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On the equivariant blow-Nash classification of simple invariant
Nash germs

Fabien Priziac

Abstract

We make progress towards the classification of simple Nash germs invariant under the
involution changing the sign of the first coordinate, with respect to equivariant blow-Nash
equivalence, which is an equivariant Nash version of blow-analytic equivalence, taking ad-
vantage of invariants for this relation, the equivariant zeta functions.

1 Introduction

The classification of real analytic germs requires to choose carefully the used equivalence rela-
tion. One may think about the (right) C'-equivalence. However, it is too strong, as illustrated
by the example of the Whitney family fi(z,y) = zy(y — x)(y — tz), t > 1 (f; and fy are
Cl-equivalent if and only if ¢ = '), while the topological equivalence is too rough. In [18],
T.-C. Kuo suggested an equivalence relation for which Whitney family has only one equivalence
class : the blow-analytic equivalence. More generally, any analytically parametrized family of
isolated singularities has a locally finite classification with respect to blow-analytic equivalence.

Two real analytic germs are said blow-analytically equivalent if, roughly speaking, they
become analytically equivalent after compositions with real modifications, e.g. compositions
of blowings-up along smooth centers. From the definition of this equivalence relation, further
studies on real analytic germs were stimulated. In particular, invariants have been constructed
for blow-analytic equivalence, like the Fukui invariants ([15]) as well as the zeta functions of
S. Koike and A. Parusinski ([17]), inspired by the motivic zeta functions of J. Denef and F.
Loeser ([8]), using the Euler characteristic with compact supports as a motivic measure.

A refinement of blow-analytic equivalence has been defined for Nash germs, that is germs
of real analytic functions with a semialgebraic graph, by G. Fichou in [10] : the blow-Nash
equivalence, that is Nash equivalence after compositions with Nash modifications. The involved
algebraicity allowed him to use the virtual Poincaré polynomial ([21] and [9]), which is an
additive and multiplicative invariant on AS sets ([19] and [20]) encoding more information
than the Euler characteristic with compact supports, in order to define new zeta functions,
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invariant for the blow-Nash equivalence of Nash germs. Recently, J.-B. Campesato gave in
[6] an equivalent alternative definition of blow-Nash equivalence as arc-analytic equivalence,
proving that the blow-Nash equivalence of [10] was indeed an equivalence relation, and defined
a more general invariant for it, the motivic local zeta function.

In [13], G. Fichou used his zeta functions of [10] to classify the simple Nash germs (a germ is
called simple if sufficiently small perturbations provide only finitely many analytic classes) with
respect to blow-Nash equivalence. He showed that this classification actually coincides with
the real analytic one, that is the AD E-classification of [2]. An analog result for blow-analytic
equivalence is not known.

In this paper, we are interested in real analytic germs invariant under right composition
with the action of the group G' = Z/27Z only changing the sign of the first coordinate (that
we will simply call invariant germs). In [23], we defined the equivariant blow-Nash equivalence
for invariant Nash germs, which is, roughly speaking, an equivariant Nash equivalence after
compositions with equivariant Nash modifications. Using the equivariant virtual Poincaré
series ([14]), which is an additive invariant on G-AS sets, as a motivic measure, we constructed
“equivariant” zeta functions which are invariants for the equivariant blow-Nash equivalence.

Similarly to the non-equivariant frame, we ask if the equivariant blow-Nash classification
of invariant Nash germs could coincide with the equivariant Nash classification for sufficiently
“tame” invariant singularities. The equivariant analytic classification of simple invariant real
analytic germs has been established by V. I. Arnold in [1] and recalled in [16] by V. V. Goryunov.
The representatives for this classification are the invariant singularities Ag, By, Ck, Dy, Eg,
E;, Eg and Fy (see theorem 2.1 below). We will first show that a simple invariant Nash germ is
G-blow-Nash equivalent (and even G-Nash equivalent) to one of these germs. The largest part
of our study will then consist in trying to distinguish, with respect to G-blow-Nash equivalence,
the invariant ABC D E F-singularities, using notably the equivariant zeta functions.

For some cases, we will be faced with either the equality of the respective equivariant zeta
functions of a couple of germs or the fact that they are equal if and only if the respective
equivariant virtual Poincaré series of specific sets are equal. The former situation is in par-
ticular due to the fact that the equivariant virtual Poincaré series can not distinguish two
different algebraic actions on a same sphere as soon as there is at least one fixed point. As
for the latter situation, we do not know if the invariance of the virtual Poincaré polynomial
under bijection with AS graph (see [22]) “generalizes” to an invariance of the equivariant
virtual Poincaré series under equivariant bijection with AS graph. If this was proven to be
true, it should allow to compute all the coefficients of the considered equivariant zeta functions.

The next section is devoted to the equivariant Nash classification of simple invariant Nash
germs : we prove that it coincides with the equivariant real analytic classification of [1] and
[16]. Indeed, two invariant Nash germs are equivariantly Nash equivalent if and only if they are
equivariantly analytically equivalent (proposition 2.3). This can be deduced from an equivariant
Nash approximation theorem of E. Bierstone and P. Milman in [4].

In section 3, we justify the fact that a germ G-Nash equivalent to a germ of the list
ABCDEF is in particular G-blow-Nash equivalent to it. On the other hand, one can no-
tice that, forgetting the G-action, the invariant singularities Ay and By, resp. Cy and Dy, Ejg
and Fy, are both A-, resp. D-, F-, singularities. Since equivariant blow-Nash equivalence is



a particular case of blow-Nash equivalence and because the AD E-singularities are not blow-
Nash equivalent to one another ([13]), we are reduced to compare, with respect to G-blow-Nash
equivalence, the invariant germs of the families A; and By, resp. Ci and Dy, Fg and Fy.

The section 4 recalls the definition of the tools we are going to use to do so : the equivariant
zeta functions. Each of the sections 6, 7 and 8 is devoted to the comparison of the invariant
germs of a specific couple of families (A and By, Cy and Dy, and finally Eg and Fy). We proceed
as follows. We begin by computing the first coefficients of the equivariant zeta functions (that
is the coefficients of degree strictly smaller than the degree of the germs) in order to extract first
cases of non-G-blow-Nash equivalence. Reducing our study to the remaining cases, we then
compute the coefficient of degree equal to the degree of the germs. Finally, for the cases for
which it is not sufficient, we compare the last terms of the respective equivariant zeta functions.

These comparisons lead to interesting examples of computations of equivariant virtual
Poincaré series. The first one, to which is devoted section 5, is the computation of the
equivariant virtual Poincaré series of the fibers over 0, —1 and +1 of the quadratic forms
Qpq(y) =31y - ;1»:1 y12)+j’ equipped with four different actions of G.

Acknowledgements. The author wishes to thank J.-B. Campesato, G. Fichou, T. Fukui,
A. Parusinski, G. Rond and M. Shiota for useful discussions and comments.

2 Equivariant Nash classification of invariant simple Nash germs

Consider the affine space R™ with coordinates (z1,...,2,). We denote by s the involution of
R"™ changing the sign of the first coordinate x :
Rn

(x1,22,...,Tp)

— R"™
= (—z1,22,...,Ty)
This equips R™ with a linear action of the group G = {idgn, s}.

In this paper, a function germ f : (R",0) — (R,0) will be said invariant if f is invariant
under right composition with s, that is if f is the germ of an equivariant function (we equip R
with the trivial action of G).

In [1] and [16] is given the classification of invariant simple real analytic germs (R",0) —
(R,0) with respect to equivariant analytic equivalence, that is right equivalence via an equiv-
ariant analytic diffeomorphism (R™,0) — (R",0) :

Theorem 2.1 ([1], [16]). An invariant simple real analytic function germ (R™,0) — (R,0) is
equivariantly analytically equivalent to one and only one invariant germ of the following list :

Ak,kzzO::I:x%:I:ngrl—i—Q, Ee: £22 + 23 + 23+ Q,
By, k > 2: +22F £ 22 + Q, B 2% + 23 + zox3 + Q,
Cr, k>3 : 22z £ 25 + Q, Es: +2? + 23 + 23+ Q,

Dk,k24:ix%+x§x3im§*1+Q, Fy:+at+ 234+ Q,

where Q = +x2 + - + 22 with s = 4 for singularities Dy and Ey, and s = 3 in the other
cases.



Remark 2.2. If we forget the action of the involution s on R™, notice that the families Ay and
By, resp. Cy and Dy, Eg and Fy, FEr, Eg, of Theorem 2.1 are singularities A, resp. D, Eg, Er,
Es.

In this paper, we are interested in the classification of invariant Nash germs (R",0) — (R, 0),
that is germs of equivariant analytic functions with semialgebraic graph. Recall (see for instance
[5] Corollary 8.1.6) that a Nash germ can be considered as an algebraic power series, via
its Taylor series. The above classification is also valid for invariant simple Nash germs with
respect to equivariant Nash equivalence, that is right equivalence via an equivariant Nash
diffeomorphism (R™,0) — (R™,0), according to the following proposition :

Proposition 2.3. Let f,h: (R™,0) — (R,0) be two invariant Nash germs. Then f and h are
equivariantly Nash equivalent if and only if they are equivariantly analytically equivalent.

This property is a particular case of the following result :

Theorem 2.4. Let G be a reductive algebraic group acting linearly on R™ and RP. Consider
two equivariant Nash germs f : (R™,0) — (RP,0) and h : (R",0) — (RP,0). If f and h are
equivariantly analytically equivalent, then they are equivariantly Nash equivalent.

Remark 2.5. e Since a Nash diffeomorphism is in particular analytic, the converse is obvi-
ously true.

e Any finite group is reductive.

Proof (of Theorem 2.4). Suppose there exists an equivariant analytic diffeomorphism ¢ : (R™,0)
(R™,0) such that f o ¢ = h. Denote F(x,y) := f(y) — h(z) for 2,5 € R™. Then F : (R?" 0) —
(RP,0) is a Nash germ and can be considered as an algebraic power series in Ry ([, y]]?, and
¢(z) as an equivariant convergent power series in R{x,y} such that F(z,¢(z)) = 0.
Therefore, by Theorem A of [4] and Example 11.3 of [25], we can approximate ¢(z) by an
equivariant algebraic power series ¢(z) such that F'(x, ¢(z)) = 0, and we do the approximation
closely enough so that ¢(z) remains a diffeomorphism. As a consequence, ¢ : (R",0) — (R",0)
is an equivariant Nash diffeomorphism such that f o ¢ = h. U

Remark 2.6. Actually, Theorem A of [4] is about approximation of equivariant formal solutions
of polynomial equations by equivariant algebraic power series but it is also true for algebraic
power series equations. Indeed, following G. Rond’s ideas, it is possible to reduce to the case
of polynomial equations as in [3] Lemma 5.2 and [7] Reduction (2) of the proof of Theorem
1.1, using arguments of the proof of Lemma 8.1 in [24], along with the fact that the morphism
Rz, Y] (z,y) = Raygll,y]] is faithfully flat by [5] Corollary 8.7.16.

3 Equivariant blow-Nash equivalence

Now, we want to study the classification of invariant simple Nash germs with respect to G-
blow-Nash equivalence via an equivariant blow-Nash isomorphism : see [23] for the definition
of G-blow-Nash equivalence via an equivariant blow-Nash isomorphism.

First, we have the following :



Proposition 3.1. An invariant simple Nash germ (R™,0) — (R,0) is G-blow-Nash equivalent
via an equivariant blow-Nash isomorphism to an invariant germ of the list of Theorem 2.1.

Proof. This comes from the fact that if f and h are equivariantly Nash equivalent invariant
Nash germs (R™,0) — (R,0), then they are G-blow-Nash equivalent via an equivariant blow-
Nash isomorphism.

Indeed, if £71(0), resp. h~!(0), has only one irreducible component at 0 € R", this is
straightforward. If not, we perform a composition o : (Mf,aj?l(O)) — (R™,0), resp. oy, :
(Mp,, 03,1(0)) — (R",0), of successive equivariant blowings-up along G-invariant smooth Nash
centers such that

e the irreducible components of the strict transform of f~'(0) by oy, resp. of h=1(0) by
oy, do not intersect,

e fooysand jac oy, resp. hooyp and jac oy, have only normal crossings simultaneously,

e there exists a finite collection of G-invariant affine charts for oy, resp. for oy, such that,
on each of these charts, the action of G is of the form

(1‘1,1‘2, . ,.%'n) —> (61.%'1, €29, ... ,enxn),

where €¢; € {£1} (so that the action of G on My, resp. on M, can be locally linearized
on the normal crossings, in the sense of [23]),

e after each blowing-up, f and h remain equivariantly Nash equivalent.

O

The second step will then consist in understanding the relations, with respect to G-blow-
Nash equivalence via an equivariant blow-Nash isomorphism, between the invariant Nash germs
of the list of Theorem 2.1.

Equivariant blow-Nash equivalence (resp. equivariant blow-Nash equivalence via an equiv-
ariant blow-Nash isomorphism) is a particular case of the blow-Nash equivalence (resp. blow-
Nash equivalence via a blow-Nash isomorphism) defined in [10]. In [13], Fichou proved that
the classification of simple Nash germs (R™,0) — (R, 0) with respect to blow-Nash equivalence
via a blow-Nash isomorphism is the same as Arnold’s AD E-classification of real analytic germs
with respect to right analytic equivalence.

As a consequence, the A, D, E-singularities, belonging to different blow-Nash classes, cannot
be G-blow-Nash-equivalent via an equivariant blow-Nash isomorphism either. We are then
reduced to try to distinguish the invariant germs of the families Ay and By, resp. Cy and Dy,
Eg and Fjy.

For this purpose, we will use the equivariant zeta functions defined in [23], which are
invariants for equivariant blow-Nash equivalence via an equivariant blow-Nash isomorphism.



4 Equivariant zeta functions

Let f: (R",0) — (R,0) be an invariant Nash germ. We recall the definition given in [23] of
the equivariant zeta functions of f.

Denote £ := {7 : (R,0) — (R™,0) | v(t) = a1t + ast® + ...,a; € R"} the space of formal
arcs at the origin of R”. The action of G on R" induces naturally an action of G on L, by left
composition with s. For m € N\ {0}, the space

Ly = {7:(R,0) = (R",0) | y(t) = a1t + agt® + ... + amt™}

of arcs truncated at order m -+ 1 is globally stable under this action, as well as the spaces
An(f) ={v€Lm | for) =™ +...,c#0},

AL(f) = {7 € L | For(t) =+ 4.} and Ap(f) = {y € L | for(t) = —t" +...}.

These latter sets are Zariski constructible sets equipped with an algebraic action of G and
we define

2§ (u,T) =Y B (Am(f)u™""T™ € Zlu][[u"[[T]]

m>1

and

Z5F(u,T) =Y BOAL(FH)u=™T™ € Z[u)[[u"]][[T]),

m>1

respectively the naive equivariant zeta function and the equivariant zeta functions with sign
of f.

Here, 39(-) denotes the equivariant virtual Poincaré series on G-AS sets of [14] : it is an
additive invariant with respect to equivariant isomorphisms, with values in Z[[u]], such that,
if X is a compact nonsingular G-AS set, 8%(X) = Y., dimz, H;(X; G) u’, where H.(X;G)
denotes the equivariant Borel-Moore homology of X with coefficients in Zg defined in [26].

Remark 4.1. e By an isomorphism between arc-symmetric sets is meant a birational map

containing the arc-symmetric sets in its support.

e The equivariant virtual Pomcare series of a point is —*5, the equivariant virtual Poincaré
series of two fixed points is 2% and the equivariant virtual Poincaré series of two points
exchanged by G is 1 : see [14] Example 3.12.

e If S? denotes the unit sphere in R? then

BG(Sd) _ 14+ u+...+u?if G acts via the central symmetry of RY,
e tut..+ u? if G acts with a fixed point

(see [14] Example 3.12).

o If R? is equipped with any algebraic action of G, then S&(R?) = % : see [14] Example

3.12.



o If X is a G-AS set and if the affine space R? is equipped with any algebraic action of G,
then % (X x RY) = u?B%(X) (the product X x R is equipped with the diagonal action
of G) : see [14] Proposition 3.13.

o If X is a G-AS set and if the affine line R is equipped with an algebraic action of G
stabilizing 0, then 8% (X x (R*)?) = (u — 1)?8%(X) : see [23] Lemma 3.9.

o If X is a G-AS, then the coefficients of the negative powers of u in ﬁG(X ) are all equal
to D iso B;(X%), where X© is the fixed point set of X and S3;(-) denotes the it" virtual
Betti number ([21]) : see [14] Proposition 4.5.

Theorem 4.2 (Theorem 4.1 of [23]). Let f,h : (R",0) — (R,0) be two invariant Nash
germs. If f and h are G-blow-Nash equivalent via an equivariant blow-Nash isomorphism,
then Z?(u,T) = Z%(u,T) and Z?’i(u,T) = Zf’i(u,T).

Remark 4.3. In the rest of the paper, we will simply talk about equivariant blow-Nash equiva-
lence to refer to equivariant blow-Nash equivalence via an equivariant blow-Nash isomorphism.

In the next parts of the paper, we are then going to use the equivariant zeta functions in
order to try to distinguish the families Ay and By, resp. C; and Dy, Eg and Fy, with respect
to G-blow-Nash equivalence. More precisely, we will show that, in some cases, some terms of
the respective equivariant zeta functions of the considered germs are different.

On the other hand, we will prove that, in some other cases, the equivariant zeta functions
are equal.

Before this, in the following section, we compute equivariant virtual Poincaré series associ-

ated to the quadratic form
P q
N 2 2
@pq(y) == Zyz - Zyp—i-j’
i=1 j=1

where p,q € N, (y1,...,Ypt+q) € RPTL. More precisely, we compute the equivariant virtual
Poincaré series of the algebraic sets

Ypg:={Qpq =0} and Y};g,q i=A{@pq =&},
for £ = £1, in the cases where the action of G on RP™4 is given by
Lo Ups Uptts -3 Ypta) 7 (ZUL - Ups Upt L -+ Uptg)
2. (W1 Ups Ypt 1o 5 Ypta) = (YLs 5 Yps —Ypt1s- -+ YUpt)
3o (Yo s Ups Upt1s -5 Uptg) = (ZYLse ooy —Yps —Upt1s- -+ s —Yptg)s

4. or (yla---aypayp+17---7yp+q) = (yla---7yp7yp+17---7yp+q)'

This will reveal useful in the comparisons of the equivariant zeta functions.



5 Computation of 5(Y,,) and 5%(Y},)

Suppose that p < q. We have the following result :
Proposition 5.1. 1. If0 < p < gq, then

uPTd—qd4P—1

G _ -1
B7 (Yp,q) = {up+quuq+up+1

u—1

in the case n°l1,

in the three other cases.
2. If p=q#0, then

u—1
u2P — P 4P t1

2p_ Py P—1 .
{% in the cases n°1 and n°2
u—1

in the two other cases.

3. If p=0, then
U

ﬁG(Yp,q) -

Remark 5.2. If ¢ < p, just exchange the roles of p and g along with the actions of the cases n°1
and n°2

u—1"

Proof (of Proposition 5.1). If p =0, then Y, ; = {0} and 8%(Y, ) = -%; by remark 4.1.

If 0 < p < g, as in [12] Proof of Proposition 2.1 and [13] Proof of Lemma 3.1, we apply the
equivariant change of variables u; = y; + Yitp, vi = Yi — Yitp for ¢ = 2,...,p and the equation
Qp,q = 0 becomes

p p+q
2 2 E : E : 2
Y1~ Yp+1 + WiV — y] = 07
1=2 ]:2p+1

the action of G on the new coordinates u;, v; being trivial in the cases n°l, n°2 and n°4, and
changing their signs in the case n° 3.
As in [12] and [13], we write, by additivity of the equivariant virtual Poincaré series,
ﬂG(Y;M]) = /BG(Y;LQ N{ug # 0}) + ﬁG(Yp,q N{uz = 0}).
Because, if us # 0, the coordinate vy is determined via an equivariant isomorphism by wus
and the other variables which are free, we have 8% (Y, , N {uz # 0}) = BY(R* x RPT472) =
(u— 1)”?_(117 * (see remark 4.1). Furthermore, the equation describing Yp.q N {ug =0} is

p p+q
2 2 2
=Yg+ D wvi— Y =0
i=3 j=2p+1

(notice that the variable vy is then free) and, by an induction, we obtain

p p+q

G 1—i —1 G
B7(Ypq) = Zup+q+ B _yp+1 Z yj =0
1=2 Jj=2p+1
-1 p+q
=1 —1,G
= 't w—1 +u’mp _yp+1 Z y]—O
Jj=2p+1



Now, in order to compute 3¢ <{y% — 912;4—1 - Z?igpﬂ y]2 = O}), we equivariantly blow up

the latter algebraic set at the origin of R97P*2 : in the chart y; = w, y; = wz, i =p+ 1,2p +
1,...,p+ g, the blown-up variety is defined by

pt+q
2 2 2] _
w? | 1—254 — g zi | =0,
J=2p+1

the action of G being given by

o (W, Zpt1,22p41s- -5 Zptq) > (—W, —2p41, —22p+1,- - - » —Zptq) il the case n°1,

® (W, Zpt1s22p41s- -5 Zptq) > (W, —Zp11, 22p415 - - - Zptq) i the case n°2,

® (W, Zps1s22p11s- -5 Zptq) = (—W, Zpt1, 22p415 - -+, Zptq) i the case n® 3,

® (W, Zpt1, 22415+ 2ptq) = (W, Zpt1, 22p41, - - - » Zptq) ID the case n°4.
We have

p+q p+q
G 2 2 2 _ _ ;G 2 2 _ _
B Y1 = Ypt+1 — E y; =0 \ {0} = 0 L=z, — E z; =0 \ {w =0}
j=2p+1 J=2p+1

= BY(R* x ST7P)
(uw—1)B%(57P)
Finally, since the action of G on the sphere S977 is the central symmetry in the case n°1

and admits a fixed point in the three other cases, we have

wd—pP+l_1 . °
ﬁG(Sq_p) _ {71;—1 in the case n°1,

q—p+1 .
w4% in the three other cases

(see remark 4.1). Using the additivity relation

p+q pt+q
BNl —vpi— D ui =0\ {0} | =89 (vi—vpi— D>, vi=0p|—-8°{0})
j=2p+1 j=2p+1

and the equality 3% ({0}) = we obtain the desired result.

u
u—1’
If p=¢qeN\{0;1}, we do as before in order to obtain the equality

—1
G v -1
Y, ) = uP

B (Ypq) = u u—1

(notice that the quantity 8% ({y? — Y2, = 0}) is the same in the cases n°1 and n°2). Now,

+uP1p¢ ({y% - yﬁﬂ = O})

as above, we equivariantly blow up at the origin of R? and look in the chart y; = uq, Yp+1 =
u1Vp41 ¢ the blown-up variety is given by the equation

ui(l - U§+1) =0

and the action of G is given by



o (u1,vVpy1) — (—u1, —vpy1) in the case n°1,
o (u1,vpt1) — (u1, —vp41) in the case n°2,
o (u1,vpy1) — (—u1,vpq1) in the case n°3,
o (u1,vpy1) — (u1,vpt1) in the case n°4.

As a consequence,

1 in the cases n°1 and n°2,

2% in the two other cases

BE{1 =gy = 0}) = {
(see remark 4.1) and we obtain the desired result.

If p =g = 1, we have ﬁG(Yp,q) = B¢ ({y% —y12)+1 = O}) and we can use the previous
computation. ]

This proposition can be used to compute the quantities BG(Y}ﬁq). Indeed :

Proposition 5.3. We have

1

5(;(1/;;;1) = w—_1 (ﬁG(Y}LqH) - ﬁG(Yp,q))

and
1

BYY, ) = (B (Yps1,g) — B9 (Yp0))

u—1

Remark 5.4. We have the same equalities if ¢ < p.

Proof (of Proposition 5.3). We show the first equality, the proof of the second one being similar.
Denote Z, 4 the projective algebraic set

P q
Vi Yo € PPRUR) Y Y2 - V2 =0
i=1 j=1

As in [11] Proof of Corollary 2.5, we can equivariantly compactify Ypfql into the projec-
tive algebraic set Z, ;1 1, the part at infinity being equivariantly isomorphic to Z, , (we equip
PPT4(R) and PPT9~1(R) with the actions of G naturally induced from the considered action on
the variables of RPTY).

Now, we compute 3%(Z,,), using, as in [11] Proof of Proposition 2.1, the fact that the
projection

p: -
’ (yla---ayp-i-q) — [913---:yp+q]

10



is a piecewise algebraically trivial fibration, compatible with the respective considered actions
of G. More precisely, we can cover Z,, by the globally G-invariant open subvarieties

Up=2,,n{Y; #0},i € {1,...,p+q},
and, for each i € {1,...,p+ ¢}, we can define the isomorphism

p N Ui) =Y {yi #0} — U; x R*

P Ui W) (e Y )

For ¢ € {1,...,p + q}, if the sign of the coordinate y; is changed under the action of G, we
equip R* with the action of G given by the involution z — —z. If y; remains unchanged under
the action of G, we equip R* with the trivial action of G. Furthermore equipping the product
U; x R* with the diagonal action, this makes the isomorphism ¢; equivariant.

By the additivity of the equivariant virtual Poincaré series, the quantity 3% (Y}, \ {0}) can
be written as the alternated sum of the terms

> ﬁG<p1<ﬂ Um>>,1§7“§p+q,
JA{1,....,p+q}, Card(J)=r meJ

and, via the equivariant isomorphisms ¢;, we have

()= () =) e (ne)

As a consequence, once again thanks to the additivity of the equivariant virtual Poincaré series,

BY (Yp.q \ 10}) = (u— 1)8%(Zp).

Therefore,

5(;(1/;;;1) = 5G(Zp,q+1)_ﬁG(Zp7q)
= (Vg \ {0}) = BE (Y, 0\ {O])

u—1
1

= =g (B90ar) = 890%0))

6 The germs A; and By

In this section, we want to study the relations with respect to G-blow-Nash equivalence between
the invariant germs of the families

() = +2t + gk +Q and g (z) = et + 23+ Q,
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where €, € {—1;+1}.

First, if any two invariant Nash germs are G-blow-Nash equivalent, they are in particular
blow-Nash equivalent and then, according to [11] Theorem 2.5, they have the same corank and
index.

Therefore, if two germs f;* and f;' are G-blow-Nash equivalent, they have the same

quadratic part up to permutation of the variables x1,x3,...,%,. Furthermore, we know,
by [13] Proposition 3.4, that & = [ and, if & = [ is odd, that e, = ¢. If k is even,
f,jl(xl, X2y X3y, Tpy) = fk_l(xl, —Z9,3,...,2T,) and the (linear) change of variables is equiv-

ariant with respect to the involution s on R" : ,;L L and ' L are then G-Nash equivalent, in
particular G-blow-Nash equivalent.
As a conclusion, inside the family A;, we are reduced to try to distinguish the germs

[P (@) == +a? + egrb™ + Q and fF (2) == —af + epab T + @

where ¢, € {—1;+1} and +2? +Q and —22+ Q' are the same quadratic part up to permutation
of the variables x1, 3, ..., Ty,.

Similarly, if two germs g;* and g;' are G-blow-Nash equivalent, they have the same quadratic
part, up to permutation of the variables xo,...,x,, and k =1 and ¢, = €.

Finally, if two germs f;* and gZ’f' are blow-Nash equivalent, then k = 2k’ — 1 and ¢, = ¢/,
and furthermore +2% + @ and 423 + Q' are the same quadratic part up to permutation of all
variables. Consequently, it remains to look at the relation between the germs

for—1 = ex3® +n2i + Q and g, = ext’ + /a3 + Q'

where €,7,7' € {1,—1} and n2? + Q = 7’23 + Q' up to permutation of all variables.

In the following parts of this section, we will compute some terms of the equivariant zeta
functions of f; and g. In virtue of theorem 4.2, this will allow us to make further distinctions
inside each of the above couples of germs in some cases.

6.1 Computation of the first terms of the equivariant zeta functions
If h is an invariant Nash germ (R",0) — (R, 0), recall that, for m > 1,
Ap(h) = {yv@t) =ait+---+ant™ € Ly, | hoy(t) =ct™+--- ,c # 0}
= {(yeLly|hoyt)=ct™+ - ;ceR}I\{yELp, | hoy(t)=0xt"+---}

Since h is an invariant germ, the latter sets are both globally stable under the action of G on
L,, and, by the additivity of the equivariant virtual Poincaré series, the quantity 8% (A, (h))
is equal to the difference 8% (°A,,(h)) — B(AY, (h)), where

04, (h) :={vy € Ly | hoy(t) = ct™+- - ,c € R} and A% (h) := {y € Ly, | hoy(t) = Oxt™+---}.

12



Fix k > 0 and consider the invariant germ f"(z1,...,2,) = nz} + exi ™ + Q. We denote
ry=zand nz? +Q = Qpg = 2y %2 - Zg‘:l ythj in such a way that G acts on the renamed
coordinates via the involution n°1 or n°2 depending on the sign of 7.

We first compute 8% (A%, (fi)) for m < k + 1. Notice that the set A;(f;") is empty and,
consequently, B¢(A;(f7")) = 0.

Proposition 6.1. Suppose k > 2 and m < k + 1.
1. If pqg =0, then

BY(AD(fe™M) =

u—1
umtre+a)+1 .

+rHD o+
wmt(r+1)(p+a) ifm=2r+1,
if m=2r.

u—1

2. If (p,q) = (1,1), then

u4(r+1)

ru?mBY (Y1 \ {0}) + — ifm=2r+1,
(7“ — 1)u2m,8G(Y171 \ {O}) + u4"ﬁG(Y171) z'fm = 2r,

BE(AN(F) = {

8. If pg # 0 and (p,q) # (1,1), then

—1urPta2) (r+1)(24p+a)
BO(AD, (fem) = 4 T e B (g 0D + S dm =20 L
w20l DRI 3G (v A\ {0}) 4w BHPO O (Y, ) if mo= 21,

Proof. We follow the computation steps of [13], keeping the track of the action of G in our
context.
An arc v of L,, can be written as

() = (art+ - Famt™ et et T ™
a1 A,
1 1
c [
= ol | tm:<a1>t+---+<am>tm
: : C1 Cm,
S i

if ¢; == (cil, e ,cf+q). The group G acts on L,, changing the sign of the variables c}, resp.
c§+1, in the case n°l1, resp. n°2.

We begin with the case pg # 0, (p,q) # (1,1) and m = 2r + 1 odd. An arc v of £,, belongs
to A2, (fo™) if and only if

(vaq(cl) =0,
(bpvq(cl702) = O’

Qpq(cr) + 22;11 D, (ct,cor—t) =0,
Zle q)p,q(cta car41-t) = 0,

13



where @, ; is the function on RP*7xRPF4 defined by @y, q(u, v) = 230 wv; =230 UptjVpj-

The first equality of the system means ¢; € Y, , by definition. Now, if ¢} # 0, the variables

cl,...,cd are determined by ci and the other (free) variables via an equivariant morphism.

Therefore,

BEAO(feM) = B9 (AL(FEM N {el #0)) + B9 (A%(fe") N {e = 0})
= 5 ((Ym \ ({0} x Ypop ) x RMHORDE q‘”“) + 8% (A (") N {er = 0})
= HmERED TG (1, )\ ({0} X Ypo1)) + 8% (AL () 0 e = 0})

Next, we have
B (A%,(FE™) N1 e} = 0}) = wHm=DEra=DH1 56 (v, 4\ ({0} x Ypong))+6 (A (f57) N {ch = & = 0})
and we obtain by induction

BO(AS, (F™M) = umHm D141 56 (v, A\ {0}) 4 8 (A2, (fE") N {e} = ... = & = 0}).

If i =... =c] =0 then c’f“ = ... =" =0 (since Qpq(c1) = 0) and the other variables
verify the system

(Qp,q(c2) =0,
®p7q(02703) = O’

Qp,q(cr) + Z:;é q)p,q(ct’ car—t) = 0,
(> ta Ppg(cts c2rr1-1) = 0.

Noticing that the vector ¢, as well as the variables a,,_1, a,, are free and renaming the
remaining variables, we have

BEAR (™)) = umH = DEram D+ 5G (v, A\ {0}) + u PHO5C (A7, L, (F77)

and, by an induction,

r—1
IBG(Agn(f;m)) _ BG(Y};,q\{O}) Z ut(2+p+¢I)um72t+(mf2t71)(p+q71)+1+u(r71)(2+p+q)BG(Ag(f;m)m{cl =0})
t=0

As a conclusion, since the system describing A3(f,"7) N {c1 = 0} is trivial, the variables a; as
well as the vectors ¢; and c3 are free and
_1 u”(p+Q*2) —1 u(r+1)(2+p+q)

G( A0 (gemyy — ,m, (r+D)(p+q)—1% ~ ~ "7 1 5G
BO(A, (M) = wra D T P g0y o)) +

14



If m is even, m = 2r, the system describing A2, (f;") is

Qpglc1) =
q)lhq(cl’@) =0,

Zr L@, (e, corm1-4) = 0,
Qpqlcr) +2710 ! P, o(ct, cor—t) = 0.

Therefore, by similar computations, we obtain

r—2
BECARSET) = B9 (Y M0}) Y ! b2 m =2 DL (R0 66 (AR (£07))
t=0

Since AY( f&") is described by the equation @y, 4(c1) = 0, the vector ¢z as well as the variables
a1 and ag being free,

) Julr~pta=2) _q

BE(AN(fi™) = uu D B (Y \ {0}) + u" EHPHIBE(Y,, ).

up‘HI*Q -1

Finally, if (p,q) = (1, 1), the same process gives

r+1)

BY (Y11 \ {0}) u?m + if m o= 2r +1,

G (A0 (£EM\) _
A (fi) {ﬁG(nl\{o})ZtOu2m+u4TﬁG(Y1,1) if m = 2r.

If pg = 0, since Y, ; = {0}, the equations @, 4(c1) = ... = Qpq4(c,) = 0 impose c1, ..., ¢, to be
zero vectors and, the other variables being free, we have

if m=2r+1,
m = 2r.

)
m+r(p+q)+1 .
r ———if

u—1

BEANT) =

{ wm D+ +1

O

Remark 6.2. We obtain the same quantities for ﬁG(Agn(gf)) with m < 2[, providing we equip
the set Y}, , with the trivial action of G. Indeed, the computation steps above remain equivariant
if the group G acts on L, changing the sign of the variables a;.

Proposition 6.3. Let h be an invariant Nash germ (R™,0) — (R,0) and m > 2. Then
BY (A (h)) = u"BY (A7, (h))-

Proof. Notice that YA, (h) = {y € Ly, | hoy(t) =0xt+---+0xt™ 14 ct™+4-..}. Therefore,
the system describing YA, () is the same as the system describing A _; (h), the last n variables
being free.
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As a consequence, we have an equivariant isomorphism between A,,(h) and the product
R™ x A%, (h) (this set is equipped with the diagonal action of G, the first term being equipped
with the involution s) and consequently

BY(°Am(h)) = u"BY (AT, (h)).

We also compute ﬁG(Agm(f;’n)) form<k+1:
Proposition 6.4. Suppose k > 2 and m < k + 1.
1. If pg =0, then

0ifm=2r+1,
wHr e BG (V) if m = 2r.

BE(AS (M) = {
2. If (p,q) = (1,1), then
c ru?™B% (Y11 \ {0}) if m = 2r + 1,
G A€ MY — )
SR {(r WO\ {0)) + BV, if m = 21,

8. If pg # 0 and (p,q) # (1,1), then

m T u” ) .
B (AE (fem)) _ w1 qu; 115G( \ {O}) if m=2r+1,
A (D)2l D 1ﬁG(qu\{0}) +ur@H Pt g6 (VE) if m = 2r.

uPta—2_1

Proof. We first deal with the case pg # 0, (p,q) # (1,1) and m = 2r even. Keeping the
notations of the proof of 6.1, the system describing AS, (fP") is

Qpq(c1) =0,
(I)p,q(cla C2) =0,

Z;:_% ‘I)p,q(ct, cor—1-¢) = 0,

Qpqlcr) + Z;:ll Py q(ct, cor—t) =&

The computation steps are the same as in the proof of proposition 6.1, and we have

(r=1)(p+q—2) _ 1
wupbta—2 1

BO(AS (fi) = w0022 B (Vg \ {0}) + ulr = V@240 GG (A5 (f0m).

Since the set Ag( f2") is described by the equation @y 4(c1) = ¢ and the other variables being
free, we obtain the result.

If m is odd, m = 2r 4+ 1, as in the proof of proposition 6.1, we obtain
Lureta=2) 1

=2 _ 1 BE Yy, \{0})+ur D@D G (A5 (foM)N{e) = 0})

BEAS (") = w0

and the set Ag(f;") N{c; = 0} is empty.
Similar considerations provide the results for the cases (p,q) = (1,1) and pg = 0. O
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Remark 6.5. Again, we have the same quantities for ﬁG(Afn(glE)) with m < 2[, providing we
equip the sets Y}, ; and ng,q with the trivial action of G.

Now, we are ready to deduce distinctions, with respect to G-blow-Nash equivalence, between
f,z’+ and f;’_, respectively between for_1 and g, in some cases :

Corollary 6.6. Let k > 1. Suppose that the invariant germs
fot (@) = +at +eab™ + Q and £ (v) == —2? + eab T+ Q

have the same quadratic part up to permutation of the variables x1,xs3,...,x,. Then they are
not G-blow-Nash equivalent.

Proof. We begin by assuming k£ > 2. We first compare 5G(A2(f]?+)) and BY(As(fy 7). Since
BY(PAo(f™M)) = ultPrapG(AY(fo") (by proposition 6.3) and AY(f") = L1, we are reduced
to compare 3% (AY( ;”L)) and BE(AS(fo7)).

Denote p the number of signs + and ¢ the number of signs — in the quadratic part of f;’Jr
and f;’f (notice that pg # 0). Then, according to proposition 6.1,

BE(AN(FYT) = wPHPHIBE(Yy,).
Therefore, by proposition 5.1,
e if p < g, then

+q _ 0 4 Pl

u—1

+a 9 oL

u—1

€ u? €,— u?
5G(Ag( k+)) — y2trta and 5G(Ag( o7)) = u2trta

)

e if ¢ < p, then

P+q _ P + uqfl

u—1

e U
T and BO(AY(fp)) = Bt

BEAR(fH) = w7

In particular, BG(Ag(f£’+)) =+ BG(Ag(fk’_)) if p # ¢q. Consequently, if p # ¢, the naive equiv-
ariant zeta functions of f;’+ and f,’~ are different and, by theorem 4.2, these germs are not
G-blow-Nash equivalent.

If p = q, BEAS(f ) = BY(AY(fy7)) and we look at the term BY(AF'(fg™)) of the
equivariant zeta functions with sign +. According to proposition 6.4,

BEATHT) = u*PPBE (Y

and, by 5.3, ﬂG(Y;,‘fpl) = L (B9(Ypp+1) — BY(Ypp)). Since the quantity 8%(Y,,) is the same

in either of the cases n°1 and n°2, we are reduced to compare the quantities 5G(Y;W+1) in the

cases n°1 and n°2.
We have

u2ptl_qptlygp—1

G _ -1
B7 (Yppe1) = {u2p+1§2p+1+up+1

u—1

in the case n°l1,

in the case n°2,
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and, as a consequence, 8% (AF1(fo1)) # BE (AT (f 7)), so foT and f;'~ are not G-blow-Nash
equivalent in the case p = ¢ as well.

If k = 1, notice that f{"(z,y) = x>+ Q,4(y) and we are reduced to compare 5% (AY(f{))
and B9(AY(f 7)) as well. We have BY(AY(f1")) = u'TPTI8%(Y,11,,) if € = +1, and BE(AJ(f17)) =
ultPHapG (Y, .11) if e = —1. As above, we can show, for instance if ¢ = 41, that 8 (AJ(f71)) #
BY(AY(f77)) when p+ 1 +# g, and S9(AFH (7)) # B9(A3 1 (f77)) ifp+1=1¢.

U

Remark 6.7. If k = 0, f5"(z,y) = ex + Qpq(y) and, using the notations of the proof of
proposition 6.1, the left members of all the equations describing A, (f5"), resp. A?n( o™, for
m > 1, contain a term ea; + ..., so that each of these sets is equivariantly isomorphic to an
affine space. As a consequence (see remark 4.1), the respective equivariant zeta functions of

€,+ €,—
o and fy are equal.

Corollary 6.8. Let k > 2. Suppose that the invariant germs
for_1 = ex%k + 773:% 4+ Q and g = ex%k + 77'3:% +Q

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs —.
If p <qandn=+1o0orq <pandn = —1, then for_1 and g are not G-blow-Nash
equivalent.
Ifp=q+1o0orq=p+1, then fop_1 and g are not G-blow-Nash equivalent.

Proof. We first deal with the case p < ¢ and n = +1 (notice that p # 0) ; the case ¢ < p and
n = —1 is symmetric.
As in the proof of previous corollary 6.6, we have

B (A3 (fa-1)) = T PHIBE(Y,q) and B (A3 (gr)) = u*PHILC (V)

where, in the left equality, the set Y}, ; is equipped with the action n°1 and, in the right one, with
the trivial action of G. Since the corresponding equivariant virtual Poincaré series are different
by proposition 5.1, 3% (As(fax—1)) # B%(A2(gr)) and the naive equivariant zeta functions of
for_1 and g, are different. As a consequence, for_1 and g are not G-blow-Nash equivalent.

Now we suppose p = g+ 1 (the case ¢ = p+ 1 is symmetric). In particular ¢ < p, so we can
assume 1 = +1.

We consider 8% (A5 (for_1)) = u2+p+qﬁG(Y;"q1) and 8% (A5 (gr)) = u2+p+qﬁG(Yﬁ}) (propo-
sition 6.4). Thanks to proposition 5.3, we know that BG(YE'ql) = L (B9 (Ypqgt1) — BE(Ypg))-
By proposition 5.1, the respective quantities ﬁG(Yp,q) for for_1 and g are equal, whereas the
quantities 3%(Yp4+1) = BY(Yp,) are different. Consequently, the equivariant zeta functions
with sign + of for_1 and gi are different and therefore the latter germs are not G-blow-Nash
equivalent. O

Remark 6.9. In the other cases, the quantities ﬁG(Y}Lq) and ﬁG(ng,q) are the same for for_1
and g.
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6.2 Computation of 8% (Ay.(for_1)) and BE(Ask(gr))

For the continuation of the section, thanks to corollaries 6.6 and 6.8, we only need to consider
the germs

for_1 = ex%k + 773:% 4+ @ and g, = ex%k + ’I’]ICC% +Q,
assumed to have the same quadratic part ), 4, such that p > ¢+1andn=+lorg>p+1
and n = —1.
In order to prove that the germs for,_1 and g are not G-blow-Nash equivalent in some of
these cases as well, we will compute the coefficients 3% (Ao (for—1)) and & (Ag(gr)) of their
respective naive equivariant zeta functions :

Proposition 6.10. Suppose k > 2.
1. If pqg =0, then
BY (A (far—1)) = w?F THREHOBE({ oy = 0}) and 5(AD(gr)) = uPTHHEFD G ({g, = 0}).
2. If pg # 0, then
uPta=2)(k=1) _ 1
upta=2 — 1

(the group G acts on Yy, 4 via the involution n°1 or n°2 depending on the sign of ) and

BE (A (far—1)) = uF2PTOEED C (Y, \{0}) FukPrOH=15G = 0))

wPta=2)(k=1) _

1 -
gz T (e = o)

B9 (A (gr) = PP PHOEFU G (Y, \{0})

(the group G acts trivially on Y, ).

Proof. We keep the notations of the proof of proposition 6.1 and we proceed as in [13] Proof
of Lemma 3.3. First suppose that pg # 0. An arc -y of Lo belongs to Agk(fzk_l) if and only if

Qpqlc1) =0,
(bpvq(cl702) = O’

Zf;f q)p,q(cta CQk—l—t) =0,
ea%k + Qp,q(ck) + Zf:_ll D, 4(ct, car—t) = 0.

We have

BY (A (for—1)) = w?FFEF=DEHUHBE (Y, A\ {0}) + B (AY (for1) N {e] = ... = & = 0}),
and BY(AY, (for—1) N{ct = ... =& = 0}) = u*>TPFIBY(CY,_,), if CY, _, denotes the algebraic
set described by the equations

Qpqlc1) =0,
(bpvq(cl702) = O’

Zf;f q)p,q(ct, CQk—3—t) = 0’
fa%k + Qpq(ck—1) + Zf:_lz Dy q(cty cop—2-1) = 0.
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By an induction, we obtain

k—2
ﬁG(Agk(kaq)) pq\{O} Zut 24p+q) 2k 2042k =2t 1) (prq—1)+1 |, (k=1)(2+p+q) ﬁG(CO)
t=0

Since CY is defined by the equation ea?* +Q, ,(c1) = 0 and since the vector cz and the variable
as are free, we deduce the desired expression for ﬂG(Agk( fok—1)). The steps of computation
are the same for 8% (A9, (gx)).

If pg = 0, the vectors ¢y, ..., cr_1 are zero vectors and the system is reduced to the equation
€a?* + Qp4(ck) = 0, the other variables being free. O

Since p > ¢+ 1and n=+1or ¢ > p+1and n = —1, the quantity 5G(Y};7q) is the same
for fop_1 and gr. As a consequence, in order to compare S (Aok(for—1)) and BE(Ask(gr)),
we are reduced to consider the quantities 8% ({for_1 = 0}) and B%({gx = 0}) (notice that
BE (Ao (far—1)) = B%(°Aax(gr)) by the results of the previous paragraph 6.1). We compute
these equivariant virtual Poincaré series for all k > 2, p,q € N and n € {1, -1} :

Lemma 6.11. We have

BY({ fae—1 = 0}) = B%({exs + naf + Q = 0}) — (k — 1)B%({na? + Q = 0}) + (k — 1)B“({0}),

where the second set in the right member is considered as an algebraic subset of R"~! and G
acts on the considered sets via the involution n°1 or n°2 depending on the sign of n, and

B9({gr. = 0}) = B ({eat+n'23+Q" = 0})—pB° ({0 23+Q" = 0})—78 ({f23+Q" = 0})+(k—1)87({0}),

where the second and third sets in the right member are considered as algebraic subsets of R"™1,
the group G acts on the second set via the involution n°j (trivial action), on the third set via
the involution n°3 (change of signs of all coordinates) and

1. if k=20l +1 is odd, then p =7 =1 and G acts on the first set in the right member via
the involution n°1 or n°2 depending on the sign of €,

2. if k = 2l is even, then p =1, T =1 —1 and G acts on the first set in the right member
via the involution n°3.

Proof. We begin with 8% ({for_1 = 0}). Recall that for_i(z1,22,23,...,2,) = ex3¥ +nax? +
Q(x3,...,x,). We proceed to an equivariant blowing-up of the algebraic set {for,_1 = 0} at
the origin of R™. In the chart xo = u, x; = uv;, i = 1,3,...,n, the blown-up variety is defined
by the equation

W fare—s(v1, u,v3, ..., 0) =0,

the action of G being given by the involution (vy,u,vs,...,v,) — (—v1,u,vs,...,v,). We have

BY{ for—1 = 0} \ {0}) = BY({ for_3 = 0} \ {u = 0}), therefore
BY({ for—1 = 0}) = B ({ far—s = 0}) — B ({nof + Q(vs, ..., v) = 0,u = 0}) + B ({0}).
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We then obtain the desired result by an induction.

For the computation of 3%({gx = 0}), recall that gy(z1,z2,23,...,2,) = ex?* + n'ax2 +
Q'(x3,...,x,) and proceed to an equivariant blowing-up of the set {gr = 0} at the origin of
R"™, looked at in the chart 1 = u, x; = uwv;, + = 2,3,...,n. In this chart, the blown-up variety
is defined by

2
U gk;_l(u,UQ,U:j, cee ,vn) = 05

the action of G being given by the involution (u,ve,vs,...,v,) — (—u, —ve, —vs, ..., —v,), and
we have

BY({gr = 0}) = B9({gr—1 = 0}) = B {023 + Q' (w3, ....wn) = 0}) + BE({0}).

One further equivariant blowing-up of {gx_1 = 0} provides the equation

u29k71(u7 V2,03, ... 7?}71) - 07
the group G acting via the involution (u,vs,vs,...,v,) — (—u,v2,vs,...,v,). The desired
expression is then obtained by an induction. O

Remark 6.12. According to proposition 5.1, the quantity 8¢ ({n’z3 + Q' = 0}) is the same if G
acts via the involution n°4 or via the involution n°3. Therefore, in the previous lemma 6.11, we
can simply write p3% ({1/z3 + Q" = 0}) + 78% ({023 + Q' = 0}) as (k — 1)3“({n'23 + Q' = 0})
with G acting trivially on the latter set.

Because p > ¢+ 1 and n = +1 or ¢ > p+ 1 and = —1, we have % ({nz? + Q = 0}) =
BE({n'z3 + Q" = 0}) and we are finally reduced to compare 3% ({ex? 4+ nz? + Q = 0}) and
BE({ex? + 'z + Q' = 0}). The cases where these quantities are different are cases where the
germs for_1 and g are not G-blow-Nash-equivalent :

Corollary 6.13. If k is odd and if p >q+1,n=4+1ande=—-1orqg>p+1,n=—1 and
€ = +1, then the germs for_1 and g are not G-blow-Nash-equivalent.

Proof. Assume that k is odd and suppose that p > ¢+ 1, n = +1 and € = —1 (the case
q>p+1,1n=—1and e = +1 is symmetric). We have {exZ + nz? + Q = 0} = Y, 411, where
Y,.q+1 is equipped with the involution n°1, and {ez} + n'z3 + Q" = 0} = Y, 441, where Y, 411
is equipped with the involution n°2. Then, by proposition 5.1, 3% ({ex3 + nz? + Q = 0}) #
BY({ex + /25 + Q = 0}) and B9 (Agy(far—1)) # B (Aak(gr))- O

In the remaining cases, the quantities 3% ({ex3+n23+Q = 0}) and B ({ez}+n'23+Q’ = 0})
are equal so that 8% (A (far—1)) = B%(Aar(gk)). As a consequence, for these cases, we are
led to look at the remaining coefficients of the equivariant zeta functions of for_; and gg.
We begin, in the following paragraph, with the computation of the terms ﬁG(Agk(fgk_l)) and

B9 (A3, (g1))-
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6.3 Computation of 5%(A5,(far_1)) and B%(AS, (gx))

We assume we are not in one of the previous cases for which we showed that for_1 and gi
are not G-blow-Nash-equivalent. In particular, we have 8% (A, (for—1)) = B%(Am(gr)) and

B (A% (far—1)) = B (A% (gr)) for m < 2k, and B (Agk(for—1)) = 5 (A (gr))-

Now, the same steps of computation as in the proof of proposition 6.10 provide the following

formulae for 5G(A§k(f2k,1)) and ﬁG(Agk(gk)) :
Proposition 6.14. Suppose k > 2.

1. If pg =0, then

BY (A5 (fan—1)) = u?F RO BE ([ 4 = &}) and B (A5, (gr)) = uFTHHETD O (g, = ¢}).
2. If pg # 0, then

BY(AS (far—r)) = uF 2T gC () VO FuFETOTRLRC () =€)

(the group G acts on Yy 4 via the involution n°1 or n°2 depending on the sign of n) and

uPta=2)(k-1) _ 1

upta—2 — 1

wPra—2)(k—1) _

upta—2 — 1

B9 (A5, (gr)) = uF~2u O+ 56 (v (oY) L ukora2i-156 (10 — ¢y

(the group G acts trivially on Yy, ).

As in the previous paragraph 6.2, we are reduced to consider the quantities 8% ({ foxr—1 = £})
and B¢ ({gr = £}). We give below the first steps of computation of these equivariant virtual
Poincaré series for all k > 2, (p,q) € N2\ {(0,0)} and n e {1,—1}. We write fgk | = exdk +

net+Q = exst + 370y =0 yp; and g = et a3+ Q' = et + 300 yP - 0 v
Then :

Lemma 6.15. We have
_1_ _ d
_17 _ .
uP PP T 1BY (Jeadt oyt —yh o + Z 1Y = 5}) Fo<a<p.

B fan1 =€) = urt2e 2l | yp=186 ({eadk 442 — g2, =€) ifp=4q,
5G({ — i - j2yj:§}) ifp=0,
5G ({ex +y1+ZZ 23/1 f}) ifq=0,

the group G acting only changing the sign of y1 or yp41 depending on the sign of n, and

wrt sl gt ({edh -0 2 =¢}) ifo<p<q
uPt1 uq—ll quBG 6.%'1 + ZJ gt yj = 5}) if0<q<np,

B (g =¢}) = up““p 11 uP B ({ex =¢}) if p=q,
59 ({extt - 52102 = ¢)) ifp=0,
BY ({eat® + 0197 = €}) if =0,

the group G acting only changing the sign of x1.
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Proof. We focus on the case 2 < p < g and proceed as in the proof of proposition 5.1 : in order
to compute 8% ({far_1 = &£}), we apply the (equivariant) change of variables u; = i + Yiip,

V; = Yi — Yiyp for ¢ = 2,...,p and the equation fop_1 = & becomes
P p+q
2k 2 2 2
€Ty T YL = Ypt1 +Z“i”i - Z Y =&
1=2 _]:2p+1

Then, as in the proof of proposition 5.1, we use the stratification by the globally G-stable subsets
{for—1 =&N{us = ... = u; = 0,u;41 # 0}, along with the additivity of the equivariant virtual
Poincaré series, to obtain the desired formula for 3% ({ for_1 = £}).
As for B%({gr = £}), we can apply the equivariant change of variables w; = y; + Yitp,
Vi = Yi — Yitp for i = 1,...,p (the strata {gr = &} N{u; = ... = v; = 0,u;41 # 0} are
G-globally stable).
]

Remark 6.16. Regarding the equation for_1 = &, we could also have applied the change of
variables u1 = Y1 + Yp+1, V1 = Y1 — Yp+1, provided G acts on these new coordinates via the
involution (uy,v1) — (—v1, —uy) or (uy,v1) — (v1,u;) (depending on the sign of n). However,
the stratum { for—1 = £} N {u; # 0} is not globally stable under this action of G.

From these formulae, among the remaining cases for which we did not establish that the
germs for_1 and gp are not G-blow-Nash equivalent, we first extract the cases for which

B9 (A8, (fan-1)) = B (A5, (gr)) -

Proposition 6.17. If p > g+ 1 andn =€ =+1 0orq >p+1 and n = ¢ = —1, we have
B4 (A5 (Far-1)) = B (A5, (g0)-

Proof. Similarly to the previous proofs, we focus on the case p > g+ 1, ¢ # 0 and n =€ = +1.

71_ _
Then BY({ for—1 = &}) = uPT2L—1 4 9715¢ ({‘f‘x%k +yl —yo + > =gt Yy = 5}) On
the latter set, the action of G only changes the sign of y;, so that we can use the equivariant
change of variables u = yg4+1 + Yp+1, ¥ = Yg+1 — Yp+1 in order to obtain the equality

wl —1 P
B9 oo =€) = P B | (et b ui D vf =€
Jj=q+2

Therefore #(A5, (fox-1)) = 8% (A5, () if and only if B ({+a3* + 42 + X0 92 = ¢}) =

BE ({+a2k 32 y2=¢ recall that, on the latter set, the action of G only changes the
1 J=q+1 9]

sign of x1).

Now, if £ = —1, both sets are empty and if & = +1, they are compact, nonsingular and
equivariantly homeomorphic to spheres having a non-empty fixed point set. As a consequence,

for ¢ = +1, BC <{+x%k Ny Z§:q+2 3/32 _ 5}) = 86 ({4—3;%’“ + Z§:q+1 ’y]2 = 5}) (see Te-
mark 4.1) and ﬂG(Agk(fzk—l)) = ﬁG(Agk(gk))- =
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Finally, we give the cases for which the equality ﬁG(Agk( for—1)) = 5G(Agk (g9x)) depends on
the equality of two equivariant virtual Poincaré series :

Proposition 6.18.

o Ifk is even and if p > q+ 1, n = +1 and ¢ = —1, the equality ﬁG(Agk(fgk,l)) =
5G(Agk(gk)) is true if and only if the equivariant virtual Poincaré series of the algebraic

subsets {—x%k +y?+ Zfi}l Yl = 5} C REHL K = p —q, equipped with the action of

G only changing the sign of y, and {—x%k + Zfil 22 = §} C REFL equipped with the

(2
action of G only changing the sign of x1, are equal.

o Ifk is even and if ¢ > p+1,n=—1 and e = +1, we have ﬁG(Agk(f%,l)) = 5G(A§k(gk))
if and only if 8 ({a3" — > = I 2 = €}) = 8¢ ({o - 2K, 22 = ¢}).

Proof. If we focus on the case p > g+ 1, ¢ # 0, n = +1 and ¢ = —1, the same computa-
tion as in the proof of the previous proposition 6.17 provides the equivalence ﬁG(Ag p(for—1)) =

B9(A5(g0)) i and only if 5 ({ —a3" + 92 + X003 = €} ) = 8% ({ ot + Xy = ¢}).
|

Remark 6.19. 1. Recall that we showed in corollary 6.13 that the germs for_1 and gi are
not G-blow-Nash equivalent in the case Kk odd and p > g+1,n=+1, e =—1lorqg > p+1,
n = —1, e = +1 (notice that in the previous proof of proposition 6.18, we did not use the
fact that k was even).

2. Forgetting the action of G, the virtual Poincaré polynomials of the algebraic subsets
x?k — Zfil Yl = 5}, ¢ = 41, of RE*! can be computed using the invariance of the
virtual Poincaré polynomial under bijection with AS graph (see [22]). However, we do

not know if the equivariant virtual Poincaré series is invariant under equivariant bijection
with AS graph.

As a consequence of the results of this subsection 6.3, we will then consider the other
coefficients 3% (Anr(for—1)) and BE(Anr(gr)), respectively ﬁG(A%/[(fgk_l)) and ﬁG(A%(gk)),
M > 2k, of the equivariant zeta functions of for_1 and g, in the cases of propositions 6.17 and
6.18. In the next paragraph, we will show that the comparison of these quantities reduces to
the comparison of the equivariant virtual Poincaré series of {for—1 = &} and {gr = &} as well.

6.4 The last terms of the equivariant zeta functions

Suppose p >q+ 1, n=e¢=+1or k even, p >q+ 1, n = +1, e = —1. The following results
will also be true for the respective symmetric cases.

We first establish the equality between the last coefficients of the naive equivariant zeta
functions of for_1 and gx (and therefore the equality of ZfG%i1 (u,T) and ch (u,T)) :

Proposition 6.20. For all M > 2k, we have 3% (An(for—1)) = B (An(gr)).
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Proof. Let M be greater than 2k. We prove that 8%(A,(far_1)) = B9(AY,(gx)) (this will
give the desired result because of proposition 6.3 and the additivity of the equivariant virtual
Poincaré series).

As in the proofs of propositions 6.1 and 6.10, consider the system of equations defining
A% (fox—1). The same computations will bring, in the expression of 3% (A9, (far_1)), a contri-
bution of (a multiple in Z[u][[u~]] of) 8% (Y,.4\{0}) and a contribution of the equivariant virtual
Poincaré series of a set defined by a system whose first equation is ea%k + Qpq(c1) = 0. Strat-
ifying this last algebraic set with the subsets {c} = ... = cil_1 =0,cf #0},i=1,...,p+q,
and {c; = 0} provides a contribution of 8% ({for_1 = 0} \ {0}) and a new system where
c1 = 0, a; = 0 and whose first (non trivial) equations are the ones defining A% (for_1) for
m = min(M — 2k, 2k).

As a consequence, we can repeat the same steps of computations on this system and this
will give further contributions of 8%(Y,, \ {0}) (provided by the equations @, ,(c1) = 0) and
BE({for—1 = 0} \ {0}) (provided by the equations ea?k + Qpq(c1) =0).

Since these systems and these operations are also valid for the computation of 3% (A9, (g))
and because, in the considered cases, the quantities ﬁG(Y}Lq) are equal for for_1 and gp and
BY({ for—1 = 0}) = BY({gr = 0}), the expressions of S%(AY,(for_1)) and BZ(AY,(gx)) are
identical. O

Similar considerations bring the following results for the last coefficients of the equivariant
zeta functions with signs :

Proposition 6.21. 1. Ifp > q+1,n=e= 41, then, for all M > 2k, we have ﬁG(Af\/I(fzk—l)) =
BG(Aﬁ/[(gk)), and consequently Zg;ci_l(u,T) = Zgi’i(u,T).

2. If k is even and if p > g+ 1, n = +1 and ¢ = —1, we have the equality Zf(if_l(u,T) =

G7 - . _
ngg(u,T) if and only if B¢ <{—x%k + %+ Zfill y? = g}) = B¢ <{—x%k + Zfi1 22 = g})
(the former set is a subset of RE*Y equipped with the action of G only changing the sign

of y and the latter set is a subset of RETL equipped with the action of G only changing
the sign of x1).

Proof. Let M be greater than 2k. The system defining Ag\/[( fok—1) is obtained by replacing 0
by £ in the right member of the last equation of the system defining A9, (fox—1). Consequently,
the same arguments works as in the proof of previous proposition 6.20 and ﬁG(Aﬁ/[(fgk_l)) =
ﬁG(Aﬁ/[(gk)) if and only if the contribution given by the very last equation provided by the
computation is the same for for,_1 and gg.

As in the proof of proposition 6.4, if M is odd, this contribution is the equivariant virtual
Poincaré series of an empty set, and if M is even and not a multiple of 2k, it is ﬂG(ng,q) : in
both cases, ﬁG(A%/[(fgk_l)) = ﬂG(A%/[(gk)). Finally, if M is a multiple of 2k, the respective
contributions are B¢ ({far—1 = ¢}) and B9 ({gr = £}), hence the result by lemma 6.15 (see also
the proofs of propositions 6.17 and 6.18). U
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6.5

Conclusion

As a conclusion, we summarize and gather the results of the previous paragraphs in the following
theorem :

Theorem 6.22. Let k > 2. Suppose that the invariant germs

for_1 = ex%k + 773:% 4+ Q and g = ex%k + 77'3:% +Q'

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs —.

1. If
ep<qgn=+lorqg<p n=-—1,
ep=qt+lorqg=p+1,
e kisodd and ifp>q+1,n=+4+1,e=—-1lorg>p+1,n=—-1,e=+1,
then for_1 and gr are not G-blow-Nash equivalent.
2. Ifp>q+1l,n=e=+1orq>p+1,n=¢€=—1, then ng_l(u,T) = ch(u,T) and
G, G,
meil(u,T) = ngg(u,T).
3. e Ifkisevenandifp > q+1,n=+41,e=—1, then ngil(u,T) = ch(u,T). Further-
more, Zf(if_l(u,T) = ch,i’g(u,T) if and only if B¢ <{—m%k +y? + Zfi}l y? = §}> =
8 ({-a3r+ 0K, 22 =¢}).
o [fkisevenandifq>p+1,n=—1,e= 41, then ngil(u,T) = ch(u,T). Further-
more, ng_l(u,T) = ch,i’g(u,T) if and only if B¢ <{x%k —y? - Zfi}l y? = 5}) =
K
B¢ <{x%k — i g = 5})

Remark 6.23. 1. As one can notice from the computations, the fact that the equivariant
Poincaré series of a given sphere is the same for any action of G on it with a non-empty
fixed point set (see remark 4.1) induces equalities between coefficients of the respective
equivariant zeta functions of for_1 and g.

2. If the equivariant virtual Poincaré series was proved to be an invariant under equivari-

ant bijection with AS graph, this could allow to compute (and compare) the quantities

B¢ <{—m%k + 92+ Zfi}l y? = 5}) and ¢ ({—x%k + Z@I; 22 = {})

7 The germs C}, and D,

In a second time, we plan to make progress towards the classification with respect to G-blow-
Nash equivalence of the invariant germs of the families

hik(z) = +at + 2dos + g P+ Q and 7 (z) = 2wy + epah + i+ Q'
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where €, € {—1;+1}.

By the same arguments as in the introduction of section 6, we know that if two germs h;*
and h;' are G-blow-Nash equivalent, they have the same quadratic part up to permutation of
the variables 1,24, ...,z, and, by [13] Proposition 3.11, that £ = [ and ¢, = ¢;. Therefore,
inside the family Dy, it remains to show that the germs

h;‘mL( )= +x1 + x2x3 + ekx3 Ly Q and hek’ (x) = —x% + x%xg + ekxl;*l +Q,

where ¢, € {—1;+1} and —i—x% +Q and —x% + Q' are the same quadratic part up to permutation

of the variables x1,xy4,...,z,, are not G-blow-Nash equivalent.
As for the family Cj, if two germs r* and r;' are G-blow-Nash equivalent, they have the
same quadratic part up to permutation of the variables z3,...,z,, kK =1 and ¢ = €.

On the other hand, if two germs h;* and TZ’,“' are G-blow-Nash equivalent then k = &' + 1,
€, = e and +2% + Q and +z3 + Q' are the same quadratic part up to permutation of all
variables. As a consequence, we focus on the comparison of the germs

hitr1 = $%$3 + exlg + 773:% 4+ @ and r, = x%xg + exlg + n'x% +Q'

where €,7,7 € {1,—1} and nz? + Q = 1’23 + Q' up to permutation of all variables.

In the following, as we did for the families A and By, we study and compare the respective
equivariant zeta functions of hy and r; : using theorem 4.2, this allows to extract further cases
of non-G-blow-Nash equivalence.

7.1 Computation of the first terms of the equivariant zeta functions

Fix k > 4 and consider the invariant germ h{"(z1, ..., z,) = 9z} + 2323 + exh ' + Q. Denote
ro=z,r3=zand Nz} +Q =Qpg=> b Y7 — ?:1 ythj (G acts on the renamed coordinates
via the involution n°1 or n°2 depending on the sign of 1), so that hy"(z, z,y) = 22z + e 4

@p.q(y)-
The following proposition gives the computed expressions for % (A%, (k")) (see the begin-

ning of paragraph 6.1 for the definition of A% (h) for h an invariant Nash germ) if m < k — 1.
The same expressions can be obtained for 3% (AY, (r¢_,)), providing Y, , is equipped with the
trivial action in this case.

Proposition 7.1. Suppose m < k — 1.

1. If p+q=1, then

4r+
Tu2m+1 +

(7“ _ 1) 2m+1 +

ifm=2r+1,
4T+2 if m = 2r.

BY(AD, () = {

2. If p+q+#1, then

u37,,+2+(7,,+1)(p+q) T(P-:'q_ll) 11 (IBG(Y;),q \ {0}) + 1) + w3r+3+(r+1)(p+aq) me = + 1’

u—1

u3r+(r+1)(p+q)w (BC (Ypg \ {0}) + 1) + udr+14r G0 gE (Y, ) if m = 21

wpPta—1_1

i -{

27



Proof. As in subsection 6.1, we follow the computations of [13], paying attention to their
equivariance with respect to the considered actions of G.
Here, we write an arc v of £,, as

() = (art+ -4 amt™ byt + o bpt™ et et ET 4 ™)
aj [07°%%
by bun a ar
— c% t+---+ C%n +m = by t+---+ by tm
: C1 Cm
czli-i-q cg)n-i-q

(the group G acts on L,, changing the sign of the variables cil, resp. ¢ +1, in the case n°1, resp.
n°2).

We focus on the generic case pg # 0, p+ ¢ # 1. First suppose that m is odd, m = 2r + 1.
Then an arc y of £, belongs to A%, (k") if and only if

”
Qpq(c1) =0,

(Z%bl + q)p7q(clyc2) = 05

a%bg + 2a1a9b1 + Qp7q(02) + <I>p7q(cl, Cg) =0,

27{:11 athQr—Qt +2 27{ t Zér tJ(rt1+ asbar—s—t + Qpqlcr) + 2:211 Dy q(ct, cor—t) =0,
2r+1 1
Sy afbari1ae + 231 as Y i agbara—soe + 34y Ppglee cariie) = 0.

Stratifying A%, (h}") with the G-globally invariant subsets {c} = ... = ¢/"! = 0,¢} # 0},
i=1,...,p,and {c} = ... = ¢ = 0} = {1 = 0}, as we did in the proof of proposition 6.1, we
obtain, by additivity of the equivariant virtual Poincaré series,

5G(A2L(h;n)) _ u2><(2r+1)+2r(p71)+2rq+15G(Y;),q \ {0}) + BG(AgL(h;n) N {Cl — 0}),
the algebraic set A2 (h") N {c1 = 0} being described by the system
a%bl = 0,

atbs + 2ayasby + Qpq(c2) =0,

_ 2 1
2;211 a%bQT—Qt + 2 z; Z(ST t_E_t;— a5b27‘ o—t + Qp q(CT‘) + ZT’ ) ¢p Q(Ct7 ch—t) - 07
2r+1 1
2;21 a%b2r+172t +2 Zt as ZJJ;_H (t+ a6b2r+1—6—t + Zt:2 p,q(cta C2r+17t) =0.

Now, if a; # 0, then by = 0 and the coordinates bo, ..., bs-_1 are determined by a; and the
other variables (via an equivariant morphism), and thus

wl2rH2+2r(p+e)+1

BE(A (R N {er = 0}) = (u—1) + B9 (AR (") N {er = 0,a1 = 0}).

u—1
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If ¢; = 0 and a; = 0, the remaining coordinates verify the system

Qp,q(c2) =0,
azby + ®pq(c2, c3) =0,
a%bg + 2as9a3b; + Qfmq(Cg) + @pg(CQ, 04) =0,

_ 2r—(t+1) -
2;121 at252r—2t +2 Z; t Zér tJ(r1+ asbor—5—¢ + vaq(cr) + Z::21 q)p,q(cta car—t) =0,
2r+1—(t+1
2;22 a15252r+1—2t +2 Zt 25r—zt+1 ) agboy 115t + 2;22 Dy q(ct, c2ry1-1) = 0.

Notice that the vector ¢, as well as the variables a,,, b,,—1 and b,, are free and that, if we
rename the variables, these equations define the set A%, _,(hy"), so that

ﬁG(Agn(hZ’n) N{c1 =0,a; =0}) = u3+p+qﬁG(A9n_2(h;")).

By an induction process, we then obtain

r—1
BEA ) = B9V \ {O]) [Z T R
t=0
r—1
+ Zut(3+p+q)u(m—l—Zt)(p+q+1)+3 + u(r—l)(3+p+q)5G(Ag(hzm) N{c1 =0,a; = 0}),
t=0

the equations for A3(hy") N {c1 = 0,a; = 0} becoming trivial. As a consequence (notice that
forallt=0,...,7r—1,2x(m—=2t)+(m—2t—1)(p+q¢—1)+1=(m—1-2t)(p+q+1)+3),

r(p+q71) u3r+3+(r+1)(p+q)

BO (A0 (hS™)) = 37»+2+(r+1>(1/)+q)um—1 (B (Ypq \ {O}) +1) + 1

If m is even, m = 2r, the system defining AY, (hy") is

@pqlc1) =0,
a?bl + @pglc1,02) =0,

2r—1—(t+1 _
Zt 1 ay bZr 1-2t + 2 Zt 1 Qs 257* t+1 1) a5b2r71767t + 2;211 q)p,q(cta CZr—l—t) = 07
2 t+1) _
Zt 1 aiboor +2 Zt L a5 tJ(r1+ asbar—s—t + Qpglcr) + 21;11 Py q(ct, cor—t) =0,

and we have

r—2
BEAR (M) = B (Vg \ {O) [Z Py 2m 2Dt
t=0

r—2
Z Lt BFpta), (m=1-2t)(p+q+1)+3

t=0

+ + u(r_l)(3+p+Q),3G(Ag(h;’n))
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Because AY(hy") is described by the equation @ 4(c1) = 0 and since the vector ¢y as well as
the variables a1, a9, b1 and by are free, we obtain

wr=Dp+e-1) _q

G/ A0 (pE&M\\ _ , 3r+(r+1)(p+q)
/8 (Am(hk )) =u upta—1 1

(BC (Ypg \ {0}) + 1) + o HHr@Ha0gG (v, ).

O
As for BG(Agm(hZ’n)), we have the following expressions if m < k + 1 :

Proposition 7.2. Suppose m < k — 1.
1. If (p,q) = (0,1), then

ru?™t ifm=2r + 1,

G AE (O —
5 (Am(hk )) - {(T _ 1)u2m+1 + u4r+15G(y§71) me = 9.

2. If (p,q) = (1,0), then

ru?™t ifm = 2r + 1,

G AE (BT —
5 (Am(hk )) - {(T _ 1)u2m+1 + u4r+1ﬁG(YfO) me = .

3. If p+q#1, then

u3r+2+(r+1)(p+q) ur(qu’ll)fl (,BG(Y;),q \ {0}) + 1) ifm=2r+1,

BY(AS, (hg™M) = L Dt D1/ oo 1 Grve N
3+ )(p+q)W+1—f (ﬁ (Vg \ {O}) + 1) + udr+ltrieta g (Y, if m = 2r.

Proof. If we keep the notations of the proof of proposition 7.1, the system defining Afn(h;")
is obtained by replacing 0 by ¢ in the right member of the last of the equations describing
A% (h"). Furthermore, the system for Ag(hzm) N {c1 = 0,a; = 0} has no solution, whereas

Ag(h;") is described by the equation Qp 4(c1) = &. O
We are now able to show that the germs h2’+ and hZ’_ are not G-blow-Nash equivalent :
Corollary 7.3. Let k > 4. Suppose that the invariant Nash germs
hyT(x) = 4o + 2das + ekt + Q and B (x) == —af + adus + et + Q'

have the same quadratic part up to permutation of the variables x1,x4,...,2,. Then they are
not G-blow-Nash equivalent.

Proof. We compare 4 (As (7)) and 39 (Ag(h")). Because 5(Aa(h")) = AECA(h)) —
BE(AY(RY™), BE(CA2(hi™)) = unBY(AY(R")) (by proposition 6.3) and AY(h}y") = L1, we are
reduced to compare the quantities ﬁG(Ag(hZ’+)) and ﬂG(Ag(hZ’_)).
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Now, if p denotes the number of signs + and ¢ the number of signs — in the quadratic part
of hZ’Jr and hy~ (notice that p + g # 1), we have, by proposition 7.1,

BE(AY(R™)) = uTPHIBC ()

Consequently, if p # ¢, we can use the same arguments as in the proof of corollary 6.6 to
conclude that the naive equivariant zeta functions of hZ’Jr and hy~ are different and therefore
that the germs hZ’Jr and hy~ are not G-blow-Nash equivalent.
If p = g, we compare 3% (A5 (A7) and B%(A3* (hy7)). Since, by proposition 7.2,
SO ) = s,

we can in this case as well use the arguments of the proof of corollary 6.6, in order to conclude
that the equivariant zeta functions with signs + of h;’Jr and hy~ are different.

O

Using again the formulae of propositions 7.1 and 7.2, we then extract cases for which the
germs hy41 and ri are not G-blow-Nash equivalent :

Corollary 7.4. Let k > 3. Suppose that the invariant germs
hig1 = zax3 + exh + 02?4+ Q and ry, = 22z + exh +n'z2 + Q'

have, up to permutation of all variables, the same quadratic part, with p signs + and q signs —.
Ifp<qandn=+41orq<pandn=—1, then hy11 and ry are not G-blow-Nash equivalent.
Ifp=q+1o0rq=p+1, then hyy1 and i are not G-blow-Nash equivalent.

Proof. For the first point, focus for instance on the case p < g and n = +1. As in the proof of
corollary 7.3, we consider 3% (AY(hy11)) = u*tPH43%(Y, ) and B9 (A (1)) = u*TPTIBE(Y,,).
Since the action of G on the former set Y), , is the action n°1 and the action on the latter set
Y, is the trivial action, we obtain 8% (A2 (hx11)) # B¢ (A2(rs)).

For the second point, assume for instance p = ¢+ 1. Suppose furthermore that n = +1 and
consider the quantities 8% (A3 " (hyy1)) = utTPHa89 (Y1) and B (AF (ry)) = uHPHagE(v,f1).
By proposition 5.3, ﬁG(Y;,qu) = ﬁ (ﬁG(Y}Lp) — BY%(Y,q)). Since ¢ < p and n = +1, the
quantity 3%(Y,,) is the same for hj,1 and ry, while the quantities 39(Y),,) are different (see
proposition 5.1). As a consequence, 3% (AF (h11)) # BE (AT (r1)). O

From now, we are going to study the other coefficients of the equivariant zeta functions of
hi11 and rg in the remaining cases, that isif p >¢g+1landn=+1lorq¢>p+1and n=—1.
Notice that, in these cases, the quantities 3%(Y,,,) and ﬁG(Y}fq) are identical for hyy1 and 7.

7.2 Computation of 3%(Ay(hyy1)) and BC(Ax(ry))

Assuming that the Nash germs hy11 and rj have the same quadratic part @, 4, with p > ¢+ 1
and p = +1or ¢ > p+1and n = —1, we first compute the coefficients 3% (A (hr41)) and
B (A (ry)) of their respective naive equivariant zeta functions. Having in mind proposition
6.3, we actually give formulae for 3% (A% (hgy1)) and B9 (AY(ry)) :
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Proposition 7.5. Suppose k > 3. Then

3l+2+(l+1)(p+q)m (BC(Ypqe \ {O}))

+u31+1+(l+2)(p+q)w + 3D ) BC (L (19, 3,0) = 0}) if k = 21 + 1,

FAD) = | s ey (o) + 1)
+ D BC ({hy 1 (0, 23,y) = 0}) if k = 21,
and
WD) L D (36(y, N\ {0)
B(AY (1)) = + u3l+1+(l+2)(p+Q)%‘w + 3D P+ BC (L) (21, 29,0) = 0}) if k= 21 + 1,

Pt M et (B9 (Y \ {0) +1) + w58 ({0, 22,) = 0}) if & = 21,

Proof. We do the computations for 8% (A (hyi1)).
First suppose k to be odd, kK = 2] + 1. Keeping the notations of the proof of proposition
7.1, the set A?(hg1) is defined by the system

4

Qpq(c1) =0

azby + @pq(c1, c2) =0,

a%bz + 2aja9b1 + ng(CQ) + @p,q(cl, 03) =0,

21— (t+1)
Zt 1 a7bor 2 + QZt 108 5 t$1 agbar—s—t + Qpqlc) + Zl 1 1 Ppgler, cat) =0,
204+1—(t+1)
b%lﬂ + thl a; b2l+1—2t +2 Zt as Z(S J:t+1( = asbory1-5-t + thl Dy q(ct, ci41-¢) = 0.

Proceeding as in the proof of proposition 7.1 (see also the proof of proposition 6.10), we
obtain

ullete—1) _ 1
,BG(Ag(hk+1)) _ u3l+2+(l+1)(p+Q)W (5G(Yp,q \ {O}))

-2
+ Z wtBHp+a)  (k=1-26)(p+a+1)+3 u(lfl)(3+p+q)/8G(Sg)’
t=0
if Sg denotes the algebraic set defined by the equation eb%lJrl + a?b; = 0, the variables as, a3,
ba, b3 as well as the vectors cs, c3 being free. Hence the desired result.

If we suppose k even, k = 21, the set A (hj41) is described by the system

(Qp,q(cl) =0,
a%bl + ®p4(c1,c2) =0,

2A—1—(t+1 _
Zt 1atb2l 1— 2t+22t 10s ) 5 tH(H)aébm 1-6— t+2i % pq(CuCzl 1-¢) =0,
le+Zt 1atb2l 2t+22t 1 tz(s t+1 a5b2l 6— t+qu(Cl)+Z ®y q(ct,c—t) =0,
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and we have
I=1)(p+q-1) _ 1
upta—1 — 1

(
BE (A (1)) = w0 L (B9 (Y \ {0}) + 1) + ulDEHH0 56 (52),
where S9 is the algebraic set given by the equation eb? + Q,4(c1) = 0, with free variables
a1, a9, by and free vector cs. O

Since, in our present framework, the quantity BG(Yp,q) is the same for hy41 and gi, we are re-
duced to study the equivariant virtual Poincaré series of the G-algebraic sets {hgy1(x2,x3,0) =
0} and {rg(z1,22,0) = 0} if k is odd, resp. {hk4+1(0,2z3,y) = 0} and {ri(0,z2,y) = 0} if k is
even.

Notice that, if k is even, BY({hr41(0,23,y) = 0}) and B%({rx(0,z2,y) = 0}) have been
already computed in lemma 6.11 : if kiseven and if p > g+1andn=+4+1org>p+1andn=
—1, the equivariant virtual Poincaré series 3% ({hp41(0,z3,y) = 0}) and 8% ({r(0, z2,%) = 0})
are equal and therefore 8% (Ay(hgy1)) = BE(A(rr)).

Now, in the next lemma, we compute {hgi1(z2,23,0) = 0} and {ri(z1,22,0) = 0} if k is
odd, k=20 +1:

Lemma 7.6. We have

u u2

B ({hay2(x2, 23,0) = 0}) = B ({23 + e} = 0}) —

u—1 u—-1’

where the latter set is considered as an algebraic subset of R? on which the group G acts trivially,

and

u ’LL2

BY({ra1 (z1,22,0) = 0}) = B9 ({z] + e} = 0}) —

u—1 wu—-1’

where the latter set is considered as an algebraic subset of R? on which the group G acts only
changing the sign of the coordinate x1.

Proof. We make the computation for 8% ({ry (21, 22,0) = 0}).
Consider the equation z329 + ex2 ™ = 0. If 9 # 0, it is equivalent to 22 + ex3 = 0, and if
xo = 0, it becomes trivial. Consequently,

B9 ({rai1 (w1, 22,0) = 0}) = B9({a] + exd’ = 01\ {(0,0)}) +

u—1’

and we use lemma 6.11 to write 8¢ ({z? + exd = 0}) = BC({z? + ex =0}) — (1 — 1) ({2} =
0N+ (1—1)B%({(0,0)}) = BE({x? +ex3 = 0}) (recall also that the equivariant virtual Poincaré

series of a point is 7). O

If € = +1, the sets {z3+ 23 = 0}) and {27 + 23 = 0} are both reduced to a single point. On

the other hand, if ¢ = —1, we have 3% ({22 — 23 = 0}) = 222:1“ whereas ¢ ({2? — 23 = 0}) =
% (see proposition 5.1). As a consequence :

Corollary 7.7. If k is odd and if ¢ = —1, the germs hipy 1 and rp are not G-blow-Nash
equivalent.
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Ifp>q¢g+1andn=+1orqg>p+1andn = —1, and if k£ is even or k is odd and
€ = +1, the coefficients 8% (A (hy41)) and % (Ag (1)) of the respective naive equivariant zeta
functions of hii1 and ry are equal. We are then led to look at the coefficients 5G(Ai(hk+1))
and 5G(Ai (rg)) of their respective equivariant zeta functions with signs.

7.3 Computation of BG(Ai(th)) and BG(Ai('f’k))

For the cases listed above, we consider the quantities 5G(Ai(hk+1)) and 5G(Ai (rk)), expressed
by the following formulae (just follow the steps of computation of the proof of proposition 7.5) :

Proposition 7.8. Suppose k > 3. Then

+u3l+1+(l+2)(p+q)w + D) 8C ({1 (29, 23,0) = €}) if k=20 + 1,

3z+2+<z+1><p+q>m (BC(Ypqe \ {O}))

G P TaT
BE (AR (b 1)) = D) (phg) ul D@L ?ﬁ?j 11) : EBG(YM \ {0}) +1)
+ a5 ({hy 11 (0,23, y) = €}) if k = 2,
and
W32+ (p+g) ;(jﬂ—l)—l (B%(Ypq \ {O]))
BOUAS () = { -+t L 040 06 (10,2, 0) = ) ik = 241,
uAH D D (B9 (Vg \ {0) 1) + w00 56 ({1 (0,2,) = €)) if k= 21.

If k is even, we can use the formulae of lemma 6.15 and the same arguments as in the proofs
of propositions 6.17 and 6.18 in order to establish the following facts :

Proposition 7.9. Suppose k is even, k = 2l > 4.

1. Ifp>qg+1landn=¢=+10orqg>p+1andn =¢c = —1, then 5G(Ai(hk+1)) =
B9 (AL ().

2. e lIfp>q+1,n =41 and € = —1, the equality ﬁG(Ai(th)) = BG(Ai(rk)) is
true if and only if the equivariant virtual Poincaré series of the algebraic subsets

{—x%l + 9?2+ ZZK 11yf §} C REHL K := p — q, equipped with the action of G
changing only the sign of y, and { L4 ZZ 1 22 = } C REFL equipped with the
trivial action of G, are equal.
e Ifg>p+1,n=—1and e = +1, we have ﬁG(Ai(th)) = ﬁG(Ai(rk)) if and only
if 89 ({a3 -2 - IS 2 =¢}) = 89 ({a¥ - I 22 =¢}).
If kisodd, k =2l4+1and e = +1, andif p > ¢g+1and n = +1 or ¢ > p+ 1 and
n = —1, we are reduced to compare BY({hy 1(w2,23,0) = &}) = BY({x32s3 + £U2l+1 = ¢}

and BC ({rp(z1,22,0) = €}) = BE({a2xy 4+ 22171 = £}). We are going to show that these two
quantities are equal and therefore :
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Proposition 7.10. If p > g+ 1 andn=410orq>p+1 and n = —1, and if k is odd and
€= +1, then 5%(A} (b)) = 8% (AL (r1).

Proof. We compute the equivariant virtual Poincaré series of the nonsingular curve C :=
{x%yo + y%“l = ¢} of R?, on which the group G acts only changing the sign of the first

coordinate g, resp. trivially.

First suppose the action of G is the former one. Suppose also [ > 2. We equivariantly
compactify C' in the projective space P?(R) with homogeneous coordinates [X : Y : Z], on
which G acts via the involution [X : YV : Z] —» [-X : Y : Z] = [X : =Y : —Z]. We denote
I = {X2YZ%-2 4 Y241 = ¢7241} this compactification and p := [1 : 0 : 0] the point at
infinity.

The equivariant compactification I' is singular at the fixed point p as one can see in the
globally invariant chart X # 0. If (yo,20) are the coordinates in this chart, the group G
acting via the involution (yo,20) — (—Yo, —20), we denote by C’ the curve I' N {X # 0} =
{yozgl*2 + y%“l = fzng} (the point at infinity is the fixed point ¢ = [0: £ : 1] of C).

Equivariantly blowing-up I' at p resolves the singularity : in the chart yg = ugvg, 20 = vo,
where the action of G is given by (ug,vg) — (ug, —vp), the equation of the strict transform
is ug + ungUS — ¢&vg = 0 and it intersects the exceptional divisor at the single point py with
coordinates (ug,vg) = (0,0). The resolved compact G-variety, denoted by T, is equivariantly
homeomorphic to a circle equipped with an action of G fixing the two points pg and gq.

As a conclusion, we have

u u u

F9(C) = BT\ {p}) = BEE\ {po}) = F9(F) — 8 (fpo}) = u+ 2 — o =

(see remark 4.1).
If I = 1, the point p of I' is not singular and I' is a compact nonsingular G-variety equivari-
antly homeomorphic to a circle with two fixed points p and q.

If now we suppose that the affine space R? with coordinates (xg,o) is equipped with the
trivial action of G, we will obtain the same expression for 5% (C') since the equivariant homology
of a circle is the same as soon as there is at least one fixed point.

Consequently, the equivariant virtual Poincaré series 8% ({hy 1 (2, 3,0) = £}) = B9 ({x323+
23T = &}) and BE({rp(z1,22,0) = &}) = BY({afzs + 23" = &}) are equal and then
BE (A (h1)) = B (AL ().

O

In the next paragraph, we will look at the last part of the respective equivariant zeta
functions of hiy1 and 7. Still supposing that p > ¢+ 1andn=+4+1or¢>p+1and n=—1,
we will show that, if k£ is even or k is odd and € = +1, their comparison reduces as in proposition

7.9.
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7.4 The last terms of the equivariant zeta functions

Suppose p > g+ 1and n=+1or ¢ >p+1and n = —1. Suppose that k is even or that k is
odd and € = +1. The naive equivariant zeta functions of hy,1 and ry are equal :

Proposition 7.11. For all M > k, we have 8% (Apr(hpi1)) = BC(Apr(ry)).

Proof. Let M be greater than k. We prove that 3 (AS,(hxy1)) = B (A9, (r1)).

Suppose k to be even, k = 2I. Consider the system of equations describing AY,(hxi1)
and A%(rk). The same computations as in the proofs of propositions 7.1 and 7.5 bring, in
both expressions of 3% (A, (hx11)) and B39 (A%, (r1)), an equal contribution of 3% (Y, , \ {0})
and a contribution of the equivariant virtual Poincaré series of a set defined by a system
whose first equatlon is eb1 + @), q(cl) = (. Stratifying this last algebraic set with the subsets
{01 = ... = = 0,¢ #0}, i =1,...,p+q, and {c; = 0} provides a contribution of

B ({hg41(0, x3, y) = 0}\{0}), resp. ﬁG({rk(O, x2,y) = 0}\ {0}) (it is the same quantity in our
hypothesis) and we are led to the further condition ¢; = 0, and then b; = 0, in the previous
system.

Now, stratify with the subsets {a; # 0} (this will provide an equal contribution for hj;
and r) and {a; = 0}. If a; = 0, shifting by —1 the indices of the remaining variables a; and
¢;, we obtain a new system whose first equations are, if M > 2k :

Qp,q(cl) =0,

(I)p,q(cla C2) = 0,

a%b2 + Qp,q(c2) + (I)p,q(cla cg) =0,

a%bg + 2a1a2by + ®p 4(c1,c4) + Py g(c2,¢3) =0,

- 21—2—(t+1) _
Sz ?a?bzl Lo +23 2%, Za t+1(t+ asbar—1-5—t + >0t Ppglcr ca1-¢) =0,
2—1—(t+1) 7
b3 + Zt 1 a7y 9 + 2 Zt 10t 51 D agby sy + @pqlc) + Ziz% Py, q(ct, car—t) = 0.

These equations can be obtained from the system defining Ag(th,l), by replacing the term eb?!
with eb%l in the last equation and imposing b; to be 0 in the other ones.

Therefore, a similar process as above can be applied and provides further equal contributions
for 8% (A9, (hgy1)) and BY(AQ,(rs)). In any case, the final equation will be either @, ,(c1) = 0,
eb?l + Qp,q(c1) = 0 or trivial, so that the induced respective contributions are equal as well.

As a consequence, BY (A, (hi11)) = B9(AY,(rx)) and B9 (Apr(his1)) = BE(Ap(rr)).

If kis odd, k = 2[4+ 1, and € = +1, from the initial system of equations defining A%(hkﬂ)
and A9, (ry), we are reduced to consider a system whose first equation is b?”l +a2b; = 0
(see the proof of proposition 7.5). Therefore by = 0. Stratifying with the subsets {a; # 0}
and {a; = 0}, we then get, after a renaming of the variables, a system whose first non trivial
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equations are, if M > 2k :

@pqlc1) =0,

O, 4(c1,62) =0,

a3by + Qpq(c2) + @, 4(c1,c3) =0,

a%bg + 2a1a2by + ®p 4(c1,c4) + Py g(c2,¢3) =0,

21— (t+1 1
Zt YaZboryy o + 23  ag Sn tgrl ) agbors1_s— ¢+ 21 Ppgler, cai1-¢) =0,

Repeating the process provides further equal contributions for 8% (A9, (hgy1)) and B¢ (A, (r4))

and, if M > 2k, we are led to a new system whose first equation is bglﬂ + Qpqlc1) = 0. We
will show in lemma 7.12 below that the respective induced contributions are equal.

In any case, these repeated steps of computations will eventually allow us to consider a
single equation, which will be either @, 4(c1) = 0, b?“l + a3b; = 0, b?“l + Qpqlc1) =0 or
trivial.

Consequently, if & is odd, 89(AY; (h1)) = A (A (re)) and B (A (his1)) = B (At (11))
as well.

O

Lemma 7.12. Suppose that k is odd, k =20+ 1, p > q+ 1 and n = +1 (the property will also
be true if g >p+1 andn=—1). Then

BY ({410, 23,y) = 0}) = B9 ({ri (0, 22,y) = 0}).

Proof. Applying successive blowings-up as in the proof of lemma 6.11, we obtain

BY({he+1(0,23,y) =0}) = B ({ems + Qpq(y) = 0}) — kB ({Qpq(y) = 0}) + k8% ({0})
BY(RPTY) — kB ({Qp.q(y) = 0}) + kBY({0}).

We have the same expression for & ({r(0,z2,y) = 0}) and therefore, since p > ¢ + 1 and
n = +1, the two quantities are equal. ]

As for the last part of the equivariant zeta functions with signs of kx4 and 7, adapting the
computations of the proof of proposition 7.11, we obtain the following (still under our current
hypothesis) :

Proposition 7.13. 1. Suppose k is even.

o Ifn =e, then, for all M > k, 5G(A§M(hk+1)) = 5G(A§w(rk)) and consequently the
respective equivariant zeta functions with signs of hy+1 and ry are equal.

e Ifn =41, ¢ = —1, we have the equality ZG’f (u,T) = ZTGk’g(u,T) if and only if

BE <{ ok + o2 —i—ZKllyf 5}) = B¢ <{ x2+zz 122 }) (the former set is

a subset of RETL equipped with the action of G only changing the sign of y and the
latter set is a subset of RE+! equipped with the trivial action of G).
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e Ifn = —1, ¢ = +1, we have the equality ZhG’gl(u,T) = ng(u,T) if and only if

ket
B9 ({ah -2 -2l =¢}) =89 ({st - 2Lzt = ¢}).
2. Suppose k is odd and € = +1.

e [fn =41, the equality Zth’i(u,T) = ng(u,T) is true if and only if the quantities

B¢ <{x1§ + 9% + Zfi{l y? = 5}) and % ({xé + Zfil 22 = 5}) are equal.
e Ifn=—1, the equality Zth’i(u,T) = ng(u,T) is true if and only if the quantities

B¢ <{x§ —y? - Zfi}lyf = f}) and % ({xé - Z@I; 22 = 5}) are equal.
Proof. Let M be greater than k. Since the system describing A?M(hk+1) and Afw (r) is obtained
from the one defining A%, (hxy1) and AQ,(rx) by replacing 0 by £ in the right member of the
last equation, we are reduced, as in the proof of proposition 7.11, to consider a single equation.

If k is even, k = 21, this equation is either @, 4(c1) = &, eb?l + Qpq(c1) = & or an equation
with no solution. Under our current hypothesis, the quantity ﬁG(Y}fq) is the same for hg4
and 7. If e =1, we can show, as in the proof of proposition 6.17, using the formulae of lemma
6.15, that B9 ({hx+1(0,23,y) = &}) = BE{rk(0,29,y) = €}). If € = —7, we also use lemma
6.15 to obtain the desired equivalences.

If k is odd and € = +1, the final equation is either @, 4(c1) = &, b?lﬂ + a%bj =, b?lﬂ +

Qp,q(c1) = £ or an equation with no solution. The quantity ﬁG(Y}fq) is the same for hi, 1 and
r and we showed in proposition 7.10 that 3% ({hpy1(z2, 23,0) = &}) = BE({r(x1, 22,0) = £}).
Finally, we can obtain formulae similar to the ones in lemma 6.15 for 8% ({hg41(0,23,5) = £})
and BG({Tk(O, x9,y) = &}) if k is odd and this provides the desired equivalences. O

7.5 Conclusion
We gather the obtained results in the following statement :
Theorem 7.14. Let k > 3. Suppose that the invariant germs
Rjy1 = 523 + exlg + 02?2 + Q and 1, = 2wy + exh + nri+ Q'
have, up to permutation of all variables, the same quadratic part, with p signs + and q signs —.
1. If

ep=<qgn=+lorqg<p n=-1,
ep=qg+lorg=p+1,
e kisodd, e =—1,
then hx11 and ry are not G-blow-Nash equivalent.
2. If kiseven and if p >q+1,n =41, e=4+1o0orqgq>p+1, n=—-1,€¢ = —1, then
G, G,
Zg (. T) = ZG(u,T) and Z;* (u,T) = Z75(u,T).
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3. e Ifkiseven and ifp > q+1,n=+1, e = —1, then Z,iﬂ(u,T) = Z5 (u,T). Further-
more, Z,i’i(u,T) = Zrci’g(u,T) if and only if B¢ <{—x’§ + %+ Zfi}l y? = 5}) =
89 ({ -+ 2k 22 =¢}).

o Ifkiseven andif g >p+1,n=—1, e = +1, then ZthH(u,T) = Zri(u,T). Fur-
thermore, Zfii(u’ T)= Zrci’g(u, T) if and only if B¢ <{x§ —y? - Zfi{l y? = g}) =

8 ({ah - LI, 22 = ¢}).
o Ifkisodd and ifp>q+1,n=+1, e = +1, then Z}i+l(u,T) = Z,,Gk (u,T). Further-
more, Z,i’i(u,T) = Z5%(u,T) if and only if B <{ﬂ:l§ +y%+ Zfi{lyf = 5}) =

89 ({5 + 2kt =¢}).
e Ifkisodd andifq>p+1,n=—1,€=+1, then Z}i+l(u,T) = Z,,Gk (u,T). Further-
more, Z,i’i(u,T) = Zrcli’g(u,T) if and only if B¢ <{x§ -y - Zfi{lyg = g}) =

8 ({ah - LI, 22 = ¢}).
Remark 7.15. If we forget the G-actions, the virtual Poincaré polynomials of the algebraic
subsets {leH + 3K 2 :5} and {xm“ — K 2 :5} of REFTL ¢ = £1, can also be

computed using the invariance of the virtual Poincaré polynomial under bijection with AS
graph (see remark 6.19).

8 The germs Eg and Fj

Finally, we study the classification with respect to G-blow-Nash equivalence of the families
() = taf + 23 + ers +Q

and
w(z) := ex] + o3 + 423 + Q'

where € € {—1;+1}.

If two germs ¢ and <p€/ are G-blow-Nash equivalent, they have the same quadratic part up
to permutation of the variables x1, 24, . .. , 2, and, by [13] Proposition 3.14, ¢ = ¢’. Furthermore,
we will show in corollary 8.3 below that the germs

Pt () ==+ + 25 + exy + Q and 7 (z) == —af + 23 + ez + Q'

where € € {—1;+41} and —i—x% + @ and —x% + @’ are the same quadratic part up to permutation
of the variables x1,xy4,...,z,, are not G-blow-Nash equivalent.

If two germs w® and w€ are G-blow-Nash equivalent, they also have the same quadratic
part, up to permutation of the variables z3,...,x,, and € = ¢ as well.
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If now two germs ¢ and w® are G-blow-Nash equivalent, then ¢ = €’ and +2? + Q and
:I:a:% + @’ are the same quadratic part up to permutation of all variables, so that we will intend
to compare the germs

o(z) = 23 + exs + nr? + Q and w(z) = x5 + ex] + /a3 + Q'
where €,n,n € {1,—1} and nz? + Q = 'z} + Q" up to permutation of all variables.

As in the previous two parts, we will consider the respective equivariant zeta functions of
¢ and w, along with theorem 4.2, to try to distinguish these invariant germs with respect to
G-blow-Nash equivalence.

We begin with the computation of the first coefficients 8% (A2 (), 8% (A3(p)), B%(A4(y)) of
the naive equivariant zeta function of ¢ (notice that the set A1 () is empty so that 5% (A;(p)) =
0). Thanks to proposition 6.3, we can focus on the quantities 5%(AY (), m < 4. The
corresponding expressions for w are similar, in this case equipping the set Y}, , with the trivial
action of G.

Proposition 8.1. Write p = ¢(, 2,y) = 23+e24+Qp4(y). We have 3% (AY(p)) = u*PH155(Y, ),
F(A8(p)) = wPHOTO5C (Y, \ {O0]) + 2T and FO(AR()) = wPTOTOES (Y0 \ {0}) +
uP PO BG ({ (0, 2,) = 0}).

Proof. If m > 1, we write an arc v of £,, as

Yt) = (a1t + A amt™ byt + o F bpt™ et et ET T 4 )
aj Am
by b a a,
- A e | oo em={ b |t B |
C1 Cm
czlﬂrq c%rq

(the group G acts only changing the sign of the coordinates cil, resp. ¢ +1, in the case n°l,
resp. n°2).

The set AY(ip) is described by the single equation @, 4(c1) = 0, the other variables remaining
free. The set AY(p) is defined by the system

{Qp,q(cl) =0,

a? + q)nq(cl’ C2) =0,

and, stratifying with the G-globally invariant subsets {c} = ... = cil_1 =0,ct #0},i=1,...,p,
and {c} =... = =0} = {1 = 0}, we obtain

BE(A5(p)) = utHmD RIS, \ {0}) + B(45(p) N {e1 = O)).

If ¢; = 0, then a; = 0 and the other variables are free, hence the desired expression.
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Finally, A}(y) is described by the system of equations

Qp,q(cl) =0,
a‘rf + @) 4(c1,c2) =0,
eb + 3a3as + Qp4(c2) + ®(c1,c3) = 0.

Equivariantly stratifying A9(¢) as we did for AJ(p), we get the equality
B9 (AL () = uFHPTDTIFEE (v, A\ {0}) + B(A(p) N {er = 0,a1 = 0}),
the set A9(¢) N {c1 = 0,a; = 0} being given by the equation eb] + Q, 4(c2) = 0. O

With the same way of computation, we obtain the following expressions for the first terms
of the equivariant zeta functions with signs of ¢ :

Proposition 8.2. We have 5%(45(p)) = u4+p+qﬁG(YI§q), 5G(A§(cp)) = PTGy, N\
{0) + 557 and BO(A§(p)) = wPTHIHEEE(Y, o\ {0)) + w2 HIHOEC ({p(0,23,y) = €}).

u

As we did in sections 6.1, 6.2 and 7.1, 7.2, we deduce the following distinctions :
Corollary 8.3. 1. The germs ¢“* and ¢>~ are not G-blow-Nash equivalent.

2. If p<qandn=+1 orq <p and n= —1, then the germs ¢ and w are not G-blow-Nash
equivalent.

3. Ifp=q+1orq=p+1, then p and w are not G-blow-Nash equivalent.

Ifp>q+1landn=+41orqg>p+1andn = —1, the respective quantities ﬂG(Y}W) and
ﬁG(ng,q) are identical for ¢ and w. Furthermore, notice that, equivariantly, {¢(0, z3,y) = 0} =

{fs(w2,y) = 0}, resp. {p(0,23,y) =&} = {f3(22,y) = &}, and {w(0,21,y) = 0} = {g2(21,y) =
0}, resp. {w(0,z1,y) = &} = {g2(x1,y) = &}. Therefore, thanks to the computations of
paragraph 6.2, we can state the following :

Proposition 8.4. Suppose thatp >q+1 andn=+1orq>p+1 andn=—1.
1. For m < 4, B%(An(¢)) = B%(An(w)).
2. Form < 3, B%(A% () = BC (A5 (w)).

5. e Ifn=e then f9(A(p)) = B%(4(w)).
o Ifn = +1 and e = —1, then 5G(Ai(cp)) = ﬁG(Ai(w)) if and only if the equivari-
ant virtual Poincaré series of the algebraic subsets {—x% + 2+ Zfi{l y? = f} C
REFL K :=p — q, equipped with the action of G only changing the sign of y, and
{—33411 + Zfil 22 = f} C REHL equipped with the action of G only changing the sign
of x1, are equal.
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o Ifn = —1 and € = +1, then we have 5G(Ai(cp)) = B9 (A(w)) if and only if
89 ({wd-v* - Tl = ¢}) = 8¢ ({af - 2L 22 = ¢})

For these cases, we have then to look at the other coefficients of the equivariant zeta
functions of ¢ and w. We begin by showing that, under this hypothesis p > ¢+ 1, n = 41 or
q>p—+ 1, n=—1, the respective naive equivariant zeta functions of ¢ and w are equal :

Proposition 8.5. If p>q¢+1 andn=+1 orqg>p+1 and n= —1, then, for all M > 4, we
have B%(An(p)) = B (Am (w)).

Proof. Let M be greater than 4, we prove that 8%(A%,(p)) = BY(A%,(w)). If we consider
the system defining the two latter sets, the same computations as in proposition 8.1 provide
an equal (under our current hypothesis) contribution of 8%(Y,,, \ {0}) and we are reduced to
consider a system whose first condition is a; = 0 and next equation is (after a shift of indices)
b} + Qp4(c1) = 0. This equation induces equal contributions for 3%(A9,(¢)) and % (A9, (w))
as well (recall that {¢(0,z3,y) = 0} = {f3(x2,y) = 0} and {w(0,x1,y) = 0} = {g2(z1,y) = 0}).

We then stratify with respect to the coordinates of ¢; as we did in the proofs of propositions
6.20 and 7.11, and we obtain the further condition b7 = 0. The first subsequent equations
become, if M > 8,

a% + Qpglc1) =0,
3a3az + @, 4(c1,c2) =0,
€b3 + 3asa3 + 3a3as + Qpq(ca) + ®(c1,c3) = 0.

Another stratification with respect to the vector ¢; provides an equal (by lemma 7.12)
contribution of 3% ({p(x2,0,y) = 0}) = B ({h4(0,z3,y) = 0}), respectively 8% ({w(x2,0,y) =
0}) = B%({r3(0,z2,y) = 0}), and the condition as = 0.

Carrying on with the computation, we obtain the equivalence 8% (A9, (p)) = 8% (AY,(w)) if
and only if 8% ({¢ = 0}) = BY({w = 0}), from the equations of the form eb?—kag?/ +Qpqlc1) =0
with 4j = 35’. We prove in lemma 8.6 below that 8% ({¢ = 0}) = % ({w = 0}). O

Lemma 8.6. Suppose thatp >qg+1 andn=+1orq>p+1 andn=—1. Then
B°({p = 0}) = B9({w = 0}).

Proof. Suppose that p > g+1 and n = +1. Considering an equivariant resolution of singularities
of the G-algebraic set {w = 0}, we will compare the quantities 3%({w = 0}) and 8% ({p = 0}).

Write w(z) = 2% + ez + Q,4(y) (the group G acts via the involution (z, z,y) = (z, —2,y)).
Using an equivariant change of coordinates as in the proof of proposition 5.1, we can assume
g = 0. We then equivariantly blow-up the G-algebraic set {w = 0} at the origin of R" :

e in the chart z = u, z = wv, y; = ww;, with G-action (u,v,w;) — (u, —v,w;), the equation
of the blown-up variety is

u? [u+ euvt + Qp.q(w)] =0,
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e in the chart z = vu, z = v, y; = vw;, with G-action (u,v,w;) — (—u, —v, —w;), it is
v?[vud + ev? + Qp.q(w)] =0,

e in the respective charts * = wju, z = wjv, y; = w; , y; = w;w; for i # j, with G-action
(ua v, wl) = (u’ v, wi)’ it is

wjz[wjug + ew]2~114 +1+Q(w)] =0.

The set of points of the strict transform of {w = 0} which are in the first chart but not in
the second one is given by v = 0,u + Qp 4(w) = 0, therefore it is equivariantly isomorphic to
an affine space : the respective induced contributions for 3%({w = 0}) and % ({¢ = 0}) are
equal. Now, the set of points of the strict transform which are in one of the last charts but not
in the second and the first ones is given by v = 0,u = 0,1 + Q(w) = 0 : it is the empty set
(¢=0).

Furthermore, notice that the intersection of the strict transform of {w = 0} with the ex-
ceptional divisor is a circle with a nonempty fixed point set.

Consequently, we are reduced to consider the equivariant virtual Poincaré series of the al-
gebraic set of R™ defined by the equation zx3 + €22 + Q,4(y) = 0, G acting via (z,z,y) —
(—x,—z,—y) (for ¢, the involution would have been (z,z,y1,y;) — (z,2,—y1,v;)). We equiv-
ariantly blow-up this G-algebraic set at the origin of R™ as well :

e in the chart z = u, z = wv,y; = vw;, with G-action (u,v,w;) — (—u,v,w;), the equation
of the blown-up variety is

w?lou? + ev? + Qpq(w)] = 0,
e in the chart z = vu, z = v, y; = vw;, with G-action (u,v,w;) — (u, —v,w;), it is
v?[v*ud + e + Qp.q(w)] =0,

e in the respective charts * = wju, z = wjv, y; = w; , y; = wjw; for i # j, with G-action
(w,v,wj, w;) = (u,v, —wj;,w;), it is
w]2- [vw]zu?’ +ev? +14+Q(w)] = 0.

The set of points of the strict transform which are in the second chart but not in the first
one is given by u = 0,e + Q) 4(w) = 0 : it is the cartesian product of an affine line and the set
Y, s, and therefore it induces an equal contribution for BY({w = 0}) and BE({p = 0}) under
our current hypothesis. As for the set of points of the strict transform which are in one of the
last charts but not in the first and the second ones, it is given by v = 0,v = 0,1 + Q(w) = 0,
thus it is empty.

On the other hand, the intersection of the strict transform with the exceptional divisor
provides equal contributions for 4% ({w = 0}) and 8% ({¢ = 0}) as well.
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As a consequence, we can focus on the equation za? + ez? + Qp,q(y) = 0 in R™, the group
G acting via (z,z,y) — (—x,z,y) for w (respectively via (x, z,y1,y;) — (x, 2, —y1,y;) for ).
We equivariantly blow-up once again :

e in the chart x = w, z = w,y; = ww;, with G-action (u,v,w;) — (—u, —v, —w;), the
equation of the blown-up variety is

u?[uv 4 ev? + Qp.q(w)] =0,
e in the chart z = vu, z = v, y; = vw;, with G-action (u,v,w;) — (—u,v,w;), it is
v2ou? + €+ Qpq(w)] =0,

e in the respective charts * = wju, z = wjv, y; = w; , y; = w;w; for i # j, with G-action
(ua v, wl) = (_u’ v, wi)’ it is

wjz [vw;u? + ev? + 1+ Q(w)] = 0.

By similar arguments as above, we are reduced to consider the equation uwv+ev? +Qpq(w) =
0. We can then stratify with respect to v and show that the induced respective contributions
for B%({p = 0}) and B¢ ({w = 0}) are also the same. This finally proves the equality 8¢ ({¢ =

0}) = B%({w = 0}). -

Similarly to what we did in the proofs of propositions 6.21 and 7.13, we can adapt the proof
of proposition 8.5 in order to state a sufficient and necessary condition for the equality of the
respective equivariant zeta functions with signs of ¢ and w to be true :

Proposition 8.7. 1. Suppose p > q+1 and n = +1. Then Zg’g(u,T) = Zf’g(u,T) if and
only if we have the equalities
o B9({ad+ 2+ 2 =¢)) =B%({ad + L, 22 = ¢)),
o B%(exf+ 12+ 2 =¢)) = B%({eat + 15, 22 = €}),
o and BO({a3 +exf+ P + St yE = €}) = BO({ad + eat + i, 22 =€),

where, in the left members of the equalities, the considered sets are algebraic subsets of
RE+2 equipped with the action of G only changing the sign of y, and, in the right members,
the sets are subsets of RE+2 equipped with the action of G only changing the sign of 1.

2. Suppose ¢ >p+1 andn=—1. Then Zg’g(u,T) = Zg’g(u,T) if and only if we have the
equalities
o B9ad - P -y =€) =89l - X, 22 =€),
o B9(ert —y? =I5yl =€) = 89(ext - XL, 2 =€),
o and B%({a} + exf —y? = 5 97 = €)) = 89({ad + ext - XL, 27 = €)).
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Remark 8.8. As we showed in the proof of proposition 6.17, we have ﬁG({+x§+y2 —i-zili;l y?

£}) = BO{+at+ K 22 = ¢}) and O ({—at—y>~ XK 2 = €)) = B9({—ai-2K 22 = ¢})
for £ = +1.

We finally gather the results of this section in one theorem :

Theorem 8.9. Suppose that the invariant germs
p(x) = o5 + exs + 2t + Q and w(x) = x5 + exf + /25 + Q'
have, up to permutation of all variables, the same quadratic part, with p signs + and q signs —.

1. If

ep<gn=+lorq<p,n=-1,
ep=qt+lorqg=p+1,

then ¢ and w are not G-blow-Nash equivalent.

2. elIfp>gq+1, n =41, then Zg(u,T) = Z%(u,T). Furthermore, Zg’g(u,T) =
Z5(u,T) if and only if B({a +y* + Y1 y2 = €}) = BO({ad + I, 22 = €}).
BO{exd+ 92+ 2 =€) = BC({eaf + L8 22 = €}) and B ({23 +exf + 92 +
YrE R =€) =BC({ad +eat + T8, 22 =¢)).

o Ifqg>p+1, n= —1, then Zg(u,T) = Z%(u,T). Furthermore, Zg’g(u,T) =
Z5*(u,T) if and only if B({a§ —y? — 1 2 = €}) = BO({ad — I, 22 = €}),
BY(fexd —12 =K g2 = €}) = BC({eat — K 22 = €}) and B ({af+exd —y? -
Y =€) = C({ad + et - S, 22 =¢)).

Remark 8.10. Forgetting the G-action, the respective virtual Poincaré polynomials of the al-
gebraic subsets {2® + ez* + Zfil y? = ¢} and {2° + e2* — Zfil y? = ¢}, e = £1, € = £1, of
RE+1 can be computed using the invariance of the virtual Poincaré polynomial under bijection
with AS graph (see also remarks 6.19 and 7.15). If the equivariant virtual Poincaré series was
shown to be an invariant under equivariant AS bijection, it should be possible to compute the
above considered quantities.
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