monte-Carlo simulations
of a Gaussian noise, and by counting the number of false detections.
Plain lines provide error bars. It is important to notice that the
proposed approach allows to set a PFA even if the problem is the
estimation of the number of anomalies. This is one of the advantages
of the proposed method that allows to provide a confidence criterion
with this PFA. In conclusion, although there is no theoretical
way of setting the threshold, except using an empirical approach,
it enables to detect the correct number of anomalies if they have



a sufficiently high SNR. The MDL and AIC methods performance
strongly degrades for high values of m and N but also when the
noise is strongly correlated.

B. Application on a real hyperspectral image

Hyperspectral image under test is plotted on Figure 3 where one
can see a car on a road, with around, some vegetation and a ground
different from the road.

Fig. 3. Hyperspectral image of size m = 167, N = 81× 81.

In this part, the goal is to test the proposed method considering
cars as anomalies.

In order to set an adapted threshold for a selected PFA, the car
on the road is removed and replaced with the surrounding pixels. The
remaining image is cut into sliding windows of size 21×21 on which
covariance matrix and their eigenvalues are estimated. Afterwards the
PFA is evaluated for each threshold using all the eigenvalues. Then,
the original image (including the car) is tested (equation (2)) using
the threshold corresponding to the chosen PFA.

TABLE IV. SUCCESSIVE EIGENVALUES RATIOS FOR THE IMAGE OF
SIZE 81× 81× 167.

First eigenvalues ratios
with car 37 3.4 4.3 3.6 1.1 2.0

without car 16 3.1 4.3 3.3 1.3 2.0

Table IV contains the first successive eigenvalues ratios for the
image with and without the car. Notice that other anomalies are
present on the image, this explains the important values of these
ratios even without the car. However, for a PFA=0.05, the empirical
threshold is equal to 34.7 which leads to the detection of one anomaly,
namely the car. Finally, AIC leads to the detection of 136 anomalies
while MDL detects 126 anomalies. This strong overestimation is due
to the size of the data (see [19] for more details) and highlights the
interest of having alternative techniques for hyperspectral images.

IV. CONCLUSION

Classical methods for anomaly detection are not adapted for large
m and N . In this paper, two hypothesis tests based on recent results
of RMT are presented: the first one for a white Gaussian noise and
the second for correlated observations. The latter enables to set the
required threshold for a given PFA. The theoretical improvement

provided by these methods have been illustrated through Monte-
Carlo simulations and on a real hyperspectral image. The first results
show the interest of the proposed methods compared to the classical
MDL and AIC approaches. Further works will address the problem
of correlated and non-Gaussian noise.
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