
HAL Id: hal-01324994
https://hal.science/hal-01324994

Submitted on 3 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offline Scheduling of Map and Reduce Tasks on Hadoop
Systems

Aymen Jlassi, Patrick Martineau, Vincent Tkindt

To cite this version:
Aymen Jlassi, Patrick Martineau, Vincent Tkindt. Offline Scheduling of Map and Reduce Tasks on
Hadoop Systems. the 5th International Conference on Cloud Computing and Services Science, , May
2015, Lisbone, Portugal. �10.5220/0005483601780185�. �hal-01324994�

https://hal.science/hal-01324994
https://hal.archives-ouvertes.fr

Aymen Jlassi
1,2

, Patrick Martineau
2
 and Vincent Tkindt

2

1 Cyres Group, 19 rue Edouard Vaillant, 37000 Tours, France.
2 University François-Rabelais of Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, Tours, France

jlassi.aymen@etu.univ-tours.fr, {patrick.martineau, vincent.tkindt}@univ-tours.fr

Keywords: Big Data, MapReduce Model, Hadoop Scheduling Problem, Time Indexed Formulation.

Abstract: MapReduce is a model to manage quantities massive of data. It is based on the distributed and parallel

execution of tasks over the cluster of machines. Hadoop is an implementation of MapReduce model, it is

used to offer BigData services on the cloud. In this paper, we expose the scheduling problem on Hadoop

systems. We focus on the offline-scheduling, expose the problem in a mathematic model and use the time-

indexed formulation. We aim consider the maximum of constraints of the MapReduce environment.

Solutions for the presented model would be a reference for the on-line Schedules in the case of low and

medium instances. Our work is useful in term of the problem definition: constraints are based on

observations and take into account resources consumption, data locality, heterogeneous machines and

workflow management; this paper defines boundaries references to evaluate the online model.

1 INTRODUCTION

Manage and access efficiently massive data is

becoming more and more important for companies.

Google (Dean, 2004) introduced the model

MapReduce as a distributed and parallel Model for

data intensive computing. Every job is composed of

a set of “map” and “reduce” tasks, which is executed

in a distributed fashion over a cluster of machines.

Map tasks have to be executed before reduce tasks.

Tasks have to be executed as near as possible to the

needed data input. Data output of tasks map are

transferred to the reduce tasks using the network.

MapReduce model is characterized by its simplicity:

users wanting to access to data, create “map” and

“reduce” tasks, which are next scheduled by

specified middleware. The general idea is to

schedule those tasks over nodes, which contain data

because moving computation near data is less

expensive than moving data where computation

units are running. For example, in figure 1, average

of input set of integers is calculated.

Hadoop (Hadoop, 2005) is one of the most well-

known implementation of MapReduce model. It is

based on two main components: Hadoop

mapReduce and Hadoop distributed file system. The

computation level (mapReduce) is composed of

three elements. It assures synchronization over

different elements and distributes resources between

jobs. The Node Manager (NM) is the responsible for

resources exploitation per slave machine. The

Application Master (AM) is responsible for

managing the lifecycle of a job; it negotiates with

the RM to obtain needed resources (containers) and

manages the execution of job’s tasks.

Hadoop distributed file system (HDFS) is composed

of NameNode (NN) as a server and DataNode (DN)

as a slave. Files in HDFS are from megabytes up to

terabytes size. The number of map tasks depends on

the number of chunks of data (Zhou, 2012), one map

per data block slice. When the scheduler cannot

assign tasks to machines where data are stored,

bandwidth on the network is allocated to migrate

blocks towards. This paper presents an offline model

of scheduling problem on Hadoop with

mathematical programming based on the time-

indexed formulations which received much attention

due to its important impact on approximation

algorithms and the quality of its linear programming

relaxation.

Figure 1: Example of mapreduce job's execution.

Offline Scheduling of Map and Reduce Tasks on Hadoop Systems

It is often used in optimization and approximation

for machine scheduling problems. Besides, its linear

relaxation yields concise lower bounds than bounds

obtained by other integer programming formulations

(Queyranne, 1997). Work like (Sousa, 1992) and

(Lionel, 2013) argue that scheduling algorithms

using LP-relaxation of time-indexed formulations

have a constant ratio on their worst-case

performance in parallel machine scheduling

problems. Researches on the online version of

problem suffer from a lack of evaluation: how the

efficiency of online algorithms can be evaluated?

One way to answer this question is to consider the

offline version of the problem, its' optimal solution

can be considered as “ideal” reference schedules for

online algorithms. In this work, the main motivation

is to compute optimal solutions for medium

instances of the offline problem.

The remainder is introduced as follows. Section ΙΙ

presents the offline problem of scheduling “map”

and “reduce” tasks. In Section ΙII its' mathematical

model is introduced. Data generation and model

evaluation is presented in Section IV. Section V

summarizes the related work. Lastly, Section VI

concludes the paper and provides directions of future

work.

2 RELATED WORK

The scheduling problem in Hadoop is widely treated

in the literature: (Lim, 2014) present a constraint

programming formulation of the problem. The

objective of the model is to minimize the number of

late jobs, which is characterized by its service level

agreements (SLA). Authors consider the scheduling

of mapReduce jobs comprising an earliest start time,

execution time and end-to-end deadline. In this

work, authors take into consideration only compute

resources (slots), neither RAM nor hard disk are

considered. They neglect the relation between data

and tasks locations that present a foundation for the

map reduce programming model. The work in

(Verma, 2012) implements a deadline-based

scheduler; it is based on a general model for

computing performances bounds on makespan of a

given set of n tasks that are processed by k servers

(slots). The assignment of tasks to slots is done using

an online greedy algorithm; it assigns each task to the

slot, which has finished its running task the earliest.

(Evripidis, 2014) and (Lin, 2013) propose models,

which aim to minimize the total weighted completion

time. The first considers that each job has at least one

map and one reduce task and each job has at most

one task pre-assigned to each processor.

Table 1: Used Notations in the Hadoop scheduling

problem.

General data:

M The number of machines
N The number of tasks

 Number of map tasks
 Number of reduce tasks
 Set of map tasks
 Set of reduce tasks

 Set of blocks on the cluster
T The scheduling horizon

For machines

 The number of slots on machine (

 The number of reduce slots on machine

 The number of map slots on machine

 The quantity of RAM of machine

 The hard drive capacity of machine

 The CPU frequency associated to the slot s of
machine

 The CPU frequency of machine (∑

)

 The cost of the use of one unit of ram (1 Mb) per

machine j

 The cost of the use of one unit of hard drive

capacity (1 Mb) per machine j

 The cost of the use of CPU on slot s of machine j

For tasks (map, reduce, Application node)

 The quantity of RAM required by task

 The quantity of hard drive required by task

 The number of data block’s manipulated by task

 List of block numbers manipulated by task i

 Maximum bandwidth between tasks and

 Number of tasks preceding task i

 Set of task numbers that must be completed before

task i start.

 Estimated processing time of task i if processed on

slot s of machine j

For HDFS

S The size of a data block in the cluster.

 Number of replication block b.

 Set of machines on which block b is located.

bwd Bandwidth allocated for migrating a block through

the network

For the Network

G
(

The graph modeling the network

 The maximum bandwidth associated to any edge

P A set of paths between machines, a path being a set

of edges

 The set of couples of machines (j,) which use the

edge

The second considers task pre-assignment to

machines and each machine can execute one task at a

time. It models the data transfer from map to reduce

tasks and it considers map and reduce dependency.

(Kodialam, 2012) express the scheduling problem as

an optimization problem using linear programming,

they aim to minimize the total weight completion

time of jobs, they base their work on a set of

assumption: machines can process at most one task at

time, when a set of tasks is assigned to a processor at

the same moment; tasks can be preempt. Fotakis et

al. (Fotakis, 2014) consider the case of unrelated

processors with multiple Map and Reduce tasks per

job. They consider that tasks can be preempted.

They present the first polynomial time approximation

algorithm, it minimizes the total weighted completion

time. However they neglect the data management

aspect and they don’t consider multiple tasks

execution per machine. In this work we associate

resources constraints, network bandwidth

management to the data flow management.

3 THE OFFLINE SCHEDULING

PROBLEM

We summarize in Table 1 the data used in the

scheduling model. It is based on four principal parts:

the first describes the information about machines

and the cost of every resource’s use. The second part

describes tasks consumption. The third part gives

information about data blocks and the fourth

describes networks architecture. We consider non-

pre-emptible tasks because, in practice, tasks will

not be interrupted in Hadoop and when a task fails, it

will rerun as it is newly submitted.

Notice: we assume that bandwidth is booked on the

network from the end of map tasks until the end of

the reduce tasks. The bandwidth reservation avoids

delaying job execution when reduce tasks need to

communicate with maps machines to ensure some

needs (system files, recovers broken data chunks)

(White, 2012).

4 A MATHEMATICAL

FORMULATION

This section presents a time-indexed formulation of

offline scheduling problem in Hadoop. Let us review

the formal definition of the model. We adapt the

interval-relaxation method proposed in (Dyer, 1990)

in single machine case, and in (Schulz, 2002) in

multiple machines, with the context of MapReduce

model. The time horizon T is divided into a set of

irregular intervals. These intervals are defined by the

potential dates of starting and finishing execution of

tasks. For example, in Figure 2, for ⟦ ⟧,

the intervals (are used to execute tasks,

where [.

Figure 2: Presentation of the index over time.

We use the following variables:

{

 (

Thus

⁄ specify that the task is being

processed on machine j during the time

interval (.

{
 [[

{

 [[

{

We refer to TST as the total time spent for

processing all tasks on the cluster and TRC as the

total resource cost induced by the execution. The

scheduling problem in Hadoop can be modeled with

the objective functions (1) and (2). The TST (1)

considers the total execution time of tasks (the first

term on the left-hand side of the equation) and the

time of data transfer between map and reduce tasks

(the second term on the right-hand side of the

equation). The TRC (2) considers the resources

machines’ cost when processing tasks (the first term

on the left-hand side of the equation) and the use of

resources due to data transfer (the second term on

the right-hand side of the equation). The constraints

of the model are classified in three categories:

resource constraints, processing constraints and the

network constraints.

 ∑

[

∑∑ ∑

(

 ⁄

)

 ∑ ∑ ∑

(

⁄)

]

(1)

 ∑ ∑∑ ∑

[

]

 ∑ ∑ ∑ ∑ ∑(

 (

(2)

In the subsection 4.1, constraint (3) guarantees that

no more memory than available is used. Constraints

(4) and (5) guarantee that the number of reduce

(resp. map) tasks running on machine j at time t is

less than the number of reduce slots (resp. map

slots). Constraint (6) ensures that the overall local

disk space used (by the assigned tasks and migrated

data) cannot exceed the availability of each machine.

In the subsection 4.2, the inequality (7) guarantees

the precedence relation between map and reduce

tasks associated to the same job are satisfied. If we

have many map tasks, reduce tasks are scheduled

after the schedule and the end of all map tasks. In

figure 1, we compute average of input data, we will

have wrong result if reduce tasks start before the end

of map tasks. Constraints (7) and (8) ensure that all

map tasks (resp. reduce tasks) must be processed.

In the subsection 4.1, the constraints define the

policy of data blocks management in Hadoop. The

inequality (10) specifies if block b is stored in HDFS

on machine j. The constraints (11) and (13) impose

the relation between y’s and u’s variables, constraint

(13) triggers data migration to ensure that block

must be available on the machine before a map task

starts and constraint (11) ensures if it is available on

a machine after it has been migrated. The

Inequalities (12) disable the start of map tasks

(imposed by the constraint 8) if the manipulated

blocks are not present on the machine on which they

have been assigned. The inequalities (15) enable to

fix the values of the

 variables. When the tasks

map and reduce are on the same machine, we don’t

have network communication and the right part of

inequality (15) will be 0.

4.1 Resources Constraints

∑∑

(

 ⁄

)

(3)

∑

(

 ⁄

)

(4)

∑

(

 ⁄

)

(5)

∑∑

(

 ⁄

)

 ∑ ∑ ∑ ((

(6)

4.2 Tasks Constraints

 ⁄

 ∑ ∑ ∑ ∑ (

 ⁄)

(7)

 ,

∑ ∑ ∑

(

 ⁄

)

(8)

∑ ∑ ∑

(

 ⁄

)

(9)

4.3 Constraints Associated to the
Migration of Data Blocks

 {

(10)

 (11)

 ∑ ∑ ∑

(

 ⁄

)

(12)

∑

(

 ⁄

)

 ∑

(13)

4.4 Network Constraint

These constraints define the use of the network in

terms of bandwidth. Constraint (14) imposes that all

consumed bandwidth (for migration and transfer of

data) is less than the maximum bandwidth .

∑ [∑

∑ ∑ ∑

 (

]

(14)

∑

(

 ⁄

)

 ∑

(

 ⁄

)

(15)

5 EXPERIMENTATION

This article implements a model and tries to find

solutions using CPLEX mathematic solver. Face to

the multi-criteria property of the problem, the model

is concentrated on the time execution aspect and

neglects cost execution of the job. It uses an

experiment setting for the evaluation of the model

using the methodology in (Lionel, 2013). Data input

of the model presents an important deal and imitates

real world tasks executions. Machine configuration is

extracted from AWS (Aws, 2014) and portioned in

three categories of machines. Tasks information

depends on the size of data input computed by every

task. In order to evaluate the persistence of the

model, we generate randomly four input data

concerning tasks following uniform law: memory,

disk consumption, the time execution per task and

location of data blocks (Gupta, 2013). We generate

also network and cluster configuration details. Table

2 synthetizes values of the expected data input of

machines. The first column indicates the category of

the machine.

Table 2: Types of generated physical machines.

Category CPU

node

RAM

(Gb)

SSD

(Go)

CPU freq per

core (GHZ)

Bdw

(GB)

 Slots

map

Slots

reduce

c3.2xlarge:

copute optimized

8 15 160 2.8 Intel Xeon

E5-2680v2

1 1 1 2 5 2

i2.2xlarge:

storage optimized

8 61 1600 2.5 Intel Xeon

E5-2670v2

1 3 5 2 4 3

r3.xlarge:

memory optimized

4 30.5 160 2.5 Intel Xeon

E5-2670v2

2 2 1 1 2 1

Table 3: Characteristics of used jobs.

Job Tasks

reduce

Tasks

map

Type

of Job

1 2 3 --

2 2 6 --

3 3 9 --

The second column indicates the number of core

CPU on the machine. The third one contains the

amount of memory per machine. The column number

four indicates the quantity of hard disk in Gb. The

fifth column contains the frequency of one core CPU

on the machine. The sixth column indicates the

bandwidth allocated for network communication.

Columns number seven, eight and nine indicate

respectively the unit cost of the memory use (unit =

16Mb), hard disk (unit = 1Gb), and a core of CPU.

Despite the evolution in Hadoop, we adopt the

principle of separation between slots; the last two

columns contain the number of reduce and map cores

(slots) per machine. The costs of resources

consumption are expressed in columns seven, eight

and nine and they depend on the type of machine.

We generate the completion time needed to treat

tasks; these values depend on the size of the block.

We define:

 (

 [
 (

 ⁄]

(16)

We take into account the needed time to start up

virtual machines TimeStartUpVM, the size of block

and the amount of data computed per GHz per unit

of time SpeedProcessorRate. We benefit from the

last variable to inject the random aspect depending

on the categories of machines: for the category

“compute optimized”,
[for the other types

 [.The estimation of

memory (
 and hard disk consumption (

depends on the type of the job. Table 4 summarizes

used formulas in the generation of data related to the

three types of jobs: the number of tasks per job is

relatively limited; CPLEX limitation imposes this

choice of number of task per job face of the use of

one big job. We inject random values at many levels

of the data input generation. Face to the large

quantity of data generated by the model in time

indexed formulation, we consider S=64Mb and its

replication is equal to one. We consider the same

size (S) and replication properties of data blocks

however we generate randomly the location of the

blocks on machines. The network bandwidth for

block migration is fixed by the formula
 [. Network is generated as a binary

tree. We repeat the following process: at the main

node, we generate a switch; its left child node will

be one physical machine selected randomly, the

right child will be another switch and so on until all

physical machines will be placed on the binary tree.

Table 5 describes scenarios used for the model’s

test. For each scenario, we randomly generate 20

instances. The time horizon depends on scenarios

and it is divided in intervals. To find the correct

value of time horizon, we define an upper bound for

every solution using this formula (17). If there is no

solution for a particular value of the time horizon,

we increment time horizon by a unit of time. We

consider that an interval ([[from figure 2) is

sufficient to transfer data block between machines.

In conclusion, we limit bandwidth threshold to

migrate blocks and we limit the transfer duration of

a block to one interval. To compute the real

duration’s value of a schedule per scenario, we

define “RealTime” (formula 18) as the real time

needed to execute tasks in a solution.

 (

)

(17)

RealTime ∑

 (

(18)

(19)

“RealTime” is a posterior computation, after the

compute of the scheduling solution.

Table 4: Basic formulas to generate memory and hard disk

consumptions per task.

Type of Job

 (

(1) CPU

intensive
 [[

(2) RAM

intensive
 [[

(3) I/O

intensive
 [[

Table 5: Different scenarios for the generation of tasks,

machines and blocks input data.

Scenarios N1 N2 N3 M1 M2 M3 Blocks N M T
1 1 1 0 1 1 1 10 13 3 3
2 3 0 0 0 2 0 10 15 2 3
3 1 1 1 1 1 1 10 25 3 9
4 3 3 0 0 0 2 10 39 2 15
5 6 0 0 1 1 1 10 30 3 7
6 2 3 1 1 1 0 10 46 2 15
7 3 1 1 0 2 0 10 35 2 6

Table 6: Computational results (20 instances per scenario).

 #InFeas #Solved MemLimit TimLimit Tmax Real value of
unit of T

Sc1 0 20 0 0 0 7.95 132 0 0.45 1 85.66
Sc2 0 20 0 0 27 42.5 164 0 19.04 174 95.66
Sc3 1 18 0 1 4 5357.6 62168 6 97.75 1044 122.4
Sc4 3 16 1 0 0 6675.15 28365 16 292.36 1313 54,8
Sc5 2 18 0 0 40 132.8 1791 10 66.9 757 94.62
Sc6 4 15 0 1 115 142 389 28 185 1641 126.23
Sc7 0 20 0 0 3 61.25 193 5 10.1 22 70.53

It is used to compute the real duration to execute

jobs in a scenario. We define established value as the

time Horizon T per scenario; we compute a value of

a unit of T as regular time horizon with the formula

(19). We enumerate the minimum, maximum and

average of the RealTime over iterations and we

choose the maximum value to compute the value of

a unit of T per scenario. This value is used in the

evaluation of the results of solutions.

To test the model, we use a PC with an Intel(R) Core

(TM) i5-3360M CPU with 4 cores at 2.8 GHz and 4

Gb of RAM. The linear program formulation has

been solved by CPLEX 12.2 with parallel solve (4

threads) and limit time 1800 seconds and memory

limit of 2 Gb of RAM. When the time limit or the

memory limit is reached, the given solution of the

instance will be declared unsolved. Otherwise,

CPLEX will return the best solution. For each

scenario, table 6 presents: the number of infeasible

instances (column #InFeas), the number of instances

solved to optimality (column #Solved). The number

of instances on which CPLEX stops due to the

memory limit (column Mem) and the number of

instances on which CPLEX stops due to the time

limit (column Time). The columns from number six

to number eight provide the minimum, maximum

and average number of nodes explored by CPLEX in

its branch and cut algorithm while solving the

problem. There is no relation between the number of

machines and the number of explored nodes.

Scenarios 4 and 6 have two machines each, however

the number of explored nodes in scenario 4 is largely

higher than the number of nodes explored in

scenario 6. In the same topic, the number of

explored nodes is independent from the number of

scenario 7 for example has a number of tasks to

schedule higher than scenario 5. However, the

number of node explored in scenario 5 is higher than

in scenario 7. The columns from number nine to

number eleven provide minimum, average and

maximum CPU time (in seconds) taken by CPLEX

to solve instances. In this topic, we consider only

instances, which have infeasible or feasible results.

The result shows that there are large disparities

concerning CPU times used to find solution. The last

column presents the real value of the time horizon

unit; it is used as a comparison reference. It is

extracted from the approximate value of the average

completion time per scenario. Results of founded

schedule time of a scenario argue that it depends on

the number of tasks and machines; Scenarios 4 and 6

have largest value of the time horizon. These

scenarios have the largest number of tasks to

schedule. Scenarios 1 and 2 have the smallest

number of tasks and the smallest number of

machines in an instance. Results are function of the

number of tasks and the number of machines in an

instance and some instances take more time to find

solution than others. Scenario 6 for example

schedules 46 tasks on two machines; it has the

largest value of completion time.

6 CONCLUSIONS

In this paper, we propose an offline mathematical

model for the scheduling problem in Hadoop. Two

kinds of tasks are considered: “map” and “reduce”

tasks with dependencies between them. This paper

also presents an in-depth study of the major aspects

of MapReduce model, such as tasks dependency,

network consumption, data flow management and the

non-interruptive tasks executions.

It aims at scheduling tasks with the minimum cost of

used resources and the minimum total processing

duration. We merely focus on a pure scheduling

problem; we propose an offline model assuming that

all data are known. We present a realistic model,

which considers dependence between tasks. We

consider data locality and we model data migration

and transfer between heterogonous machines. All

considered constraints emulate the real world

environment in Hadoop. Heterogeneous machines

cluster and possibility to execute many tasks per

machine are also considered. The proposed model is

based on a time-indexed formulation, which despite

its pseudo polynomial number of variables. It has

already been shown as an efficient formulation

compared to other integer programming

formulations. We use the commercial solver CPLEX

to find the optimal solution for small and medium

size of instances. We give community a boundary to

reference with and to evaluate their scheduling

algorithms for this size of instances. It turns out that

the offline problem is interesting in it self and can be

used to design good online strategies. Solution for

this model would be a reference for the on-line

schedules in smaller dimension to validate first

result. Future work will deal with the online aspect

concerning the scheduling problem; we plan to

propose a heuristic solution and use this work in the

evaluation.

Online solution considers at first Total completion

time, in a second time we take into account the

resources consumption (energy) in a multi-criteria

scheduling aspect.

The final solution will be implemented over Hadoop

simulation system and evaluated in a large

scalability face to default scheduler in Hadoop.

ACKNOWLEDGMENTS

This work was sponsored in part by the CYRES

GROUP in France and French National Research

Agency under the grant CIFRE n°2012/1403.

REFERENCES

Aws. 2014. Instances-types. Retrieved from Aws:

http://aws.amazon.com/fr/ec2/instance-types/

Dean, J., & Ghemawat, S., 2004. MapReduce: Simplified

Data Processing on Large Clusters. In

Communications of the ACM.

Dyer, M. E., & Wolsey, L. A., 1990. Formulating the

single machine sequencing problem with release dates

as a mixed integer program.

Evripidis Bampis, V. C., 2014. Energy Efficient

Scheduling of MapReduce Jobs. In 20th International

Conference.

Fotakis, D., Milis, I., & Zampetakis, E., 2014. Scheduling

MapReduce Jobs on Unrelated Processors. In the

Workshop Proceedings of the EDBT/ICDT.

Gupta, S., Fritz, C., Price, R., Hoover, R., de Kleer, J., &

Witteveen, C., 2013. Throughput Scheduler: learning

to schedule on heterogeneous Hadoop clusters. In

(ICAC '13), International Conference on Autonomic

Computing.

Hadoop Project, 2005. (A. foundation, Producer)

Retrieved from http://hadoop.apache.org/

Kodialam, M. S., Lakshman, T., Mukherjee, S., Chanwg,

H., & Lee, M. J., 2012. Scheduling in mapreduce like

systems for fast completion time. In Patent

Application Publication.

Lim, N., Majumdar, S., & Ashwood-Smith, P., 2014. A

Constraint Programming-Based Resource

Management Technique for Processing MapReduce

Jobs with SLAs on Clouds.

Lin, M., Zhang, L., Wierman, A., & Tan, J., 2013. Joint

Scheduling of Processing and Shuffle Phases in

MapReduce Systems. In P. o. Conference (Ed.).

Lionel, E.-D., Adrien, L., Patrick, M., Ameur, S., Vincent,

T., & Denis, T., 2013. A Server Consolidation

Problem: Definition and Model. In Proceedings of the

14th conference ROADEF.

Queyranne, M., & Schulz, A., 1997. Polyhedral

Approaches to Machine Scheduling. In Mathematical

Programming.

Schulz, A. S., & Skutella, M., 2002. Scheduling Unrelated

Machines by Randomized Rounding. In SIAM Journal

on Discrete Mathematics.

Sousa, J. P., & Wolsey, L. A., 1992. A time indexed

formulation of non-preemptive single machine

scheduling problems. In Mathematical Programming.

Verma, A., Cherkasova, L., Kumar, V. S., & Campbell, R.

H., 2012. Deadline-based Workload Management for

MapReduce Environments: Pieces of the Performance

Puzzle.

White, T., 2012. Hadoop, The Definitive Guide (3rd

Edition ed.). O'REILLY. 3rd edition.

Zhou, W., Han, J., Zhang, Z., & Dai, J., 2012. Dynamic

Random Access for Hadoop Distributed File System.

In (ICDCSW), Distributed Computing Systems

Workshops.

