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Abstract—This paper presents two different approaches to derive
the asymptotic distributions of the robust Adaptive Normalized Matched
Filter (ANMF) under both H0 and H1 hypotheses. More precisely, the
ANMF has originally been derived under the assumption of partially
homogenous Gaussian noise, i.e. where the variance is different between
the observation under test and the set of secondary data. We propose
in this work to relax the Gaussian hypothesis: we analyze the ANMF
built with robust estimators, namely the M -estimators and the Tyler’s
estimator, under the Complex Elliptically Symmetric (CES) distributions
framework. In this context, we analyse two asymptotic performance
characterization of this robust ANMF. The first approach consists in
exploiting the asymptotic distribution of the different covariance matrix
estimators while the second approach is to directly exploit the asymptotic
distribution of the ANMF distribution built with these estimates.

I. INTRODUCTION

In the general statistical signal processing area, the detection
problem is an important topic of research [1], [2]. Since in practice,
the noise parameters are unknown, an estimation step is required
leading to the so-called adaptive detection processes. Among these
unknown parameters, the noise covariance matrix is probably one
of the most important since the resulting performance of adaptive
detectors mainly relies on the its estimation accuracy. This is the
case for the Adaptive Matched Filter (AMF) [3], the Kelly’s test [4]
and the Adaptive Normalized Matched Filter (ANMF) [5]. Generally,
the covariance matrix is estimated thanks to the so-called Sample
Covariance Matrix (SCM). Although this estimator is very simple and
provides optimal performance under a Gaussian noise, the resulting
adaptive detector performance can strongly be degraded when the
noise turned to be non-Gaussian, heterogeneous or when it contains
outliers/jammers.

To fill these gaps, a general framework on robust estimation
theory has been extensively studied in the statistical community in the
1970s following the seminal works of Huber and Maronna [6], [7].
The multivariate real case has been recently extended to the complex
case [8]–[10], more adapted for signal processing applications. Under
this robust theory framework, most of recent works in covariance
matrix estimation considers the broader class of Complex Elliptically
Symmetric (CES) distributions. A complete review on CES applied
to array processing can be found in [8].

In this CES framework, the so-called M -estimators [7] and the
Tyler’s estimator [10], [11] present alternatives to the Gaussian-
based SCM. Although these robust estimators provide good results in
practice [9], the statistical analysis of the resulting adaptive detectors
is a difficult point. This is mainly due to the non explicit form of
these estimators, defined through fixed point equations. However, their
asymptotic properties have been recently derived in [8], [9]. Following

these works, the aim of this paper is to derive the asymptotic
properties of the ANMF built with these estimators, namely the M -
estimators and the Tyler’s estimator, under both H0 (absence of target)
and H1 (presence of target) hypotheses. The interest of such an
analysis is to provide a better statistical characterization of the ANMF
than the one based on the Normalized Matched Filter (NMF) [12].

The paper is organized as follows: next section provides the
general background of this work as well as a recall on the main results
concerning the statistics of the NMF and ANMF detection tests under
both Gaussian assumption and CES distributions background. Section
III gives the results presented in [13] concerning the asymptotic
distribution of the ANMF built with robust estimators. Then, Section
IV presents two different ways to derive the statistic of the ANMF
built with any M-estimators for both H0 and H1 hypotheses. Finally,
some conclusions and perspectives are drawn in the last section.

II. BACKGROUND

A. The NMF and ANMF in partially homogeneous Gaussian envi-
ronment

Detecting a complex signal corrupted by an additive Gaussian
noise c ∼ CN (0, σ2 M) in a m-dimensional complex observation
vector y can be stated as the following binary hypothesis test:{

H0 : y = c yi = ci i = 1, . . . , N
H1 : y = αp + c yi = ci i = 1, . . . , N

, (1)

where p is a perfectly known complex steering vector, α is the
unknown signal amplitude and where the ci ∼ CN (0,M) are
N signal-free independent measurements, traditionally called the
secondary data, used to estimate the background covariance matrix
M. When M is known and the variance σ2 is unknown, this binary
hypothesis test is solved by the Generalized Likelihood Ratio Test
(GLRT) theory leading to a well-known Normalized Matched Filter
[12] denoted H(.) and defined on [0, 1] by

H(M) =
|pHM−1y|2

(pHM−1p)(yHM−1y)
. (2)

By denoting δ = α2 pHM−1 p/σ2 the signal-to-noise ratio
(SNR), the distribution of H(M) derived for heterogeneous Gaussian
under H0 or H1 hypotheses, environment, is given by:

pH(M)(u) = e−δ β1,m−1(u) 1F1 (m, 1;u δ) , (3)

where 1F1(α1, α2; .) is the complex confluent hypergeometric func-
tion and where β1,m−1(u) = (m − 1) (1 − u)m−2

1[0,1](u) is the
PDF of the central beta distribution with degrees of freedom 1 and



m− 1. Thus, setting δ to zero simply leads to the β(1,m− 1) PDF
for H(M) under H0 hypothesis. Hence, the theoretical relationship
between the detection threshold λ and the Probability of False Alarm
(PFA) is defined as Pfa = P (H(M) > λ|H0) = (1− λ)m−1. This
relation will serve as a benchmark since it characterizes the case
of a perfectly known covariance matrix for the detection test. When
δ 6= 0, the Probability of Detection Pd = P (H(M) > λ|H1) for a
given SNR δ and for a fixed value of the detection threshold λ is
given by:

Pd = 1− e−δ
∫ λ

0

β1,m−1(u) 1F1 (m, 1;u δ) du . (4)

When an estimate M̂ of M is plugged into the NMF (two-step
GLRT), this results in the so-called ANMF or ACE (Adaptive
Coherence Estimator) [2], [5]. Assuming that the SCM, defined as

M̂SCM =
1

N

N∑
k=1

ck cHk is used, Kraut et al. have shown in [14] that

H(M̂SCM ) has the following distribution:

fH(M̂SCM )(x) =

∫ 1

0

uN−m+1 (1− u)m−1 (1− x)N−m

(1− ux)N−m+2

×
e−δ

K
1F1

(
N −m+ 2, 1;

δ x (1− u)

1− xu

)
du , (5)

where K = Γ(N −m+ 1) Γ(m−1)/Γ(N + 1). By setting δ = 0 in
the previous equation, the resulting PDF fH(M̂SCM ) of H(M̂SCM )
under H0 hypothesis can be retrieved [15]:

fH(M̂SCM )(x) =
(N −m+ 1) (m− 1)

N + 1
(1− x)N−m

× 2F1(N −m+ 2;N −m+ 2;N + 2;x) , (6)

where 2F1(.) is the hypergeometric function. The theoretical relation-
ship between the detection threshold λ and the Probability of False
Alarm Pfa = P

(
H(M̂SCM ) > λ|H0

)
is defined as:

Pfa = (1−λ)N−m+1
2F1(N −m+ 2, N −m+ 1;N + 1;λ) , (7)

whereas the corresponding relationship between Pd and the SNR δ
for a fixed Pfa leads to:

Pd = 1−
∫ 1

0

du

∫ λ

0

uN−m+1 (1− u)m−1 (1− x)N−m

(1− ux)N−m+2

×
e−δ

K
1F1

(
N −m+ 2, 1;

δ x (1− u)

1− xu

)
dx . (8)

B. NMF in non-Gaussian environment

In the literature of radar detection and estimation, Spherically
Invariant Random Vector (SIRV) modeling and Complex Elliptical
Symmetric distributions (CES), originally introduced by Kelker in
[16], have been considered and have been studied for their good
statistical properties and for their good fitting to experimental non-
Gaussian radar data [17]. A good review on these distributions can
be found in [8], [18]. A m-dimensional complex, zero-mean random
vector follows a CES distribution if its PDF can be written as

gc(c) = |Σ−1|hc

(
cH Σ−1 c

)
, (9)

where hc : R+ → R+ is any function such that (9) defines a PDF, Σ
is a scatter matrix. It will be denoted c ∼ CES(0m,Σ). Σ reflects
the structure of the CM of c, i.e. the covariance matrix is equal to Σ

up to a scale factor. One can notice that the Gaussian distribution is
a particular case of CES. In this paper, we will assume that without
loss of generality, Σ will be chosen equal to M.

Due to the homogeneity of degree 0 of the NMF under H0

hypothesis, the corresponding theoretical relationship between the
detection threshold λ and Pfa = P(H(M) > λ|H0) is still given by
Pfa = (1−λ)m−1, even when the noise is CES distributed. When the
cell under test is distributed according to any CES distributions, the
corresponding relationship under H1 hypothesis remains very difficult
to obtain or even, to our knowledge, impossible to be derived.

When the cell under test contains SIRV distributed noise, the
PDF of pH(M) of H(M) under H1 can be derived. When the cell
under test contains SIRV noise, the noise c can be characterized by
c =

√
τ n where n is a m-dimensional complex Gaussian vector

CN (0,M) and where τ is a positive scalar random variable and
characterized by its PDF pτ (.). Conditionally to this scalar random
variable, the SNR is therefore given by α2 pHM−1 p/τ . We suppose
in the following that E [τ ] = 1 that implies that the final SNR is
always given by δ = α2 pHM−1 p/σ2. Conditionally to τ , the PDF
pH(M) of H(M) under H1 is given by (3) after replacing δ by δ/τ
and we obtain the final PDF :

pH(M)(u) =

∫ ∞
0

e−δ/τ β1,m−1(u) 1F1

(
m, 1;

u δ

τ

)
pτ (τ) dτ .

(10)
The final Pd − λ relationship of NMF test can be derived by

simply integrating (10) with respect to u from λ to ∞.

Pd = 1−
∫ +∞

0

dτ

∫ λ

0

eδ (u−1)/τ β1,m−1(u)1F1

(
1−m, 1;−

uδ

τ

)
× pτ (τ) du . (11)

In the CES or SIRV distributed environment, the M -estimators
are defined as the unique solution of the following equation

M̂ =
1

N

N∑
k=1

u
(
cHk M̂−1 ck

)
ck cHk , (12)

where u(.) stands for any real-valued function that satisfies a set of
general assumptions (see [8], [9]), mainly for ensuring the existence,
uniqueness and convergence of the previous equation. Note that MLEs
are particular solutions of the previous equation. An attractive and
powerful estimator, independent of the CES distribution, is the Tyler’s
estimator also called the Fixed Point and defined as the solution of:

M̂ =
m

N

N∑
k=1

ck cHk

cHk M̂−1 ck
. (13)

III. ASYMPTOTIC BEHAVIOR OF THE ANMF TEST

The goal of this section is to propose two different ways of
deriving an approximate distribution of the test H(M̂) built with any
M -estimators under both H0 and H1 hypotheses and under Gaussian
or non-Gaussian noise. The first approach consists in exploiting the
asymptotic distribution of the M -estimators presented in previous sec-
tion while the second approach is directly exploiting the asymptotic
distribution of the asymptotic distribution of the ANMF built with
any M -estimates.

A. Exploitation of the asymptotic behavior of the M -estimators
For all M -estimator M̂ which verifies equation (12), one has the
important asymptotical statistical behavior:

√
N
(

vec(M̂−M)
)

d−→ GCN
(
0m2,1,ΣM ,ΩM

)
, (14)
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Fig. 1. Empirical variance of the ANMF built with the SCM (ν1 = 1)
and Tyler’s M -estimator (ν1 = (m + 1)/m) in Gaussian environment and
theoretical asymptotic variance for m = 3 and M = I3.

where M is the consistent limit of M̂ and GCN (0,ΣM ,ΩM )
denotes the Generalized Complex Normal distribution with ΣM the
covariance matrix and ΩM the pseudo-covariance matrix defined as

ΣM = ν1 MT ⊗M + ν2 vec(M) vec(M)H ,
ΩM = ν1 (MT ⊗M) K + ν2 vec(M) vec(M)T ,

(15)

where K is the commutation matrix which transforms vec(A) into
vec(AT ), ν1 and ν2 are real scalars relying on the CES distribution
and given in [8], [9].

Let us first consider the two ANMF PDF given by (5) under
H1 hypothesis and (6) under H0 hypothesis. Note that these two
equations provide the exact distributions of H(M̂SCM ) under both
H0 and H1 hypotheses when the secondary data are Gaussian
distributed and for a cell under test containing also Gaussian noise.
Now, for N sufficiently large, equation (14) states that a M -estimator
built with N ν1 observations behaves as the SCM built with N
observations. Consequently, combining this result with equations (5)
and (6) or equivalently with equations (7) and (8), leads to the
approximate distribution for H(M̂) under both hypotheses where M̂
stands for any M -estimator or for the Tyler’s estimator.

Due to the homogeneity of degree 0 of the ANMF under H0

hypothesis, the corresponding theoretical relationship between the
detection threshold λ and Pfa = P

(
H(M̂) > λ|H0

)
is still given

by the asymptotic corrected version of (7), i.e. when N is replaced
by N/ν1, even when the noise is CES distributed.

When the cell under test contains also SIRV or CES noise, the
PDF of pH(M) of H(M̂) under H1 has to be derived. In the same
way as in the previous section, we obtain therefore the final Pd − λ
relationship given in (8) by correcting N with N/ν1, by setting
a = N − m + 2 and conditioning and integrating over the texture
PDF pτ :

Pd = 1−
∫ +∞

0

dτ

∫ 1

0

du

∫ λ

0

ua−1 (1− u)m−1 (1− x)a−2

(1− ux)a

×
1

K
e−δ/τ 1F1

(
a, 1;

δ

τ

x (1− u)

1− xu

)
pτ (τ) dx . (16)

B. Exploitation of the asymptotic statistical behavior of the ANMF
built with M -estimators

The asymptotic behavior of all the M -estimators can then be linked
to the ANMF asymptotic statistical behavior thanks to the following
result [13]:

H(M̂)
d−→ N

(
H(M), 2 ν1H(M) (H(M)− 1)2/N

)
. (17)

It is important to notice that the previous results are also valid
for the SCM when the observations are Gaussian (ν1 = 1, ν2 = 0),
see e.g. [19]) and for the Tyler’s estimator for CES-distributed
observations (ν1 = (m+ 1)/m and ν2 = −(m+ 1)/m2, e.g. [20]).
The ANMF built with any M -estimators or with Tyler’s estimator
behaves asymptotically as ANMF built with SCM, it differs only from
the scalar quantities ν1 and ν2. Notice that the previous asymptotic
distribution is a distribution conditional to the observation y that
appears in H(M). Consequently, a supplementary step is required
to obtain the asymptotic distribution of H(M̂).

The figure 1 illustrates the result (17) when comparing, in Gaus-
sian environment and for different number N of secondary data, the
empirical variance of H(M̂SCM ) with the theoretical variance given
in (17) for ν1 = 1 and m = 3 and the empirical variance of H(M̂FP )
with the theoretical variance given by (17) for ν1 = (m+ 1)/m for
m = 3.

When the cell under test contains Gaussian, SIRV noise or CES
noise, the PDF pH(M) of H(M) under H0 is still given by (3)
because of the homogeneity of the function H(.) by CES or SIRV
noise family. According to the result given by (17), for N large
enough, considering that H(M̂) ∼ N

(
X, 2 ν1X (X − 1)2/N

)
where X ∼ pH(M), one can obtain the asymptotic distribution fa

H(M̂)

of H(M̂) under H0 hypothesis:

fa
H(M̂)

(u)=

∫ 1

0

√
N exp

(
−

N (u− x)2

4 ν1 x (x− 1)2

)
√

4π ν1 x (x− 1)2
pH(M)(x) dx .

(18)
where pH(M)(.) is given by (3). Now, if we denote Φ(.) the cumula-
tive distribution of the Normal distribution, one obtains respectively
the corresponding asymptotical Pfa-λ relationship:

Pfa = 1−
∫ 1

0

β1,m−1(x) Φ

( √
N (λ− x)√

2 ν1 x (x− 1)2

)
dx . (19)

Under H1 hypothesis and only for any SIRV distributed noise,
the PDF of pH(M) of H(M) has been derived and is given by
(10), leading to the final expression of the asymptotic distribution
fa
H(M̂)

(u) of H(M̂):

fa
H(M̂)

(u)=

∫ ∞
0

dτ

∫ 1

0

√
N exp

(
−

N (u− x)2

4 ν1 x (x− 1)2

)
√

4π ν1 x (x− 1)2

× e−δ/τ β1,m−1(u) 1F1

(
m, 1;

u δ

τ

)
pτ (τ) dx . (20)

The final Probability of Detection expression if then obtained by
evaluating Pd = P

(
H(M̂) > λ|H1

)
:

Pd = 1−
∫ ∞
0

pτ (τ) dτ

∫ 1

0

β1,m−1(x) eδ (x−1)/τ

×1F1

(
1−m, 1;−x

δ

τ

)
Φ

( √
N (λ− x)√

2 ν1 x (x− 1)2

)
dx

(21)

Under H1 hypothesis, the previous developments are not valid for
any CES distributed cell under test because this latter can be written



as y = αp + τ u = αp + τ x/||x||. We can remark that x and
τ/||x|| are not independent. The conditioning approach proposed in
this paper is hence not at all valid.

IV. SIMULATIONS

In this section, we set the Toeplitz covariance matrix M whose
entries are defined as Mij = ρ|i−j| where ρ = 0.5. The noise in the
cell under test is K-distributed with the shape parameter ν = 0.5.
Figures 2 and 3 show, for Pfa = 10−3, m = 10 and two numbers
of secondary data N , the different Pd-SNR relationship for the NMF
given by (11), the first approximate distribution of the ANMF built
with Tyler’s estimator (16), the asymptotic expression derived in
(21) for the Tyler’s estimator and the empirical Pd for the Tyler-
ANMF. The asymptotic regime is achieved and one can observe a
good agreement between the two asymptotic distributions derived in
this paper.
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Fig. 2. Comparison between Pd and SNR δ relationships for the NMF,
the ANMF built with Tyler’s estimator and its asymptotic form, m = 10,
N = 50, ν1 = 1.1 and Pfa = 10−3, p = [1, . . . , 1]T , y = αp+ c where
c ∼ Kν where Kν is a multivariate K-distribution with shape parameter
ν = 0.5 and covariance matrix M
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Fig. 3. Comparison between Pd and SNR δ relationships for the NMF,
the ANMF built with Tyler’s estimator and its asymptotic form, m = 10,
N = 500, ν1 = 1.1 and Pfa = 10−3, p = [1, . . . , 1]T , y = αp+c where
c ∼ Kν where Kν is a multivariate K-distribution with shape parameter
ν = 0.5 and covariance matrix M

V. CONCLUSION

In the context of robust detection in Gaussian or non-Gaussian
noise, two asymptotic distributions of the ANMF have been proposed
for both H0 and H1 hypotheses. More precisely, using robust co-
variance matrix estimators such as M -estimators or the Tyler’s esti-
mator, two asymptotic approximations of the corresponding ANMF
distribution have been derived following different approaches. First,

we have combined the exact distribution of the ANMF built with
the SCM under Gaussian noise and the asymptotic properties of the
robust estimators. Finally, we have directly derived the asymptotic
distribution of the robust ANMF under CES environment. These
results provide a very good approximation of the ANMF distribution
even for a small number of observations and have been applied to
theoretically regulate the false alarm probability and to evaluate the
detection performance.
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