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Abstract

In recent years, several algorithms have been proposed which extend the traditional Kriging-
based simulation optimization methods (assuming deterministic outputs) to problems with
noise. Our objective in this paper is to compare the relative performance of a number of
these algorithms on a set of well-known analytical test functions, assuming different patterns
of heterogeneous noise. We also apply the algorithms to a popular inventory test problem.
The conclusions and insights obtained may serve as a useful guideline for researchers aiming
to apply Kriging-based methods to solve engineering and/or business problems, and may be
useful in the development of future Kriging-based algorithms.

Keywords: Simulation, Stochastic Kriging, Heterogeneous noise, Ranking and Selection,
Optimization via simulation

1 Introduction

Assume that we would like to find the solution that minimizes some goal function f(x):

min
x∈Θ

f(x), (1)

where f : Θ→ R and x = (x1, x2, ..., xd) (with d the dimension of the solution space). This goal
function cannot be directly observed, and must be estimated through a stochastic simulation
model: we thus only have access to noisy observations f̃j(xi) = f(xi) + εj(x

i), where f̃j(xi)
represents the observed goal value in the jth simulation replication at point xi . The noise εj(xi)
has mean zero, and its variance depends on xi (we thus have heterogeneous noise). We usually
estimate the value of f(xi) by performing ni simulation replications: f̄(xi) =

∑ni

j=1 f̃j(x
i)/ni.

This type of problem is very common in engineering and business applications since in many
practical problems, the objective function is analytically intractable (Law, 2015). In inventory
management problems, for instance, we often need to optimize a discrete event simulation model
to obtain the optimal stocking quantities (Jalali and Van Nieuwenhuyse, 2015). Examples in
other fields include supply chain design (Saif and Elhedhli, 2015), pump scheduling (Naoum-
Sawaya et al., 2015), and ambulance fleet allocation (McCormack and Coates, 2015).
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In this paper, we focus on problems where Θ is continuous; for reasons explained in Section
3.1, we discretize the function domain to obtain a finite set of points (as in Frazier et al. (2009)).
Many methods are available for solving problem (1) with finite set of points (see Hong et al.
(2015) for a review of Ranking and Selection methods), but most of them are unsuitable when
(1) the number of feasible solutions is large, or (2) simulation replications are time-consuming
(Xu, 2012). Kriging-based or Bayesian optimization is among the few techniques that can handle
this problem with low problem dimensionality (d ≤ 20) (Brochu et al., 2010; Preuss et al., 2012).
Based on the observed f̄(xi) for several xi, Kriging provides an approximation (ormetamodel) for
f(x). The traditional Efficient global optimization (EGO) approach of Jones et al. (1998) is one
of the most popular Kriging-based techniques for optimizing noiseless simulation; in this case,
the fitted metamodel is a deterministic Kriging model. In stochastic simulation (e.g., discrete
event simulation), however, EGO might not be very appropriate since it ignores the noise in the
observations, assuming they were sampled with infinite precision (Quan et al., 2013). Realizing
this deficiency, researchers have tried to extend EGO for stochastic simulation. Most of the
approaches assume homogeneous simulation noise, meaning that the variance of the noise does
not depend on x (Picheny et al., 2013a); Picheny et al. (2013b) compare several Kriging-based
techniques for optimizing functions with this type of noise.

In practice, however, the noise is heterogeneous (Kleijnen and Van Beers, 2005; Yin et al.,
2011; Kim and Nelson, 2006). In recent years, a number of Kriging-based optimization algorithms
have been proposed that can handle heterogeneous noise, based on stochastic Kriging models
(see Cressie (1993), Ankenman et al. (2010) and Yin et al. (2011)). To the best of our knowledge,
the performance of these algorithms has not yet been compared. Our objective in this paper
is to evaluate the effectiveness and the relative performance of these algorithms for simulation
optimization problems with heterogeneous noise. More specifically, we evaluate the performance
of six methods: correlated knowledge-gradient (CKG, Frazier et al. (2009)), two-stage stochastic
optimization (TSSO, Quan et al. (2013)), extended two-stage stochastic optimization (eTSSO,
Liu et al. (2014)), expected quantile improvement (EQI, Picheny et al. (2013a)), the minimum
quantile criterion (MQ, Picheny et al. (2013b), which is similar to the Gaussian process upper
confidence bound (GP-UCB) method of Auer et al. (2002) and Jones (2001)), and an adapted
version of the sequential Kriging optimization approach (SKO, Huang et al. (2006)). To this
end, we apply these algorithms to minimize three well-known analytical test functions (Rescaled
Branin, Six-hump camel-back, and Hartmann-6), perturbed with heterogeneous Gaussian noise,
over a finite set of solutions. We also apply the algorithms to optimize the (s, S) inventory system
of Fu and Healy (1997) which has been a popular test problem in the simulation optimization
literature (Jalali and Van Nieuwenhuyse, 2015).

Though our work is closely related to Picheny et al. (2013b), it clearly differs in the following
respects: (1) we consider heterogeneous noise, (2) we add two recent Kriging-based algorithms
(TSSO and eTSSO), (3) we adapt the SKO algorithm (Huang et al., 2006) to settings with
heterogeneous noise, (4) we explicitly consider the replication strategy used by the different
algorithms. In Picheny et al. (2013b), a single replication is used for estimating f(x) (they use
homogeneous noise with known magnitude). In our case, algorithms need to smartly allocate
the limited replication budget to obtain reasonably good estimates (which is referred to as the
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replication strategy). While Picheny et al. (2013b) compare the algorithms only in terms of how
they perform the search for interesting alternatives in Θ, we also study the effectiveness and
importance of the replication strategies and their influence on the choice of the final solution
(i.e., identification step).

The complexity and computational requirements vary widely across the algorithms. As
the MQ method is the most straightforward, we consider it as a benchmark in our experiments,
checking whether it is outperformed by the more sophisticated (and, thus, more computationally
expensive) approaches. Additionally, some algorithms (i.e., CKG, SKO and EQI, see Section
2) require information on the noise variance function τ2(x) at any x ∈ Θ. This may limit the
applicability of these methods in practice, as an unknown noise variance function is “a fact of
life in system simulation problems”(Kim and Nelson, 2006) so it needs to be estimated. In our
experiments, we test whether these “informed” algorithms outperform the ones that don’t need
this information.

Our conclusions may serve as a useful guideline for researchers who want to apply Kriging-
based methods to solve engineering and/or business problems, and may be useful in the devel-
opment of future Kriging-based algorithms. Our main conclusions are as follows:

1. not only the magnitude but also the structure of noise can have a large impact on the
performance of the algorithms;

2. among the methods that require an estimate of τ2(x), SKO and CKG usually outperform
MQ while EQI does not;

3. two-stage stochastic optimization (TSSO) simulates the most promising alternatives but
usually fails to identify them at the end. If the identification is improved, TSSO will
outperform MQ and will provide very competitive results, making it preferable over SKO
or CKG since it does not require an estimate of the noise variance function. Also, eTSSO
does not seem to provide better results than TSSO;

4. none of the existing methods have an appropriate replication strategy. While the focus
of the literature has been primarily on designing better search methods, our results show
that there is a need for smarter replication strategies (e.g., by adding an appropriate
ranking and selection procedure). This can likely lead to significant improvements in the
performance of all algorithms.

The remainder of this article is organized as follows. Section 2 provides a brief explanation of
the Kriging-based methods studied, Section 3 details the experiments, and Section 4 contains the
main results (additional results are provided in appendix). We present conclusions in Section 5.

2 Overview of Kriging-based methods

Section 2.1 provides a brief introduction to Kriging-based simulation optimization, and explains
the general steps involved in this process. Section 2.2 highlights the similarities and differences
between the methods studied in this paper.
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Initial fit: fit an initial kriging metamodel based on a set of 𝑛0 design points:

𝐱𝑖 ,  𝑓 𝐱𝑖 ,  𝑉𝑎𝑟  𝑓 𝐱𝑖 for 𝑖 = 1, … , 𝑛0

Search step: choose another point to sample (infill point). Refit the kriging 
metamodel with the new point included

Replication 
budget left?

Identification step: Return a point among the simulated points as the best 
alternative

Replication step (optional): do additional replications at some of the points 
already sampled

Yes

No

Figure 1: Typical steps in Kriging-based optimization

2.1 Kriging-based simulation optimization

As noted in Section 1, we need a stochastic simulation model to estimate the objective value
at a point within Θ (see Equation 1). As the simulation output is noisy, we use the sample
mean of the simulation output across several replications to obtain an estimate. This estimate
is denoted by f̄(xi) (with estimated variance V̂ar[f̄(xi)]) at any arbitrary point xi.

As shown in Figure 1, the Kriging-based methods studied in this article are sequential. In
the first step, they fit an initial Kriging metamodel using n0 initial points. Space filling designs
(e.g., Latin hypercube sampling) are often used for sampling these initial points (Kleijnen,
2009); simulation replications are used to estimate the objective value at these points. Since
our observations are noisy, we use stochastic Kriging (Ankenman et al., 2010) to fit an initial
Kriging metamodel. This metamodel provides us with (1) f̂(x): a prediction for the objective
function value at any x ∈ Θ and (2) σ2(x): the variance of f̂(x), which provides a measure for
the Kriging prediction uncertainty or error (Kleijnen, 2014); the estimate of this Kriging variance
is denoted by s2(x), see Appendix A for related expressions. Table 1 provides an overview of
the most important notations in this paper. We refer to Quan et al. (2013), Ankenman et al.
(2010), Yin et al. (2011), and Cressie (1993) for further details on stochastic Kriging.

In the search step, the algorithm iteratively chooses a point, simulates it for some number of
replications to obtain f̄(x) and V̂ar[f̄(x)], and refits the Kriging metamodel with the new point
included. The algorithm uses an infill criterion to choose these points (known as infill points):
the purpose of the infill criterion is to discover the good alternatives in Θ, and guide the search
to regions with promising objective values (Forrester et al., 2008).

Optionally, the replication step allows us to perform extra replications at some of the points
already sampled (either initial design points or infill points), to increase the accuracy of f̄(x) in
those points. Such a replication step is present in TSSO, eTSSO, and EQI (see section 2.2), but
the actual choice of points and the number of replications allocated to this step differ between
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Table 1: Overview of notations

Notation Description

f(xi) The true objective value at point xi, which is assumed to be unknown.
f̄(xi) Estimate of the objective value at point xi: f̄(xi) =

∑n
j=1 f̃j(x

i)/ni.
f̂(xi) Kriging estimate: Kriging prediction of the objective value at point xi.
s2(xi) Estimate of Kriging prediction variance at point xi.

these algorithms.
Each time we execute the search and replication steps, we consume part of our finite repli-

cation budget. Hence, after some iterations, the replication budget will end and we enter the
identification step: the algorithm looks back at all simulated or tested (T ) alternatives (ΘT ) and
returns one of them as the best solution to the optimization problem. In noiseless simulation,
this is trivial since f(x) is available for all the simulated points: xr = arg min

x∈ΘT
f(x), where xr

denotes the proposed solution. In the presence of noise, only f̂(x) is available, along with s2(x)

and the observed f̄(x) at each alternative x ∈ ΘT . Consequently, the success of an algorithm
is impacted by the infill criterion (only alternatives that have been simulated are considered in
the identification step), by the criterion used to choose xr in the identification step (i.e., the
identification criterion), and by the replication strategy (more accurate estimates can help to
distinguish superior alternatives in the identification step).

2.2 Description of the algorithms

Due to the limited budget, all algorithms must make a trade-off between the total number of
infill points and their accuracy (Picheny et al., 2013a). If the replication strategy performs
only a few replications at each point, we can sample many infill points but the estimates f̄(x)

may remain very noisy. This may result in inaccurate Kriging models, which in turn affects
the search step (i.e., we might sample points with bad objective values). Additionally, it may
cause problems in the identification step, as it becomes more difficult to differentiate between
good and inferior solutions. Allocating more replications to the points mitigates these issues,
but decreases the number of infill points, implying that we might not get the chance to discover
(some) interesting alternatives.

Table 2 summarizes the main characteristics of the methods (infill criterion, replication
strategy, identification criterion). As evident from this table, the identification criterion varies
between the algorithms: yet, most methods rely on f̂(x) and s2(x) for proposing the final
solution. The remainder of this section briefly explains the search and the replication strategy
for each method.

2.2.1 MQ algorithm

MQ is a straightforward method and acts as a benchmark for other algorithms: it simply chooses
the point with minimum Kriging quantile (q(x) = f̂(x) + Φ−1(β)s(x) with β ∈ (0, 0.5]) as the
infill point in each iteration k: xk = argmin

x∈Θ
q(x).
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Table 2: Kriging-based algorithms

Method Source Infill Replication strategy Identification Info on
criterion criterion τ2(x)

required?

1) MQ Picheny et al. (2013b) Min quantile Revisits min
x∈ΘT

q(x) No

2) SKO Huang et al. (2006) AEI Revisits min
x∈ΘT

q(x) Yes

3) CKG Frazier et al. (2009) CKG Revisits min
x∈ΘT

f̂(x) Yes

4) EQI Picheny et al. (2013a) EQI Replication step & Revisits min
x∈ΘT

q(x) Yes

5) TSSO Quan et al. (2013) MEI Replication step min
x∈ΘT

f̄(x) No

6) eTSSO Liu et al. (2014) MEI Replication step min
x∈ΘT

f̄(x) No

Note: q(x) is the Kriging quantile, q(x) = f̂(x) + Φ−1(β)s(x) where Φ−1(.) is the inverse CDF of standard
normal distribution and β ∈ (0, 0.5] in MQ and β ∈ [0.5, 1] in SKO and EQI.

As evident from the above equation, MQ does not require information on τ2(x). The al-
gorithm allocates a fixed number of replications per iteration (B): the analyst needs to decide
on B prior to running the algorithm. However, MQ allows for revisits: at any iteration k, we
might sample a point that has been simulated previously, and add B additional replications.
The sampled points can thus receive a different total number of replications depending on how
often they are revisited.

2.2.2 Adapted sequential Kriging optimization (SKO)

The SKO method of Huang et al. (2006) chooses the alternative with maximum augmented
expected improvement (AEI) as the next infill point:

AEI(x) = E
[
max

(
f̂(x∗∗)− f̂(x), 0

)](
1− τ(x)√

s2(x) + τ2(x)

)
, (2)

where f̂(x∗∗) is the Kriging prediction at the current effective best solution x∗∗: i.e., the point
with minimum q(x) among the simulated points (β ∈ [0.5, 1]). Thus, the first term of the
above equation represents how much we expect the cost value at x to be lower than f̂(x∗∗), see
Huang et al. (2006) for details. This method was originally designed for homogeneous noise:
in the second term of Equation 2, we introduce τ2(x) instead of τ2 to reflect the presence of
heterogeneous noise. SKO also uses a fixed number of replications per iteration (B) and allows
for revisits. Note that the second term in equation (2) prevents the algorithm from getting
trapped in a given point x, as continued resampling causes s2(x) to gradually approach zero,
which in turn pushes AEI(x) towards zero (Huang et al., 2006).

2.2.3 Correlated knowledge-gradient (CKG)

The idea behind the correlated knowledge-gradient (CKG) infill criterion is that in noisy environ-
ments, the Kriging prediction f̂(x) may be closer to f(x) than the sample mean f̄(x); therefore,
points are selected based on their effect on the Kriging prediction (Picheny and Ginsbourger,
2014; Frazier et al., 2009). More specifically, at iteration k + 1, the improvement that would
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result from sampling alternative xk+1 is defined as:

I(xk+1) = min
x∈Θk∪xk+1

f̂k(x)− min
x∈Θk∪xk+1

f̂k+1(x), (3)

where Θk is the set of simulated points at the end of iteration k, f̂k(x) is the current Kriging
prediction and f̂k+1(x) is the Kriging prediction after refitting the Kriging metamodel with xk+1

included. We choose the point with highest CKG(x) = E[I(x)] as the next point. As with SKO,
we need to know τ2(x) (or its estimate) for calculating this expectation (see Frazier et al. (2009)
for further details on this calculation). Analogous to MQ and SKO, the CKG algorithm allows
for revisits, and uses a fixed number of replications B per iteration.

2.2.4 Expected quantile improvement (EQI)

In EQI, at iteration k + 1, simulating an alternative xk+1 is beneficial if its quantile using the
updated Kriging model is lower than the current minimum quantile:

I(xk+1) =

(
min
x∈Θk

qk(x)− qk+1(xk+1)

)+

, (4)

where qk+1(xk+1) is the quantile of the updated Kriging metamodel at xk+1 (β ∈ [0.5, 1]). The
next point is the point with maximum EQI(x) = E[I(x)]; Picheny et al. (2013a) explain the
calculation of this expectation. Again, this calculation requires an estimate of τ2(x).

EQI allows for revisits, and additionally includes a replication step after each search step
(see Figure 1). The number of replications per iteration is no longer fixed to a constant B. In
the search step of iteration k + 1, EQI samples the infill point xk+1 with ninc replications and
refits the Kriging metamodel. In the replication step, it checks whether performing another ninc
replications at xk+1 is beneficial, by looking at the evolution of EQI(xk+1) (see Picheny et al.
(2013a) for details). If so, the algorithm adds another ninc replications, updates f̄(xk+1) and
V̂ar[f̄(xk+1)], and refits the Kriging metamodel. This is repeated until adding extra replications
is no longer beneficial: at this moment EQI leaves the replication step.

2.2.5 Two-stage sequential optimization (TSSO)

Analogous to EQI, TSSO has a search and a replication step (called allocation stage in Quan
et al. (2013)). In the search step of iteration k + 1, TSSO looks at all unvisited alternatives
(x ∈ Θ\Θk) and simulates the one with maximum modified expected improvement (MEI):

MEI(x) = E
[
max

(
f̂(xmin)− f∗p (x), 0

)]
, (5)

where f̂(xmin) is the stochastic Kriging prediction at xmin = argminx∈Θk f̄(x) (i.e., the alter-
native with the lowest sample mean among the already simulated points) and f∗p (x) is a normal
random variable: f∗p (x) ∼ N(f̂(x), sD(x)) where the mean f̂(x) is the stochastic Kriging pre-
diction at solution x, and s2

D(x) is the estimate of deterministic Kriging prediction error. TSSO
does not require τ2(x) for calculating MEI(x), see Quan et al. (2013) for details. Note that, as
TSSO only considers unvisited alternatives in the search step, revisits are not allowed.
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Table 3: Analytical test functions

Function Source Description

Six-hump Dixon and Szegö (1978) dimension=2
Camelback f(x1, x2) = 4x2

1 − 2.1x4
1 + x6

1/3 + x1x2 − 4x2
2 + 4x4

2

−2 6 x1 6 2 and −1 6 x2 6 1

x∗ = (0.0977,−0.6973)

f(x∗) = −1.0294, Rf ' 7.3

Rescaled Dixon and Szegö (1978) dimension=2

Branin f(x1, x2) = 1
51.95

[(
x̄2 − 5.1x̄2

1

4π2 + 5x̄1

π − 6
)2

+(
10− 10

8π

)
cos(x̄1)− 44.81

]
, x̄1 = 15x1− 5, x̄2 = 15x2

0 6 x1 6 1 and 0 6 x2 6 1

x∗ = (0.541, 0.1348)

f(x∗) = −1.0459, Rf ' 6

Hartmann-6 Dixon and Szegö (1978) dimension=6

f(x1, ..., x6) = −
∑4
i=1 ci exp

[
−
∑6
j=1 αij(xj − pij)2

]
ci, αij , pij are parameters, see Dixon and Szegö
(1978)
0 6 xi 6 1 for i = 1, ..., 6

x∗ = (0.2382, 0.1391, 0.3665, 0.3286, 0.3519, 0.7018)

f(x∗) = −3.02, Rf ' 3.3

Note: Rf is the range of the response (maxx∈Θ f(x)−minx∈Θ f(x)) in the region of interest.

The number of replications per iteration is fixed to a predetermined value B. This number is
shared between the search and replication steps according to a heuristic (Quan et al., 2013). In
the replication step, the algorithm uses the optimal computing budget allocation (OCBA) which
is a Bayesian ranking and selection (R&S) procedure (Chen et al., 2000). OCBA allocates most
of the replication step budget to points with low f̄(x) and high V̂ar[f̄(x)] (Quan et al., 2013),
in view of maximizing the probability of selecting the best point among the sampled ones.

2.2.6 Extended two-stage sequential optimization (eTSSO)

The eTSSO algorithm differs from the TSSO approach in the number of replications per iteration;
while this was fixed to a given value B in TSSO, it now differs for each iteration k:

Bk = Bk−1

(
1 +

V̂ar[f̄(xOCBA)]

V̂ar[f̄(xOCBA)] + s2
D(xk)

)
, (6)

where V̂ar[f̄(xOCBA)] is the estimate of variance of the sample mean at the point where OCBA
allocates the highest number of replications (xOCBA), and s2

D(xk) is the estimate of deterministic
Kriging prediction error at the point that maximizes MEI at iteration k. In eTSSO, the search
step budget of each iteration is fixed to a value (ns) prior to running the algorithm: at iteration
k, the replication step budget of eTSSO is thus Bk − ns.
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3 Benchmark design

In this section, we explain our experiments in detail. We apply the Kriging-based methods
to three well-known analytical test functions; Section 3.1 provides the details. We also test
our algorithms on the inventory problem of Fu and Healy (1997), see Section 3.2. Section 3.3
explains the method used for sampling the initial design and Section 3.4 discusses the different
scenarios tested in our experiments. We discuss the implementation of the algorithms in Section
3.5. Finally, Section 3.6 explains the performance measures used to compare the algorithms.

3.1 Analytical test functions and candidate points

The algorithms are applied to minimize three well-known analytical test functions (six-hump
camelback, rescaled Branin, and Hartmann-6) (Dixon and Szegö, 1978), perturbed with het-
erogeneous Gaussian noise. Hence, we obtain noisy observations f̃j(xi) = f(xi) + εj(x

i), with
εj(x

i) ∼ N(0, τ(xi)). Table 3 gives further details on these analytical test functions. All test
functions are continuous; however, we discretize the domain to obtain a large but finite set of
solutions. In this way, we avoid the challenging problem of maximizing the expected improve-
ment criteria in continuous space; also, some of the criteria might be more difficult to maximize
than others. We discretize the domains using Faure low discrepancy sequences (a quasi-Monte
Carlo sampling method with good space-filling properties, see chapter 5 of Lemieux (2009)) and
we take 1000 points for the camelback and Branin functions (d = 2), and 10000 points for the
Hartmann-6 function (d = 6). These points represent our set of candidate points Θ; our objec-
tive is to find the global minimum among these alternatives (referred to as x∗, having function
value f(x∗)) using our Kriging-based methods.

Figures 2 and 3 show an illustration of the rescaled Branin and the camel-back functions,
along with their respective candidate points. As evident from the figures, the global minimum
of camel-back lies within a small valley, while Branin has a large flat valley. Although the exact
shape of Hartmann-6 is unknown, we know that it is a multimodal function.
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Figure 2: Rescaled Branin function and candidate points; (x∗, f(x∗)) is denoted by an arrow.
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Figure 3: Six-hump camel-back function and candidate points; (x∗, f(x∗)) is denoted by an
arrow.

3.2 The (s, S) inventory problem and candidate points

In the inventory control problem of Fu and Healy (1997), a firm employs a periodic review
(s, S) policy to manage the inventory of a single product. At regular intervals (e.g., each week),
the firm checks the inventory. If the inventory position (i.e., inventory on-hand + on-order −
backorder) is above the level s, the firm does not order. If it is below s, the firm orders the
difference between the order-up-to level S and the inventory position. Demand is stochastic and
continuous and is i.i.d across the periods. The goal is to determine the optimal s and S in view
of minimizing the long-run expected cost per period. The costs include the fixed ordering (K),
per-unit ordering (c), holding (h), and backorder (b) cost. Zero replenishment lead time and full
backlogging are assumed.

To simulate this problem, we use a replication length of 1000 periods with a warm-up length of
100 periods. The inventory parameters (s, S) are continuous; we again use the Faure sequence
to take 1000 space filling solutions (Figure 4). With exponential demand, the expected cost
function has a closed form and the optimal parameters can be calculated analytically; we can
thus evaluate the performance of our Kriging-based methods (see Table 4 which gives details
about the parameters used in our experiment; based on Table 1 in Fu and Healy (1997)).
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Figure 4: Expected cost function of the (s, S) inventory problem with exponential(λ) demand;
(x∗, f(x∗)) is denoted by an arrow.
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Table 4: (s, S) inventory problem with exponential(λ) demand

Source Description

periodic review Fu and Healy (1997) dimension=2
(s, S) problem f(s, S) = c

λ+

[K+h(s− 1
λ+0.5λ(S2−s2))+ h+b

λ e−λs]/[1+λ(S−s)]
K = b = 100, c = h = 1, λ = 0.0002

10000 6 s 6 22500 and 22600 6 S 6 35000

x∗ = (22084.9609, 23060.1563)

f(x∗) = 28165.0049, Rf ' 8584

Note: Rf is the range of the response (maxx∈Θ f(x)−minx∈Θ f(x)) in the region of interest.

3.3 Initial design and Kriging metamodeling

For the initial design, we follow the suggestion of Jones et al. (1998): n0 = 10d (so 20 initial points
for the camel-back and rescaled Branin functions, as well as for the (s, S) inventory problem; 60
initial design points for the Hartmann-6 function). A maximin Latin hypercube sample (LHS) is
used to obtain these points (as is common in Kriging metamodelling, see Picheny et al. (2013b));
we determine f̄(xi) for each i = 1, ..., n0 using 55 replications (in view of controlling the noise,
see Section 3.4). As prevalent in the literature, we only consider an intercept term in the
Kriging metamodel (i.e., no trend term). We also don’t use common random numbers (CRN):
as shown by Chen et al. (2012), CRN increases the stochastic Kriging variance and variance
of the intercept estimation. We fit the Kriging metamodel by means of maximum likelihood;
the classical Matern 2.5 is used as the covariance function (see Rasmussen and Williams (2006)
chapter 4).

3.4 Test Scenarios

There are many factors that can influence the performance of the methods: some factors are
internal or method-specific parameters (e.g., β in SKO), while others are external (such as the
replication budget, the noise magnitude and noise structure). Table 5 provides an overview.

We test our algorithms using low and high replication budgets; this refers to the replication
budget available after simulating the n0 initial points, for performing the search and replication
steps. We focus on problems for which a very small number of solution evaluations are possible,
e.g., because the simulation is very time consuming. The number of replications per iteration
(B) is equal to 55 for SKO, CKG, TSSO, and MQ, implying that with low (resp. high) budget
we simulate 10 (resp. 50) infill points for these methods. In TSSO, the number of replications
per infill point is usually less than 55, since 55 replications are shared between the search and
replication steps (see Section 2.2.5). In EQI and eTSSO, B is not fixed; the number of infill
points is thus not known prior to running these algorithms.

In real-life problems, the noise can follow any type of structure. In the (s,S) inventory
problem this structure is unknown. For the 3 analytical test functions, we assume that the
standard deviation of the noise (i.e., τ(x)) varies linearly in terms of the objective value with
its maximum and minimum linked to Rf , i.e., the range of the objective value in the region of
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Table 5: External Factors considered

Factors levels

Replication budget Low: 550 replications
High: 2750 replications

Number of replications per iteration (for SKO, CKG,
TSSO, and MQ)

B = 55

Noise structure for the 3 analytical test functions Best case
min
x∈Θ

τ(x) at min
x∈Θ

f(x)

max
x∈Θ

τ(x) at max
x∈Θ

f(x)

Worst case
min
x∈Θ

τ(x) at max
x∈Θ

f(x)

max
x∈Θ

τ(x) at min
x∈Θ

f(x)

Noise magnitude for the 3 analytical test functions Light noise
min
x∈Θ

τ(x) = 0.15Rf , max
x∈Θ

τ(x) = 0.6Rf

Heavy noise
min
x∈Θ

τ(x) = 1.5Rf , max
x∈Θ

τ(x) = 6Rf

Note: Rf is the range of the objective value in the region of interest.

interest (as in Huang et al. (2006) and Picheny and Ginsbourger (2014)). With light noise, τ(x)

varies between 15% and 60% of Rf . With heavy noise, these numbers increase to 150% and
600% of Rf . We sample the initial designs with 55 replications: for these points the noise on
f̄(x) varies between 1.5/

√
55Rf = 0.2Rf and 6/

√
55Rf = 0.8Rf with heavy noise. The noise

structure may be in general very case-dependent and adopt a large variety of shapes, here we
focus on two cases:

1. Best case: the noise standard deviation decreases linearly as the objective value decreases;
therefore we have minimum noise at the global minimum.

2. Worst case: the noise standard deviation increases linearly as the objective value de-
creases; we then have maximum noise at the global minimum.

We refer to appendix B for details on the linear functions used to implement the different
noise structures.

As mentioned earlier, CKG, EQI, and SKO need an estimate of τ2(x) at all the candidate
points. For the inventory test problem, the noise structure is unknown. Analogous to Section
3.1 in Ankenman et al. (2010), we fit a deterministic Kriging model to the sampled variances
of the simulated function values and use it to predict the noise variance at any x ∈ Θ. In the
analytical test functions, however, the noise structure is known: as mentioned above, we assume
a linear relation between the noise magnitude and the function value (τ(x) = af(x)+a×b). We
then estimate the noise at x ∈ Θ by using the Kriging prediction f̂(x) instead of the unknown
true function value: τ̂(x) = af̂(x) + a× b.

Figure 5 illustrates the structure of heavy worst case and heavy best case noise for the Branin
function, at x2 = 0. Here Rf = 6, so the maximum and minimum standard deviation of noise
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Figure 5: Heavy worst case and best case noise for rescaled Branin function at x2 = 0 with 55
replications

with 55 replications are 0.8 × 6 = 4.8 and 0.2 × 6 = 1.2, respectively. As shown in the figure,
with best case noise, this maximum occurs at (x1 = 0, x2 = 0), and the noise drops linearly as
f(x) decreases. With worst case noise, we have the opposite behavior.

(a) Camel-back function, the location of the optimum is indi-
cated in red.

(b) MEI for best case heavy noise (c) MEI for worst case heavy noise

Figure 6: MEI of camel-back function for the first iteration of a given run, with best and worst
case noise

The noise structure may substantially impact the performance of the algorithms, as it impacts
the search pattern in step 2. As an illustration, Figure 6 shows the structure of MEI for the

13



Table 6: Parameter settings for different algorithms

Method Factors

MQ β = 0.1

SKO β = 0.84

EQI β = 0.5, ninc = 10, α = 0.5

TSSO nmin = 2

eTSSO ns = 10

Note: CKG does not require any parameters

camel-back function, with best and worst case noise, at the first iteration of an arbitrary run
(so only the n0 design points have been simulated). With best case noise, the maximum MEI
is near the optimal solution; with worst case noise, the search may be driven to non-interesting
areas of the search space.

Table 6 provides the parameter settings of the different algorithms. Huang et al. (2006)
recommend β = 0.84 for SKO (Φ−1(0.84) = 1); for the β values in MQ and EQI we follow the
suggestions of Picheny et al. (2013b). We follow the recommendation of Picheny et al. (2013a)
for α in EQI; we set ninc=10. In TSSO, nmin (i.e., the minimum number of replications for
simulating an infill point) only affects the way B is shared between the search and replication
steps (see Quan et al. (2013)). In eTSSO, we chose ns = 10 to match ninc of EQI.

3.5 Implementation details

For best case as well as for worst case noise, we have the following 4 settings: 1) Low budget –
Light noise 2) Low budget – Heavy noise 3) High budget – Light noise 4) High budget – Heavy
noise. These are applied to each of the 3 analytical test functions, yielding a total of 2×4×3 = 24

scenarios. For the inventory problem, we have 2 scenarios: low budget and high budget. Recall
that the budget is for the search and replication steps (steps 2 and 3 in Figure 1). To evaluate
the performance of an algorithm for a given scenario, we use 100 macroreplications: we run the
algorithm 100 times, each time using a different initial design. In a given macroreplication, all
methods start with the same set of initial points (same xi, f̄(xi), and V̂ar[f̄(xi)]) and, hence,
the same Kriging model (analogous to Picheny et al. (2013b)).

All the methods were coded in MATLAB. To fit the stochastic Kriging models, we used the
code provided on http://stochastickriging.net/, for CKG we used the code on http://people.orie.
cornell.edu/pfrazier/src.html, the TSSO code was based on http://www.ise.nus.edu.sg/staff/
ngsh/download/matlabdocs/SOK/ and the eTSSO code was obtained from the authors of Liu
et al. (2014). The remaining algorithms were coded by the authors themselves and compared
with the DiceOptim package in R (Picheny and Ginsbourger, 2014) to ensure correctness.

As most of the methods allow for revisits, the covariance matrix of the metamodel may
become ill-conditioned; we follow the guidelines in Section 4.3 of Picheny and Ginsbourger
(2014) for handling this issue. Table 7 shows the average running time of different algorithms
for one macroreplication in all the test problems (on a Dell desktop with 3.4 GHz Core i7-
2600 processor and 8GB of RAM). For the analytical test functions, we focused on heavy worst
case noise; the structure or magnitude of noise had only minor effects on the running times.
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Table 7: Average running time of different algorithms for one macroreplication (high budget) in
seconds.

Method (s, S) problem Camel-back Branin Hartmann-6

MQ 17 20 19 61
SKO 31 24 31 91
CKG 385 384 379 88734
EQI 133 109 73 256
TSSO 26 24 27 121
eTSSO 4 6 4 17

As evident from the table, CKG and then EQI have the longest running time, while eTSSO
requires the smallest computation time followed by MQ. In eTSSO, the number of replications
per iteration quickly increases (see Equation 6) and the budget is depleted after a relatively
small number of iterations: this explains its short running time. CKG requires a lot of time
to calculate the expected improvement of all 10000 feasible alternatives in Hartmann-6 and
thus, as shown in the table, takes around 24 hours per macroreplication. For the experiments in
Section 4, we implemented this algorithm on a server with 5 cores and 100 threads, running each
macroreplication on a different thread. However, in many problems, the feasible region contains
millions of points (Xu, 2012); the computational requirements may limit the applicability of CKG
in these cases.

3.6 Performance measures

We use three performance measures to compare the algorithms in each scenario. Let xrm be the
point returned by the algorithm in the identification step at macroreplication m = 1, 2, ..., 100.
GAPm = f(xrm) − f(x∗) then represents the difference in objective value between the alter-
native suggested by the algorithm and the optimal solution. The distribution of GAP =

(GAP1, GAP2, ..., GAP100) is our first performance measure, visualized by means of a boxplot
for each of the algorithms.

A bad GAP performance can occur because (1) the algorithm fails to discover promising
alternatives in the search step, so ΘT does not contain interesting points; or (2) promising
alternatives are present in ΘT , but the algorithm fails to identify them in the identification step.
To investigate this, we introduce two additional performance measures. The first measure (NVχ)
counts the number of macroreplications in which the algorithm visited at least one point that
has a goal function value within the (1−χ)× 100% range from the true optimum f(x∗). A low
NVχ for a given algorithm thus indicates that the algorithm’s search criterion failed to locate
promising points for that scenario. In this case, GAP results will also be disappointing. The
second measure (NRχ) counts the number of macroreplications for which the returned solution
is within the (1 − χ) × 100% range of f(x∗). Evidently, we always have: NRχ ≤ NVχ. When
NVχ is high but NRχ is low, this indicates that the algorithm has visited good alternatives in
the search step, but fails to recognize them in the identification step (i.e., the algorithm has an
identification problem), which in turn causes bad GAP results. For camel-back and Branin, we
use χ = 0.95. For the Hartmann-6 function, we used NR0.8 and NV0.8 since NV0.95 was usually
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Figure 7: GAP for
the camel-back func-
tion (Rf = 7.3).
At each scenario, the
boxplots show the dis-
tribution of GAP for
each distinct method.
The median is in-
dicated in red; the
edges of the boxes
are the 25th and 75th
percentiles.
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too low (≤ 10) for this function. In the (s, S) inventory problem, we focused on NR0.999 and
NV0.999 as all methods returned a solution within 1% of f(x∗) = 28165 in all macroreplications
(this has to do with both the convexity of the problem, and the fact that the objective value of
many points in the search space is very close to f(x∗)).

4 Results

In this section, we provide the results of our analysis. As outlined above, we study the following
research questions:

1. Does the structure and magnitude of the noise and the replication budget affect the per-
formance of the algorithms?

2. Do the algorithms that require an estimate of the noise variance function in step 2 (CKG,
SKO, EQI) outperform the others that don’t need this information? How large is the
difference?

3. How do the algorithms perform in comparison to our benchmark method (MQ)?
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Figure 8: NV0.95 (in-
dicated in red) and
NR0.95 (indicated in
green) for the camel-
back function.
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4. How do the algorithms compare in terms of their search strategies? Do they manage to
locate good solutions among Θ (high NVχ)?

5. Are the replication strategies of the algorithms effective? Do they help the algorithms to
distinguish the superior solutions in the identification step, or do algorithms experience
identification problem (large NVχ −NRχ)?

In Section 4.1, we discuss the effect of the external factors proposed in Table 5. Section 4.2
details the performance of the algorithms with respect to our measures: GAP , NVχ, and NRχ.
As the results were similar for the camel-back, Branin, and the (s, S) problem, we moved the
results of the two latter ones to appendix C and appendix D, respectively; only the results for
camel-back (Figures 7, 8, and 11) and Hartmann-6 (Figures 9, 10, and 12) are discussed in the
text.
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4.1 Effect of external factors

The effect of the external factors on the performance of the algorithms is largely the same for
the different test problems. From figures 7–10, we can derive the following effects:

• Replication budget: comparing low and high budget figures reveals that a higher repli-
cation budget enhances the performance of all algorithms with respect to all measures;
for the analytical test functions, though, the difference is smaller with heavy noise. While
we see some improvements in NV0.95, a higher budget has a minor impact on NR0.95

and GAP with heavy noise (i.e., simulating more infill points does not increase NR0.95 or
improve GAP with heavy noise).

• Noise structure (for the analytical test functions): Figures 7–10 show that the perfor-
mance of all methods usually degrades with worst case noise comparing to best case noise,
for all scenarios.

• Noise magnitude (for the analytical test functions): Comparing light and heavy noise
figures, we see that stronger noise has a substantial negative impact on the performance
of all algorithms, with respect to all measures. Moreover, noise magnitude has a stronger
influence on the performance of the methods than noise structure.

4.2 Comparison with respect to the performance measures

To compare the Kriging-based methods, we focus on the three measures one at a time and then
combine our observations:

• GAP : There is no method that clearly outperforms the others in all the tested scenarios.
The benchmark method MQ is very competitive in camel-back, Branin, and the (s, S)

problem: only CKG and SKO tend to outperform MQ. TSSO and eTSSO give the largest
GAP on average in the analytical test functions, especially with best case noise. Their
performance is also disappointing in the (s, S) problem (see Appendix D). The results for
Hartmann-6 are somewhat different: as evident from Figure 9, MQ is less competitive
(especially with light noise); together with EQI, it usually gives the largest GAP . TSSO
usually provides the best outcome (except with heavy best case noise), and is similar in
performance to CKG.

• NVχ: In the (s, S) inventory problem, NV0.999 ' 100 for all algorithms except eTSSO. In
the analytical test functions, TSSO tends to locate better alternatives than other methods,
while EQI usually yields a low NVχ. MQ is also competitive for this measure for the camel-
back and Branin functions; for Hartmann-6, though, MQ performs as badly as EQI.

• NRχ: the large difference between NVχ and NRχ, shows that all algorithms have an
identification problem (see Figure 8 for the camel-back function, Figure C.2 for the Branin
function, and Figure D.1 for the inventory example). This problem seems to be most
severe for TSSO. Figure 10 indicates that for the Hartmann-6 function, the identification
problem tends to be less severe: i.e., NV0.8 − NR0.8 tends to be smaller for all methods
(except for TSSO with heavy noise).
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Figure 9: GAP for
the Hartmann-6 func-
tion (Rf = 3.3).
At each scenario, the
boxplots show the dis-
tribution of GAP for
each method. The
median is indicated in
red; the edges of the
boxes are the 25th
and 75th percentiles.
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The above observations show that, among the methods that require τ2(x) in step 2, CKG
and SKO usually outperform the benchmark MQ method, while EQI does not. This holds even
in the (s, S) inventory problem where τ2(x) is estimated via a metamodel, see Appendix D.
Analogous to MQ, TSSO and eTSSO don’t require an estimate for τ2(x) in step 2. Among
these methods, TSSO is most successful in discovering very good alternatives (i.e., it has a good
search strategy), but it usually fails to identify them at the end of the algorithm (especially in
the camel-back, Branin, and the inventory problem). This also explains its relatively bad GAP
performance for these examples. It thus seems that the replication strategy of TSSO is not
very successful: the algorithm usually can’t distinguish between the inferior and good solutions
in the identification step. In Hartmann-6, identification is less of an issue: we see that TSSO
performs as well as CKG. Comparing to TSSO, eTSSO does slightly better in the identification
stage (i.e., lower NVχ −NRχ) but that comes at the cost of lower NVχ: Figures 7 and 9 show
that TSSO usually provides a better GAP than eTSSO (the same holds for the Branin function
and the inventory problem, see Figures C.1 and D.1).

The replication strategy of the algorithms also affects their performance in the search step.
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Figure 10: NV0.8 (in-
dicated in red) and
NR0.8 (indicated in
green) for Hartmann-
6 function
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(b) Worst case noise
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Appendix F shows the number of distinct infill points (i.e., without counting the revisits) sampled
by the algorithms, for the high budget scenarios. As evident from these figures, TSSO always
samples 50 distinct infill points as it does not allow for revisits. All other algorithms sample
less distinct points. This can also contribute to the relatively high NVχ for TSSO. EQI and
eTSSO usually yield the lowest number of distinct infill points. Especially with heavy noise,
EQI becomes very “conservative”, and spends a lot of replications to get more accurate estimates
for the objective value: the replication budget is depleted after sampling a few infill points. In
eTSSO, the number of replications per iteration quickly increases (see Equation 6), implying
that the budget is also depleted after a relatively small number of iterations.

The above observations lead us to conjecture that if the identification problem of TSSO
could be solved, this algorithm would probably provide much better GAP results, and might
even be preferred over CKG or SKO (as it does not require τ2(x) in step 2). This could be
done by either changing the replication strategy used by the algorithm (for instance, using other
ranking and selection procedures instead of OCBA), or by modifying the identification criterion.
Figures C.3, C.4, E.1, and E.2 in Appendix show, for instance, the change in performance
when the identification criterion of TSSO is changed to choose the point with minimum Kriging
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Figure 11: Com-
paring previous
GAP results of the
camel-back function
(Rf = 7.3) with GAP
results using perfect
identification, for all
algorithms. At each
scenario, the boxplots
show the distribution
of GAP for each
method. The median
of the previous GAP
is indicated in red;
the median of the
new GAP (with
perfect identification)
is indicated in green.
The edges of the
boxes are the 25th
and 75th percentiles.
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prediction (as in CKG) instead of the point with minimum sample mean. This modified TSSO
(MTSSO) almost always gives a better GAP performance than TSSO, and has a performance
similar to MQ. This illustrates that the identification criterion has a significant effect on the
outcome of Kriging-based algorithms.

Although it is more acute in TSSO, all methods have identification issues in the camel-back
and Branin functions (except when we have best case light noise with high budget), and in the
inventory problem. The replication strategies of the algorithms are thus, in general, not helpful
in the identification step. While increasing B (replication budget per iteration) might, at first
sight, seem the obvious way to mitigate this problem, it is in general not easy to find the right B
in practical problems where the optimal solution is unknown. Moreover, a higher B will cause
us to sample less infill points. While some algorithms determine B dynamically during the run
of the algorithm (i.e., eTSSO and EQI), our results reveal that these are not very successful.

We thus believe that it is essential to focus on smarter replication strategies. In our opinion,
a ranking and selection (R&S) procedure that acts as a “clean-up” in the identification step may
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Figure 12: Compar-
ing previous GAP
results of Hartmann-6
(Rf = 3.3) with GAP
results using perfect
identification, for all
algorithms. At each
scenario, the boxplots
show the distribution
of GAP for each
method. The median
of the previous GAP
is indicated in red;
the median of the new
GAP results (with
perfect identification)
is indicated in green.
The edges of the
boxes are the 25th
and 75th percentiles.
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(b) Worst case noise
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provide an appropriate technique. The objective of this R&S procedure would be to discard
the bad alternatives in ΘT and find a sufficiently good one using as few replications as possible
(Boesel et al. (2003) provide a good candidate procedure). Alternatively, R&S could be used
in the optional replication step (see Figure 1); Hong and Nelson (2007), for instance, propose
a R&S procedure to identify the best alternative among the sampled ones in each iteration.
In addition to mitigating the identification problem, this approach might help the algorithm
to choose better infill points in the search step (since, with a certain probability, it enables
the algorithm to identify the true current best point). While the OCBA technique (Chen et al.,
2000) used in TSSO tries to achieve a similar goal, our results indicate that it is not very effective
in resolving the identification problem.

For the camel-back function, Figure 11 shows that we would have obtained much better
results for all algorithms if we had achieved perfect identification in the last step (the search
strategies are unchanged). Although perfect identification is unlikely to result from any given
R&S method, these results illustrate the best possible improvement in GAP that we could hope
to obtain.

22



Evidently, R&S consumes replication budget. Note, however, that in our case, all algorithms
provide better GAP performance in low budget scenarios with perfect identification (green
boxplots in Figure 11) than in their corresponding high budget scenarios in Figure 7. Therefore,
reducing the budget of the search step to allow for a suitable R&S could be beneficial (the same
observations hold for the Branin function and the inventory problem, see Figures C.5 and D.2).
In Hartmann-6, R&S is less useful since the criteria employed by the algorithms usually achieve
good identification. Only with heavy noise, R&S might still be beneficial (Figure 12).

Further research is needed on how to combine Kriging-based algorithms with R&S to achieve
an appropriate replication strategy. In addition, deciding on how much replication budget to
allocate to the R&S step is not straightforward. For instance, when using R&S in a clean-up
phase, we should decide on when to stop simulating infill points and move to the R&S stage.

5 Conclusions and future research

In this paper, we have compared six recent Kriging-based methods for continuous optimization
via simulation with heterogeneous noise. Using Kriging-based algorithms for optimizing stochas-
tic simulation models (especially with heterogeneous noise) is relatively new, and provides an
active research area: we think that the insights obtained in this article can be useful in improving
these methods, and give useful suggestions for researchers who wish to employ these algorithms
for solving engineering/business problems.

Our results showed that not only the magnitude, but also the shape of the noise can affect
the performance of the algorithms. More specifically, we observed that with worst case noise
(highest noise in the global minimum region) all algorithms performed worse than with best
case noise (lowest noise in the global minimum region). We also showed that increasing the
replication budget could improve the performance of the methods, especially when the noise
magnitude was low.

CKG, SKO, and EQI require an estimate for the noise variance function but in practice,
finding a reasonable estimate can be challenging. Among these methods, CKG and SKO tend
to outperform our benchmark method (MQ), while EQI does not. CKG is computationally very
intensive, especially when the number of candidate points is high (e.g., 10000 feasible alternatives
in the Hartmann-6 function). As, in some optimization problems, the feasible space includes
millions of solutions, applying CKG to these problems might be impractical. In these cases,
one can use the approximate knowledge gradient policy which employs an approximation of
the expected improvement function to speed up the algorithm (Scott et al., 2011; these authors
showed that this policy performs similarly to SKO, at least in a setting with homogeneous noise).

Analogous to MQ, TSSO and eTSSO do not require information about the noise variance
function. We did not observe a big difference between TSSO and eTSSO; TSSO usually even
gave better results. The quality of the solutions returned by TSSO was strongly affected by
its inability to identify good solutions among the simulated ones in the identification step: if
it were successful in identifying the best alternatives, it would give significantly better results
than MQ, and would perform as well as CKG or SKO. It would likely be preferred over CKG or
SKO, though, since it does not require information with regard to the noise variance function.
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Our results indicate that, especially with heavy noise, all algorithms have problems with
the identification step. Combining the algorithms with smarter replication strategies (e.g., using
appropriate ranking and selection methods) is, therefore, essential to improve their performance.
In our opinion, this is a key area for future research.
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Appendix A Kriging expressions

In this appendix we provide formulas for the stochastic Kriging prediction f̂(x) and its estimated vari-
ance s2(x). Stochastic Kriging (without trend term) assumes that the unknown true function can be
represented by f(x) = β + M(x), where β ∈ R is an unknown constant term and M is a realiza-
tion of a mean zero Gaussian random field (Ankenman et al., 2010). We assume spatial correlation:
M(xh) and M(xl) tend to be close if the distance ‖xh − xl‖ is small. As this distance goes to infinity,
Corr[M(xh),M(xl)] → 0 and if the distance is zero, Corr[M(xh),M(xl)] = 1 (the implied covariance
is denoted by Cov[M(xh),M(xl)]). The way the spatial correlation changes with distance ‖xh − xl‖
depends on the employed correlation function (As noted in Section 3.3, we used Matern 2.5 in our ex-
periments). The observed goal value in the jth simulation replication at design point xk, can thus be
written as:

f̃j(x
k) = β + M(xk) + εj(x

k), (7)

where, as mentioned in Section 1, εj(xk) has mean zero and variance τ2(xk) and represents the noise
inherent in a stochastic simulation model. This noise is independent and identically distributed across
replications and since we don’t consider common random numbers (CRN), Corr[εj(xh), εj(x

l)] = 0.
Assume we have a Kriging metamodel fitted using k design points (x1,x2, ...,xk) with estimated

function values f̄ = (f̄(x1), f̄(x2), ..., f̄(xk))T. These estimates are sample means of the simulation
output across (n1, n2, ..., nk) replications. If the Kriging metamodel only has an intercept term, we
obtain the Kriging prediction at an arbitrary point xi as follows (Ankenman et al., 2010):

f̂(xi) = β + ΣM(xi, .)T[ΣM + Σε]
−1(f̄ − β1k), (8)

where 1k is a k × 1 vector of ones, ΣM(xi, .) = (Cov[M(xi),M(x1)], ...,Cov[M(xi),M(xk)])T, and ΣM

is the spatial variance covariance matrix of the k design points (with size k × k). Σε is a k × k variance
covariance matrix implied by the sample average simulation noise. Since we don’t consider CRN, this
matrix is diagonal: Σε = Diag{τ2(x1)/n1, ..., τ2(xk)/nk}.

To be able to use Equation (8), β, ΣM, and Σε need to be estimated (the estimates are denoted by
β̂, Σ̂M, and Σ̂ε). For instance, since the noise variance function τ2(x) is usually unknown in practice
(Kim and Nelson, 2006), we use Σ̂ε = Diag{V̂ar[f̄(x1)], ..., V̂ar[f̄(xk)]}. See Ankenman et al. (2010) for
estimation of the other two parameters.

The mean squared error (MSE) of the Kriging predictor in Equation (8) is also known as the Kriging
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variance and it is estimated as follows (Chen and Kim, 2014):

M̂SE(f̂(xi)) = s2(xi) = Σ̂M(xi,xi)− Σ̂M(xi, .)T[Σ̂M + Σ̂ε]
−1Σ̂M(xi, .) +

δδδTδδδ

1T
k [Σ̂M + Σ̂ε]−11k

, (9)

where δδδ = 1− 1T
k [Σ̂M + Σ̂ε]

−1Σ̂M(xi, .).

Appendix B Relation between τ(x) and f(x) in different scenarios

For the 3 analytical test functions, we assume a linear relationship between the function value and the
standard deviation of noise (i.e., noise magnitude). For best case noise, we have:

(max
x∈Θ

f(x) + b)× a = max
x∈Θ

τ(x) = 0.6Rf or 6Rf (light noise or heavy noise)

(min
x∈Θ

f(x) + b)× a = min
x∈Θ

τ(x) = 0.15Rf or 1.5Rf (light noise or heavy noise),
(10)

where τ(x) is the standard deviation of the noise on f̄(x) with one replication. From the above equations
we can easily obtain a and b. For worst case noise, we have a similar relation:

(min
x∈Θ

f(x) + b)× a = max
x∈Θ

τ(x) = 0.6Rf or 6Rf (light noise or heavy noise)

(max
x∈Θ

f(x) + b)× a = min
x∈Θ

τ(x) = 0.15Rf or 1.5Rf (light noise or heavy noise)
(11)

Table 8: Parameters for the relation between f(x) and τ(x)

Camel-back Rescaled Branin Hartmann-6

Best case Low noise a = 0.45, b = 3.46 a = 0.45, b = 3.05 a = 0.45, b = 4.12

High noise a = 4.5, b = 3.46 a = 4.5, b = 3.05 a = 4.5, b = 4.12

Worst case Low noise a = −0.45, b = −8.704 a = −0.45, b = −6.95 a = −0.45, b = −1.38

High noise a = −4.5, b = −8.704 a = −4.5, b = −6.95 a = −4.5, b = −1.38

Recall that SKO, CKG, and EQI need an estimate of τ(x): we use τ̂(x) = (f̂(x) + b)×a, as the goal
function f(x) is assumed to be unknown.
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Appendix C Results for Branin function
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Figure C.1: GAP for the Branin function (Rf = 6). At each scenario, the boxplots show the
distribution of GAP for each method. The median is indicated in red; the edges of the boxes
are the 25th and 75th percentiles. The results are analogous to the camel-back function: CKG
and SKO perform somewhat better than the benchmark method (MQ) while other algorithms
don’t. TSSO and eTSSO usually have the largest GAP .
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(a) Best case noise
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(b) Worst case noise
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Figure C.2: NV0.95 (indicated in red) and NR0.95 (indicated in green) for the Branin function.
As with camel-back, TSSO has the highest NV0.95. MQ is again very competitive; EQI and
eTSSO usually provide the lowest NV0.95. In all scenarios, the performance of all algorithms
suffers from the identification problem.
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(a) Best case noise
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(b) Worst case noise
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Figure C.3: GAP for the Branin function with MTSSO included (Rf = 6). At each scenario,
the boxplots show the distribution of GAP for each method. The median is indicated in red;
the edges of the boxes are the 25th and 75th percentiles. MTSSO usually provides smaller GAP
than TSSO.
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(a) Best case noise
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(b) Worst case noise
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Figure C.4: NV0.95 (indicated in red) and NR0.95 (indicated in green) for the Branin function
with MTSSO included. Note that MTSSO outperforms TSSO in terms of NR0.95
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(a) Best case noise
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(b) Worst case noise
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Figure C.5: Comparing previous GAP results of Branin (Rf = 6) with GAP results using
perfect identification, for all algorithms. At each scenario, the boxplots show the distribution
of GAP for each method. The median of the previous GAP is indicated in red; the median of
the new GAP (with perfect identification) is indicated in green. The edges of the boxes are the
25th and 75th percentiles.
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Appendix D Results for the (s, S) inventory problem
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(a) GAP for the inventory problem
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(b) NV0.999 and NR0.999 for the inventory prob-
lem

Figure D.1: GAP and NV0.999 and NR0.999 for the (s, S) inventory problem (Rf = 8584). In the GAP figure, the
boxplots show the distribution of GAP for each method. The median is indicated in red; the edges of the boxes are the
25th and 75th percentiles. The results are analogous to the camel-back function: CKG and SKO perform somewhat better
than the benchmark method (MQ) while other algorithms usually don’t (EQI gives better results only with high budget).
TSSO and eTSSO usually have the largest GAP and eTSSO performs the worst in terms of NV0.999. Both with high and
low budget, the performance of all algorithms suffers from the identification problem (especially TSSO).
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Figure D.2: GAP results using perfect identification, for all algorithms. At each scenario, the boxplots show the
distribution of GAP for each method. The median is indicated in green. The edges of the boxes are the 25th and 75th
percentiles.
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Appendix E MTSSO results for camel-back function

(a) Best case noise

0 0.2 0.4 0.6 0.8 1

MTSSO

eTSSO

TSSO

EQI

CKG

SKO

MQ

Low budget, Light noise

0 0.2 0.4 0.6 0.8 1

MTSSO

eTSSO

TSSO

EQI

CKG

SKO

MQ

High budget, Light noise

0 1 2 3 4 5

MTSSO

eTSSO

TSSO

EQI

CKG

SKO

MQ

Low budget, Heavy noise

0 1 2 3 4 5

MTSSO

eTSSO

TSSO

EQI

CKG

SKO

MQ

High budget, Heavy noise

(b) Worst case noise
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Figure E.1: GAP for the camel-back function with MTSSO included (Rf = 7.3). At each
scenario, the boxplots show the distribution of GAP for each method. The median is indicated
in red; the edges of the boxes are the 25th and 75th percentiles.
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(a) Best case noise
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(b) Worst case noise
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Figure E.2: NV0.95 (indicated in red) andNR0.95 (indicated in green) for the camel-back function
with MTSSO included. Note that NV0.95 of TSSO is the same as MTSSO.
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Appendix F Number of distinct points sampled
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Figure F.1: Number of distinct points sampled for the Branin function (High budget). At each
scenario, the boxplots show the distribution of the number of distinct points sampled by each
method. The median is indicated in orange; the edges of the boxes are the 25th and 75th
percentiles.
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Figure F.2: Number of distinct points sampled for the camel-back function (High budget). At
each scenario, the boxplots show the distribution of the number of distinct points sampled by
each method. The median is indicated in orange; the edges of the boxes are the 25th and 75th
percentiles.
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Figure F.3: Number of distinct points sampled for the Hartmann-6 function (High budget). At
each scenario, the boxplots show the distribution of the number of distinct points sampled by
each method. The median is indicated in orange; the edges of the boxes are the 25th and 75th
percentiles.
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Figure F.4: Number of distinct points sampled for the (s, S) inventory problem (High budget).
At each scenario, the boxplots show the distribution of the number of distinct points sampled
by each method. The median is indicated in orange; the edges of the boxes are the 25th and
75th percentiles.
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