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Abstract: MapReduce is a model to manage quantities massive of data. It is based on the distributed and parallel 

execution of tasks over the cluster of machines. Hadoop is an implementation of MapReduce model, it is 

used to offer BigData services on the cloud. In this paper, we expose the scheduling problem on Hadoop 

systems. We focus on the offline-scheduling, expose the problem in a mathematic model and use the time-

indexed formulation. We aim consider the maximum of constraints of the MapReduce environment. 

Solutions for the presented model would be a reference for the on-line Schedules in the case of low and 

medium instances. Our work is useful in term of the problem definition: constraints are based on 

observations and take into account resources consumption, data locality, heterogeneous machines and 

workflow management; this paper defines boundaries references to evaluate the online model.  

1 INTRODUCTION 

Manage and access efficiently massive data is 

becoming more and more important for companies.  

Google (Dean, 2004) introduced the model 

MapReduce as a distributed and parallel Model for 

data intensive computing. Every job is composed of 

a set of “map” and “reduce” tasks, which is executed 

in a distributed fashion over a cluster of machines. 

Map tasks have to be executed before reduce tasks. 

Tasks have to be executed as near as possible to the 

needed data input. Data output of tasks map are 

transferred to the reduce tasks using the network. 

MapReduce model is characterized by its simplicity: 

users wanting to access to data, create “map” and 

“reduce” tasks, which are next scheduled by 

specified middleware. The general idea is to 

schedule those tasks over nodes, which contain data 

because moving computation near data is less 

expensive than moving data where computation 

units are running. For example, in figure 1, average 

of input set of integers is calculated. 

Hadoop (Hadoop, 2005) is one of the most well-

known implementation of MapReduce model. It is 

based on two main components: Hadoop 

mapReduce and Hadoop distributed file system. The 

computation level (mapReduce) is composed of 

three elements. It assures synchronization over 

different elements and distributes resources between 

jobs. The Node Manager (NM) is the responsible for 

resources exploitation per slave machine. The 

Application Master (AM) is responsible for 

managing the lifecycle of a job; it negotiates with 

the RM to obtain needed resources (containers) and 

manages the execution of job’s tasks. 

Hadoop distributed file system (HDFS) is composed 

of NameNode (NN) as a server and DataNode (DN) 

as a slave. Files in HDFS are from megabytes up to 

terabytes size. The number of map tasks depends on 

the number of chunks of data (Zhou, 2012), one map 

per data block slice. When the scheduler cannot 

assign tasks to machines where data are stored, 

bandwidth on the network is allocated to migrate 

blocks towards. This paper presents an offline model 

of scheduling problem on Hadoop with 

mathematical programming based on the time-

indexed formulations which received much attention 

due to its important impact on approximation 

algorithms and the quality of its linear programming 

relaxation. 

 

Figure 1: Example of mapreduce job's execution. 
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It is often used in optimization and approximation 

for machine scheduling problems. Besides, its linear 

relaxation yields concise lower bounds than bounds 

obtained by other integer programming formulations 

(Queyranne, 1997). Work like (Sousa, 1992) and 

(Lionel, 2013) argue that scheduling algorithms 

using LP-relaxation of time-indexed formulations 

have a constant ratio on their worst-case 

performance in parallel machine scheduling 

problems. Researches on the online version of 

problem suffer from a lack of evaluation: how the 

efficiency of online algorithms can be evaluated? 

One way to answer this question is to consider the 

offline version of the problem, its' optimal solution 

can be considered as “ideal” reference schedules for 

online algorithms. In this work, the main motivation 

is to compute optimal solutions for medium 

instances of the offline problem.  

The remainder is introduced as follows. Section ΙΙ 

presents the offline problem of scheduling “map” 

and “reduce” tasks. In Section ΙII its' mathematical 

model is introduced. Data generation and model 

evaluation is presented in Section IV. Section V 

summarizes the related work. Lastly, Section VI 

concludes the paper and provides directions of future 

work. 

2 RELATED WORK 

The scheduling problem in Hadoop is widely treated 

in the literature: (Lim, 2014) present a constraint 

programming formulation of the problem. The 

objective of the model is to minimize the number of 

late jobs, which is characterized by its service level 

agreements (SLA). Authors consider the scheduling 

of mapReduce jobs comprising an earliest start time, 

execution time and end-to-end deadline. In this 

work, authors take into consideration only compute 

resources (slots), neither RAM nor hard disk are 

considered. They neglect the relation between data 

and tasks locations that present a foundation for the 

map reduce programming model. The work in 

(Verma, 2012) implements a deadline-based 

scheduler; it is based on a general model for 

computing performances bounds on makespan of a 

given set of n tasks that are processed by k servers 

(slots). The assignment of tasks to slots is done using 

an online greedy algorithm; it assigns each task to the 

slot, which has finished its running task the earliest. 

(Evripidis, 2014) and (Lin, 2013) propose models, 

which aim to minimize the total weighted completion 

time. The first considers that each job has at least one 

map and one reduce task and each job has at most 

one task pre-assigned to each processor. 

Table 1: Used Notations in the Hadoop scheduling 

problem. 

General data: 

M The number of machines  
N The number of tasks  

   Number of map tasks  
   Number of reduce tasks  
   Set of map tasks 
   Set of reduce tasks 

   Set of blocks on the cluster 
T The scheduling horizon 

For machines 

  
  The number of slots on machine   (   

      
    

  
   The number of reduce slots on machine   

  
   The number of map slots on machine   

  
  The quantity of RAM of machine   

  
  The hard drive capacity of machine   

     The CPU frequency associated to the slot s of 
machine   

   The CPU frequency of machine   (   ∑     
  

 

   
) 

  
  The cost of the use of one unit of ram (1 Mb) per 

machine j 

  
  The cost of the use of one unit of hard drive 

capacity (1 Mb) per machine j 
    

  The cost of the use of CPU on slot s of machine j 

For tasks (map, reduce, Application node) 

  
  The quantity of RAM required by task   

  
  The quantity of hard drive required by task   

  
  The number of data block’s manipulated by task   

   List of block numbers manipulated by task i 

      Maximum bandwidth between tasks   and    

  
 
 Number of tasks preceding task i 

   Set of task numbers that must be completed before 

task i start. 

    
 

 Estimated processing time of task i if processed on 

slot s of machine j 

For HDFS 

S The size of a data block in the cluster. 

   Number of replication block b. 

   Set of machines on which block b is located. 

bwd Bandwidth allocated for migrating a block through 

the network 

For the Network 

G 
(     

The graph modeling the network 

     The maximum bandwidth associated to any edge 

     

P A set of paths between machines, a path being a set 

of edges    

   The set of couples of machines (j,   ) which use the 

edge    



The second considers task pre-assignment to 

machines and each machine can execute one task at a 

time.  It models the data transfer from map to reduce 

tasks and it considers map and reduce dependency. 

(Kodialam, 2012) express the scheduling problem as 

an optimization problem using linear programming, 

they aim to minimize the total weight completion 

time of jobs, they base their work on a set of 

assumption: machines can process at most one task at 

time, when a set of tasks is assigned to a processor at 

the same moment; tasks can be preempt. Fotakis et 

al. (Fotakis, 2014) consider the case of unrelated 

processors with multiple Map and Reduce tasks per 

job. They consider that tasks can be preempted.  

They present the first polynomial time approximation 

algorithm, it minimizes the total weighted completion 

time. However they neglect the data management 

aspect and they don’t consider multiple tasks 

execution per machine. In this work we associate 

resources constraints, network bandwidth 

management to the data flow management. 

3 THE OFFLINE SCHEDULING 

PROBLEM 

We summarize in Table 1 the data used in the 

scheduling model. It is based on four principal parts: 

the first describes the information about machines 

and the cost of every resource’s use. The second part 

describes tasks consumption. The third part gives 

information about data blocks and the fourth 

describes networks architecture. We consider non-

pre-emptible tasks because, in practice, tasks will 

not be interrupted in Hadoop and when a task fails, it 

will rerun as it is newly submitted. 

Notice: we assume that bandwidth is booked on the 

network from the end of map tasks until the end of 

the reduce tasks. The bandwidth reservation avoids 

delaying job execution when reduce tasks need to 

communicate with maps machines to ensure some 

needs (system files, recovers broken data chunks) 

(White, 2012).  

4 A MATHEMATICAL 

FORMULATION 

This section presents a time-indexed formulation of 

offline scheduling problem in Hadoop. Let us review 

the formal definition of the model. We adapt the 

interval-relaxation method proposed in (Dyer, 1990) 

in single machine case, and in (Schulz, 2002) in 

multiple machines, with the context of MapReduce 

model. The time horizon T is divided into a set of 

irregular intervals. These intervals are defined by the 

potential dates of starting and finishing execution of 

tasks. For example, in Figure 2, for   ⟦     ⟧, 

the intervals (         are used to execute tasks, 

where    [    .  

 

Figure 2: Presentation of the index over time. 

We use the following variables: 
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We refer to TST as the total time spent for 

processing all tasks on the cluster and TRC as the 

total resource cost induced by the execution. The 

scheduling problem in Hadoop can be modeled with 

the objective functions (1) and (2). The TST (1) 

considers the total execution time of tasks (the first 

term on the left-hand side of the equation) and the 

time of data transfer between map and reduce tasks 

(the second term on the right-hand side of the 

equation). The TRC (2) considers the resources 

machines’ cost when processing tasks (the first term 

on the left-hand side of the equation) and the use of 

resources due to data transfer (the second term on 

the right-hand side of the equation). The constraints 

of the model are classified in three categories: 



resource constraints, processing constraints and the 

network constraints. 
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(2) 

In the subsection 4.1, constraint (3) guarantees that 

no more memory than available is used. Constraints 

(4) and (5) guarantee that the number of reduce 

(resp. map) tasks running on machine j at time t is 

less than the number of reduce slots (resp. map 

slots). Constraint (6) ensures that the overall local 

disk space used (by the assigned tasks and migrated 

data) cannot exceed the availability of each machine. 

In the subsection 4.2, the inequality (7) guarantees 

the precedence relation between map and reduce 

tasks associated to the same job are satisfied. If we 

have many map tasks, reduce tasks are scheduled 

after the schedule and the end of all map tasks. In 

figure 1, we compute average of input data, we will 

have wrong result if reduce tasks start before the end 

of map tasks. Constraints (7) and (8) ensure that all 

map tasks (resp. reduce tasks) must be processed.  

In the subsection 4.1, the constraints define the 

policy of data blocks management in Hadoop. The 

inequality (10) specifies if block b is stored in HDFS 

on machine j. The constraints (11) and (13) impose 

the relation between y’s and u’s variables, constraint 

(13) triggers data migration to ensure that block 

must be available on the machine before a map task 

starts and constraint (11) ensures if it is available on 

a machine after it has been migrated. The 

Inequalities (12) disable the start of map tasks 

(imposed by the constraint 8) if the manipulated 

blocks are not present on the machine on which they 

have been assigned. The inequalities (15) enable to 

fix the values of the  
       

    
 variables. When the tasks 

map and reduce are on the same machine, we don’t 

have network communication and the right part of 

inequality (15) will be 0.   

4.1 Resources Constraints 
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4.2 Tasks Constraints 
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4.3 Constraints Associated to the 
Migration of Data Blocks 
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4.4 Network Constraint 

These constraints define the use of the network in 

terms of bandwidth. Constraint (14) imposes that all 

consumed bandwidth (for migration and transfer of 

data) is less than the maximum bandwidth    . 
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5 EXPERIMENTATION 

This article implements a model and tries to find 

solutions using CPLEX mathematic solver. Face to 

the multi-criteria property of the problem, the model 

is concentrated on the time execution aspect and 

neglects cost execution of the job. It uses an 

experiment setting for the evaluation of the model 

using the methodology in (Lionel, 2013). Data input 

of the model presents an important deal and imitates 

real world tasks executions. Machine configuration is 

extracted from AWS (Aws, 2014) and portioned in 

three categories of machines. Tasks information 

depends on the size of data input computed by every 

task. In order to evaluate the persistence of the 

model, we generate randomly four input data 

concerning tasks following uniform law: memory, 

disk consumption, the time execution per task and 

location of data blocks (Gupta, 2013). We generate 

also network and cluster configuration details. Table 

2 synthetizes values of the expected data input of 

machines. The first column indicates the category of 

the machine.  



Table 2: Types of generated physical machines. 
 

Category CPU 

node 

RAM 

(Gb) 

SSD 

(Go) 

CPU freq per 

core (GHZ) 

Bdw 

(GB) 
  

    
      

  Slots 

map 

Slots 

reduce 

c3.2xlarge: 

copute optimized 

8 15 160 2.8 Intel Xeon 

E5-2680v2 

1 1 1 2 5 2 

i2.2xlarge: 

storage optimized 

8 61 1600 2.5 Intel Xeon 

E5-2670v2 

1 3 5 2 4 3 

r3.xlarge: 

memory optimized 

4 30.5 160 2.5 Intel Xeon 

E5-2670v2 

2 2 1 1 2 1 

Table 3: Characteristics of used jobs. 
 

Job Tasks 

reduce 

Tasks 

map 

Type 

of Job 

1 2 3 -- 

2 2 6 -- 

3 3 9 -- 

The second column indicates the number of core 

CPU on the machine. The third one contains the 

amount of memory per machine. The column number 

four indicates the quantity of hard disk in Gb. The 

fifth column contains the frequency of one core CPU 

on the machine. The sixth column indicates the 

bandwidth allocated for network communication. 

Columns number seven, eight and nine indicate 

respectively the unit cost of the memory use (unit = 

16Mb), hard disk (unit = 1Gb), and a core of CPU. 

Despite the evolution in Hadoop, we adopt the 

principle of separation between slots; the last two 

columns contain the number of reduce and map cores 

(slots) per machine. The costs of resources 

consumption are expressed in columns seven, eight 

and nine and they depend on the type of machine. 

We generate the completion time needed to treat 

tasks; these values depend on the size of the block. 

We define: 
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(16) 

We take into account the needed time to start up 

virtual machines TimeStartUpVM, the size of block 

and the amount of data computed per GHz per unit 

of time SpeedProcessorRate. We benefit from the 

last variable to inject the random aspect depending 

on the categories of machines: for the category 

“compute optimized”,                     
[         for the other types 

                    [       .The estimation of 

memory (  
  and hard disk consumption (  

   

depends on the type of the job. Table 4 summarizes 

used formulas in the generation of data related to the 

three types of jobs: the number of tasks per job is 

relatively limited; CPLEX limitation imposes this 

choice of number of task per job face of the use of 

one big job. We inject random values at many levels 

of the data input generation. Face to the large 

quantity of data generated by the model in time 

indexed formulation, we consider S=64Mb and its 

replication is equal to one. We consider the same 

size (S) and replication properties of data blocks 

however we generate randomly the location of the 

blocks on machines. The network bandwidth for 

block migration is fixed by the formula      
   [          . Network is generated as a binary 

tree. We repeat the following process: at the main 

node, we generate a switch; its left child node will 

be one physical machine selected randomly, the 

right child will be another switch and so on until all 

physical machines will be placed on the binary tree. 

Table 5 describes scenarios used for the model’s 

test. For each scenario, we randomly generate 20 

instances. The time horizon depends on scenarios 

and it is divided in intervals. To find the correct 

value of time horizon, we define an upper bound for 

every solution using this formula (17). If there is no 

solution for a particular value of the time horizon, 

we increment time horizon by a unit of time. We 

consider that an interval ([       [ from figure 2) is 

sufficient to transfer data block between machines.  

In conclusion, we limit bandwidth threshold to 

migrate blocks and we limit the transfer duration of 

a block to one interval. To compute the real 

duration’s value of a schedule per scenario, we 

define “RealTime” (formula 18) as the real time 

needed to execute tasks in a solution.  
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(18) 

                          
            

(19) 

“RealTime” is a posterior computation, after the 

compute of the scheduling solution.  



Table 4: Basic formulas to generate memory and hard disk 

consumptions per task.  

Type of Job   
    

         
  (  

             

(1) CPU 

intensive 
   [            [       

(2) RAM 

intensive 
   [            [       

(3) I/O 

intensive 
   [          [       

 

Table 5: Different scenarios for the generation of tasks, 

machines and blocks input data. 

Scenarios N1 N2 N3 M1 M2 M3 Blocks N M T 
1 1 1 0 1 1 1 10 13 3 3 
2 3 0 0 0 2 0 10 15 2 3 
3 1 1 1 1 1 1 10 25 3 9 
4 3 3 0 0 0 2 10 39 2 15 
5 6 0 0 1 1 1 10 30 3 7 
6 2 3 1 1 1 0 10 46 2 15 
7 3 1 1 0 2 0 10 35 2 6 

 

Table 6: Computational results (20 instances per scenario).  
 

 #InFeas #Solved MemLimit TimLimit                          Tmax Real value of 
unit of T 

Sc1 0 20 0 0 0 7.95 132 0 0.45 1 85.66 
Sc2 0 20 0 0 27 42.5 164 0 19.04 174 95.66 
Sc3 1 18 0 1 4 5357.6 62168 6 97.75 1044 122.4 
Sc4 3 16 1 0 0 6675.15 28365 16 292.36 1313 54,8 
Sc5 2 18 0 0 40 132.8 1791 10 66.9 757 94.62 
Sc6 4 15 0 1 115 142 389 28 185 1641 126.23 
Sc7 0 20 0 0 3 61.25 193 5 10.1 22 70.53 

It is used to compute the real duration to execute 

jobs in a scenario. We define established value as the 

time Horizon T per scenario; we compute a value of 

a unit of T as regular time horizon with the formula 

(19). We enumerate the minimum, maximum and 

average of the RealTime over iterations and we 

choose the maximum value to compute the value of 

a unit of T per scenario. This value is used in the 

evaluation of the results of solutions. 

To test the model, we use a PC with an Intel(R) Core 

(TM) i5-3360M CPU with 4 cores at 2.8 GHz and 4 

Gb of RAM. The linear program formulation has 

been solved by CPLEX 12.2 with parallel solve (4 

threads) and limit time 1800 seconds and memory 

limit of 2 Gb of RAM. When the time limit or the 

memory limit is reached, the given solution of the 

instance will be declared unsolved. Otherwise, 

CPLEX will return the best solution. For each 

scenario, table 6 presents: the number of infeasible 

instances (column #InFeas), the number of instances 

solved to optimality (column #Solved). The number 

of instances on which CPLEX stops due to the 

memory limit (column Mem) and the number of 

instances on which CPLEX stops due to the time 

limit (column Time). The columns from number six 

to number eight provide the minimum, maximum 

and average number of nodes explored by CPLEX in 

its branch and cut algorithm while solving the 

problem. There is no relation between the number of 

machines and the number of explored nodes. 

Scenarios 4 and 6 have two machines each, however 

the number of explored nodes in scenario 4 is largely 

higher than the number of nodes explored in 

scenario 6. In the same topic, the number of 

explored nodes is independent from the number of 

scenario 7 for example has a number of tasks to 

schedule higher than scenario 5. However, the 

number of node explored in scenario 5 is higher than 

in scenario 7. The columns from number nine to 

number eleven provide minimum, average and 

maximum CPU time (in seconds) taken by CPLEX 

to solve instances. In this topic, we consider only 

instances, which have infeasible or feasible results. 

The result shows that there are large disparities 

concerning CPU times used to find solution. The last 

column presents the real value of the time horizon 

unit; it is used as a comparison reference. It is 

extracted from the approximate value of the average 

completion time per scenario.  Results of founded 

schedule time of a scenario argue that it depends on 

the number of tasks and machines; Scenarios 4 and 6 

have largest value of the time horizon. These 

scenarios have the largest number of tasks to 

schedule. Scenarios 1 and 2 have the smallest 

number of tasks and the smallest number of 

machines in an instance. Results are function of the 

number of tasks and the number of machines in an 

instance and some instances take more time to find 

solution than others. Scenario 6 for example 

schedules 46 tasks on two machines; it has the 

largest value of completion time. 



6 CONCLUSIONS 

In this paper, we propose an offline mathematical 

model for the scheduling problem in Hadoop. Two 

kinds of tasks are considered: “map” and “reduce” 

tasks with dependencies between them. This paper 

also presents an in-depth study of the major aspects 

of MapReduce model, such as tasks dependency, 

network consumption, data flow management and the 

non-interruptive tasks executions.  

It aims at scheduling tasks with the minimum cost of 

used resources and the minimum total processing 

duration. We merely focus on a pure scheduling 

problem; we propose an offline model assuming that 

all data are known. We present a realistic model, 

which considers dependence between tasks. We 

consider data locality and we model data migration 

and transfer between heterogonous machines. All 

considered constraints emulate the real world 

environment in Hadoop. Heterogeneous machines 

cluster and possibility to execute many tasks per 

machine are also considered. The proposed model is 

based on a time-indexed formulation, which despite 

its pseudo polynomial number of variables. It has 

already been shown as an efficient formulation 

compared to other integer programming 

formulations. We use the commercial solver CPLEX 

to find the optimal solution for small and medium 

size of instances. We give community a boundary to 

reference with and to evaluate their scheduling 

algorithms for this size of instances. It turns out that 

the offline problem is interesting in it self and can be 

used to design good online strategies. Solution for 

this model would be a reference for the on-line 

schedules in smaller dimension to validate first 

result. Future work will deal with the online aspect 

concerning the scheduling problem; we plan to 

propose a heuristic solution and use this work in the 

evaluation.  

Online solution considers at first Total completion 

time, in a second time we take into account the 

resources consumption (energy) in a multi-criteria 

scheduling aspect. 

The final solution will be implemented over Hadoop 

simulation system and evaluated in a large 

scalability face to default scheduler in Hadoop. 
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