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On the equivariant blow-Nash classification of simple invariant

Nash germs

Fabien Priziac

Abstract

We make progress towards the classification of simple Nash germs invariant under the
involution changing the sign of the first coordinate, with respect to equivariant blow-Nash
equivalence, which is an equivariant Nash version of blow-analytic equivalence, taking ad-
vantage of invariants for this relation, the equivariant zeta functions.

1 Introduction

The classification of real analytic germs requires to choose carefully the used equivalence rela-
tion. One may think about the (right) C1-equivalence. However, it is too strong, as illustrated
by the example of the Whitney family ft(x, y) = xy(y − x)(y − tx), t > 1 (ft and ft′ are
C1-equivalent if and only if t = t′), while the topological equivalence is too rough. In [18],
T.-C. Kuo suggested an equivalence relation for which Whitney family has only one equivalence
class : the blow-analytic equivalence. More generally, any analytically parametrized family of
isolated singularities has a locally finite classification with respect to blow-analytic equivalence.

Two real analytic germs are said blow-analytically equivalent if, roughly speaking, they
become analytically equivalent after compositions with real modifications, e.g. compositions
of blowings-up along smooth centers. From the definition of this equivalence relation, further
studies on real analytic germs were stimulated. In particular, invariants have been constructed
for blow-analytic equivalence, like the Fukui invariants ([15]) as well as the zeta functions of
S. Koike and A. Parusiński ([17]), inspired by the motivic zeta functions of J. Denef and F.
Loeser ([8]), using the Euler characteristic with compact supports as a motivic measure.

A refinement of blow-analytic equivalence has been defined for Nash germs, that is germs
of real analytic functions with a semialgebraic graph, by G. Fichou in [10] : the blow-Nash
equivalence, that is Nash equivalence after compositions with Nash modifications. The involved
algebraicity allowed him to use the virtual Poincaré polynomial ([21] and [9]), which is an
additive and multiplicative invariant on AS sets ([19] and [20]) encoding more information
than the Euler characteristic with compact supports, in order to define new zeta functions,
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invariant for the blow-Nash equivalence of Nash germs. Recently, J.-B. Campesato gave in
[6] an equivalent alternative definition of blow-Nash equivalence as arc-analytic equivalence,
proving that the blow-Nash equivalence of [10] was indeed an equivalence relation, and defined
a more general invariant for it, the motivic local zeta function.

In [13], G. Fichou used his zeta functions of [10] to classify the simple Nash germs (a germ is
called simple if sufficiently small perturbations provide only finitely many analytic classes) with
respect to blow-Nash equivalence. He showed that this classification actually coincides with
the real analytic one, that is the ADE-classification of [2]. An analog result for blow-analytic
equivalence is not known.

In this paper, we are interested in real analytic germs invariant under right composition
with the action of the group G = Z/2Z only changing the sign of the first coordinate (that
we will simply call invariant germs). In [23], we defined the equivariant blow-Nash equivalence
for invariant Nash germs, which is, roughly speaking, an equivariant Nash equivalence after
compositions with equivariant Nash modifications. Using the equivariant virtual Poincaré
series ([14]), which is an additive invariant on G-AS sets, as a motivic measure, we constructed
“equivariant” zeta functions which are invariants for the equivariant blow-Nash equivalence.

Similarly to the non-equivariant frame, we ask if the equivariant blow-Nash classification
of invariant Nash germs could coincide with the equivariant Nash classification for sufficiently
“tame” invariant singularities. The equivariant analytic classification of simple invariant real
analytic germs has been established by V. I. Arnold in [1] and recalled in [16] by V. V. Goryunov.
The representatives for this classification are the invariant singularities Ak, Bk, Ck, Dk, E6,
E7, E8 and F4 (see theorem 2.1 below). We will first show that a simple invariant Nash germ is
G-blow-Nash equivalent (and even G-Nash equivalent) to one of these germs. The largest part
of our study will then consist in trying to distinguish, with respect to G-blow-Nash equivalence,
the invariant ABCDEF -singularities, using notably the equivariant zeta functions.

For some cases, we will be faced with either the equality of the respective equivariant zeta
functions of a couple of germs or the fact that they are equal if and only if the respective
equivariant virtual Poincaré series of specific sets are equal. The former situation is in par-
ticular due to the fact that the equivariant virtual Poincaré series can not distinguish two
different algebraic actions on a same sphere as soon as there is at least one fixed point. As
for the latter situation, we do not know if the invariance of the virtual Poincaré polynomial
under bijection with AS graph (see [22]) “generalizes” to an invariance of the equivariant
virtual Poincaré series under equivariant bijection with AS graph. If this was proven to be
true, it should allow to compute all the coefficients of the considered equivariant zeta functions.

The next section is devoted to the equivariant Nash classification of simple invariant Nash
germs : we prove that it coincides with the equivariant real analytic classification of [1] and
[16]. Indeed, two invariant Nash germs are equivariantly Nash equivalent if and only if they are
equivariantly analytically equivalent (proposition 2.3). This can be deduced from an equivariant
Nash approximation theorem of E. Bierstone and P. Milman in [4].

In section 3, we justify the fact that a germ G-Nash equivalent to a germ of the list
ABCDEF is in particular G-blow-Nash equivalent to it. On the other hand, one can no-
tice that, forgetting the G-action, the invariant singularities Ak and Bk, resp. Ck and Dk, E6

and F4, are both A-, resp. D-, E-, singularities. Since equivariant blow-Nash equivalence is
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a particular case of blow-Nash equivalence and because the ADE-singularities are not blow-
Nash equivalent to one another ([13]), we are reduced to compare, with respect to G-blow-Nash
equivalence, the invariant germs of the families Ak and Bk, resp. Ck and Dk, E6 and F4.

The section 4 recalls the definition of the tools we are going to use to do so : the equivariant
zeta functions. Each of the sections 6, 7 and 8 is devoted to the comparison of the invariant
germs of a specific couple of families (Ak andBk, Ck andDk, and finally E6 and F4). We proceed
as follows. We begin by computing the first coefficients of the equivariant zeta functions (that
is the coefficients of degree strictly smaller than the degree of the germs) in order to extract first
cases of non-G-blow-Nash equivalence. Reducing our study to the remaining cases, we then
compute the coefficient of degree equal to the degree of the germs. Finally, for the cases for
which it is not sufficient, we compare the last terms of the respective equivariant zeta functions.

These comparisons lead to interesting examples of computations of equivariant virtual
Poincaré series. The first one, to which is devoted section 5, is the computation of the
equivariant virtual Poincaré series of the fibers over 0, −1 and +1 of the quadratic forms
Qp,q(y) :=

∑p
i=1 y

2
i −

∑q
j=1 y

2
p+j, equipped with four different actions of G.

Acknowledgements. The author wishes to thank J.-B. Campesato, G. Fichou, T. Fukui,
A. Parusiński, G. Rond and M. Shiota for useful discussions and comments.

2 Equivariant Nash classification of invariant simple Nash germs

Consider the affine space R
n with coordinates (x1, . . . , xn). We denote by s the involution of

R
n changing the sign of the first coordinate x1 :

s :
R
n → R

n

(x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn)

This equips Rn with a linear action of the group G = {idRn , s}.
In this paper, a function germ f : (Rn, 0) → (R, 0) will be said invariant if f is invariant

under right composition with s, that is if f is the germ of an equivariant function (we equip R

with the trivial action of G).
In [1] and [16] is given the classification of invariant simple real analytic germs (Rn, 0) →

(R, 0) with respect to equivariant analytic equivalence, that is right equivalence via an equiv-
ariant analytic diffeomorphism (Rn, 0) → (Rn, 0) :

Theorem 2.1 ([1], [16]). An invariant simple real analytic function germ (Rn, 0) → (R, 0) is
equivariantly analytically equivalent to one and only one invariant germ of the following list :

Ak, k ≥ 0 : ±x21 ± xk+1
2 +Q, E6 : ±x21 + x32 ± x43 +Q,

Bk, k ≥ 2 : ±x2k1 ± x22 +Q, E7 : ±x21 + x32 + x2x
3
3 +Q,

Ck, k ≥ 3 : x21x2 ± xk2 +Q, E8 : ±x21 + x32 + x53 +Q,

Dk, k ≥ 4 : ±x21 + x22x3 ± xk−1
3 +Q, F4 : ±x41 + x32 +Q,

where Q = ±x2s ± · · · ± x2n, with s = 4 for singularities Dk and Ek, and s = 3 in the other
cases.
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Remark 2.2. If we forget the action of the involution s on R
n, notice that the families Ak and

Bk, resp. Ck and Dk, E6 and F4, E7, E8, of Theorem 2.1 are singularities A, resp. D, E6, E7,
E8.

In this paper, we are interested in the classification of invariant Nash germs (Rn, 0) → (R, 0),
that is germs of equivariant analytic functions with semialgebraic graph. Recall (see for instance
[5] Corollary 8.1.6) that a Nash germ can be considered as an algebraic power series, via
its Taylor series. The above classification is also valid for invariant simple Nash germs with
respect to equivariant Nash equivalence, that is right equivalence via an equivariant Nash
diffeomorphism (Rn, 0) → (Rn, 0), according to the following proposition :

Proposition 2.3. Let f, h : (Rn, 0) → (R, 0) be two invariant Nash germs. Then f and h are
equivariantly Nash equivalent if and only if they are equivariantly analytically equivalent.

This property is a particular case of the following result :

Theorem 2.4. Let G be a reductive algebraic group acting linearly on R
n and R

p. Consider
two equivariant Nash germs f : (Rn, 0) → (Rp, 0) and h : (Rn, 0) → (Rp, 0). If f and h are
equivariantly analytically equivalent, then they are equivariantly Nash equivalent.

Remark 2.5. • Since a Nash diffeomorphism is in particular analytic, the converse is obvi-
ously true.

• Any finite group is reductive.

Proof (of Theorem 2.4). Suppose there exists an equivariant analytic diffeomorphism φ : (Rn, 0) →
(Rn, 0) such that f ◦ φ = h. Denote F (x, y) := f(y)− h(x) for x, y ∈ R

n. Then F : (R2n, 0) →
(Rp, 0) is a Nash germ and can be considered as an algebraic power series in Ralg[[x, y]]

p, and
φ(x) as an equivariant convergent power series in R{x, y} such that F (x, φ(x)) = 0.

Therefore, by Theorem A of [4] and Example 11.3 of [25], we can approximate φ(x) by an
equivariant algebraic power series φ̃(x) such that F (x, φ̃(x)) = 0, and we do the approximation
closely enough so that φ̃(x) remains a diffeomorphism. As a consequence, φ̃ : (Rn, 0) → (Rn, 0)
is an equivariant Nash diffeomorphism such that f ◦ φ̃ = h.

Remark 2.6. Actually, Theorem A of [4] is about approximation of equivariant formal solutions
of polynomial equations by equivariant algebraic power series but it is also true for algebraic
power series equations. Indeed, following G. Rond’s ideas, it is possible to reduce to the case
of polynomial equations as in [3] Lemma 5.2 and [7] Reduction (2) of the proof of Theorem
1.1, using arguments of the proof of Lemma 8.1 in [24], along with the fact that the morphism
R[x, y](x,y) → Ralg[[x, y]] is faithfully flat by [5] Corollary 8.7.16.

3 Equivariant blow-Nash equivalence

Now, we want to study the classification of invariant simple Nash germs with respect to G-
blow-Nash equivalence via an equivariant blow-Nash isomorphism : see [23] for the definition
of G-blow-Nash equivalence via an equivariant blow-Nash isomorphism.

First, we have the following :
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Proposition 3.1. An invariant simple Nash germ (Rn, 0) → (R, 0) is G-blow-Nash equivalent
via an equivariant blow-Nash isomorphism to an invariant germ of the list of Theorem 2.1.

Proof. This comes from the fact that if f and h are equivariantly Nash equivalent invariant
Nash germs (Rn, 0) → (R, 0), then they are G-blow-Nash equivalent via an equivariant blow-
Nash isomorphism.

Indeed, if f−1(0), resp. h−1(0), has only one irreducible component at 0 ∈ R
n, this is

straightforward. If not, we perform a composition σf : (Mf , σ
−1
f (0)) → (Rn, 0), resp. σh :

(Mh, σ
−1
h (0)) → (Rn, 0), of successive equivariant blowings-up along G-invariant smooth Nash

centers such that

• the irreducible components of the strict transform of f−1(0) by σf , resp. of h−1(0) by
σh, do not intersect,

• f ◦ σf and jac σf , resp. h ◦ σh and jac σh, have only normal crossings simultaneously,

• there exists a finite collection of G-invariant affine charts for σf , resp. for σh, such that,
on each of these charts, the action of G is of the form

(x1, x2, . . . , xn) 7→ (ǫ1x1, ǫ2x2, . . . , ǫnxn),

where ǫi ∈ {±1} (so that the action of G on Mf , resp. on Mh, can be locally linearized
on the normal crossings, in the sense of [23]),

• after each blowing-up, f and h remain equivariantly Nash equivalent.

The second step will then consist in understanding the relations, with respect to G-blow-
Nash equivalence via an equivariant blow-Nash isomorphism, between the invariant Nash germs
of the list of Theorem 2.1.

Equivariant blow-Nash equivalence (resp. equivariant blow-Nash equivalence via an equiv-
ariant blow-Nash isomorphism) is a particular case of the blow-Nash equivalence (resp. blow-
Nash equivalence via a blow-Nash isomorphism) defined in [10]. In [13], Fichou proved that
the classification of simple Nash germs (Rn, 0) → (R, 0) with respect to blow-Nash equivalence
via a blow-Nash isomorphism is the same as Arnold’s ADE-classification of real analytic germs
with respect to right analytic equivalence.

As a consequence, theA, D, E-singularities, belonging to different blow-Nash classes, cannot
be G-blow-Nash-equivalent via an equivariant blow-Nash isomorphism either. We are then
reduced to try to distinguish the invariant germs of the families Ak and Bk, resp. Ck and Dk,
E6 and F4.

For this purpose, we will use the equivariant zeta functions defined in [23], which are
invariants for equivariant blow-Nash equivalence via an equivariant blow-Nash isomorphism.
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4 Equivariant zeta functions

Let f : (Rn, 0) → (R, 0) be an invariant Nash germ. We recall the definition given in [23] of
the equivariant zeta functions of f .

Denote L := {γ : (R, 0) → (Rn, 0) | γ(t) = a1t + a2t
2 + . . . , ai ∈ R

n} the space of formal
arcs at the origin of Rn. The action of G on R

n induces naturally an action of G on L, by left
composition with s. For m ∈ N \ {0}, the space

Lm := {γ : (R, 0) → (Rn, 0) | γ(t) = a1t+ a2t
2 + . . .+ amtm}

of arcs truncated at order m+ 1 is globally stable under this action, as well as the spaces

Am(f) := {γ ∈ Lm | f ◦ γ(t) = ctm + . . . , c 6= 0},

A+
m(f) := {γ ∈ Lm | f ◦ γ(t) = +tm + . . .} and A−

m(f) := {γ ∈ Lm | f ◦ γ(t) = −tm + . . .}.

These latter sets are Zariski constructible sets equipped with an algebraic action of G and
we define

ZG
f (u, T ) :=

∑

m≥1

βG(Am(f))u−mnTm ∈ Z[u][[u−1]][[T ]]

and
ZG,±
f (u, T ) :=

∑

m≥1

βG(A±
m(f))u−mnTm ∈ Z[u][[u−1]][[T ]],

respectively the naive equivariant zeta function and the equivariant zeta functions with sign
of f .

Here, βG(·) denotes the equivariant virtual Poincaré series on G-AS sets of [14] : it is an
additive invariant with respect to equivariant isomorphisms, with values in Z[[u]], such that,
if X is a compact nonsingular G-AS set, βG(X) =

∑
i∈Z dimZ2Hi(X;G)ui, where H∗(X;G)

denotes the equivariant Borel-Moore homology of X with coefficients in Z2 defined in [26].

Remark 4.1. • By an isomorphism between arc-symmetric sets is meant a birational map
containing the arc-symmetric sets in its support.

• The equivariant virtual Poincaré series of a point is u
u−1 , the equivariant virtual Poincaré

series of two fixed points is 2 u
u−1 and the equivariant virtual Poincaré series of two points

exchanged by G is 1 : see [14] Example 3.12.

• If Sd denotes the unit sphere in R
d then

βG(Sd) =

{
1 + u+ . . .+ ud if G acts via the central symmetry of Rd,

2 u
u−1 + u+ . . .+ ud if G acts with a fixed point

(see [14] Example 3.12).

• If Rd is equipped with any algebraic action of G, then βG(Rd) = ud+1

u−1 : see [14] Example
3.12.
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• If X is a G-AS set and if the affine space R
d is equipped with any algebraic action of G,

then βG(X ×R
d) = udβG(X) (the product X ×R

d is equipped with the diagonal action
of G) : see [14] Proposition 3.13.

• If X is a G-AS set and if the affine line R is equipped with an algebraic action of G
stabilizing 0, then βG(X × (R∗)d) = (u− 1)dβG(X) : see [23] Lemma 3.9.

• If X is a G-AS , then the coefficients of the negative powers of u in βG(X) are all equal
to
∑

i≥0 βi(X
G), where XG is the fixed point set of X and βi(·) denotes the ith virtual

Betti number ([21]) : see [14] Proposition 4.5.

Theorem 4.2 (Theorem 4.1 of [23]). Let f, h : (Rn, 0) → (R, 0) be two invariant Nash
germs. If f and h are G-blow-Nash equivalent via an equivariant blow-Nash isomorphism,
then ZG

f (u, T ) = ZG
h (u, T ) and ZG,±

f (u, T ) = ZG,±
h (u, T ).

Remark 4.3. In the rest of the paper, we will simply talk about equivariant blow-Nash equiva-
lence to refer to equivariant blow-Nash equivalence via an equivariant blow-Nash isomorphism.

In the next parts of the paper, we are then going to use the equivariant zeta functions in
order to try to distinguish the families Ak and Bk, resp. Ck and Dk, E6 and F4, with respect
to G-blow-Nash equivalence. More precisely, we will show that, in some cases, some terms of
the respective equivariant zeta functions of the considered germs are different.

On the other hand, we will prove that, in some other cases, the equivariant zeta functions
are equal.

Before this, in the following section, we compute equivariant virtual Poincaré series associ-
ated to the quadratic form

Qp,q(y) :=

p∑

i=1

y2i −

q∑

j=1

y2p+j,

where p, q ∈ N, (y1, . . . , yp+q) ∈ R
p+q. More precisely, we compute the equivariant virtual

Poincaré series of the algebraic sets

Yp,q := {Qp,q = 0} and Y ξ
p,q := {Qp,q = ξ},

for ξ = ±1, in the cases where the action of G on R
p+q is given by

1. (y1, . . . , yp, yp+1, . . . , yp+q) 7→ (−y1, . . . , yp, yp+1, . . . , yp+q),

2. (y1, . . . , yp, yp+1, . . . , yp+q) 7→ (y1, . . . , yp,−yp+1, . . . , yp+q),

3. (y1, . . . , yp, yp+1, . . . , yp+q) 7→ (−y1, . . . ,−yp,−yp+1, . . . ,−yp+q),

4. or (y1, . . . , yp, yp+1, . . . , yp+q) 7→ (y1, . . . , yp, yp+1, . . . , yp+q).

This will reveal useful in the comparisons of the equivariant zeta functions.
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5 Computation of βG(Yp,q) and βG(Y ξ
p,q)

Suppose that p ≤ q. We have the following result :

Proposition 5.1. 1. If 0 < p < q, then

βG(Yp,q) =

{
up+q−uq+up−1

u−1 in the case no1,
up+q−uq+up+1

u−1 in the three other cases.

2. If p = q 6= 0, then

βG(Yp,q) =

{
u2p−up+up−1

u−1 in the cases no1 and no2,
u2p−up+up+1

u−1 in the two other cases.

3. If p = 0, then

βG(Yp,q) =
u

u− 1
.

Remark 5.2. If q ≤ p, just exchange the roles of p and q along with the actions of the cases no1
and no2.

Proof (of Proposition 5.1). If p = 0, then Yp,q = {0} and βG(Yp,q) =
u

u−1 by remark 4.1.

If 0 < p < q, as in [12] Proof of Proposition 2.1 and [13] Proof of Lemma 3.1, we apply the
equivariant change of variables ui = yi + yi+p, vi = yi − yi+p for i = 2, . . . , p and the equation
Qp,q = 0 becomes

y21 − y2p+1 +

p∑

i=2

uivi −

p+q∑

j=2p+1

y2j = 0,

the action of G on the new coordinates ui, vi being trivial in the cases no1, no2 and no4, and
changing their signs in the case no 3.

As in [12] and [13], we write, by additivity of the equivariant virtual Poincaré series,

βG(Yp,q) = βG(Yp,q ∩ {u2 6= 0}) + βG(Yp,q ∩ {u2 = 0}).

Because, if u2 6= 0, the coordinate v2 is determined via an equivariant isomorphism by u2
and the other variables which are free, we have βG(Yp,q ∩ {u2 6= 0}) = βG(R∗ × R

p+q−2) =

(u− 1)u
p+q−1

u−1 (see remark 4.1). Furthermore, the equation describing Yp,q ∩ {u2 = 0} is

y21 − y2p+1 +

p∑

i=3

uivi −

p+q∑

j=2p+1

y2j = 0

(notice that the variable v2 is then free) and, by an induction, we obtain

βG(Yp,q) =

p∑

i=2

up+q+1−i + up−1βG





y21 − y2p+1 −

p+q∑

j=2p+1

y2j = 0








= uq+1u
p−1 − 1

u− 1
+ up−1βG





y21 − y2p+1 −

p+q∑

j=2p+1

y2j = 0






 .
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Now, in order to compute βG
({

y21 − y2p+1 −
∑p+q

j=2p+1 y
2
j = 0

})
, we equivariantly blow up

the latter algebraic set at the origin of Rq−p+2 : in the chart y1 = w, yi = wzi, i = p+ 1, 2p +
1, . . . , p+ q, the blown-up variety is defined by

w2


1− z2p+1 −

p+q∑

j=2p+1

z2j


 = 0,

the action of G being given by

• (w, zp+1, z2p+1, . . . , zp+q) 7→ (−w,−zp+1,−z2p+1, . . . ,−zp+q) in the case no1,

• (w, zp+1, z2p+1, . . . , zp+q) 7→ (w,−zp+1, z2p+1, . . . , zp+q) in the case no2,

• (w, zp+1, z2p+1, . . . , zp+q) 7→ (−w, zp+1, z2p+1, . . . , zp+q) in the case no 3,

• (w, zp+1, z2p+1, . . . , zp+q) 7→ (w, zp+1, z2p+1, . . . , zp+q) in the case no4.

We have

βG





y21 − y2p+1 −

p+q∑

j=2p+1

y2j = 0



 \ {0}


 = βG





1− z2p+1 −

p+q∑

j=2p+1

z2j = 0



 \ {w = 0}




= βG(R∗ × Sq−p)

= (u− 1)βG(Sq−p)

Finally, since the action of G on the sphere Sq−p is the central symmetry in the case no1
and admits a fixed point in the three other cases, we have

βG(Sq−p) =

{
uq−p+1−1

u−1 in the case no1,
uq−p+1+u

u−1 in the three other cases

(see remark 4.1). Using the additivity relation

βG





y21 − y2p+1 −

p+q∑

j=2p+1

y2j = 0



 \ {0}


 = βG





y21 − y2p+1 −

p+q∑

j=2p+1

y2j = 0






− βG({0})

and the equality βG({0}) = u
u−1 , we obtain the desired result.

If p = q ∈ N \ {0 ; 1}, we do as before in order to obtain the equality

βG(Yp,q) = up+1u
p−1 − 1

u− 1
+ up−1βG

({
y21 − y2p+1 = 0

})

(notice that the quantity βG({y21 − y2p+1 = 0}) is the same in the cases no1 and no2). Now,

as above, we equivariantly blow up at the origin of R2 and look in the chart y1 = u1, yp+1 =
u1vp+1 : the blown-up variety is given by the equation

u21(1− v2p+1) = 0

and the action of G is given by

9



• (u1, vp+1) 7→ (−u1,−vp+1) in the case no1,

• (u1, vp+1) 7→ (u1,−vp+1) in the case no2,

• (u1, vp+1) 7→ (−u1, vp+1) in the case no3,

• (u1, vp+1) 7→ (u1, vp+1) in the case no4.

As a consequence,

βG({1 − v2p+1 = 0}) =

{
1 in the cases no1 and no2,

2 u
u−1 in the two other cases

(see remark 4.1) and we obtain the desired result.

If p = q = 1, we have βG(Yp,q) = βG
({

y21 − y2p+1 = 0
})

and we can use the previous
computation.

This proposition can be used to compute the quantities βG(Y ξ
p,q). Indeed :

Proposition 5.3. We have

βG(Y +1
p,q ) =

1

u− 1

(
βG(Yp,q+1)− βG(Yp,q)

)

and

βG(Y −1
p,q ) =

1

u− 1

(
βG(Yp+1,q)− βG(Yp,q)

)

Remark 5.4. We have the same equalities if q ≤ p.

Proof (of Proposition 5.3). We show the first equality, the proof of the second one being similar.
Denote Zp,q the projective algebraic set



[Y1 : . . . : Yp+q] ∈ P

p+q−1(R) |

p∑

i=1

Y 2
i −

q∑

j=1

Y 2
p+j = 0





As in [11] Proof of Corollary 2.5, we can equivariantly compactify Y +1
p,q into the projec-

tive algebraic set Zp,q+1, the part at infinity being equivariantly isomorphic to Zp,q (we equip
P
p+q(R) and P

p+q−1(R) with the actions of G naturally induced from the considered action on
the variables of Rp+q).

Now, we compute βG(Zp,q), using, as in [11] Proof of Proposition 2.1, the fact that the
projection

p :
Yp,q \ {0} → Zp,q

(y1, . . . , yp+q) 7→ [y1 : . . . : yp+q]

10



is a piecewise algebraically trivial fibration, compatible with the respective considered actions
of G. More precisely, we can cover Zp,q by the globally G-invariant open subvarieties

Ui := Zp,q ∩ {Yi 6= 0}, i ∈ {1, . . . , p+ q},

and, for each i ∈ {1, . . . , p+ q}, we can define the isomorphism

ϕi :
p−1(Ui) = Yp,q ∩ {yi 6= 0} → Ui × R

∗

(y1, . . . , yi, . . . , yp+q) 7→ ([y1 : . . . : yi : . . . : yp+q], yi)

For i ∈ {1, . . . , p + q}, if the sign of the coordinate yi is changed under the action of G, we
equip R

∗ with the action of G given by the involution z 7→ −z. If yi remains unchanged under
the action of G, we equip R

∗ with the trivial action of G. Furthermore equipping the product
Ui × R

∗ with the diagonal action, this makes the isomorphism ϕi equivariant.
By the additivity of the equivariant virtual Poincaré series, the quantity βG(Yp,q \ {0}) can

be written as the alternated sum of the terms

∑

J⊂{1,...,p+q},Card(J)=r

βG

(
p−1

(
⋂

m∈J

Um

))
, 1 ≤ r ≤ p+ q,

and, via the equivariant isomorphisms ϕi, we have

βG

(
p−1

(
⋂

m∈J

Um

))
= βG

((
⋂

m∈J

Um

)
× R

∗

)
= (u− 1)βG

(
⋂

m∈J

Um

)
.

As a consequence, once again thanks to the additivity of the equivariant virtual Poincaré series,

βG(Yp,q \ {0}) = (u− 1)βG(Zp,q).

Therefore,

βG(Y +1
p,q ) = βG(Zp,q+1)− βG(Zp,q)

=
1

u− 1

(
βG(Yp,q+1 \ {0}) − βG(Yp,q \ {0})

)

=
1

u− 1

(
βG(Yp,q+1)− βG(Yp,q)

)
.

6 The germs Ak and Bk

In this section, we want to study the relations with respect to G-blow-Nash equivalence between
the invariant germs of the families

f ǫk
k (x) := ±x21 + ǫkx

k+1
2 +Q and gǫkk (x) := ǫkx

2k
1 ± x22 +Q′,

11



where ǫk ∈ {−1 ;+1}.
First, if any two invariant Nash germs are G-blow-Nash equivalent, they are in particular

blow-Nash equivalent and then, according to [11] Theorem 2.5, they have the same corank and
index.

Therefore, if two germs f ǫk
k and f ǫl

l are G-blow-Nash equivalent, they have the same
quadratic part up to permutation of the variables x1, x3, . . . , xn. Furthermore, we know,
by [13] Proposition 3.4, that k = l and, if k = l is odd, that ǫk = ǫl. If k is even,
f+1
k (x1, x2, x3, . . . , xn) = f−1

k (x1,−x2, x3, . . . , xn) and the (linear) change of variables is equiv-
ariant with respect to the involution s on R

n : f+1
k and f−1

k are then G-Nash equivalent, in
particular G-blow-Nash equivalent.

As a conclusion, inside the family Ak, we are reduced to try to distinguish the germs

f ǫk,+
k (x) := +x21 + ǫkx

k+1
2 +Q and f ǫk,−

k (x) := −x21 + ǫkx
k+1
2 +Q′

where ǫk ∈ {−1 ;+1} and +x21+Q and −x21+Q′ are the same quadratic part up to permutation
of the variables x1, x3, . . . , xn.

Similarly, if two germs gǫkk and gǫll are G-blow-Nash equivalent, they have the same quadratic
part, up to permutation of the variables x2, . . . , xn, and k = l and ǫk = ǫl.

Finally, if two germs f ǫk
k and g

ǫk′
k′ are blow-Nash equivalent, then k = 2k′ − 1 and ǫk = ǫk′ ,

and furthermore ±x21 +Q and ±x22 +Q′ are the same quadratic part up to permutation of all
variables. Consequently, it remains to look at the relation between the germs

f2k−1 = ǫx2k2 + ηx21 +Q and gk = ǫx2k1 + η′x22 +Q′

where ǫ, η, η′ ∈ {1,−1} and ηx21 +Q = η′x22 +Q′ up to permutation of all variables.

In the following parts of this section, we will compute some terms of the equivariant zeta
functions of fk and gk. In virtue of theorem 4.2, this will allow us to make further distinctions
inside each of the above couples of germs in some cases.

6.1 Computation of the first terms of the equivariant zeta functions

If h is an invariant Nash germ (Rn, 0) → (R, 0), recall that, for m ≥ 1,

Am(h) = {γ(t) = a1t+ · · ·+ amtm ∈ Lm | h ◦ γ(t) = ctm + · · · , c 6= 0}

= {γ ∈ Lm | h ◦ γ(t) = ctm + · · · , c ∈ R} \ {γ ∈ Lm | h ◦ γ(t) = 0× tm + · · · }

Since h is an invariant germ, the latter sets are both globally stable under the action of G on
Lm and, by the additivity of the equivariant virtual Poincaré series, the quantity βG(Am(h))
is equal to the difference βG(0Am(h))− βG(A0

m(h)), where

0Am(h) := {γ ∈ Lm | h◦γ(t) = ctm+· · · , c ∈ R} and A0
m(h) := {γ ∈ Lm | h◦γ(t) = 0×tm+· · · }.
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Fix k ≥ 0 and consider the invariant germ f ǫ,η
k (x1, . . . , xn) = ηx21 + ǫxk+1

2 +Q. We denote
x2 = x and ηx21 +Q = Qp,q =

∑p
i=1 y

2
i −

∑q
j=1 y

2
p+j in such a way that G acts on the renamed

coordinates via the involution no1 or no2 depending on the sign of η.

We first compute βG(A0
m(f ǫ,η

k )) for m < k + 1. Notice that the set A1(f
ǫ,η
1 ) is empty and,

consequently, βG(A1(f
ǫ,η
1 )) = 0.

Proposition 6.1. Suppose k ≥ 2 and m < k + 1.

1. If pq = 0, then

βG(A0
m(f ǫ,η

k )) =

{
um+(r+1)(p+q)+1

u−1 if m = 2r + 1,
um+r(p+q)+1

u−1 if m = 2r.

2. If (p, q) = (1, 1), then

βG(A0
m(f ǫ,η

k )) =

{
ru2mβG(Y1,1 \ {0}) +

u4(r+1)

u−1 if m = 2r + 1,

(r − 1)u2mβG(Y1,1 \ {0}) + u4rβG(Y1,1) if m = 2r,

3. If pq 6= 0 and (p, q) 6= (1, 1), then

βG(A0
m(f ǫ,η

k )) =

{
umu(r+1)(p+q)−1 ur(p+q−2)−1

up+q−2−1
βG(Yp,q \ {0}) +

u(r+1)(2+p+q)

u−1 if m = 2r + 1,

umu(r+1)(p+q)−2 u(r−1)(p+q−2)−1
up+q−2−1 βG(Yp,q \ {0}) + ur(2+p+q)βG(Yp,q) if m = 2r.

Proof. We follow the computation steps of [13], keeping the track of the action of G in our
context.

An arc γ of Lm can be written as

γ(t) = (a1t+ · · ·+ amtm, c11t+ · · ·+ c1mtm, . . . , cp+q
1 t+ · · · + cp+q

m tm)

=




a1
c11
...

cp+q
1


 t+ · · ·+




am
c1m
...

cp+q
m


 tm =

(
a1
c1

)
t+ · · ·+

(
am
cm

)
tm

if ci := (c1i , . . . , c
p+q
i ). The group G acts on Lm changing the sign of the variables c1i , resp.

cp+1
i , in the case no1, resp. no2.

We begin with the case pq 6= 0, (p, q) 6= (1, 1) and m = 2r+1 odd. An arc γ of Lm belongs
to A0

m(f ǫ,η
k ) if and only if





Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

· · ·

Qp,q(cr) +
∑r−1

t=1 Φp,q(ct, c2r−t) = 0,∑r
t=1 Φp,q(ct, c2r+1−t) = 0,
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where Φp,q is the function on R
p+q×R

p+q defined by Φp,q(u, v) = 2
∑p

i=1 uivi−2
∑q

j=1 up+jvp+j.

The first equality of the system means c1 ∈ Yp,q by definition. Now, if c11 6= 0, the variables
c12, . . . , c

1
2r are determined by c11 and the other (free) variables via an equivariant morphism.

Therefore,

βG(A0
m(f ǫ,η

k )) = βG
(
A0

m(f ǫ,η
k ) ∩ {c11 6= 0}

)
+ βG

(
A0

m(f ǫ,η
k ) ∩ {c11 = 0}

)

= βG
(
(Yp,q \ ({0} × Yp−1,q))× R

m+(m−1)(p+q−1)+1
)
+ βG

(
A0

m(f ǫ,η
k ) ∩ {c11 = 0}

)

= um+(m−1)(p+q−1)+1βG (Yp,q \ ({0} × Yp−1,q)) + βG
(
A0

m(f ǫ,η
k ) ∩ {c11 = 0}

)

Next, we have

βG
(
A0

m(f ǫ,η
k ) ∩ {c11 = 0}

)
= um+(m−1)(p+q−1)+1βG (Yp−1,q \ ({0} × Yp−2,q))+βG

(
A0

m(f ǫ,η
k ) ∩ {c11 = c21 = 0}

)

and we obtain by induction

βG(A0
m(f ǫ,η

k )) = um+(m−1)(p+q−1)+1βG(Yp,q \ {0}) + βG
(
A0

m(f ǫ,η
k ) ∩ {c11 = . . . = cp1 = 0}

)
.

If c11 = . . . = cp1 = 0 then cp+1
1 = . . . = cp+q

1 = 0 (since Qp,q(c1) = 0) and the other variables
verify the system 




Qp,q(c2) = 0,

Φp,q(c2, c3) = 0,

· · ·

Qp,q(cr) +
∑r−1

t=2 Φp,q(ct, c2r−t) = 0,∑r
t=2 Φp,q(ct, c2r+1−t) = 0.

Noticing that the vector cm as well as the variables am−1, am are free and renaming the
remaining variables, we have

βG(A0
m(f ǫ,η

k )) = um+(m−1)(p+q−1)+1βG(Yp,q \ {0}) + u2+(p+q)βG(A0
m−2(f

ǫ,η
k ))

and, by an induction,

βG(A0
m(f ǫ,η

k )) = βG(Yp,q\{0})

r−1∑

t=0

ut(2+p+q)um−2t+(m−2t−1)(p+q−1)+1+u(r−1)(2+p+q)βG(A0
3(f

ǫ,η
k )∩{c1 = 0})

As a conclusion, since the system describing A0
3(f

ǫ,η
k ) ∩ {c1 = 0} is trivial, the variables ai as

well as the vectors c2 and c3 are free and

βG(A0
m(f ǫ,η

k )) = umu(r+1)(p+q)−1 u
r(p+q−2) − 1

up+q−2 − 1
βG(Yp,q \ {0}) +

u(r+1)(2+p+q)

u− 1
.
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If m is even, m = 2r, the system describing A0
m(f ǫ,η

k ) is





Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

· · ·∑r−1
t=1 Φp,q(ct, c2r−1−t) = 0,

Qp,q(cr) +
∑r−1

t=1 Φp,q(ct, c2r−t) = 0.

Therefore, by similar computations, we obtain

βG(A0
m(f ǫ,η

k )) = βG(Yp,q\{0})

r−2∑

t=0

ut(2+p+q)um−2t+(m−2t−1)(p+q−1)+1+u(r−1)(2+p+q)βG(A0
2(f

ǫ,η
k ))

Since A0
2(f

ǫ,η
k ) is described by the equation Qp,q(c1) = 0, the vector c2 as well as the variables

a1 and a2 being free,

βG(A0
m(f ǫ,η

k )) = umu(r+1)(p+q)−2 u
(r−1)(p+q−2) − 1

up+q−2 − 1
βG(Yp,q \ {0}) + ur(2+p+q)βG(Yp,q).

Finally, if (p, q) = (1, 1), the same process gives

βG(A0
m(f ǫ,η

k )) =

{
βG(Y1,1 \ {0})

∑r−1
t=0 u

2m + u4(r+1)

u−1 if m = 2r + 1,

βG(Y1,1 \ {0})
∑r−2

t=0 u
2m + u4rβG(Y1,1) if m = 2r.

If pq = 0, since Yp,q = {0}, the equations Qp,q(c1) = . . . = Qp,q(cr) = 0 impose c1, . . . , cr to be
zero vectors and, the other variables being free, we have

βG(A0
m(f ǫ,η

k )) =

{
um+(r+1)(p+q)+1

u−1 if m = 2r + 1,
um+r(p+q)+1

u−1 if m = 2r.

Remark 6.2. We obtain the same quantities for βG(A0
m(gǫl )) with m < 2l, providing we equip

the set Yp,q with the trivial action ofG. Indeed, the computation steps above remain equivariant
if the group G acts on Lm changing the sign of the variables ai.

Proposition 6.3. Let h be an invariant Nash germ (Rn, 0) → (R, 0) and m ≥ 2. Then

βG(0Am(h)) = unβG(A0
m−1(h)).

Proof. Notice that 0Am(h) = {γ ∈ Lm | h◦γ(t) = 0× t+ · · ·+0× tm−1+ ctm+ · · · }. Therefore,
the system describing 0Am(h) is the same as the system describing A0

m−1(h), the last n variables
being free.
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As a consequence, we have an equivariant isomorphism between 0Am(h) and the product
R
n×A0

m−1(h) (this set is equipped with the diagonal action of G, the first term being equipped
with the involution s) and consequently

βG(0Am(h)) = unβG(A0
m−1(h)).

We also compute βG(Aξ
m(f ǫ,η

k )) for m < k + 1 :

Proposition 6.4. Suppose k ≥ 2 and m < k + 1.

1. If pq = 0, then

βG(Aξ
m(f ǫ,η

k )) =

{
0 if m = 2r + 1,

um+r(p+q)βG(Y ξ
p,q) if m = 2r.

2. If (p, q) = (1, 1), then

βG(Aξ
m(f ǫ,η

k )) =

{
ru2mβG(Y1,1 \ {0}) if m = 2r + 1,

(r − 1)u2mβG(Y1,1 \ {0}) + u4rβG(Y ξ
1,1) if m = 2r,

3. If pq 6= 0 and (p, q) 6= (1, 1), then

βG(Aξ
m(f ǫ,η

k )) =

{
umu(r+1)(p+q)−1 ur(p+q−2)−1

up+q−2−1
βG(Yp,q \ {0}) if m = 2r + 1,

umu(r+1)(p+q)−2 u(r−1)(p+q−2)−1
up+q−2−1

βG(Yp,q \ {0}) + ur(2+p+q)βG(Y ξ
p,q) if m = 2r.

Proof. We first deal with the case pq 6= 0, (p, q) 6= (1, 1) and m = 2r even. Keeping the

notations of the proof of 6.1, the system describing Aξ
m(f ǫ,η

k ) is




Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

· · ·
∑r−1

t=1 Φp,q(ct, c2r−1−t) = 0,

Qp,q(cr) +
∑r−1

t=1 Φp,q(ct, c2r−t) = ξ.

The computation steps are the same as in the proof of proposition 6.1, and we have

βG(Aξ
m(f ǫ,η

k )) = umu(r+1)(p+q)−2 u
(r−1)(p+q−2) − 1

up+q−2 − 1
βG(Yp,q \ {0}) + u(r−1)(2+p+q)βG(Aξ

2(f
ǫ,η
k )).

Since the set Aξ
2(f

ǫ,η
k ) is described by the equation Qp,q(c1) = ξ and the other variables being

free, we obtain the result.
If m is odd, m = 2r + 1, as in the proof of proposition 6.1, we obtain

βG(Aξ
m(f ǫ,η

k )) = umu(r+1)(p+q)−1u
r(p+q−2) − 1

up+q−2 − 1
βG(Yp,q\{0})+u(r−1)(2+p+q)βG(Aξ

3(f
ǫ,η
k )∩{c1 = 0})

and the set Aξ
3(f

ǫ,η
k ) ∩ {c1 = 0} is empty.

Similar considerations provide the results for the cases (p, q) = (1, 1) and pq = 0.
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Remark 6.5. Again, we have the same quantities for βG(Aξ
m(gǫl )) with m < 2l, providing we

equip the sets Yp,q and Y ξ
p,q with the trivial action of G.

Now, we are ready to deduce distinctions, with respect to G-blow-Nash equivalence, between
f ǫ,+
k and f ǫ,−

k , respectively between f2k−1 and gk, in some cases :

Corollary 6.6. Let k ≥ 1. Suppose that the invariant germs

f ǫ,+
k (x) := +x21 + ǫxk+1

2 +Q and f ǫ,−
k (x) := −x21 + ǫxk+1

2 +Q′

have the same quadratic part up to permutation of the variables x1, x3, . . . , xn. Then they are
not G-blow-Nash equivalent.

Proof. We begin by assuming k ≥ 2. We first compare βG(A2(f
ǫ,+
k )) and βG(A2(f

ǫ,−
k )). Since

βG(0A2(f
ǫ,η
k )) = u1+p+qβG(A0

1(f
ǫ,η
k )) (by proposition 6.3) and A0

1(f
ǫ,η
k ) = L1, we are reduced

to compare βG(A0
2(f

ǫ,+
k )) and βG(A0

2(f
ǫ,−
k )).

Denote p the number of signs + and q the number of signs − in the quadratic part of f ǫ,+
k

and f ǫ,−
k (notice that pq 6= 0). Then, according to proposition 6.1,

βG(A0
2(f

ǫ,η
k )) = u2+p+qβG(Yp,q).

Therefore, by proposition 5.1,

• if p < q, then

βG(A0
2(f

ǫ,+
k )) = u2+p+q u

p+q − uq + up−1

u− 1
and βG(A0

2(f
ǫ,−
k )) = u2+p+qu

p+q − uq + up+1

u− 1
,

• if q < p, then

βG(A0
2(f

ǫ,+
k )) = u2+p+qu

p+q − up + uq+1

u− 1
and βG(A0

2(f
ǫ,−
k )) = u2+p+q u

p+q − up + uq−1

u− 1

In particular, βG(A0
2(f

ǫ,+
k )) 6= βG(A0

2(f
ǫ,−
k )) if p 6= q. Consequently, if p 6= q, the naive equiv-

ariant zeta functions of f ǫ,+
k and f ǫ,−

k are different and, by theorem 4.2, these germs are not
G-blow-Nash equivalent.

If p = q, βG(A0
2(f

ǫ,+
k )) = βG(A0

2(f
ǫ,−
k )) and we look at the term βG(A+1

2 (f ǫ,η
k )) of the

equivariant zeta functions with sign +. According to proposition 6.4,

βG(A+1
2 (f ǫ,η

k )) = u2+2pβG(Y +1
p,p )

and, by 5.3, βG(Y +1
p,p ) =

1
u−1

(
βG(Yp,p+1)− βG(Yp,p)

)
. Since the quantity βG(Yp,p) is the same

in either of the cases no1 and no2, we are reduced to compare the quantities βG(Yp,p+1) in the
cases no1 and no2.

We have

βG(Yp,p+1) =

{
u2p+1−up+1+up−1

u−1 in the case no1,
u2p+1−up+1+up+1

u−1 in the case no2,
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and, as a consequence, βG(A+1
2 (f ǫ,+

k )) 6= βG(A+1
2 (f ǫ,−

k )), so f ǫ,+
k and f ǫ,−

k are not G-blow-Nash
equivalent in the case p = q as well.

If k = 1, notice that f ǫ,η
1 (x, y) = ǫx2+Qp,q(y) and we are reduced to compare βG(A0

2(f
ǫ,+
1 ))

and βG(A0
2(f

ǫ,−
1 )) as well. We have βG(A0

2(f
ǫ,η
1 )) = u1+p+qβG(Yp+1,q) if ǫ = +1, and βG(A0

2(f
ǫ,η
1 )) =

u1+p+qβG(Yp,q+1) if ǫ = −1. As above, we can show, for instance if ǫ = +1, that βG(A0
2(f

ǫ,+
1 )) 6=

βG(A0
2(f

ǫ,−
1 )) when p+ 1 6= q, and βG(A+1

2 (f ǫ,+
1 )) 6= βG(A+1

2 (f ǫ,−
1 )) if p+ 1 = q.

Remark 6.7. If k = 0, f ǫ,η
0 (x, y) = ǫx + Qp,q(y) and, using the notations of the proof of

proposition 6.1, the left members of all the equations describing A0
m(f ǫ,η

0 ), resp. Aξ
m(f ǫ,η

0 ), for
m ≥ 1, contain a term ǫai + . . ., so that each of these sets is equivariantly isomorphic to an
affine space. As a consequence (see remark 4.1), the respective equivariant zeta functions of
f ǫ,+
0 and f ǫ,−

0 are equal.

Corollary 6.8. Let k ≥ 2. Suppose that the invariant germs

f2k−1 = ǫx2k2 + ηx21 +Q and gk = ǫx2k1 + η′x22 +Q′

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs −.
If p ≤ q and η = +1 or q ≤ p and η = −1, then f2k−1 and gk are not G-blow-Nash

equivalent.
If p = q + 1 or q = p+ 1, then f2k−1 and gk are not G-blow-Nash equivalent.

Proof. We first deal with the case p ≤ q and η = +1 (notice that p 6= 0) ; the case q ≤ p and
η = −1 is symmetric.

As in the proof of previous corollary 6.6, we have

βG(A0
2(f2k−1)) = u2+p+qβG(Yp,q) and βG(A0

2(gk)) = u2+p+qβG(Yp,q)

where, in the left equality, the set Yp,q is equipped with the action no1 and, in the right one, with
the trivial action of G. Since the corresponding equivariant virtual Poincaré series are different
by proposition 5.1, βG(A2(f2k−1)) 6= βG(A2(gk)) and the naive equivariant zeta functions of
f2k−1 and gk are different. As a consequence, f2k−1 and gk are not G-blow-Nash equivalent.

Now we suppose p = q+1 (the case q = p+1 is symmetric). In particular q < p, so we can
assume η = +1.

We consider βG(A+1
2 (f2k−1)) = u2+p+qβG(Y +1

p,q ) and βG(A+1
2 (gk)) = u2+p+qβG(Y +1

p,q ) (propo-

sition 6.4). Thanks to proposition 5.3, we know that βG(Y +1
p,q ) =

1
u−1

(
βG(Yp,q+1)− βG(Yp,q)

)
.

By proposition 5.1, the respective quantities βG(Yp,q) for f2k−1 and gk are equal, whereas the
quantities βG(Yp,q+1) = βG(Yp,p) are different. Consequently, the equivariant zeta functions
with sign + of f2k−1 and gk are different and therefore the latter germs are not G-blow-Nash
equivalent.

Remark 6.9. In the other cases, the quantities βG(Yp,q) and βG(Y ξ
p,q) are the same for f2k−1

and gk.
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6.2 Computation of βG(A2k(f2k−1)) and βG(A2k(gk))

For the continuation of the section, thanks to corollaries 6.6 and 6.8, we only need to consider
the germs

f2k−1 = ǫx2k2 + ηx21 +Q and gk = ǫx2k1 + η′x22 +Q′,

assumed to have the same quadratic part Qp,q, such that p > q + 1 and η = +1 or q > p + 1
and η = −1.

In order to prove that the germs f2k−1 and gk are not G-blow-Nash equivalent in some of
these cases as well, we will compute the coefficients βG(A2k(f2k−1)) and βG(A2k(gk)) of their
respective naive equivariant zeta functions :

Proposition 6.10. Suppose k ≥ 2.

1. If pq = 0, then

βG(A0
2k(f2k−1)) = u2k−1+k(p+q)βG({f2k−1 = 0}) and βG(A0

2k(gk)) = u2k−1+k(p+q)βG({gk = 0}).

2. If pq 6= 0, then

βG(A0
2k(f2k−1)) = u2k−2u(p+q)(k+1)βG(Yp,q\{0})

u(p+q−2)(k−1) − 1

up+q−2 − 1
+uk(p+q)+2k−1βG({f2k−1 = 0})

(the group G acts on Yp,q via the involution no1 or no2 depending on the sign of η) and

βG(A0
2k(gk)) = u2k−2u(p+q)(k+1)βG(Yp,q\{0})

u(p+q−2)(k−1) − 1

up+q−2 − 1
+uk(p+q)+2k−1βG({gk = 0})

(the group G acts trivially on Yp,q).

Proof. We keep the notations of the proof of proposition 6.1 and we proceed as in [13] Proof
of Lemma 3.3. First suppose that pq 6= 0. An arc γ of L2k belongs to A0

2k(f2k−1) if and only if




Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

· · ·
∑k−1

t=1 Φp,q(ct, c2k−1−t) = 0,

ǫa2k1 +Qp,q(ck) +
∑k−1

t=1 Φp,q(ct, c2k−t) = 0.

We have

βG(A0
2k(f2k−1)) = u2k+(2k−1)(p+q−1)+1βG(Yp,q \ {0}) + βG(A0

2k(f2k−1) ∩ {c11 = . . . = cp1 = 0}),

and βG(A0
2k(f2k−1) ∩ {c11 = . . . = cp1 = 0}) = u2+p+qβG(C0

2k−2), if C
0
2k−2 denotes the algebraic

set described by the equations




Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

· · ·∑k−2
t=1 Φp,q(ct, c2k−3−t) = 0,

ǫa2k1 +Qp,q(ck−1) +
∑k−2

t=1 Φp,q(ct, c2k−2−t) = 0.
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By an induction, we obtain

βG(A0
2k(f2k−1)) = βG(Yp,q \ {0})

k−2∑

t=0

ut(2+p+q)u2k−2t+(2k−2t−1)(p+q−1)+1 + u(k−1)(2+p+q)βG(C0
2 ).

Since C0
2 is defined by the equation ǫa2k1 +Qp,q(c1) = 0 and since the vector c2 and the variable

a2 are free, we deduce the desired expression for βG(A0
2k(f2k−1)). The steps of computation

are the same for βG(A0
2k(gk)).

If pq = 0, the vectors c1, . . . , ck−1 are zero vectors and the system is reduced to the equation
ǫa2k1 +Qp,q(ck) = 0, the other variables being free.

Since p > q + 1 and η = +1 or q > p + 1 and η = −1, the quantity βG(Yp,q) is the same
for f2k−1 and gk. As a consequence, in order to compare βG(A2k(f2k−1)) and βG(A2k(gk)),
we are reduced to consider the quantities βG({f2k−1 = 0}) and βG({gk = 0}) (notice that
βG(0A2k(f2k−1)) = βG(0A2k(gk)) by the results of the previous paragraph 6.1). We compute
these equivariant virtual Poincaré series for all k ≥ 2, p, q ∈ N and η ∈ {1,−1} :

Lemma 6.11. We have

βG({f2k−1 = 0}) = βG({ǫx22 + ηx21 +Q = 0})− (k − 1)βG({ηx21 +Q = 0}) + (k − 1)βG({0}),

where the second set in the right member is considered as an algebraic subset of Rn−1 and G
acts on the considered sets via the involution no1 or no2 depending on the sign of η, and

βG({gk = 0}) = βG({ǫx21+η′x22+Q′ = 0})−ρβG({η′x22+Q′ = 0})−τβG({η′x22+Q′ = 0})+(k−1)βG({0}),

where the second and third sets in the right member are considered as algebraic subsets of Rn−1,
the group G acts on the second set via the involution no4 (trivial action), on the third set via
the involution no3 (change of signs of all coordinates) and

1. if k = 2l + 1 is odd, then ρ = τ = l and G acts on the first set in the right member via
the involution no1 or no2 depending on the sign of ǫ,

2. if k = 2l is even, then ρ = l, τ = l − 1 and G acts on the first set in the right member
via the involution no3.

Proof. We begin with βG({f2k−1 = 0}). Recall that f2k−1(x1, x2, x3, . . . , xn) = ǫx2k2 + ηx21 +
Q(x3, . . . , xn). We proceed to an equivariant blowing-up of the algebraic set {f2k−1 = 0} at
the origin of Rn. In the chart x2 = u, xi = uvi, i = 1, 3, . . . , n, the blown-up variety is defined
by the equation

u2f2k−3(v1, u, v3, . . . , vn) = 0,

the action of G being given by the involution (v1, u, v3, . . . , vn) 7→ (−v1, u, v3, . . . , vn). We have
βG({f2k−1 = 0} \ {0}) = βG({f2k−3 = 0} \ {u = 0}), therefore

βG({f2k−1 = 0}) = βG({f2k−3 = 0})− βG({ηv21 +Q(v3, . . . , vn) = 0, u = 0}) + βG({0}).
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We then obtain the desired result by an induction.

For the computation of βG({gk = 0}), recall that gk(x1, x2, x3, . . . , xn) = ǫx2k1 + η′x22 +
Q′(x3, . . . , xn) and proceed to an equivariant blowing-up of the set {gk = 0} at the origin of
R
n, looked at in the chart x1 = u, xi = uvi, i = 2, 3, . . . , n. In this chart, the blown-up variety

is defined by
u2gk−1(u, v2, v3, . . . , vn) = 0,

the action of G being given by the involution (u, v2, v3, . . . , vn) 7→ (−u,−v2,−v3, . . . ,−vn), and
we have

βG({gk = 0}) = βG({gk−1 = 0})− βG{η′x22 +Q′(x3, . . . , xn) = 0}) + βG({0}).

One further equivariant blowing-up of {gk−1 = 0} provides the equation

u2gk−1(u, v2, v3, . . . , vn) = 0,

the group G acting via the involution (u, v2, v3, . . . , vn) 7→ (−u, v2, v3, . . . , vn). The desired
expression is then obtained by an induction.

Remark 6.12. According to proposition 5.1, the quantity βG({η′x22 +Q′ = 0}) is the same if G
acts via the involution no4 or via the involution no3. Therefore, in the previous lemma 6.11, we
can simply write ρβG({η′x22 +Q′ = 0}) + τβG({η′x22 +Q′ = 0}) as (k − 1)βG({η′x22 +Q′ = 0})
with G acting trivially on the latter set.

Because p > q + 1 and η = +1 or q > p + 1 and η = −1, we have βG({ηx21 + Q = 0}) =
βG({η′x22 + Q′ = 0}) and we are finally reduced to compare βG({ǫx22 + ηx21 + Q = 0}) and
βG({ǫx21 + η′x22 +Q′ = 0}). The cases where these quantities are different are cases where the
germs f2k−1 and gk are not G-blow-Nash-equivalent :

Corollary 6.13. If k is odd and if p > q + 1, η = +1 and ǫ = −1 or q > p + 1, η = −1 and
ǫ = +1, then the germs f2k−1 and gk are not G-blow-Nash-equivalent.

Proof. Assume that k is odd and suppose that p > q + 1, η = +1 and ǫ = −1 (the case
q > p + 1, η = −1 and ǫ = +1 is symmetric). We have {ǫx22 + ηx21 + Q = 0} = Yp,q+1, where
Yp,q+1 is equipped with the involution no1, and {ǫx21 + η′x22 + Q′ = 0} = Yp,q+1, where Yp,q+1

is equipped with the involution no2. Then, by proposition 5.1, βG({ǫx22 + ηx21 + Q = 0}) 6=
βG({ǫx21 + η′x22 +Q′ = 0}) and βG(A2k(f2k−1)) 6= βG(A2k(gk)).

In the remaining cases, the quantities βG({ǫx22+ηx21+Q = 0}) and βG({ǫx21+η′x22+Q′ = 0})
are equal so that βG(A2k(f2k−1)) = βG(A2k(gk)). As a consequence, for these cases, we are
led to look at the remaining coefficients of the equivariant zeta functions of f2k−1 and gk.
We begin, in the following paragraph, with the computation of the terms βG(Aξ

2k(f2k−1)) and

βG(Aξ
2k(gk)).
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6.3 Computation of βG(Aξ
2k(f2k−1)) and βG(Aξ

2k(gk))

We assume we are not in one of the previous cases for which we showed that f2k−1 and gk
are not G-blow-Nash-equivalent. In particular, we have βG(Am(f2k−1)) = βG(Am(gk)) and

βG(Aξ
m(f2k−1)) = βG(Aξ

m(gk)) for m < 2k, and βG(A2k(f2k−1)) = βG(A2k(gk)).
Now, the same steps of computation as in the proof of proposition 6.10 provide the following

formulae for βG(Aξ
2k(f2k−1)) and βG(Aξ

2k(gk)) :

Proposition 6.14. Suppose k ≥ 2.

1. If pq = 0, then

βG(Aξ
2k(f2k−1)) = u2k−1+k(p+q)βG({f2k−1 = ξ}) and βG(Aξ

2k(gk)) = u2k−1+k(p+q)βG({gk = ξ}).

2. If pq 6= 0, then

βG(Aξ
2k(f2k−1)) = u2k−2u(p+q)(k+1)βG(Yp,q\{0})

u(p+q−2)(k−1) − 1

up+q−2 − 1
+uk(p+q)+2k−1βG({f2k−1 = ξ})

(the group G acts on Yp,q via the involution no1 or no2 depending on the sign of η) and

βG(Aξ
2k(gk)) = u2k−2u(p+q)(k+1)βG(Yp,q\{0})

u(p+q−2)(k−1) − 1

up+q−2 − 1
+uk(p+q)+2k−1βG({gk = ξ})

(the group G acts trivially on Yp,q).

As in the previous paragraph 6.2, we are reduced to consider the quantities βG({f2k−1 = ξ})
and βG({gk = ξ}). We give below the first steps of computation of these equivariant virtual
Poincaré series for all k ≥ 2, (p, q) ∈ N

2 \ {(0, 0)} and η ∈ {1,−1}. We write f2k−1 = ǫx2k2 +
ηx21+Q = ǫx2k2 +

∑p
i=1 y

2
i −
∑q

j=1 y
2
p+j and gk = ǫx2k1 +η′x22+Q′ = ǫx2k1 +

∑p
i=1 y

2
i −
∑q

j=1 y
2
p+j.

Then :

Lemma 6.15. We have

βG({f2k−1 = ξ}) =





uq+2 up−1−1
u−1 + up−1βG

({
ǫx2k2 + y21 − y2p+1 −

∑p+q
j=2p+1 y

2
j = ξ

})
if 0 < p < q,

up+2 uq−1−1
u−1 + uq−1βG

({
ǫx2k2 + y21 − y2p+1 +

∑p
j=q+1 y

2
j = ξ

})
if 0 < q < p,

up+2 up−1−1
u−1 + up−1βG

({
ǫx2k2 + y21 − y2p+1 = ξ

})
if p = q,

βG
({

ǫx2k2 − y21 −
∑q

j=2 y
2
j = ξ

})
if p = 0,

βG
({

ǫx2k2 + y21 +
∑p

i=2 y
2
i = ξ

})
if q = 0,

the group G acting only changing the sign of y1 or yp+1 depending on the sign of η, and

βG({gk = ξ}) =





uq+1 up−1
u−1 + upβG

({
ǫx2k1 −

∑p+q
j=2p+1 y

2
j = ξ

})
if 0 < p < q,

up+1 uq−1
u−1 + uqβG

({
ǫx2k1 +

∑p
j=q+1 y

2
j = ξ

})
if 0 < q < p,

up+1 up−1
u−1 + upβG

({
ǫx2k1 = ξ

})
if p = q,

βG
({

ǫx2k1 −
∑q

j=1 y
2
j = ξ

})
if p = 0,

βG
({

ǫx2k1 +
∑p

i=1 y
2
i = ξ

})
if q = 0,

the group G acting only changing the sign of x1.
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Proof. We focus on the case 2 ≤ p ≤ q and proceed as in the proof of proposition 5.1 : in order
to compute βG({f2k−1 = ξ}), we apply the (equivariant) change of variables ui = yi + yi+p,
vi = yi − yi+p for i = 2, . . . , p and the equation f2k−1 = ξ becomes

ǫx2k2 + y21 − y2p+1 +

p∑

i=2

uivi −

p+q∑

j=2p+1

y2j = ξ.

Then, as in the proof of proposition 5.1, we use the stratification by the globally G-stable subsets
{f2k−1 = ξ}∩{u2 = . . . = ui = 0, ui+1 6= 0}, along with the additivity of the equivariant virtual
Poincaré series, to obtain the desired formula for βG({f2k−1 = ξ}).

As for βG({gk = ξ}), we can apply the equivariant change of variables ui = yi + yi+p,
vi = yi − yi+p for i = 1, . . . , p (the strata {gk = ξ} ∩ {u1 = . . . = ui = 0, ui+1 6= 0} are
G-globally stable).

Remark 6.16. Regarding the equation f2k−1 = ξ, we could also have applied the change of
variables u1 = y1 + yp+1, v1 = y1 − yp+1, provided G acts on these new coordinates via the
involution (u1, v1) 7→ (−v1,−u1) or (u1, v1) 7→ (v1, u1) (depending on the sign of η). However,
the stratum {f2k−1 = ξ} ∩ {u1 6= 0} is not globally stable under this action of G.

From these formulae, among the remaining cases for which we did not establish that the
germs f2k−1 and gk are not G-blow-Nash equivalent, we first extract the cases for which
βG(Aξ

2k(f2k−1)) = βG(Aξ
2k(gk)) :

Proposition 6.17. If p > q + 1 and η = ǫ = +1 or q > p + 1 and η = ǫ = −1, we have
βG(Aξ

2k(f2k−1)) = βG(Aξ
2k(gk)).

Proof. Similarly to the previous proofs, we focus on the case p > q + 1, q 6= 0 and η = ǫ = +1.

Then βG({f2k−1 = ξ}) = up+2 uq−1−1
u−1 + uq−1βG

({
+x2k2 + y21 − y2p+1 +

∑p
j=q+1 y

2
j = ξ

})
. On

the latter set, the action of G only changes the sign of y1, so that we can use the equivariant
change of variables u = yq+1 + yp+1, v = yq+1 − yp+1 in order to obtain the equality

βG({f2k−1 = ξ}) = up+1u
q − 1

u− 1
+ uqβG





+x2k2 + y21 +

p∑

j=q+2

y2j = ξ






 .

Therefore βG(Aξ
2k(f2k−1)) = βG(Aξ

2k(gk)) if and only if βG
({

+x2k2 + y21 +
∑p

j=q+2 y
2
j = ξ

})
=

βG
({

+x2k1 +
∑p

j=q+1 y
2
j = ξ

})
(recall that, on the latter set, the action of G only changes the

sign of x1).
Now, if ξ = −1, both sets are empty and if ξ = +1, they are compact, nonsingular and

equivariantly homeomorphic to spheres having a non-empty fixed point set. As a consequence,

for ξ = ±1, βG
({

+x2k2 + y21 +
∑p

j=q+2 y
2
j = ξ

})
= βG

({
+x2k1 +

∑p
j=q+1 y

2
j = ξ

})
(see re-

mark 4.1) and βG(Aξ
2k(f2k−1)) = βG(Aξ

2k(gk)).
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Finally, we give the cases for which the equality βG(Aξ
2k(f2k−1)) = βG(Aξ

2k(gk)) depends on
the equality of two equivariant virtual Poincaré series :

Proposition 6.18.

• If k is even and if p > q + 1, η = +1 and ǫ = −1, the equality βG(Aξ
2k(f2k−1)) =

βG(Aξ
2k(gk)) is true if and only if the equivariant virtual Poincaré series of the algebraic

subsets
{
−x2k2 + y2 +

∑K−1
i=1 y2i = ξ

}
⊂ R

K+1, K := p − q, equipped with the action of

G only changing the sign of y, and
{
−x2k1 +

∑K
i=1 z

2
i = ξ

}
⊂ R

K+1, equipped with the

action of G only changing the sign of x1, are equal.

• If k is even and if q > p+1, η = −1 and ǫ = +1, we have βG(Aξ
2k(f2k−1)) = βG(Aξ

2k(gk))

if and only if βG
({

x2k2 − y2 −
∑K−1

i=1 y2i = ξ
})

= βG
({

x2k1 −
∑K

i=1 z
2
i = ξ

})
.

Proof. If we focus on the case p > q + 1, q 6= 0, η = +1 and ǫ = −1, the same computa-
tion as in the proof of the previous proposition 6.17 provides the equivalence βG(Aξ

2k(f2k−1)) =

βG(Aξ
2k(gk)) if and only if βG

({
−x2k2 + y21 +

∑p
j=q+2 y

2
j = ξ

})
= βG

({
−x2k1 +

∑p
j=q+1 y

2
j = ξ

})
.

Remark 6.19. 1. Recall that we showed in corollary 6.13 that the germs f2k−1 and gk are
not G-blow-Nash equivalent in the case k odd and p > q+1, η = +1, ǫ = −1 or q > p+1,
η = −1, ǫ = +1 (notice that in the previous proof of proposition 6.18, we did not use the
fact that k was even).

2. Forgetting the action of G, the virtual Poincaré polynomials of the algebraic subsets{
x2k −

∑K
i=1 y

2
i = ξ

}
, ξ = ±1, of R

K+1 can be computed using the invariance of the

virtual Poincaré polynomial under bijection with AS graph (see [22]). However, we do
not know if the equivariant virtual Poincaré series is invariant under equivariant bijection
with AS graph.

As a consequence of the results of this subsection 6.3, we will then consider the other
coefficients βG(AM (f2k−1)) and βG(AM (gk)), respectively βG(Aξ

M (f2k−1)) and βG(Aξ
M (gk)),

M > 2k, of the equivariant zeta functions of f2k−1 and gk, in the cases of propositions 6.17 and
6.18. In the next paragraph, we will show that the comparison of these quantities reduces to
the comparison of the equivariant virtual Poincaré series of {f2k−1 = ξ} and {gk = ξ} as well.

6.4 The last terms of the equivariant zeta functions

Suppose p > q + 1, η = ǫ = +1 or k even, p > q + 1, η = +1, ǫ = −1. The following results
will also be true for the respective symmetric cases.

We first establish the equality between the last coefficients of the naive equivariant zeta
functions of f2k−1 and gk (and therefore the equality of ZG

f2k−1
(u, T ) and ZG

gk
(u, T )) :

Proposition 6.20. For all M > 2k, we have βG(AM (f2k−1)) = βG(AM (gk)).
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Proof. Let M be greater than 2k. We prove that βG(A0
M (f2k−1)) = βG(A0

M (gk)) (this will
give the desired result because of proposition 6.3 and the additivity of the equivariant virtual
Poincaré series).

As in the proofs of propositions 6.1 and 6.10, consider the system of equations defining
A0

M (f2k−1). The same computations will bring, in the expression of βG(A0
M (f2k−1)), a contri-

bution of (a multiple in Z[u][[u−1]] of) βG(Yp,q\{0}) and a contribution of the equivariant virtual
Poincaré series of a set defined by a system whose first equation is ǫa2k1 +Qp,q(c1) = 0. Strat-
ifying this last algebraic set with the subsets {c11 = . . . = ci−1

1 = 0, ci1 6= 0}, i = 1, . . . , p + q,
and {c1 = 0} provides a contribution of βG({f2k−1 = 0} \ {0}) and a new system where
c1 = 0, a1 = 0 and whose first (non trivial) equations are the ones defining A0

m(f2k−1) for
m = min(M − 2k, 2k).

As a consequence, we can repeat the same steps of computations on this system and this
will give further contributions of βG(Yp,q \ {0}) (provided by the equations Qp,q(c1) = 0) and
βG({f2k−1 = 0} \ {0}) (provided by the equations ǫa2kj +Qp,q(c1) = 0).

Since these systems and these operations are also valid for the computation of βG(A0
M (gk))

and because, in the considered cases, the quantities βG(Yp,q) are equal for f2k−1 and gk and
βG({f2k−1 = 0}) = βG({gk = 0}), the expressions of βG(A0

M (f2k−1)) and βG(A0
M (gk)) are

identical.

Similar considerations bring the following results for the last coefficients of the equivariant
zeta functions with signs :

Proposition 6.21. 1. If p > q+1, η = ǫ = +1, then, for all M > 2k, we have βG(Aξ
M (f2k−1)) =

βG(Aξ
M (gk)), and consequently ZG,±

f2k−1
(u, T ) = ZG,±

gk (u, T ).

2. If k is even and if p > q + 1, η = +1 and ǫ = −1, we have the equality ZG,ξ
f2k−1

(u, T ) =

ZG,ξ
gk (u, T ) if and only if βG

({
−x2k2 + y2 +

∑K−1
i=1 y2i = ξ

})
= βG

({
−x2k1 +

∑K
i=1 z

2
i = ξ

})

(the former set is a subset of RK+1 equipped with the action of G only changing the sign
of y and the latter set is a subset of RK+1 equipped with the action of G only changing
the sign of x1).

Proof. Let M be greater than 2k. The system defining Aξ
M (f2k−1) is obtained by replacing 0

by ξ in the right member of the last equation of the system defining A0
M (f2k−1). Consequently,

the same arguments works as in the proof of previous proposition 6.20 and βG(Aξ
M (f2k−1)) =

βG(Aξ
M (gk)) if and only if the contribution given by the very last equation provided by the

computation is the same for f2k−1 and gk.
As in the proof of proposition 6.4, if M is odd, this contribution is the equivariant virtual

Poincaré series of an empty set, and if M is even and not a multiple of 2k, it is βG(Y ξ
p,q) : in

both cases, βG(Aξ
M (f2k−1)) = βG(Aξ

M (gk)). Finally, if M is a multiple of 2k, the respective
contributions are βG({f2k−1 = ξ}) and βG({gk = ξ}), hence the result by lemma 6.15 (see also
the proofs of propositions 6.17 and 6.18).
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6.5 Conclusion

As a conclusion, we summarize and gather the results of the previous paragraphs in the following
theorem :

Theorem 6.22. Let k ≥ 2. Suppose that the invariant germs

f2k−1 = ǫx2k2 + ηx21 +Q and gk = ǫx2k1 + η′x22 +Q′

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs −.

1. If

• p ≤ q, η = +1 or q ≤ p, η = −1,

• p = q + 1 or q = p+ 1,

• k is odd and if p > q + 1, η = +1, ǫ = −1 or q > p+ 1, η = −1, ǫ = +1,

then f2k−1 and gk are not G-blow-Nash equivalent.

2. If p > q + 1, η = ǫ = +1 or q > p + 1, η = ǫ = −1, then ZG
f2k−1

(u, T ) = ZG
gk
(u, T ) and

ZG,ξ
f2k−1

(u, T ) = ZG,ξ
gk (u, T ).

3. • If k is even and if p > q+1, η = +1, ǫ = −1, then ZG
f2k−1

(u, T ) = ZG
gk
(u, T ). Further-

more, ZG,ξ
f2k−1

(u, T ) = ZG,ξ
gk (u, T ) if and only if βG

({
−x2k2 + y2 +

∑K−1
i=1 y2i = ξ

})
=

βG
({

−x2k1 +
∑K

i=1 z
2
i = ξ

})
.

• If k is even and if q > p+1, η = −1, ǫ = +1, then ZG
f2k−1

(u, T ) = ZG
gk
(u, T ). Further-

more, ZG,ξ
f2k−1

(u, T ) = ZG,ξ
gk (u, T ) if and only if βG

({
x2k2 − y2 −

∑K−1
i=1 y2i = ξ

})
=

βG
({

x2k1 −
∑K

i=1 z
2
i = ξ

})
.

Remark 6.23. 1. As one can notice from the computations, the fact that the equivariant
Poincaré series of a given sphere is the same for any action of G on it with a non-empty
fixed point set (see remark 4.1) induces equalities between coefficients of the respective
equivariant zeta functions of f2k−1 and gk.

2. If the equivariant virtual Poincaré series was proved to be an invariant under equivari-
ant bijection with AS graph, this could allow to compute (and compare) the quantities

βG
({

−x2k2 + y2 +
∑K−1

i=1 y2i = ξ
})

and βG
({

−x2k1 +
∑K

i=1 z
2
i = ξ

})
.

7 The germs Ck and Dk

In a second time, we plan to make progress towards the classification with respect to G-blow-
Nash equivalence of the invariant germs of the families

hǫkk (x) := ±x21 + x22x3 + ǫkx
k−1
3 +Q and rǫkk (x) := x21x2 + ǫkx

k
2 +±x23 +Q′,
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where ǫk ∈ {−1;+1}.
By the same arguments as in the introduction of section 6, we know that if two germs hǫkk

and hǫll are G-blow-Nash equivalent, they have the same quadratic part up to permutation of
the variables x1, x4, . . . , xn and, by [13] Proposition 3.11, that k = l and ǫk = ǫl. Therefore,
inside the family Dk, it remains to show that the germs

hǫk,+k (x) := +x21 + x22x3 + ǫkx
k−1
3 +Q and hǫk,−k (x) := −x21 + x22x3 + ǫkx

k−1
3 +Q′,

where ǫk ∈ {−1 ;+1} and +x21+Q and −x21+Q′ are the same quadratic part up to permutation
of the variables x1, x4, . . . , xn, are not G-blow-Nash equivalent.

As for the family Ck, if two germs rǫkk and rǫll are G-blow-Nash equivalent, they have the
same quadratic part up to permutation of the variables x3, . . . , xn, k = l and ǫk = ǫl.

On the other hand, if two germs hǫkk and r
ǫk′
k′ are G-blow-Nash equivalent then k = k′ + 1,

ǫk = ǫk′ and ±x21 + Q and ±x22 + Q′ are the same quadratic part up to permutation of all
variables. As a consequence, we focus on the comparison of the germs

hk+1 = x22x3 + ǫxk3 + ηx21 +Q and rk = x21x2 + ǫxk2 + η′x23 +Q′

where ǫ, η, η′ ∈ {1,−1} and ηx21 +Q = η′x23 +Q′ up to permutation of all variables.

In the following, as we did for the families Ak and Bk, we study and compare the respective
equivariant zeta functions of hk and rk : using theorem 4.2, this allows to extract further cases
of non-G-blow-Nash equivalence.

7.1 Computation of the first terms of the equivariant zeta functions

Fix k ≥ 4 and consider the invariant germ hǫ,ηk (x1, . . . , xn) = ηx21 + x22x3 + ǫxk−1
3 +Q. Denote

x2 = x, x3 = z and ηx21+Q = Qp,q =
∑p

i=1 y
2
i −
∑q

j=1 y
2
p+j (G acts on the renamed coordinates

via the involution no1 or no2 depending on the sign of η), so that hǫ,ηk (x, z, y) = x2z + ǫzk−1 +
Qp,q(y).

The following proposition gives the computed expressions for βG(A0
m(hǫ,ηk )) (see the begin-

ning of paragraph 6.1 for the definition of A0
m(h) for h an invariant Nash germ) if m < k − 1.

The same expressions can be obtained for βG(A0
m(rǫk−1)), providing Yp,q is equipped with the

trivial action in this case.

Proposition 7.1. Suppose m < k − 1.

1. If p+ q = 1, then

βG(A0
m(hǫ,ηk )) =

{
ru2m+1 + u4r+4

u−1 if m = 2r + 1,

(r − 1)u2m+1 + u4r+2

u−1 if m = 2r.

2. If p+ q 6= 1, then

βG(A0
m(hǫ,ηk )) =

{
u3r+2+(r+1)(p+q) ur(p+q−1)−1

up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
+ u3r+3+(r+1)(p+q)

u−1 if m = 2r + 1,

u3r+(r+1)(p+q) u(r−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
+ u3r+1+r(p+q)βG(Yp,q) if m = 2r.
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Proof. As in subsection 6.1, we follow the computations of [13], paying attention to their
equivariance with respect to the considered actions of G.

Here, we write an arc γ of Lm as

γ(t) = (a1t+ · · ·+ amtm, b1t+ · · ·+ bmtm, c11t+ · · · + c1mtm, . . . , cp+q
1 t+ · · · + cp+q

m tm)

=




a1
b1
c11
...

cp+q
1




t+ · · ·+




am
bm
c1m
...

cp+q
m




tm =




a1
b1
c1


 t+ · · ·+




am
b1
cm


 tm

(the group G acts on Lm changing the sign of the variables c1i , resp. c
p+1
i , in the case no1, resp.

no2).
We focus on the generic case pq 6= 0, p + q 6= 1. First suppose that m is odd, m = 2r + 1.

Then an arc γ of Lm belongs to A0
m(hǫ,ηk ) if and only if





Qp,q(c1) = 0,

a21b1 +Φp,q(c1, c2) = 0,

a21b2 + 2a1a2b1 +Qp,q(c2) + Φp,q(c1, c3) = 0,

· · ·
∑r−1

t=1 a
2
t b2r−2t + 2

∑r−1
t=1 at

∑2r−(t+1)
δ=t+1 aδb2r−δ−t +Qp,q(cr) +

∑r−1
t=1 Φp,q(ct, c2r−t) = 0,

∑r
t=1 a

2
t b2r+1−2t + 2

∑r−1
t=1 as

∑2r+1−(t+1)
δ=t+1 aδb2r+1−δ−t +

∑r
t=1 Φp,q(ct, c2r+1−t) = 0.

Stratifying A0
m(hǫ,ηk ) with the G-globally invariant subsets {c11 = . . . = ci−1

1 = 0, ci1 6= 0},
i = 1, . . . , p, and {c11 = . . . = cp1 = 0} = {c1 = 0}, as we did in the proof of proposition 6.1, we
obtain, by additivity of the equivariant virtual Poincaré series,

βG(A0
m(hǫ,ηk )) = u2×(2r+1)+2r(p−1)+2rq+1βG(Yp,q \ {0}) + βG(A0

m(hǫ,ηk ) ∩ {c1 = 0}),

the algebraic set A0
m(hǫ,ηk ) ∩ {c1 = 0} being described by the system





a21b1 = 0,

a21b2 + 2a1a2b1 +Qp,q(c2) = 0,

· · ·
∑r−1

t=1 a
2
t b2r−2t + 2

∑r−1
t=1 at

∑2r−(t+1)
δ=t+1 aδb2r−δ−t +Qp,q(cr) +

∑r−1
t=2 Φp,q(ct, c2r−t) = 0,

∑r
t=1 a

2
t b2r+1−2t + 2

∑r−1
t=1 as

∑2r+1−(t+1)
δ=t+1 aδb2r+1−δ−t +

∑r
t=2 Φp,q(ct, c2r+1−t) = 0.

Now, if a1 6= 0, then b1 = 0 and the coordinates b2, . . . , b2r−1 are determined by a1 and the
other variables (via an equivariant morphism), and thus

βG(A0
m(hǫ,ηk ) ∩ {c1 = 0}) = (u− 1)

u[2r+2+2r(p+q)]+1

u− 1
+ βG(A0

m(hǫ,ηk ) ∩ {c1 = 0, a1 = 0}).
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If c1 = 0 and a1 = 0, the remaining coordinates verify the system




Qp,q(c2) = 0,

a22b1 +Φp,q(c2, c3) = 0,

a22b2 + 2a2a3b1 +Q′
p,q(c3) + Φp,q(c2, c4) = 0,

· · ·
∑r−1

t=2 a
2
t b2r−2t + 2

∑r−1
t=2 at

∑2r−(t+1)
δ=t+1 aδb2r−δ−t +Qp,q(cr) +

∑r−1
t=2 Φp,q(ct, c2r−t) = 0,

∑r
t=2 a

2
t b2r+1−2t + 2

∑r−1
t=2 as

∑2r+1−(t+1)
δ=t+1 aδb2r+1−δ−t +

∑r
t=2 Φp,q(ct, c2r+1−t) = 0.

Notice that the vector cm as well as the variables am, bm−1 and bm are free and that, if we
rename the variables, these equations define the set A0

m−2(h
ǫ,η
k ), so that

βG(A0
m(hǫ,ηk ) ∩ {c1 = 0, a1 = 0}) = u3+p+qβG(A0

m−2(h
ǫ,η
k )).

By an induction process, we then obtain

βG(A0
m(hǫ,ηk )) = βG(Yp,q \ {0})

[
r−1∑

t=0

ut(3+p+q)u2×(m−2t)+(m−2t−1)(p+q−1)+1

]

+

[
r−1∑

t=0

ut(3+p+q)u(m−1−2t)(p+q+1)+3

]
+ u(r−1)(3+p+q)βG(A0

3(h
ǫ,η
k ) ∩ {c1 = 0, a1 = 0}),

the equations for A0
3(h

ǫ,η
k ) ∩ {c1 = 0, a1 = 0} becoming trivial. As a consequence (notice that

for all t = 0, . . . , r− 1, 2× (m− 2t)+ (m− 2t− 1)(p+ q− 1)+ 1 = (m− 1− 2t)(p+ q+1)+3),

βG(A0
m(hǫ,ηk )) = u3r+2+(r+1)(p+q)u

r(p+q−1) − 1

up+q−1 − 1

(
βG(Yp,q \ {0}) + 1

)
+

u3r+3+(r+1)(p+q)

u− 1
.

If m is even, m = 2r, the system defining A0
m(hǫ,ηk ) is





Qp,q(c1) = 0,

a21b1 +Φp,q(c1, c2) = 0,

· · ·
∑r−1

t=1 a
2
t b2r−1−2t + 2

∑r−2
t=1 as

∑2r−1−(t+1)
δ=t+1 aδb2r−1−δ−t +

∑r−1
t=1 Φp,q(ct, c2r−1−t) = 0,

∑r−1
t=1 a

2
t b2r−2t + 2

∑r−1
t=1 at

∑2r−(t+1)
δ=t+1 aδb2r−δ−t +Qp,q(cr) +

∑r−1
t=1 Φp,q(ct, c2r−t) = 0,

and we have

βG(A0
m(hǫ,ηk )) = βG(Yp,q \ {0})

[
r−2∑

t=0

ut(3+p+q)u2×(m−2t)+(m−2t−1)(p+q−1)+1

]

+

[
r−2∑

t=0

ut(3+p+q)u(m−1−2t)(p+q+1)+3

]
+ u(r−1)(3+p+q)βG(A0

2(h
ǫ,η
k ))
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Because A0
2(h

ǫ,η
k ) is described by the equation Qp,q(c1) = 0 and since the vector c2 as well as

the variables a1, a2, b1 and b2 are free, we obtain

βG(A0
m(hǫ,ηk )) = u3r+(r+1)(p+q)u

(r−1)(p+q−1) − 1

up+q−1 − 1

(
βG(Yp,q \ {0}) + 1

)
+ u3r+1+r(p+q)βG(Yp,q).

As for βG(Aξ
m(hǫ,ηk )), we have the following expressions if m < k + 1 :

Proposition 7.2. Suppose m < k − 1.

1. If (p, q) = (0, 1), then

βG(Aξ
m(hǫ,ηk )) =

{
ru2m+1 if m = 2r + 1,

(r − 1)u2m+1 + u4r+1βG(Y ξ
0,1) if m = 2r.

2. If (p, q) = (1, 0), then

βG(Aξ
m(hǫ,ηk )) =

{
ru2m+1 if m = 2r + 1,

(r − 1)u2m+1 + u4r+1βG(Y ξ
1,0) if m = 2r.

3. If p+ q 6= 1, then

βG(Aξ
m(hǫ,ηk )) =

{
u3r+2+(r+1)(p+q) ur(p+q−1)−1

up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
if m = 2r + 1,

u3r+(r+1)(p+q) u(r−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
+ u3r+1+r(p+q)βG(Y ξ

p,q) if m = 2r.

Proof. If we keep the notations of the proof of proposition 7.1, the system defining Aξ
m(hǫ,ηk )

is obtained by replacing 0 by ξ in the right member of the last of the equations describing
A0

m(hǫ,ηk ). Furthermore, the system for Aξ
3(h

ǫ,η
k ) ∩ {c1 = 0, a1 = 0} has no solution, whereas

Aξ
2(h

ǫ,η
k ) is described by the equation Qp,q(c1) = ξ.

We are now able to show that the germs hǫ,+k and hǫ,−k are not G-blow-Nash equivalent :

Corollary 7.3. Let k ≥ 4. Suppose that the invariant Nash germs

hǫ,+k (x) := +x21 + x22x3 + ǫxk−1
3 +Q and hǫ,−k (x) := −x21 + x22x3 + ǫxk−1

3 +Q′

have the same quadratic part up to permutation of the variables x1, x4, . . . , xn. Then they are
not G-blow-Nash equivalent.

Proof. We compare βG(A2(h
ǫ,+
k )) and βG(A2(h

ǫ,−
k )). Because βG(A2(h

ǫ,η
k )) = βG(0A2(h

ǫ,η
k ))−

βG(A0
2(h

ǫ,η
k )), βG(0A2(h

ǫ,η
k )) = unβG(A0

1(h
ǫ,η
k )) (by proposition 6.3) and A0

1(h
ǫ,η
k ) = L1, we are

reduced to compare the quantities βG(A0
2(h

ǫ,+
k )) and βG(A0

2(h
ǫ,−
k )).
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Now, if p denotes the number of signs + and q the number of signs − in the quadratic part
of hǫ,+k and hǫ,−k (notice that p+ q 6= 1), we have, by proposition 7.1,

βG(A0
2(h

ǫ,η
k ))) = u4+p+qβG(Yp,q)

Consequently, if p 6= q, we can use the same arguments as in the proof of corollary 6.6 to
conclude that the naive equivariant zeta functions of hǫ,+k and hǫ,−k are different and therefore

that the germs hǫ,+k and hǫ,−k are not G-blow-Nash equivalent.

If p = q, we compare βG(A+1
2 (hǫ,+k )) and βG(A+1

2 (hǫ,−k )). Since, by proposition 7.2,

βG(A+1
2 (hǫ,+k )) = u4+2pβG(Y +1

p,q ),

we can in this case as well use the arguments of the proof of corollary 6.6, in order to conclude
that the equivariant zeta functions with signs + of hǫ,+k and hǫ,−k are different.

Using again the formulae of propositions 7.1 and 7.2, we then extract cases for which the
germs hk+1 and rk are not G-blow-Nash equivalent :

Corollary 7.4. Let k ≥ 3. Suppose that the invariant germs

hk+1 = x22x3 + ǫxk3 + ηx21 +Q and rk = x21x2 + ǫxk2 + η′x23 +Q′

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs −.
If p ≤ q and η = +1 or q ≤ p and η = −1, then hk+1 and rk are not G-blow-Nash equivalent.
If p = q + 1 or q = p+ 1, then hk+1 and rk are not G-blow-Nash equivalent.

Proof. For the first point, focus for instance on the case p ≤ q and η = +1. As in the proof of
corollary 7.3, we consider βG(A0

2(hk+1)) = u4+p+qβG(Yp,q) and βG(A0
2(rk)) = u4+p+qβG(Yp,q).

Since the action of G on the former set Yp,q is the action no1 and the action on the latter set
Yp,q is the trivial action, we obtain βG(A2(hk+1)) 6= βG(A2(rk)).

For the second point, assume for instance p = q+1. Suppose furthermore that η = +1 and
consider the quantities βG(A+1

2 (hk+1)) = u4+p+qβG(Y +1
p,q ) and βG(A+1

2 (rk)) = u4+p+qβG(Y +1
p,q ).

By proposition 5.3, βG(Y +1
p,q ) = 1

u−1

(
βG(Yp,p)− βG(Yp,q)

)
. Since q < p and η = +1, the

quantity βG(Yp,q) is the same for hk+1 and rk, while the quantities βG(Yp,p) are different (see
proposition 5.1). As a consequence, βG(A+1

2 (hk+1)) 6= βG(A+1
2 (rk)).

From now, we are going to study the other coefficients of the equivariant zeta functions of
hk+1 and rk in the remaining cases, that is if p > q + 1 and η = +1 or q > p + 1 and η = −1.
Notice that, in these cases, the quantities βG(Yp,q) and βG(Y ξ

p,q) are identical for hk+1 and rk.

7.2 Computation of βG(Ak(hk+1)) and βG(Ak(rk))

Assuming that the Nash germs hk+1 and rk have the same quadratic part Qp,q, with p > q+1
and η = +1 or q > p + 1 and η = −1, we first compute the coefficients βG(Ak(hk+1)) and
βG(Ak(rk)) of their respective naive equivariant zeta functions. Having in mind proposition
6.3, we actually give formulae for βG(A0

k(hk+1)) and βG(A0
k(rk)) :
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Proposition 7.5. Suppose k ≥ 3. Then

βG(A0
k(hk+1)) =





u3l+2+(l+1)(p+q) ul(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0})

)

+u3l+1+(l+2)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

+ u3l+1+(l+1)(p+q)βG({hk+1(x2, x3, 0) = 0}) if k = 2l + 1,

u3l+(l+1)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)

+ u3l+l(p+q)βG({hk+1(0, x3, y) = 0}) if k = 2l,

and

βG(A0
k(rk)) =





u3l+2+(l+1)(p+q) ul(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0})

)

+ u3l+1+(l+2)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

+ u3l+1+(l+1)(p+q)βG({rk(x1, x2, 0) = 0}) if k = 2l + 1,

u3l+(l+1)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
+ u3l+l(p+q)βG({rk(0, x2, y) = 0}) if k = 2l.

Proof. We do the computations for βG(A0
k(hk+1)).

First suppose k to be odd, k = 2l + 1. Keeping the notations of the proof of proposition
7.1, the set A0

k(hk+1) is defined by the system





Qp,q(c1) = 0,

a21b1 +Φp,q(c1, c2) = 0,

a21b2 + 2a1a2b1 +Qp,q(c2) + Φp,q(c1, c3) = 0,

· · ·
∑l−1

t=1 a
2
t b2l−2t + 2

∑l−1
t=1 at

∑2l−(t+1)
δ=t+1 aδb2l−δ−t +Qp,q(cl) +

∑l−1
t=1 Φp,q(ct, c2l−t) = 0,

ǫb2l+1
1 +

∑l
t=1 a

2
t b2l+1−2t + 2

∑l−1
t=1 as

∑2l+1−(t+1)
δ=t+1 aδb2l+1−δ−t +

∑l
t=1Φp,q(ct, c2l+1−t) = 0.

Proceeding as in the proof of proposition 7.1 (see also the proof of proposition 6.10), we
obtain

βG(A0
k(hk+1)) = u3l+2+(l+1)(p+q)u

l(p+q−1) − 1

up+q−1 − 1

(
βG(Yp,q \ {0})

)

+
l−2∑

t=0

ut(3+p+q)u(k−1−2t)(p+q+1)+3 + u(l−1)(3+p+q)βG(S0
3),

if S0
3 denotes the algebraic set defined by the equation ǫb2l+1

1 + a21b1 = 0, the variables a2, a3,
b2, b3 as well as the vectors c2, c3 being free. Hence the desired result.

If we suppose k even, k = 2l, the set A0
k(hk+1) is described by the system





Qp,q(c1) = 0,

a21b1 +Φp,q(c1, c2) = 0,

· · ·
∑l−1

t=1 a
2
t b2l−1−2t + 2

∑l−2
t=1 as

∑2l−1−(t+1)
δ=t+1 aδb2l−1−δ−t +

∑l−1
t=1 Φp,q(ct, c2l−1−t) = 0,

ǫb2l1 +
∑l−1

t=1 a
2
t b2l−2t + 2

∑l−1
t=1 at

∑2l−(t+1)
δ=t+1 aδb2l−δ−t +Qp,q(cl) +

∑l−1
t=1 Φp,q(ct, c2l−t) = 0,
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and we have

βG(A0
k(hk+1)) = u3l+(l+1)(p+q)u

(l−1)(p+q−1) − 1

up+q−1 − 1

(
βG(Yp,q \ {0}) + 1

)
+ u(l−1)(3+p+q)βG(S0

2),

where S0
2 is the algebraic set given by the equation ǫb2l1 + Qp,q(c1) = 0, with free variables

a1, a2, b2 and free vector c2.

Since, in our present framework, the quantity βG(Yp,q) is the same for hk+1 and gk, we are re-
duced to study the equivariant virtual Poincaré series of the G-algebraic sets {hk+1(x2, x3, 0) =
0} and {rk(x1, x2, 0) = 0} if k is odd, resp. {hk+1(0, x3, y) = 0} and {rk(0, x2, y) = 0} if k is
even.

Notice that, if k is even, βG({hk+1(0, x3, y) = 0}) and βG({rk(0, x2, y) = 0}) have been
already computed in lemma 6.11 : if k is even and if p > q+1 and η = +1 or q > p+1 and η =
−1, the equivariant virtual Poincaré series βG({hk+1(0, x3, y) = 0}) and βG({rk(0, x2, y) = 0})
are equal and therefore βG(Ak(hk+1)) = βG(Ak(rk)).

Now, in the next lemma, we compute {hk+1(x2, x3, 0) = 0} and {rk(x1, x2, 0) = 0} if k is
odd, k = 2l + 1 :

Lemma 7.6. We have

βG({h2l+2(x2, x3, 0) = 0}) = βG({x22 + ǫx23 = 0})−
u

u− 1
+

u2

u− 1
,

where the latter set is considered as an algebraic subset of R2 on which the group G acts trivially,
and

βG({r2l+1(x1, x2, 0) = 0}) = βG({x21 + ǫx22 = 0}) −
u

u− 1
+

u2

u− 1
,

where the latter set is considered as an algebraic subset of R2 on which the group G acts only
changing the sign of the coordinate x1.

Proof. We make the computation for βG({r2l+1(x1, x2, 0) = 0}).
Consider the equation x21x2 + ǫx2l+1

2 = 0. If x2 6= 0, it is equivalent to x21 + ǫx2l2 = 0, and if
x2 = 0, it becomes trivial. Consequently,

βG({r2l+1(x1, x2, 0) = 0}) = βG({x21 + ǫx2l2 = 0} \ {(0, 0)}) +
u2

u− 1
,

and we use lemma 6.11 to write βG({x21 + ǫx2l2 = 0}) = βG({x21 + ǫx22 = 0})− (l − 1)βG({x21 =
0})+(l−1)βG({(0, 0)}) = βG({x21+ ǫx22 = 0}) (recall also that the equivariant virtual Poincaré
series of a point is u

u−1).

If ǫ = +1, the sets {x22+x23 = 0}) and {x21+x22 = 0} are both reduced to a single point. On

the other hand, if ǫ = −1, we have βG({x22 − x23 = 0}) = 2u2−u
u−1 whereas βG({x21 − x22 = 0}) =

u2−u+1
u−1 (see proposition 5.1). As a consequence :

Corollary 7.7. If k is odd and if ǫ = −1, the germs hk+1 and rk are not G-blow-Nash
equivalent.
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If p > q + 1 and η = +1 or q > p + 1 and η = −1, and if k is even or k is odd and
ǫ = +1, the coefficients βG(Ak(hk+1)) and βG(Ak(rk)) of the respective naive equivariant zeta

functions of hk+1 and rk are equal. We are then led to look at the coefficients βG(Aξ
k(hk+1))

and βG(Aξ
k(rk)) of their respective equivariant zeta functions with signs.

7.3 Computation of βG(Aξ
k(hk+1)) and βG(Aξ

k(rk))

For the cases listed above, we consider the quantities βG(Aξ
k(hk+1)) and βG(Aξ

k(rk)), expressed
by the following formulae (just follow the steps of computation of the proof of proposition 7.5) :

Proposition 7.8. Suppose k ≥ 3. Then

βG(Aξ
k(hk+1)) =





u3l+2+(l+1)(p+q) ul(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0})

)

+u3l+1+(l+2)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

+ u3l+1+(l+1)(p+q)βG({hk+1(x2, x3, 0) = ξ}) if k = 2l + 1,

u3l+(l+1)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)

+ u3l+l(p+q)βG({hk+1(0, x3, y) = ξ}) if k = 2l,

and

βG(Aξ
k(rk)) =





u3l+2+(l+1)(p+q) ul(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0})

)

+ u3l+1+(l+2)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

+ u3l+1+(l+1)(p+q)βG({rk(x1, x2, 0) = ξ}) if k = 2l + 1,

u3l+(l+1)(p+q) u(l−1)(p+q−1)−1
up+q−1−1

(
βG(Yp,q \ {0}) + 1

)
+ u3l+l(p+q)βG({rk(0, x2, y) = ξ}) if k = 2l.

If k is even, we can use the formulae of lemma 6.15 and the same arguments as in the proofs
of propositions 6.17 and 6.18 in order to establish the following facts :

Proposition 7.9. Suppose k is even, k = 2l ≥ 4.

1. If p > q + 1 and η = ǫ = +1 or q > p + 1 and η = ǫ = −1, then βG(Aξ
k(hk+1)) =

βG(Aξ
k(rk)).

2. • If p > q + 1, η = +1 and ǫ = −1, the equality βG(Aξ
k(hk+1)) = βG(Aξ

k(rk)) is
true if and only if the equivariant virtual Poincaré series of the algebraic subsets{
−x2l3 + y2 +

∑K−1
i=1 y2i = ξ

}
⊂ R

K+1, K := p − q, equipped with the action of G

changing only the sign of y, and
{
−x2l2 +

∑K
i=1 z

2
i = ξ

}
⊂ R

K+1, equipped with the

trivial action of G, are equal.

• If q > p + 1, η = −1 and ǫ = +1, we have βG(Aξ
k(hk+1)) = βG(Aξ

k(rk)) if and only

if βG
({

x2l3 − y2 −
∑K−1

i=1 y2i = ξ
})

= βG
({

x2l2 −
∑K

i=1 z
2
i = ξ

})
.

If k is odd, k = 2l + 1 and ǫ = +1, and if p > q + 1 and η = +1 or q > p + 1 and
η = −1, we are reduced to compare βG({hk+1(x2, x3, 0) = ξ}) = βG({x22x3 + x2l+1

3 = ξ})
and βG({rk(x1, x2, 0) = ξ}) = βG({x21x2 + x2l+1

2 = ξ}). We are going to show that these two
quantities are equal and therefore :
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Proposition 7.10. If p > q + 1 and η = +1 or q > p + 1 and η = −1, and if k is odd and
ǫ = +1, then βG(Aξ

k(hk+1)) = βG(Aξ
k(rk)).

Proof. We compute the equivariant virtual Poincaré series of the nonsingular curve C :=
{x20y0 + y2l+1

0 = ξ} of R
2, on which the group G acts only changing the sign of the first

coordinate x0, resp. trivially.

First suppose the action of G is the former one. Suppose also l ≥ 2. We equivariantly
compactify C in the projective space P

2(R) with homogeneous coordinates [X : Y : Z], on
which G acts via the involution [X : Y : Z] 7→ [−X : Y : Z] = [X : −Y : −Z]. We denote
Γ := {X2Y Z2l−2 + Y 2l+1 = ξZ2l+1} this compactification and p := [1 : 0 : 0] the point at
infinity.

The equivariant compactification Γ is singular at the fixed point p as one can see in the
globally invariant chart X 6= 0. If (y0, z0) are the coordinates in this chart, the group G
acting via the involution (y0, z0) 7→ (−y0,−z0), we denote by C ′ the curve Γ ∩ {X 6= 0} =
{y0z

2l−2
0 + y2l+1

0 = ξz2l+1
0 } (the point at infinity is the fixed point q = [0 : ξ : 1] of C).

Equivariantly blowing-up Γ at p resolves the singularity : in the chart y0 = u0v0, z0 = v0,
where the action of G is given by (u0, v0) 7→ (u0,−v0), the equation of the strict transform
is u0 + u2l+1

0 v20 − ξv20 = 0 and it intersects the exceptional divisor at the single point p0 with

coordinates (u0, v0) = (0, 0). The resolved compact G-variety, denoted by Γ̃, is equivariantly
homeomorphic to a circle equipped with an action of G fixing the two points p0 and q.

As a conclusion, we have

βG(C) = β(Γ \ {p}) = βG(Γ̃ \ {p0}) = βG(Γ̃)− βG({p0}) = u+ 2
u

u− 1
−

u

u− 1
=

u2

u− 1

(see remark 4.1).
If l = 1, the point p of Γ is not singular and Γ is a compact nonsingular G-variety equivari-

antly homeomorphic to a circle with two fixed points p and q.

If now we suppose that the affine space R
2 with coordinates (x0, y0) is equipped with the

trivial action of G, we will obtain the same expression for βG(C) since the equivariant homology
of a circle is the same as soon as there is at least one fixed point.

Consequently, the equivariant virtual Poincaré series βG({hk+1(x2, x3, 0) = ξ}) = βG({x22x3+
x2l+1
3 = ξ}) and βG({rk(x1, x2, 0) = ξ}) = βG({x21x2 + x2l+1

2 = ξ}) are equal and then

βG(Aξ
k(hk+1)) = βG(Aξ

k(rk)).

In the next paragraph, we will look at the last part of the respective equivariant zeta
functions of hk+1 and rk. Still supposing that p > q + 1 and η = +1 or q > p+ 1 and η = −1,
we will show that, if k is even or k is odd and ǫ = +1, their comparison reduces as in proposition
7.9.
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7.4 The last terms of the equivariant zeta functions

Suppose p > q + 1 and η = +1 or q > p + 1 and η = −1. Suppose that k is even or that k is
odd and ǫ = +1. The naive equivariant zeta functions of hk+1 and rk are equal :

Proposition 7.11. For all M > k, we have βG(AM (hk+1)) = βG(AM (rk)).

Proof. Let M be greater than k. We prove that βG(A0
M (hk+1)) = βG(A0

M (rk)).

Suppose k to be even, k = 2l. Consider the system of equations describing A0
M (hk+1)

and A0
M (rk). The same computations as in the proofs of propositions 7.1 and 7.5 bring, in

both expressions of βG(A0
M (hk+1)) and βG(A0

M (rk)), an equal contribution of βG(Yp,q \ {0})
and a contribution of the equivariant virtual Poincaré series of a set defined by a system
whose first equation is ǫbk1 + Qp,q(c1) = 0. Stratifying this last algebraic set with the subsets
{c11 = . . . = ci−1

1 = 0, ci1 6= 0}, i = 1, . . . , p + q, and {c1 = 0} provides a contribution of
βG({hk+1(0, x3, y) = 0}\{0}), resp. βG({rk(0, x2, y) = 0}\{0}) (it is the same quantity in our
hypothesis) and we are led to the further condition c1 = 0, and then b1 = 0, in the previous
system.

Now, stratify with the subsets {a1 6= 0} (this will provide an equal contribution for hk+1

and rk) and {a1 = 0}. If a1 = 0, shifting by −1 the indices of the remaining variables ai and
ci, we obtain a new system whose first equations are, if M ≥ 2k :





Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

a21b2 +Qp,q(c2) + Φp,q(c1, c3) = 0,

a21b3 + 2a1a2b2 +Φp,q(c1, c4) + Φp,q(c2, c3) = 0,

· · ·
∑l−2

t=1 a
2
t b2l−1−2t + 2

∑l−2
t=1 as

∑2l−2−(t+1)
δ=t+1 aδb2l−1−δ−t +

∑l−1
t=1 Φp,q(ct, c2l−1−t) = 0,

ǫb2l2 +
∑l−1

t=1 a
2
t b2l−2t + 2

∑l−2
t=1 at

∑2l−1−(t+1)
δ=t+1 aδb2l−δ−t +Qp,q(cl) +

∑l−1
t=1 Φp,q(ct, c2l−t) = 0.

These equations can be obtained from the system defining A0
k(hk+1), by replacing the term ǫb2l1

with ǫb2l2 in the last equation and imposing b1 to be 0 in the other ones.
Therefore, a similar process as above can be applied and provides further equal contributions

for βG(A0
M (hk+1)) and βG(A0

M (rk)). In any case, the final equation will be either Qp,q(c1) = 0,
ǫb2lj +Qp,q(c1) = 0 or trivial, so that the induced respective contributions are equal as well.

As a consequence, βG(A0
M (hk+1)) = βG(A0

M (rk)) and βG(AM (hk+1)) = βG(AM (rk)).

If k is odd, k = 2l+1, and ǫ = +1, from the initial system of equations defining A0
M (hk+1)

and A0
M (rk), we are reduced to consider a system whose first equation is b2l+1

1 + a21b1 = 0
(see the proof of proposition 7.5). Therefore b1 = 0. Stratifying with the subsets {a1 6= 0}
and {a1 = 0}, we then get, after a renaming of the variables, a system whose first non trivial
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equations are, if M ≥ 2k :





Qp,q(c1) = 0,

Φp,q(c1, c2) = 0,

a21b2 +Qp,q(c2) + Φp,q(c1, c3) = 0,

a21b3 + 2a1a2b2 +Φp,q(c1, c4) + Φp,q(c2, c3) = 0,

· · ·
∑l−1

t=1 a
2
t b2l+1−2t + 2

∑l−1
t=1 as

∑2l−(t+1)
δ=t+1 aδb2l+1−δ−t +

∑l
t=1 Φp,q(ct, c2l+1−t) = 0,

b2l+1
2 +

∑l
t=1 a

2
t b2l+2−2t + 2

∑l−1
t=1 at

∑2l+1−(t+1)
δ=t+1 aδb2l+2−δ−t +Qp,q(cl+1) +

∑l
t=1 Φp,q(ct, c2l+2−t) = 0.

Repeating the process provides further equal contributions for βG(A0
M (hk+1)) and βG(A0

M (rk))
and, if M ≥ 2k, we are led to a new system whose first equation is b2l+1

2 + Qp,q(c1) = 0. We
will show in lemma 7.12 below that the respective induced contributions are equal.

In any case, these repeated steps of computations will eventually allow us to consider a
single equation, which will be either Qp,q(c1) = 0, b2l+1

j + a21bj = 0, b2l+1
j + Qp,q(c1) = 0 or

trivial.
Consequently, if k is odd, βG(A0

M (hk+1)) = βG(A0
M (rk)) and βG(AM (hk+1)) = βG(AM (rk))

as well.

Lemma 7.12. Suppose that k is odd, k = 2l+ 1, p > q+ 1 and η = +1 (the property will also
be true if q > p+ 1 and η = −1). Then

βG({hk+1(0, x3, y) = 0}) = βG({rk(0, x2, y) = 0}).

Proof. Applying successive blowings-up as in the proof of lemma 6.11, we obtain

βG({hk+1(0, x3, y) = 0}) = βG({ǫx3 +Qp,q(y) = 0})− kβG({Qp,q(y) = 0}) + kβG({0})

= βG(Rp+q)− kβG({Qp,q(y) = 0}) + kβG({0}).

We have the same expression for βG({rk(0, x2, y) = 0}) and therefore, since p > q + 1 and
η = +1, the two quantities are equal.

As for the last part of the equivariant zeta functions with signs of hk+1 and rk, adapting the
computations of the proof of proposition 7.11, we obtain the following (still under our current
hypothesis) :

Proposition 7.13. 1. Suppose k is even.

• If η = ǫ, then, for all M > k, βG(Aξ
M (hk+1)) = βG(Aξ

M (rk)) and consequently the
respective equivariant zeta functions with signs of hk+1 and rk are equal.

• If η = +1, ǫ = −1, we have the equality ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if

βG
({

−xk3 + y2 +
∑K−1

i=1 y2i = ξ
})

= βG
({

−xk2 +
∑K

i=1 z
2
i = ξ

})
(the former set is

a subset of RK+1 equipped with the action of G only changing the sign of y and the
latter set is a subset of RK+1 equipped with the trivial action of G).
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• If η = −1, ǫ = +1, we have the equality ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if

βG
({

xk3 − y2 −
∑K−1

i=1 y2i = ξ
})

= βG
({

xk2 −
∑K

i=1 z
2
i = ξ

})
.

2. Suppose k is odd and ǫ = +1.

• If η = +1, the equality ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) is true if and only if the quantities

βG
({

xk3 + y2 +
∑K−1

i=1 y2i = ξ
})

and βG
({

xk2 +
∑K

i=1 z
2
i = ξ

})
are equal.

• If η = −1, the equality ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) is true if and only if the quantities

βG
({

xk3 − y2 −
∑K−1

i=1 y2i = ξ
})

and βG
({

xk2 −
∑K

i=1 z
2
i = ξ

})
are equal.

Proof. LetM be greater than k. Since the system describing Aξ
M (hk+1) and Aξ

M (rk) is obtained
from the one defining A0

M (hk+1) and A0
M (rk) by replacing 0 by ξ in the right member of the

last equation, we are reduced, as in the proof of proposition 7.11, to consider a single equation.
If k is even, k = 2l, this equation is either Qp,q(c1) = ξ, ǫb2lj +Qp,q(c1) = ξ or an equation

with no solution. Under our current hypothesis, the quantity βG(Y ξ
p,q) is the same for hk+1

and rk. If ǫ = η, we can show, as in the proof of proposition 6.17, using the formulae of lemma
6.15, that βG({hk+1(0, x3, y) = ξ}) = βG({rk(0, x2, y) = ξ}). If ǫ = −η, we also use lemma
6.15 to obtain the desired equivalences.

If k is odd and ǫ = +1, the final equation is either Qp,q(c1) = ξ, b2l+1
j + a21bj = ξ, b2l+1

j +

Qp,q(c1) = ξ or an equation with no solution. The quantity βG(Y ξ
p,q) is the same for hk+1 and

rk and we showed in proposition 7.10 that βG({hk+1(x2, x3, 0) = ξ}) = βG({rk(x1, x2, 0) = ξ}).
Finally, we can obtain formulae similar to the ones in lemma 6.15 for βG({hk+1(0, x3, y) = ξ})
and βG({rk(0, x2, y) = ξ}) if k is odd and this provides the desired equivalences.

7.5 Conclusion

We gather the obtained results in the following statement :

Theorem 7.14. Let k ≥ 3. Suppose that the invariant germs

hk+1 = x22x3 + ǫxk3 + ηx21 +Q and rk = x21x2 + ǫxk2 + η′x23 +Q′

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs −.

1. If

• p ≤ q, η = +1 or q ≤ p, η = −1,

• p = q + 1 or q = p+ 1,

• k is odd, ǫ = −1,

then hk+1 and rk are not G-blow-Nash equivalent.

2. If k is even and if p > q + 1, η = +1, ǫ = +1 or q > p + 1, η = −1, ǫ = −1, then
ZG
hk+1

(u, T ) = ZG
rk
(u, T ) and ZG,ξ

hk+1
(u, T ) = ZG,ξ

rk (u, T ).
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3. • If k is even and if p > q+1, η = +1, ǫ = −1, then ZG
hk+1

(u, T ) = ZG
rk
(u, T ). Further-

more, ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if βG

({
−xk3 + y2 +

∑K−1
i=1 y2i = ξ

})
=

βG
({

−xk2 +
∑K

i=1 z
2
i = ξ

})
.

• If k is even and if q > p + 1, η = −1, ǫ = +1, then ZG
hk+1

(u, T ) = ZG
rk
(u, T ). Fur-

thermore, ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if βG

({
xk3 − y2 −

∑K−1
i=1 y2i = ξ

})
=

βG
({

xk2 −
∑K

i=1 z
2
i = ξ

})
.

• If k is odd and if p > q+1, η = +1, ǫ = +1, then ZG
hk+1

(u, T ) = ZG
rk
(u, T ). Further-

more, ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if βG

({
xk3 + y2 +

∑K−1
i=1 y2i = ξ

})
=

βG
({

xk2 +
∑K

i=1 z
2
i = ξ

})
.

• If k is odd and if q > p+1, η = −1, ǫ = +1, then ZG
hk+1

(u, T ) = ZG
rk
(u, T ). Further-

more, ZG,ξ
hk+1

(u, T ) = ZG,ξ
rk (u, T ) if and only if βG

({
xk3 − y2 −

∑K−1
i=1 y2i = ξ

})
=

βG
({

xk2 −
∑K

i=1 z
2
i = ξ

})
.

Remark 7.15. If we forget the G-actions, the virtual Poincaré polynomials of the algebraic

subsets
{
x2l+1 +

∑K
i=1 y

2
i = ξ

}
and

{
x2l+1 −

∑K
i=1 y

2
i = ξ

}
of R

K+1, ξ = ±1, can also be

computed using the invariance of the virtual Poincaré polynomial under bijection with AS
graph (see remark 6.19).

8 The germs E6 and F4

Finally, we study the classification with respect to G-blow-Nash equivalence of the families

ϕǫ(x) := ±x21 + x32 + ǫx43 +Q

and
ωǫ(x) := ǫx41 + x32 +±x33 +Q′

where ǫ ∈ {−1;+1}.
If two germs ϕǫ and ϕǫ′ are G-blow-Nash equivalent, they have the same quadratic part up

to permutation of the variables x1, x4, . . . , xn and, by [13] Proposition 3.14, ǫ = ǫ′. Furthermore,
we will show in corollary 8.3 below that the germs

ϕǫ,+(x) := +x21 + x32 + ǫx43 +Q and ϕǫ,−(x) := −x21 + x32 + ǫx43 +Q′,

where ǫ ∈ {−1 ;+1} and +x21+Q and −x21+Q′ are the same quadratic part up to permutation
of the variables x1, x4, . . . , xn, are not G-blow-Nash equivalent.

If two germs ωǫ and ωǫ′ are G-blow-Nash equivalent, they also have the same quadratic
part, up to permutation of the variables x3, . . . , xn, and ǫ = ǫ′ as well.
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If now two germs ϕǫ and ωǫ′ are G-blow-Nash equivalent, then ǫ = ǫ′ and ±x21 + Q and
±x23+Q′ are the same quadratic part up to permutation of all variables, so that we will intend
to compare the germs

ϕ(x) = x32 + ǫx43 + ηx21 +Q and ω(x) = x32 + ǫx41 + η′x33 +Q′

where ǫ, η, η′ ∈ {1,−1} and ηx21 +Q = η′x33 +Q′ up to permutation of all variables.

As in the previous two parts, we will consider the respective equivariant zeta functions of
ϕ and ω, along with theorem 4.2, to try to distinguish these invariant germs with respect to
G-blow-Nash equivalence.

We begin with the computation of the first coefficients βG(A2(ϕ)), β
G(A3(ϕ)), β

G(A4(ϕ)) of
the naive equivariant zeta function of ϕ (notice that the set A1(ϕ) is empty so that βG(A1(ϕ)) =
0). Thanks to proposition 6.3, we can focus on the quantities βG(A0

m(ϕ)), m ≤ 4. The
corresponding expressions for ω are similar, in this case equipping the set Yp,q with the trivial
action of G.

Proposition 8.1. Write ϕ = ϕ(x, z, y) = x3+ǫz4+Qp,q(y). We have βG(A0
2(ϕ)) = u4+p+qβG(Yp,q),

βG(A0
3(ϕ)) = u2(p+q)+5βG(Yp,q \ {0}) + u2(p+q)+6

u−1 and βG(A0
4(ϕ)) = u3(p+q)+6βG(Yp,q \ {0}) +

u2(p+q)+6βG({ϕ(0, z, y) = 0}).

Proof. If m ≥ 1, we write an arc γ of Lm as

γ(t) = (a1t+ · · ·+ amtm, b1t+ · · ·+ bmtm, c11t+ · · · + c1mtm, . . . , cp+q
1 t+ · · · + cp+q

m tm)

=




a1
b1
c11
...

cp+q
1




t+ · · ·+




am
bm
c1m
...

cp+q
m




tm =




a1
b1
c1


 t+ · · ·+




am
b1
cm


 tm

(the group G acts only changing the sign of the coordinates c1i , resp. cp+1
i , in the case no1,

resp. no2).
The set A0

2(ϕ) is described by the single equation Qp,q(c1) = 0, the other variables remaining
free. The set A0

3(ϕ) is defined by the system

{
Qp,q(c1) = 0,

a31 +Φp,q(c1, c2) = 0,

and, stratifying with the G-globally invariant subsets {c11 = . . . = ci−1
1 = 0, ci1 6= 0}, i = 1, . . . , p,

and {c11 = . . . = cp1 = 0} = {c1 = 0}, we obtain

βG(A0
3(ϕ)) = u6+2(p−1)+2q+1βG(Yp,q \ {0}) + βG(A0

3(ϕ) ∩ {c1 = 0}).

If c1 = 0, then a1 = 0 and the other variables are free, hence the desired expression.
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Finally, A0
4(ϕ) is described by the system of equations





Qp,q(c1) = 0,

a31 +Φp,q(c1, c2) = 0,

ǫb41 + 3a21a2 +Qp,q(c2) + Φ(c1, c3) = 0.

Equivariantly stratifying A0
4(ϕ) as we did for A0

3(ϕ), we get the equality

βG(A0
4(ϕ)) = u8+3(p−1)+3q+1βG(Yp,q \ {0}) + βG(A0

4(ϕ) ∩ {c1 = 0, a1 = 0}),

the set A0
4(ϕ) ∩ {c1 = 0, a1 = 0} being given by the equation ǫb41 +Qp,q(c2) = 0.

With the same way of computation, we obtain the following expressions for the first terms
of the equivariant zeta functions with signs of ϕ :

Proposition 8.2. We have βG(Aξ
2(ϕ)) = u4+p+qβG(Y ξ

p,q), βG(Aξ
3(ϕ)) = u2(p+q)+5βG(Yp,q \

{0}) + u2(p+q)+6

u−1 and βG(Aξ
4(ϕ)) = u3(p+q)+6βG(Yp,q \ {0}) + u2(p+q)+6βG({ϕ(0, x3, y) = ξ}).

As we did in sections 6.1, 6.2 and 7.1, 7.2, we deduce the following distinctions :

Corollary 8.3. 1. The germs ϕǫ,+ and ϕǫ,− are not G-blow-Nash equivalent.

2. If p ≤ q and η = +1 or q ≤ p and η = −1, then the germs ϕ and ω are not G-blow-Nash
equivalent.

3. If p = q + 1 or q = p+ 1, then ϕ and ω are not G-blow-Nash equivalent.

If p > q + 1 and η = +1 or q > p + 1 and η = −1, the respective quantities βG(Yp,q) and

βG(Y ξ
p,q) are identical for ϕ and ω. Furthermore, notice that, equivariantly, {ϕ(0, x3, y) = 0} =

{f3(x2, y) = 0}, resp. {ϕ(0, x3, y) = ξ} = {f3(x2, y) = ξ}, and {ω(0, x1, y) = 0} = {g2(x1, y) =
0}, resp. {ω(0, x1, y) = ξ} = {g2(x1, y) = ξ}. Therefore, thanks to the computations of
paragraph 6.2, we can state the following :

Proposition 8.4. Suppose that p > q + 1 and η = +1 or q > p+ 1 and η = −1.

1. For m ≤ 4, βG(Am(ϕ)) = βG(Am(ω)).

2. For m ≤ 3, βG(Aξ
m(ϕ)) = βG(Aξ

m(ω)).

3. • If η = ǫ, then βG(Aξ
4(ϕ)) = βG(Aξ

4(ω)).

• If η = +1 and ǫ = −1, then βG(Aξ
4(ϕ)) = βG(Aξ

4(ω)) if and only if the equivari-

ant virtual Poincaré series of the algebraic subsets
{
−x43 + y2 +

∑K−1
i=1 y2i = ξ

}
⊂

R
K+1, K := p − q, equipped with the action of G only changing the sign of y, and{
−x41 +

∑K
i=1 z

2
i = ξ

}
⊂ R

K+1, equipped with the action of G only changing the sign

of x1, are equal.
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• If η = −1 and ǫ = +1, then we have βG(Aξ
4(ϕ)) = βG(Aξ

4(ω)) if and only if

βG
({

x43 − y2 −
∑K−1

i=1 y2i = ξ
})

= βG
({

x41 −
∑K

i=1 z
2
i = ξ

})
.

For these cases, we have then to look at the other coefficients of the equivariant zeta
functions of ϕ and ω. We begin by showing that, under this hypothesis p > q + 1, η = +1 or
q > p+ 1, η = −1, the respective naive equivariant zeta functions of ϕ and ω are equal :

Proposition 8.5. If p > q + 1 and η = +1 or q > p+ 1 and η = −1, then, for all M > 4, we
have βG(AM (ϕ)) = βG(AM (ω)).

Proof. Let M be greater than 4, we prove that βG(A0
M (ϕ)) = βG(A0

M (ω)). If we consider
the system defining the two latter sets, the same computations as in proposition 8.1 provide
an equal (under our current hypothesis) contribution of βG(Yp,q \ {0}) and we are reduced to
consider a system whose first condition is a1 = 0 and next equation is (after a shift of indices)
ǫb41 +Qp,q(c1) = 0. This equation induces equal contributions for βG(A0

M (ϕ)) and βG(A0
M (ω))

as well (recall that {ϕ(0, x3, y) = 0} = {f3(x2, y) = 0} and {ω(0, x1, y) = 0} = {g2(x1, y) = 0}).
We then stratify with respect to the coordinates of c1 as we did in the proofs of propositions

6.20 and 7.11, and we obtain the further condition b1 = 0. The first subsequent equations
become, if M ≥ 8,





a32 +Qp,q(c1) = 0,

3a22a3 +Φp,q(c1, c2) = 0,

ǫb42 + 3a2a
2
3 + 3a22a4 +Qp,q(c2) + Φ(c1, c3) = 0.

Another stratification with respect to the vector c1 provides an equal (by lemma 7.12)
contribution of βG({ϕ(x2, 0, y) = 0}) = βG({h4(0, x3, y) = 0}), respectively βG({ω(x2, 0, y) =
0}) = βG({r3(0, x2, y) = 0}), and the condition a2 = 0.

Carrying on with the computation, we obtain the equivalence βG(A0
M (ϕ)) = βG(A0

M (ω)) if
and only if βG({ϕ = 0}) = βG({ω = 0}), from the equations of the form ǫb4j +a3j′ +Qp,q(c1) = 0

with 4j = 3j′. We prove in lemma 8.6 below that βG({ϕ = 0}) = βG({ω = 0}).

Lemma 8.6. Suppose that p > q + 1 and η = +1 or q > p+ 1 and η = −1. Then

βG({ϕ = 0}) = βG({ω = 0}).

Proof. Suppose that p > q+1 and η = +1. Considering an equivariant resolution of singularities
of the G-algebraic set {ω = 0}, we will compare the quantities βG({ω = 0}) and βG({ϕ = 0}).

Write ω(x) = x3+ ǫz4+Qp,q(y) (the group G acts via the involution (x, z, y) 7→ (x,−z, y)).
Using an equivariant change of coordinates as in the proof of proposition 5.1, we can assume
q = 0. We then equivariantly blow-up the G-algebraic set {ω = 0} at the origin of Rn :

• in the chart x = u, z = uv, yi = uwi, with G-action (u, v, wi) 7→ (u,−v,wi), the equation
of the blown-up variety is

u2[u+ ǫu2v4 +Qp,q(w)] = 0,
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• in the chart x = vu, z = v, yi = vwi, with G-action (u, v, wi) 7→ (−u,−v,−wi), it is

v2[vu3 + ǫv2 +Qp,q(w)] = 0,

• in the respective charts x = wju, z = wjv, yj = wj , yi = wjwi for i 6= j, with G-action
(u, v, wi) 7→ (u, v, wi), it is

w2
j [wju

3 + ǫw2
j v

4 + 1 +Q(ŵ)] = 0.

The set of points of the strict transform of {ω = 0} which are in the first chart but not in
the second one is given by v = 0, u + Qp,q(w) = 0, therefore it is equivariantly isomorphic to
an affine space : the respective induced contributions for βG({ω = 0}) and βG({ϕ = 0}) are
equal. Now, the set of points of the strict transform which are in one of the last charts but not
in the second and the first ones is given by v = 0, u = 0, 1 + Q(ŵ) = 0 : it is the empty set
(q = 0).

Furthermore, notice that the intersection of the strict transform of {ω = 0} with the ex-
ceptional divisor is a circle with a nonempty fixed point set.

Consequently, we are reduced to consider the equivariant virtual Poincaré series of the al-
gebraic set of Rn defined by the equation zx3 + ǫz2 + Qp,q(y) = 0, G acting via (x, z, y) 7→
(−x,−z,−y) (for ϕ, the involution would have been (x, z, y1, yi) 7→ (x, z,−y1, yi)). We equiv-
ariantly blow-up this G-algebraic set at the origin of Rn as well :

• in the chart x = u, z = uv,yi = uwi, with G-action (u, v, wi) 7→ (−u, v, wi), the equation
of the blown-up variety is

u2[vu2 + ǫv2 +Qp,q(w)] = 0,

• in the chart x = vu, z = v, yi = vwi, with G-action (u, v, wi) 7→ (u,−v,wi), it is

v2[v2u3 + ǫ+Qp,q(w)] = 0,

• in the respective charts x = wju, z = wjv, yj = wj , yi = wjwi for i 6= j, with G-action
(u, v, wj , wi) 7→ (u, v,−wj , wi), it is

w2
j [vw

2
ju

3 + ǫv2 + 1 +Q(ŵ)] = 0.

The set of points of the strict transform which are in the second chart but not in the first
one is given by u = 0, ǫ+Qp,q(w) = 0 : it is the cartesian product of an affine line and the set
Y −ǫ
p,q , and therefore it induces an equal contribution for βG({ω = 0}) and βG({ϕ = 0}) under

our current hypothesis. As for the set of points of the strict transform which are in one of the
last charts but not in the first and the second ones, it is given by u = 0, v = 0, 1 +Q(ŵ) = 0,
thus it is empty.

On the other hand, the intersection of the strict transform with the exceptional divisor
provides equal contributions for βG({ω = 0}) and βG({ϕ = 0}) as well.
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As a consequence, we can focus on the equation zx2 + ǫz2 +Qp,q(y) = 0 in R
n, the group

G acting via (x, z, y) 7→ (−x, z, y) for ω (respectively via (x, z, y1, yi) 7→ (x, z,−y1, yi) for ϕ).
We equivariantly blow-up once again :

• in the chart x = u, z = uv,yi = uwi, with G-action (u, v, wi) 7→ (−u,−v,−wi), the
equation of the blown-up variety is

u2[uv + ǫv2 +Qp,q(w)] = 0,

• in the chart x = vu, z = v, yi = vwi, with G-action (u, v, wi) 7→ (−u, v, wi), it is

v2[vu2 + ǫ+Qp,q(w)] = 0,

• in the respective charts x = wju, z = wjv, yj = wj , yi = wjwi for i 6= j, with G-action
(u, v, wi) 7→ (−u, v, wi), it is

w2
j [vwju

2 + ǫv2 + 1 +Q(ŵ)] = 0.

By similar arguments as above, we are reduced to consider the equation uv+ǫv2+Qp,q(w) =
0. We can then stratify with respect to v and show that the induced respective contributions
for βG({ϕ = 0}) and βG({ω = 0}) are also the same. This finally proves the equality βG({ϕ =
0}) = βG({ω = 0}).

Similarly to what we did in the proofs of propositions 6.21 and 7.13, we can adapt the proof
of proposition 8.5 in order to state a sufficient and necessary condition for the equality of the
respective equivariant zeta functions with signs of ϕ and ω to be true :

Proposition 8.7. 1. Suppose p > q + 1 and η = +1. Then ZG,ξ
ϕ (u, T ) = ZG,ξ

ω (u, T ) if and
only if we have the equalities

• βG({x32 + y2 +
∑K−1

i=1 y2i = ξ}) = βG({x32 +
∑K

i=1 z
2
i = ξ}),

• βG({ǫx43 + y2 +
∑K−1

i=1 y2i = ξ}) = βG({ǫx41 +
∑K

i=1 z
2
i = ξ}),

• and βG({x32 + ǫx43 + y2 +
∑K−1

i=1 y2i = ξ}) = βG({x32 + ǫx41 +
∑K

i=1 z
2
i = ξ}),

where, in the left members of the equalities, the considered sets are algebraic subsets of
R
K+2 equipped with the action of G only changing the sign of y, and, in the right members,

the sets are subsets of RK+2 equipped with the action of G only changing the sign of x1.

2. Suppose q > p+ 1 and η = −1. Then ZG,ξ
ϕ (u, T ) = ZG,ξ

ω (u, T ) if and only if we have the
equalities

• βG({x32 − y2 −
∑K−1

i=1 y2i = ξ}) = βG({x32 −
∑K

i=1 z
2
i = ξ}),

• βG({ǫx43 − y2 −
∑K−1

i=1 y2i = ξ}) = βG({ǫx41 −
∑K

i=1 z
2
i = ξ}),

• and βG({x32 + ǫx43 − y2 −
∑K−1

i=1 y2i = ξ}) = βG({x32 + ǫx41 −
∑K

i=1 z
2
i = ξ}).
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Remark 8.8. As we showed in the proof of proposition 6.17, we have βG({+x43+y2+
∑K−1

i=1 y2i =

ξ}) = βG({+x41+
∑K

i=1 z
2
i = ξ}) and βG({−x43−y2−

∑K−1
i=1 y2i = ξ}) = βG({−x41−

∑K
i=1 z

2
i = ξ})

for ξ = ±1.

We finally gather the results of this section in one theorem :

Theorem 8.9. Suppose that the invariant germs

ϕ(x) = x32 + ǫx43 + ηx21 +Q and ω(x) = x32 + ǫx41 + η′x33 +Q′

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs −.

1. If

• p ≤ q, η = +1 or q ≤ p, η = −1,

• p = q + 1 or q = p+ 1,

then ϕ and ω are not G-blow-Nash equivalent.

2. • If p > q + 1, η = +1, then ZG
ϕ (u, T ) = ZG

ω (u, T ). Furthermore, ZG,ξ
ϕ (u, T ) =

ZG,ξ
ω (u, T ) if and only if βG({x32 + y2 +

∑K−1
i=1 y2i = ξ}) = βG({x32 +

∑K
i=1 z

2
i = ξ}),

βG({ǫx43+ y2+
∑K−1

i=1 y2i = ξ}) = βG({ǫx41+
∑K

i=1 z
2
i = ξ}) and βG({x32+ ǫx43+ y2+∑K−1

i=1 y2i = ξ}) = βG({x32 + ǫx41 +
∑K

i=1 z
2
i = ξ}).

• If q > p + 1, η = −1, then ZG
ϕ (u, T ) = ZG

ω (u, T ). Furthermore, ZG,ξ
ϕ (u, T ) =

ZG,ξ
ω (u, T ) if and only if βG({x32 − y2 −

∑K−1
i=1 y2i = ξ}) = βG({x32 −

∑K
i=1 z

2
i = ξ}),

βG({ǫx43− y2−
∑K−1

i=1 y2i = ξ}) = βG({ǫx41−
∑K

i=1 z
2
i = ξ}) and βG({x32+ ǫx43− y2−∑K−1

i=1 y2i = ξ}) = βG({x32 + ǫx41 −
∑K

i=1 z
2
i = ξ}).

Remark 8.10. Forgetting the G-action, the respective virtual Poincaré polynomials of the al-
gebraic subsets {x3 + ǫz4 +

∑K
i=1 y

2
i = ξ} and {x3 + ǫz4 −

∑K
i=1 y

2
i = ξ}, ǫ = ±1, ξ = ±1, of

R
K+1 can be computed using the invariance of the virtual Poincaré polynomial under bijection

with AS graph (see also remarks 6.19 and 7.15). If the equivariant virtual Poincaré series was
shown to be an invariant under equivariant AS bijection, it should be possible to compute the
above considered quantities.
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