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We study the persistence probability for processes with stationary increments. Our results apply to a number of examples: sums of stationary correlated random variables whose scaling limit is fractional Brownian motion; random walks in random sceneries; random processes in Brownian scenery; and the Matheron-de Marsily model in Z 2 with random orientations of the horizontal layers. Using a new approach, strongly related to the study of the range, we obtain an upper bound of optimal order in the general case and improved lower bounds (compared to previous literature) for many processes.

Introduction

Persistence concerns the probability that a stochastic process has a long negative excursion. In this paper, we are concerned mainly with discrete-time processes. If Z = (Z n ) n∈N is a stochastic process, we study the rate of the probability

P max k=1,...,T Z k ≤ 1 ,
as T → +∞.

In many cases of interest, the above probability decreases polynomially, i.e., as T -θ+o (1) , and it is the first goal to find the persistence exponent θ. For a recent overview on this subject, we refer to the survey [START_REF] Aurzada | Persistence probabilities & exponents. Lévy matters V[END_REF] and for the relevance in theoretical physics we recommend [START_REF] Majumdar | Persistence in nonequilibrium systems[END_REF][START_REF] Bray | Persistence and first-passage properties in non-equilibrium systems[END_REF].

The purpose of this paper is to analyse the persistence probability for stationary increment processes, i.e. processes such that for any k ∈ N, (Z n+k -Z k ) n∈N L = (Z n ) n∈N , where L = means equality in law. Under rather general assumptions, we prove that P max k=1,...,T

Z k ≤ 1 ≈ E max k=1,...,T Z k /T as T → +∞,
where ≈ means up to a multiplicative term in T o (1) (the multiplicative term is bounded by a constant for the upper bound and, for the lower bound, is larger than a function slowly varying at infinity under additional assumptions). We emphasize the fact that we obtain the exact order when the increments are bounded and that we obtain estimates even if increments admit no exponential moment.

Stationary increments are a feature shared by many stochastic processes that are important in theory and applications, and we shall treat here a number of examples. The first one will be sums of correlated sequences whose scaling limit is fractional Brownian motion. This is the natural analog of random walks, for which persistence probabilities have been studied extensively under the notion of fluctuation theory. For sums of correlated sequences, the persistence exponent is shown to be 1 -H, where H is the scaling exponent, see Theorem 11 below. As a byproduct, we obtain the following improvement for the bounds of the persistence probability of continuous-time fractional Brownian motion (improving [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF][START_REF] Aurzada | On the one-sided exit problem for fractional Brownian motion[END_REF]).

Theorem 1 (Fractional Brownian motion). Let H ∈ (1/2, 1). Let B H be a fractional Brownian motion of Hurst parameter H. Then, there exists c > 0 such that

c -1 T -(1-H) (log T ) -1 2H ≤ P sup t∈[0,T ] B H (t) ≤ 1 = O(T -(1-H) ).
The lower bound holds for any H ∈ (0, 1).

We remark that the upper bound also holds for H < 1/2 with an additional logarithmic factor (log T ) (2-H)/H+o (1) , by [START_REF] Aurzada | On the one-sided exit problem for fractional Brownian motion[END_REF], but we do not improve this result here. However we obtain the bound

P sup t∈[0,T ] B H (t) ≤ -1 = O(T -(1-H) )
even when H ≤ 1/2.

A second class of examples is given by random walks in random sceneries (RWRS), and depending on the scaling properties of the random walk and of the environment, respectively, different exponents emerge.

Theorem 2 (Random walk in random scenery). Let d ∈ N * and let S = (S n ) n∈N be a random walk on Z d . If S is recurrent, we assume moreover that (S n /n 1/α ) n≥1 converges in distribution for some α ∈ [d, 2]. Let ξ = (ξ ℓ ) ℓ∈Z d be a sequence of independent identically distributed random variables, which are centered and admit moments of every order. Assume that S and ξ are independent. Then,

a n n -1+o(1) ≤ P max m=1,...,n m k=1 ξ S k ≤ 1 = O(a n /n), with a n :=    n 1-1 2α if d = 1 < α ≤ 2, √ n log n if α = d, √ n if S is transient. Additionally,
• if ξ is Gaussian, then there exists c > 0 such that

P max m=1,...,n m k=1 ξ S k ≤ 1 ≥ ca n /(n log n);
• if ξ is bounded, then there exists c > 0 such that

P max m=1,...,n m k=1 ξ S k ≤ 1 ≥ ca n /n; • if P(ξ 0 ∈ {-1, 0, 1}) = 1, then there exists c > 0 (specified in Theorem 16) such that P max m=1,...,n m k=1 ξ S k ≤ -1 ∼ ca n /n, as n → +∞.
For RWRS with integer values, this result is strongly related to the behaviour of the expectation of the range R n of the RWRS.

A third class of examples is given by the continuous-time analogues to RWRS, that is random process in Brownian scenery ∆ t := R L t (x) dW (x), with W a two-sided real Brownian motion and L t (x) the local time (at position x and at time t) of a stable Lévy process with index α ∈ (1, 2] (we also consider more general processes as defined in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF], see Section 5 below). In this context, we obtain the following result (improving [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF][START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]).

Theorem 3 (Random process in Brownian scenery). Under the above assumptions, there exists c > 0 such that

c -1 T -1 2α (log T ) -(1+α) (2α-1) ≤ P sup t∈[0,T ] ∆ t ≤ 1 = O(T -1 2α ).
The fourth example is the Matheron-de Marsily (MdM) model M = (M n ) n∈N which has been introduced in [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF] (see also [START_REF] Bouchaud | Superdiffusion in random velocity fields[END_REF]) to model fluid transport in a porous stratified medium. M is a nearest neighbour random walk in Z 2 , in which each horizontal line has been oriented either to the right or to the left (both with probability 1/2; for a detailed definition see Section 6). The second coordinate (M

(2)
n ) n∈N of this model is a (lazy) random walk, but the first one (M

(1)
n ) n∈N is more complicated and has some analogy with a random walk in random scenery. For this process, we obtain the following precise estimate.

Theorem 4 (Persistence probability for the MdM model).

There exists c > 0 such that

P max k=1,...,n M (1) k ≤ -1 ∼ cn -1 4 , as n → +∞.
This result was conjectured by Redner [START_REF] Redner | Survival Probability in a Random Velocity Field[END_REF] and Majumdar [START_REF] Majumdar | Persistence of a particle in the Matheron -de Marsily velocity field[END_REF]. We mention that the constant c appearing in Theorem 4 is given by an explicit formula involving the Kesten-Spitzer process (see Theorem 19).

The outline of the paper is as follows. The main general result, Theorem 5, is given in Section 2. Its proof is split into various intermediate results, outlined and proved also in Section 2. This general result is then applied to the examples mentioned above: Sums of stationary sequences are treated in Section 3, random walks in random scenery in Section 4, random processes in Brownian scenery in Section 5, and the Matheron-de Marsily model in Section 6.

General results for stationary increment processees

Our main general results are contained in the next theorem, in which, as usual, we write x -:= max(-x, 0). It states that the rate of the persistence probability can be obtained from the scaling of the maximum of the process. Theorem 5. Let (Z n ) n∈N be a centered process with stationary increments such that Z 0 := 0 and let (a n ) n∈N be a sequence of positive numbers that is regularly varying with exponent γ ∈ (0, 1) such that the following limit exists

B := lim n→+∞ a -1 n E max k=1,...,n Z k ∈ (0, ∞). Then lim sup n→+∞ n a n P max ℓ=1,...,n Z ℓ ≤ -1 ≤ B.

Further, if

(i) There exists a sub-σ-algebra F 0 such that, given F 0 , the increments of Z are positively associated and that their common conditional distribution is independent of F 0 , then there exists C > 0 such that ∀n ≥ 1, P max ℓ=1,...,n

Z ℓ ≤ 1 ≤ C a n n .

Finally, if (i) holds or, alternatively,

(ii) There exists p > 1 such that max k=1,...,n (1) .

Z k p = O(a n ), then • If E[(Z 1 ) β -] < ∞ for any β > 0 then ∀n ≥ 1, P( max ℓ=1,...,n Z ℓ < 0) ≥ a n n -1+o
• If there exists ε > 0 such that E[e -εZ 1 ] < ∞ then there exists c > 0 such that ∀n ≥ 1, P max ℓ=1,...,n

Z ℓ < 0 ≥ c a n n log n . • If there exists ε > 0 such that E[e ε(Z 1 ) 2 -] < ∞ (e.g. if Z 1 is Gaussian) then ∀n ≥ 1, P max ℓ=1,...,n Z ℓ < 0 ≥ c a n n √ log n . • If (Z 1 ) -is bounded, then ∀n ≥ 1, P max ℓ=1,...,n Z ℓ < 0 ≥ c a n n .
Theorem 5 will appear as a consequence of Theorem 8 and Proposition 9 (for the upper bounds) and Theorem 10 (for the lower bounds) that are given in the next two subsections.

2.1.

Upper bounds for the persistence probability. As explained in the introduction, we consider a stochastic process (Z n ) n∈N with stationary increments. We start with a general upper bound that will be useful in the setup where P(Z 1 ∈ Z) = 1 and which is strongly related to the study of the range of (Z n ) n∈N . Lemma 6. Let (Z n ) n∈N be a centered process with stationary increments such that Z 0 := 0 and let (a n ) n∈N be a sequence of positive real numbers converging to +∞ such that

lim sup n→+∞ a -1 n E max k=1,...,n Z k -min k=1,...,n Z k ≤ A. Then lim sup n→+∞ n a n P min ℓ=1,...,n |Z ℓ | ≥ 1 ≤ A. (1) 
When Z 1 is Z-valued, we consider T 0 := inf{n ≥ 1 : Z n = 0} the first return time of Z to 0. Let R n be the range of Z up to time n, i.e. R n := #{Z 0 , ..., Z n }.

Theorem 7. Assume we are in the situation of Lemma 6 and that additionally P(Z

1 ∈ Z) = 1. Then lim sup n→+∞ n a n P(T 0 > n) ≤ A. (2) 
Further, if (a n ) n∈N is a regularly varying sequence with exponent γ ∈ (0, 1) and if

C -:= lim inf n→+∞ E[R n ] a n > 0 , and 
C + := lim sup n→+∞ E[R n ] a n < +∞, then 0 < lim inf n→+∞ n a n P(T 0 > n) ≤ lim sup n→+∞ n a n P(T 0 > n) < ∞ . (3) 
Moreover, if the sequence E[Rn] an n≥0

converges to C as n → +∞, then

lim n→+∞ n a n P(T 0 > n) = γC. ( 4 
)
In the particular case where P(Z 1 ∈ {-1, 0, 1}) = 1 and where (4) holds, we obtain that

P max k=1,...,n Z k ≤ -1 = 1 2 P(T 0 > n) ∼ γ a n 2n C. (5) 
The next fact is the crucial part in the upper bound in the general (i.e. not necessarily Zvalued) case.

Theorem 8. Let (Z n ) n∈N be a centered process with stationary increments such that Z 0 := 0 and let (a n ) n∈N be a sequence of positive real numbers such that

lim sup n→+∞ a -1 n E max k=0,...,n Z k ≤ B.
Then

lim sup n→+∞ n a n P max ℓ=1,...,n Z ℓ ≤ -1 ≤ B. (6) 
The next technical proposition allows to pass from the boundary -1 in the last fact to the boundary 1.

Proposition 9. Assume that there exists a sub-σ-algebra F 0 such that, given F 0 , the increments of Z are positively associated and that their common conditional distribution is independent of F 0 . Then, for any m > 0 such that P(Z 1 ≤ -m) > 0,

P( max ℓ=1,...,n Z ℓ ≤ -m) ≤ P( max ℓ=1,...,n Z ℓ ≤ 1) ≤ P(max ℓ=1,...,n Z ℓ ≤ -m) (P(Z 1 ≤ -m)) ⌊1/m⌋+2 .

2.2.

Lower bounds for the persistence probability. The lower bound is much more complicated to establish in the general case and will require additional assumptions.

Theorem 10. Let (Z n ) n∈N be a centered process with stationary increments such that Z 0 := 0. Assume that ε > 0 and that (a n ) n∈N is a sequence of positive numbers such that

D 1 := lim inf n→+∞ a -1 n E max k=0,...,n+⌊εn⌋ Z k > lim sup n→+∞ a -1 n E max k=0,...,n Z k =: D 2 .
Assume moreover that (b n ) n∈N is a sequence of positive numbers for which one of the following assumptions holds true:

(i) (Z n ) n∈N satisfies the assumption of Proposition 9 and

lim sup n→+∞ nP(-Z 1 > b n ) < 1 ε 1 - D 2 D 1 .
(ii) There exists p > 1 such that

lim sup n→+∞ a -1 n sup k=0,...,n+⌊εn⌋ Z k p (εnP(-Z 1 > b n )) 1/q < D 1 -D 2 ,
where q is the conjugate of p (i.e. q is such that 1/p + 1/q = 1).

Then

lim inf n→+∞ nb n a n P max k=1,...,n Z k < 0 > 0.
2.3. Proofs of the intermediate results.

Proof of Lemma 6. Since Z has stationary increments,

nP min ℓ=1,...,n |Z ℓ | ≥ 1 ≤ n k=1 P min ℓ=1,...,k |Z ℓ | ≥ 1 = n k=1 P min ℓ=1,...,k |Z n-k+ℓ -Z n-k | ≥ 1 ≤ n k=1 P (∀ℓ = 1, ..., k, ⌊Z n-k+ℓ ⌋ = ⌊Z n-k ⌋) ≤ E [#{⌊Z 0 ⌋, . . . , ⌊Z n ⌋}] ≤ E max k=1,...,n ⌊Z k ⌋ -min k=1,...,n ⌊Z k ⌋ + 1 ≤ E max k=1,...,n Z k -min k=1,...,n Z k + 2 .
Proof of Theorem 7. Since P(Z 1 ∈ Z) = 1,

P(T 0 > n) = P min ℓ=1,...,n |Z ℓ | ≥ 1
and so (2) follows from Lemma 6.

Let us prove [START_REF] Aurzada | Persistence probabilities & exponents. Lévy matters V[END_REF]. Note that since Z ℓ is Z-valued and using stationary increments, we have

ER n = E [#{Z 1 , . . . , Z n }] = n k=0 P(∀ℓ = 1, . . . , k : Z n-k+ℓ = Z n-k ) = n k=0 P(∀ℓ = 1, . . . , k : Z ℓ = 0) = n k=0 P(T 0 > k). (7) 
Since (P(T 0 > k)) k is non increasing, for every 0 < x < 1 < y, we have by ( 7)

E[R ⌊yn⌋ -R n ] ⌊yn⌋ -n ≤ P(T 0 > n) ≤ E[R n -R ⌊xn⌋ ] n -⌊xn⌋ .
Hence, writing C -:= lim inf n→+∞

E[Rn]

an and C + := lim sup n→+∞

E[Rn]
an , we obtain

y γ C --C + y -1 ≤ lim inf n→+∞ n a n P(T 0 > n) ≤ lim sup n→+∞ n a n P(T 0 > n) ≤ C + -x γ C - 1 -x . When C + = C -= C, (4) 
is deduced by letting the variables x and y converge to one.

Assume now that P(Z 1 ∈ {-1, 0, 1}) = 1. Observe that by centering, the random variable Z 1 must be symmetric. Therefore,

P max k=1,...,n Z k ≤ -1 = P(T 0 > n, Z 1 < 0) = P(T 0 > n, Z 1 > 0) = 1 2 P(T 0 > n).
Now, by observing that

E[R n ] = E sup k=1,...,n Z k -inf k=1,...,n Z k + 1 ∼ C a n , relation (5) 
directly follows from (4).

Proof of Theorem 8. Let Z * n,m := max k=n,...,m Z k . Since the increments of Z are stationary and Z 0 = 0, we deduce that Z * k+1,k+n -Z k has the same distribution as Z * 1,n and so

n P(Z * 1,n ≤ -1) ≤ n-1 k=0 P(Z * 1,n-k ≤ -1) = n-1 k=0 P(Z * k+1,n ≤ Z k -1) = n-1 k=0 P(1 + Z * k+1,n ≤ Z k ) ≤ E[Z * 0,n ] , since #{k = 0, ..., n -1 : 1 + Z * k+1,n ≤ Z k } ≤ Z * 0,n -Z n and E[Z n ] = 0. Proof of Proposition 9. Let K ∈ N be such that Km > 1, so that -(K + 1)m + 1 ≤ -m. Let n ∈ N * . Given F 0 , the increments of (Z n ) n∈N are positively associated, hence P max ℓ=1,...,n+K+1 Z ℓ ≤ -m F 0 ≥ P ∀k = 1, ..., K + 1, (Z k -Z k-1 ) ≤ -m, max ℓ=K+2,...,n+K+1 (Z ℓ -Z K+1 ) ≤ 1 F 0 ≥ K+1 k=1 P ( Z k -Z k-1 ≤ -m| F 0 ) P max ℓ=K+2,...,n+K+1 (Z ℓ -Z K+1 ) ≤ 1 F 0 ≥ K+1 k=1 P(Z 1 ≤ -m) P max ℓ=K+2,...,n+K+1 (Z ℓ -Z K+1 ) ≤ 1 F 0 , since the conditional distribution of Z k -Z k-1 given F 0 is the distribution of Z 1 . So P max ℓ=1,...,n+K+1 Z ℓ ≤ -m ≥ (P(Z 1 ≤ -m)) K+1 P max ℓ=K+2,...,n+K+1 (Z ℓ -Z K+1 ) ≤ 1 ≥ (P(Z 1 ≤ -m)) K+1 P max ℓ=1,...,n Z ℓ ≤ 1 ,
since the increments of Z are stationary.

Proof of Theorem 10. Since the increments of Z are stationary and Z 0 = 0, we can deduce that

P(max k=1,...,n Z k < 0) = P(Z * k+1,n+k < Z k ). Let ε > 0 and M n := #{k = 0, ..., ⌊εn⌋ -1 : Z * k+1,n+⌊εn⌋ < Z k }. Note that ⌊εn⌋ P(Z * 1,n < 0) ≥ ⌊εn⌋-1 k=0 P Z * 1,⌊(1+ε)n⌋-k < 0 = ⌊εn⌋-1 k=0 P Z * k+1,⌊(1+ε)n⌋ < Z k = E [M n ] . (8) 
We set R Mn+1 := inf{k = ⌊εn⌋, ..., n + ⌊εn⌋ :

Z k > Z * k+1,n+⌊εn⌋ } and ∀i = 1, ..., M n , R i := sup{k = 0, ..., R i+1 -1 : Z * k+1,n+⌊εn⌋ < Z k }. Note that Z R 1 = Z * 0,n+⌊εn⌋ and Z R Mn+1 = Z * ⌊εn⌋,n+⌊εn⌋ . Hence Z * 0,n+⌊εn⌋ -Z * ⌊εn⌋,n+⌊εn⌋ = Z R 1 -Z R Mn+1 = Mn i=1 (Z R i -Z R i+1 ) ≤ Mn i=1 (Z R i -Z R i +1 ) ≤ sup k=1,...,⌊εn⌋ (Z k-1 -Z k ) M n ,
and so, for b n > 0,

E[M n ] ≥ E M n 1 {sup k=1,...,⌊εn⌋ (Z k-1 -Z k )≤bn} ≥ (b n ) -1 E (Z * 0,n+⌊εn⌋ -Z * ⌊εn⌋,n+⌊εn⌋ )1 {sup k=1,...,⌊εn⌋ (Z k-1 -Z k )≤bn} ≥ (b n ) -1 E Z * 0,n+⌊εn⌋ 1 {sup k=1,...,⌊εn⌋ (Z k-1 -Z k )≤bn} -E[Z * 0,n ] , since E[Z * ⌊εn⌋,n+⌊εn⌋ ] = E[Z * 0,n ]. Assumption (i). Then E[M n ] ≥ (b n ) -1 E E[Z * 0,n+⌊εn⌋ |F 0 ]P sup k=1,...,⌊εn⌋ (Z k-1 -Z k ) ≤ b n F 0 -E[Z * 0,n ] ≥ (b n ) -1 E E[Z * 0,n+⌊εn⌋ |F 0 ](1 -εnP(-Z 1 > b n )) -E[Z * 0,n ] = (b n ) -1 E Z * 0,n+⌊εn⌋ (1 -εnP(-Z 1 > b n )) -E[Z * 0,n ] , (9) 
where we used the fact that the increments of Z are positively associated conditionally to F 0 , and that their common conditional distribution is independent of F 0 . Let η be such that lim sup n→+∞ nP(- 8) and ( 9), we obtain

Z 1 > b n ) < η < 1 ε 1 -D 2 D 1 . For n large enough, εnP(-Z 1 > b n ) ≤ εη. Due to (
εnP(Z * 1,n < 0) ≥ (b n ) -1 E (1 -εη)Z * 0,n+⌊εn⌋ -Z * 0,n . Therefore lim inf n→+∞ εn b n a n P(Z * 1,n < 0) ≥ (1 -εη)D 1 -D 2 > 0.
Assumption (ii). Let q be such that 1/p + 1/q = 1 and let η be such that

lim sup n→+∞ a -1 n Z * 0,n+⌊εn⌋ p (εnP(-Z 1 > b n )) 1/q < η < D 1 -D 2 .
Then, for n large enough,

E Z * 0,n+⌊εn⌋ 1 {sup k=1,...,⌊εn⌋ (Z k-1 -Z k )>bn} ≤ Z * 0,n+⌊εn⌋ p P sup k=1,...,⌊εn⌋ (Z k-1 -Z k ) > b n 1 q ≤ Z * 0,n+⌊εn⌋ p (εnP(-Z 1 > b n )) 1 q ≤ ηa n
and so

E[M n ] ≥ (b n ) -1 E Z * 0,n+⌊εn⌋ -Z * 0,n -ηa n ; from which we obtain lim inf n→+∞ εn b n a n P(Z * 1,n < 0) ≥ D 1 -D 2 -η > 0.
Proof of Theorem 5. The upper bounds follow from Theorem 8 and Proposition 9.

For the lower bounds, we assume that E[G((Z 1 ) -)] < ∞ with either G(t) = e at or G(t) = t β ′ or G(t) = e at 2 for some a > 0 or some β ′ > 1. Due to the Markov inequality,

P(-Z 1 > b n ) = P((Z 1 ) -> b n ) ≤ E[G((Z 1 ) -)] G(b n ) .
Note that we can apply Theorem 10 with

b n = c 0 log(n) if G(t) = e at , b n = c 0 n 1 β ′ if G(t) = t β ′ and b n = c 0 log(n) if G(t) = e at 2 , for a suitable c 0 . If (Z 1 ) -is bounded, we choose b n := (Z 1 ) -∞ .

Sums of stationary sequences and fractional Brownian motion

Let (X i ) i≥0 be a stationary centered Gaussian sequence with variance 1 and correlations r(j)

:= E[X 0 X j ] = E[X k X j+k ] satisfying as n → +∞, n i,j=1 r(i -j) = n 2H ℓ(n), (10) 
where H ∈ (0, 1) and ℓ is a slowly varying function at infinity. We are interested in the persistence exponent of the sum of the sequence Z n := n i=1 X i for n ≥ 1 and Z 0 := 0. We recall that the scaling limit of (Z n ) n∈N is the fractional Brownian motion B H with Hurst parameter H, (see [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF], [33, Theorem 4.6.1]):

n -H ℓ(n) -1/2 Z [nt] t≥0 L =⇒ n→∞ (B H (t)) t≥0 , (11) 
and that B H is a real centered Gaussian process with covariance function

E[B H (t)B H (s)] = 1 2 (t 2H + s 2H -|t -s| 2H ).
A sequence satisfying relation ( 10) is said to have long-range dependence if H > 1/2. We refer to [START_REF] Samorodnitsky | Long range dependence[END_REF] for a recent overview of the field.

In this setup the following theorem is valid.

Theorem 11. Assume (X i ) i≥0 is a stationary centered Gaussian sequence such that [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] holds with H ∈ (0, 1) and ℓ slowly varying. Then there is some constant c > 0 such that, for every n ≥ 1,

c -1 n -(1-H) ℓ(n) √ log n ≤ P max k=1,...,n Z k < 0 and P max k=1,...,n Z k ≤ -1 ≤ c n -(1-H) ℓ(n). ( 12 
)
If moreover, inf n n i=1 r(i -1) > 0, then there is some constant c > 0 such that

∀n ≥ 1, c -1 n -(1-H) ℓ(n) √ log n ≤ P max k=1,...,n Z k ≤ 1 ≤ n -(1-H) e c √ log n .
If moreover the correlation function r is non-negative (which implies that H ≥ 1/2) then there is some constant c > 0 such that

∀n ≥ 1, c -1 n -(1-H) ℓ(n) √ log n ≤ P max k=1,...,n Z k ≤ 1 ≤ c n -(1-H) ℓ(n).
Note that [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF] gives a lower bound for the boundary 0 and an upper bound for the boundary -1. These estimates will follow more or less directly from Theorem 5. In order to change the boundaries (to boundary +1, or in fact to any finite constant), one has to proceed differently according to whether the sequence (X i ) is positively correlated (which is easier) or whether it may also be negatively correlated (in which case we need the extra condition on the sum of the correlations).

Proof of Theorem 11. Assume [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]. We set σ n := sup k=1,...,n a k where a n := Z n 2 = n H ℓ(n). Due to Karamata's characterization of slowly varying functions [START_REF] Karamata | Sur un mode de croissance régulière. Théorèmes fondamentaux[END_REF], there exists c 1 > 0 and a function ε such that lim t→+∞ ε(t) = 0 and such that c -1

1 b n ≤ a n ≤ c 1 b n with b n := n H e n 0 ε(t)
t dt . Let us denote by D n the Dudley integral

D n := σn 0 log N (n, t)dt, (13) 
where N (n, t) is the smallest number of open balls of {0, ..., n} of radius t for the pseudo-metric d(k, ℓ) = a |k-ℓ| which form a covering of {0, ..., n}. Note that if a r ≤ c 1 b r ≤ t for some r < n then N (n, t) ≤ 2n/r. Further, trivially N (n, t) ≤ n + 1 for any t and N (n, t) = 1 for t > a n .

Therefore, for ϑ ∈ (0, 1), for n large enough,

D n ≤ bn/ √ log(n+1) 0 log(n + 1) dt + c 1 bn bn/ √ log(n+1) log N (n, t) dt ≤ b n + n k=n ϑ c 1 b k c 1 b k-1 log(2n/(k -1)) dt ≤ b n + n k=n ϑ c 1 (b k -b k-1 ) log(2n/(k -1)). But, due to the form of b k , b k -b k-1 b k = k H -(k-1) H k H + (k-1) H 1-e k-1 k ε(t) t dt k H = O(k -1
). Let υ ∈ (0, H). There exists c 2 > 0 such that

D n ≤ b n + c 2 b n 1 n n k=n ϑ nb k kb n log(2n/(k -1)) ≤ b n + c 2 b n 1 n n k=n ϑ (k/n) H-1-υ = O(a n ) , (14) 
for n large enough (where we used again the expression of b n ). Due to [22, Corollary 2, p.181],

∀u > 0, P sup k=1,...,n

Z k > u + 4 √ 2D n ≤ P(Z 1 > u/σ n ) .
Therefore, [START_REF] Gong | Maximal φ-inequalities for demimartingales[END_REF] and the fact that σ n ∼ a n as n is large. Thus, we have proved that max k=1,...,n Z k 2 = O(a n ), which combined with (11) yields

E sup k=1,...,n Z 2 k ≤ 32D 2 n + ∞ 32D 2 n P sup k=1,...,n |Z k | > √ u du = 32D 2 n + 2 ∞ 4 √ 2Dn P sup k=1,...,n Z k > x 2x dx = 32D 2 n + ∞ 0 P (Z 1 > u/σ n ) 4(4 √ 2D n + u) du = 32D 2 n + σ n ∞ 0 P (Z 1 > v) 4(4 √ 2D n + vσ n ) dv ≤ 32D 2 n + C(σ n D n + σ 2 n ) = O(a 2 n ) , due to
1 n H ℓ(n) 1/2 E max k=1,...,n Z k → E sup t∈[0,1] B H (t) ∈ (0, ∞).
Hence, Theorem 5 implies both the first upper bound and the (last) estimate corresponding to the case when r is non-negative (since in this case the increments of Z are then positively associated).

It remains to prove the upper bound of the second point. We are now going to use Proposition 1.6 in [START_REF] Aurzada | Universality of the asymptotics of the one-sided exit problem for integrated processes[END_REF]. For this purpose, let us denote by H the reproducing kernel Hilbert space of the process (Z k ), i.e. the kernel Hilbert space belonging to the kernel K(n, m)

:= E[Z n Z m ], n, m ∈ N. Assume that κ := inf n n i=1 r(i -1) = inf n K(1, n) > 0. Consider the function f (n) := 2K(1, n)/κ ∈ H. Note that f (n) ≥ 2 and that f 2 H = f, f H = 2 κ K(1, .), f H = 2 κ f (1) = (2/κ) 2 K(1, 1) = (2/κ) 2 .
Using these two properties and Proposition 1.6 in [START_REF] Aurzada | Universality of the asymptotics of the one-sided exit problem for integrated processes[END_REF] we can conclude that

cn -(1-H) ℓ(n) 1/2 ≥ P(max k≤n Z k ≤ -1) = P(∀k ≤ n : Z k + f (k) ≤ -1 + f (k)) ≥ P(∀k ≤ n : Z k + f (k) ≤ 1) ≥ P(∀k ≤ n : Z k ≤ 1) exp(-2 f 2 H log(1/P(∀k ≤ n : Z k ≤ 1)) -f 2 H /2
) Inserting now the lower bound given by ( 12) and the value for f H we obtain, for every α > H -1,

cn -(1-H) ℓ(n) 1/2 ≥ P(∀k ≤ n : Z k ≤ 1) exp(-8ακ -2 log n -2/κ 2 ),
for n large enough. This shows the upper bound for the desired probability. Now let us finally prove the consequences for the (continuous-time) fractional Brownian motion.

Proof of Theorem 1. A simple example in Theorem 11 is fractional Gaussian noise: If B H denotes a (continuous-time) fractional Brownian motion, define X i := B H (i + 1) -B H (i), i = 0, 1, . . .. Theorem 11 holds and gives that there exists some constant c > 0 such that for large enough n

P max k=1,...,n B H (k) ≤ -1 ≤ c n -(1-H) .
When H ∈ ( 1 2 , 1), we obtain

P max k=1,...,n B H (k) ≤ 1 ≤ c n -(1-H) ,
while for H ∈ (0, 1 2 ) we get

P max k=1,...,n B H (k) ≤ 1 ≤ c n -(1-H) e c √ log n .
From these computations, we can deduce an alternative proof of the upper bound for the persistence probability of the continuous-time fractional Brownian motion because trivially:

P sup t∈[0,T ] B H (t) ≤ 1 ≤ P max k=1,...,[T ] B H (k) ≤ 1 .
The estimate for the lower bound are more involved. Due to Theorem 10, there exists c > 0 such that

P max k=1,...,n B H (k) ≤ 0 > c n -(1-H) √ log n . Moreover, max t∈[0,n] B H (t) - max k=1,...,n⌊(C log n) 1/(2H) ⌋ B H (n k ) ≤ max k=1,...,n⌊(C log n) 1/(2H) ⌋ A k , with A k := max j∈[n k ,n k+1 ] (B H (j) -B H (n k ))
where

n k := k-1 ⌊(C log n) 1/(2H) ⌋ .
Then, using the self-similarity of the fractional Brownian motion,

P max k=1,...,n⌊(C log n) 1/(2H) ⌋ A k > 1 ≤ n(C log n) 1/(2H) P max t∈[0,1] B H (t⌊(C log n) 1/(2H) ⌋ -1 ) > 1 ≤ n(C log n) 1/(2H) P max t∈[0,1] B H (t) > ⌊(C log n) 1/(2H) ⌋ H ≤ n(C log n) 1/(2H) e -aC log n
for some constant a > 0 (see [START_REF] Molchan | Maximum of fractional Brownian motion: probabilities of small values[END_REF] for instance). We choose C so that this last quantity is in

o(n -(1-H) (log n) -1 2H ). Then P max t∈[0,n] B H (t) ≤ 1 ≥ P max k=1,...,n⌊(C log n) 1/(2H) ⌋ B H k ⌊(C log n) 1/(2H) ⌋ ≤ 0 -o(n -(1-H) (log n) -1 2H ) ≥ P ⌊(C log n) 1/2H ⌋ -H max k=1,...,n⌊(C log n) 1/(2H) ⌋ B H (k) ≤ 0 -o(n -(1-H) (log n) -1 2H ) ≥ P max k=1,...,n⌊(C log n) 1/(2H) ⌋ B H (k) ≤ 0 -o(n -(1-H) (log n) -1 2H ) ≥ cn -(1-H) (log n) -1 2H .

Random walks in random sceneries

Random walks in random sceneries were introduced independently by H. Kesten and F. Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and by A. N. Borodin [START_REF] Borodin | A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian)[END_REF]. Let d ∈ N * and S = (S n ) n∈N be a random walk in Z d starting at 0, i.e., S 0 = 0 and X n := S n -S n-1 , n ≥ 1 is a sequence of i.i.d. Z d -valued random variables. Let ξ = (ξ x ) x∈Z d be a field of i.i.d. real valued random variables independent of S. The field ξ is called the random scenery. The random walk in random scenery (RWRS) Z := (Z n ) n∈N is defined by setting Z 0 := 0 and, for n ∈ N * , Z n := n i=1 ξ S i . We will denote by P the joint law of S and ξ.

Limit theorems for RWRS have a long history, we refer to [START_REF] Guillotin-Plantard | Quenched central limit theorems for random walks in random scenery[END_REF] for a complete review. As in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], we consider the case when the distribution of ξ 0 is in the normal domain of attraction of a stable distribution of index β ∈ (1, 2] and, if S is recurrent, we assume that the distribution of X 1 is in the normal domain of attraction of a stable distribution of order α ∈ [d, 2]. We assume without any loss of generality that the support of the distribution of X 1 is not contained in a proper subgroup of Z d and that the closed subgroup generated by the support of the distribution of ξ 0 is either Z or R. Under the previous assumptions, the following weak convergence holds in the space D([0, +∞)) of càdlàg real-valued functions defined on [0, ∞), endowed with the Skorokhod topology (with respect to the classical J 1 -metric): •) are independent Lévy processes of respective order α, β, β, with e 1 = (1, 0, . . . , 0) ∈ Z d . (When α = d = 2, the process U corresponds to the two-dimensional Brownian motion). When d = 1 < α, in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], Kesten and Spitzer proved the following convergence in distribution in (D([0, +∞), J 1 ), (n

n -1 α S ⌊nt⌋ t≥0 L =⇒ n→∞ (U (t)) t≥0 if S is recurrent and n -1 β ⌊nt⌋ k=1 ξ ±ke 1 t≥0 =⇒ L n→∞ (Y (±t)) t≥0 , where U (•), Y (•), Y (-
-1+ 1 α -1 αβ Z [nt] ) t≥0 L =⇒ n→∞ ∆ t := [0,+∞[ L t (x) dY (x) + [0,+∞[ L t (-x) dY (-x) t≥0 ,
where (L t (x)) x∈R,t≥0 is a continuous version with compact support of the local time of the process U (see [START_REF] Marcus | Markov processes, Gaussian processes, and local times[END_REF]).

When S is transient, ((n -1 β Z [nt] ) t≥0 ) n∈N * converges in distribution (with respect to the M 1metric), to (∆ t := c 0 Y (t)) t≥0 for some c 0 > 0 (see [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]). When α = d, ((n

-1 β (log n) 1 β -1 Z [nt]
) t≥0 ) n∈N * converges in distribution (with respect to the M 1 -metric), to (∆ t := c 1 Y (t)) t≥0 for some c 1 > 0 (see [START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF]). Hence in any of the cases considered above, ((Z ⌊nt⌋ /a n ) t≥0 ) n∈N converges in distribution (with respect to the M 1 -metric) to some process ∆, with

a n :=      n 1-1 α + 1 αβ if d = 1, α ∈ (1, 2]
.

n 1 β (log n) 1-1 β if α = d. n 1 β if S is transient. ( 15 
)
For every y ∈ Z d and every integer n ≥ 1, we write N n (y) for the number of visits of the walk S to site y before time n, i.e.

N n (y) := #{k = 1, ..., n : S k = y}.

We also write R n := #{S 1 , ..., S n } for the range of S up to time n. Note that Z and can be rewritten as follows:

Z n = y∈Z d ξ y N n (y).
When Z 1 takes its values in Z, we define the range R n of the RWRS Z, i.e. the number of sites visited by Z before time n, by R n := #{Z 0 , . . . , Z n }.

Remark 12 (Transient RWRS). Assume that β ∈ (0, 1) and that P(ξ 1 ∈ Z) = 1. Then the RWRS is transient (see for instance [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]) and, due to an argument by Derriennic [34, Lemma 3.3.27], (R n /n) n∈N * converges P-almost surely to P[Z j = 0, ∀j ≥ 1].(There, we consider the ergodic dynamical system (Ω, µ, T ) given by Ω := (Z d ) Z × Z Z , µ := (P S 1 ) ⊗Z ⊗ (P ξ 1 ) ⊗Z and T ((α k ) k , (ǫ k ) k ) := ((α k+1 ) k , (ǫ k+α 0 ) k ) (see for instance [START_REF] Kalikow | An outline of ergodic theory[END_REF] for its ergodicity, p. 162). We set f ((α k ) k , (ǫ k ) k ) = ǫ 0 . With these choices, (Z j ) j≥1 has the same distribution under P as

( j k=1 f • T k ) j≥1 under µ.)
We assume from now on that β > 1. Then the RWRS Z is recurrent (see top of the page 2083 in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF]). Let us check that the assumptions of Theorem 5 are satisfied with (a n ) n∈N given in [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF]. First, since ξ is a sequence of i.i.d. random variables independent of S, the increments (ξ S k ) k of Z n are positively associated conditionally to F 0 the σ-algebra generated by S and their conditional distribution given S is the distribution of ξ 0 .

Proposition 13. Assume β > 1, then max k=0,...,n Z ⌊nt⌋ -min k=0,...,n Z ⌊nt⌋ a n L -→ sup t∈[0,1] ∆ t -inf t∈[0,1] ∆ t and lim n→+∞ E [max k=0,...,n Z k ] a n = E sup t∈[0,1] ∆ t .
Proof of Proposition 13. Due to the convergence for the M 1 -topology of ((a -1 n Z ⌊nt⌋ ) t ) n∈N * to (∆ t ) t as n goes to infinity, we know that (a -1 n (max 0≤k≤n Z kmin 0≤ℓ≤n Z ℓ )) n∈N * converges in distribution to sup t∈[0,1] ∆ tinf s∈[0,1] ∆ s as n goes to infinity (see Section 12.3 in [START_REF] Whitt | Stochastic process limits[END_REF]). Let us prove that (a -1 n max 0≤k≤n Z k ) n∈N * is uniformly integrable. To this end we will use the fact that, conditionally to the walk S, the increments of (Z n ) n∈N are centered and positively associated. Let β ′ ∈ (1, β) be fixed. Due to Theorem 2.1 of [START_REF] Gong | Maximal φ-inequalities for demimartingales[END_REF], there exists some constant c β ′ > 0 such that

E max j=0,...,n Z j β ′ |S ≤ E max j=0,...,n |Z j | β ′ |S ≤ c β ′ E |Z n | β ′ |S , so E |max j=0,...,n Z j | β ′ ≤ c β ′ E |Z n | β ′ . It remains to prove that E[|Z n | β ′ ] = O(a β ′ n ).
Let us first consider the easiest case when the random scenery is square integrable that is β = 2, then we take β ′ = 2 in the above computations and observe that

E |Z n | 2 = E[ξ 2 0 ]E[V n ]
, where V n is the number of self-intersections up to time n of the random walk S, i.e. 2 and the result follows. When β ∈ (1, 2), let us define V n (β) := y∈Z (N n (y)) β . Given the random walk, Z n is a sum of independent zero-mean random variables, then from [31, Theorem 3], there exists some constant C > 0 such that for every n

V n = x (N n (x)) 2 = n i,j=1 1 S i =S j . Usual computations (see Lemma 2.3 in [4]) give that E[V n ] = n i,j=1 P(S i-j = 0) ∼ c ′ (a n )
E[|Z n | β ′ |S] ≤ C y N n (y) β ′ E[|ξ y | β ′ ] ≤ CV n (β ′ ). ( 16 
)
From which we deduce that

E[|Z n | β ′ ] ≤ CE[V n (β ′ )]. If α > d = 1, due to Lemma 3.3 of [13], we know that E[V n (β ′ )] = O a β ′ n .
In the other cases, using Hölder's inequality, we have

E[V n (β ′ )] ≤ E[R n ] 1-β ′ 2 E[V n ] β ′ 2 . If α = d, we know that E[R n ] ∼ c n
log n (see for instance Theorem 6.9, page 398 in [START_REF] Gall | The range of stable random walks[END_REF]) and

E[V n ] ∼ cn log n so E[V n (β ′ )] = O a β ′ n with a n = n 1 β ′ (log n) 1-1 β ′ . If S is transient, the expectations of R n and V n behaves as n, we deduce that E[V n (β ′ )] = O a β ′ n with a n = n 1 β ′ . We conclude that lim n→+∞ 1 a n E max j=0,...,n Z j = E sup t∈[0,1] ∆ t .
Proof of Theorem 2. Using Proposition 13, we apply Theorem 5 with F 0 the σ-algebra generated by S.

In the case of RWRS, the proof of Theorem 5 can be modified in order to get better lower bounds when ξ has a moment of order β > 1.

Proposition 14. Assume that ξ has a moment of order β > 1. Then, P max k=1,...,n

Z k ≤ 1 = O(a n /n). • If α > 1, then lim inf n→+∞ n 1 α P max k=1,...,n Z k < 0 > 0. • If α = d, then lim inf n→+∞ n log n P max k=1,...,n Z k < 0 > 0. • If α < 1, then lim inf n→+∞ n P max k=1,...,n Z k < 0 > 0.
Proof. The upper bound directly follows from Proposition 13 and Theorem 5. Let us prove the three lower bounds. Let F 0 be the σ-algebra generated by S. We use the proof of Theorem 10 and the notations therein. We adapt the proof of Theorem 10 using the fact that P sup k=1,...,⌊εn⌋ 8) and ( 9),

(Z k-1 -Z k ) > b n F 0 ≤ R ⌊εn⌋ P(-Z 1 > b n ) ≤ R ⌊εn⌋ E[|ξ 0 | β ] b -β n . Let β ′ ∈ (1, β). Due to (
P Z 0 > Z * 1,n ≥ E[M n ] εn ≥ 1 ε n b n E Z * 0,n+⌊εn⌋ -Z * 0,n -E Z * 0,n+⌊εn⌋ R ⌊εn⌋ P(-Z 1 > b n ) ≥ 1 ε n b n E Z * 0,n+⌊εn⌋ -Z * 0,n -Z * 0,n+⌊εn⌋ β ′ R ⌊εn⌋ β ′ /(β ′ -1) E |ξ 0 | β b -β n .
We have seen in the proof of Proposition 13 that

Z * 0,n+⌊εn⌋ β ′ = O(a n ). ( 17 
) Moreover R n β ′ /(β ′ -1) = O(E[R n ]). (18) Indeed, E (R n /E[R n ]) p = +∞ 0 P (R n /E[R n ]) p > x dx = +∞ 0 P R n > E[R n ]x 1/p dx = +∞ 0 O e -C(p)x 1/p dx < ∞,
for some C(p) > 0 due to [START_REF] Castell | On the one-sided exit problem for stable processes in random scenery[END_REF]Lemma 34]. Now we choose b

n = O(E[R n ] 1 β ) such that lim sup n→+∞ a -1 n Z * 0,n+⌊εn⌋ β ′ R ⌊εn⌋ β ′ /(β ′ -1) E |ξ 0 | β b -β n < D 1 -D 2 ,
and so lim sup

n→+∞ nb n a n P Z 0 > Z * 1,n > 0. But a n ∼ c nE[R n ] 1 β -1 . Hence nb n /a n = O(E[R n ]).
We are now interesting in the case when the random variables ξ are Z-valued. Better estimations can be obtained in this particular context. Proposition 15. Assume β > 1 and that P(ξ 

1 ∈ Z) = 1, then 0 < lim inf n→+∞ E[R n ] a n ≤ lim sup n→+∞ E[R n ] a n < ∞ , (19) 
0 < lim inf n→+∞ n a n P(T 0 > n) ≤ lim sup n→+∞ n a n P(T 0 > n) < ∞ . ( 20 
)
(N n (x)) 2 = R n V n , with V n = x (N n (x)) 2 = n i,j=1 1 {Z i =Z j }
the number of self-intersections of Z up to time n and so using Jensen's inequality, E[Rn] an

≥ n 2 an E[(V n ) -1 ] ≥ n 2 an E[V n ] -1
. Moreover, using the local limit theorems for the RWRS proved in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF][START_REF] Castell | Limit theorems for one and two-dimensional random walks in random scenery[END_REF],

E[V n ] = n + 2 1≤i<j≤n P(Z j-i = 0) ∼ C ′ n 2 a n .
Hence lim inf n→+∞

E[Rn] an ≥ 1 C ′ > 0.
In the particular case where P(ξ 0 ∈ {-1, 0, 1}) = 1, we obtain a precise estimate (as a consequence of the second part of Theorem 7).

Theorem 16. Assume that P(ξ 1 ∈ {-1, 0, 1}) = 1 (β = 2), then R n a n L -→ sup t∈[0,1] ∆ t -inf t∈[0,1] ∆ t and lim n→+∞ E[R n ] a n = 2 E sup t∈[0,1] ∆ t , (21) 
P( max k=1,...,n Z k ≤ -1) = 1 2 P(T 0 > n) ∼ a n n max 1 - 1 2α , 1 2 E sup t∈[0,1] ∆ t . (22) 
Proof. Since P(ξ 1 ∈ {-1, 0, 1}), R n = max k=0,...,n Z k -min k=0,...,n Z k +1. Due to Proposition 13, we deduce the convergence in distribution of (R n /a n ) n∈N and the convergence of (E[R n ]/a n ) n∈N . The last part of Theorem 16 follows from Theorem 7 since (a n ) n∈N is γ-regular with γ = max 1 -1 2α , 1 2 . Remark 17. It is worth noticing that the techniques we used in this section can be applied to more general RWRS, for instance to RWRS studied in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian scenery[END_REF].

Random process in Brownian scenery

Let us consider generalizations of the Kesten-Spitzer's process (∆ t ) t≥0 introduced in the previous section. Let W = {W (x); x ∈ R} be a standard two-sided real Brownian motion and Y = {Y (t); t ≥ 0} be a real-valued self-similar process of index γ ∈ (0, 2) with stationary increments. We assume that there exists a continuous version {L t (x); x ∈ R, t ≥ 0} of the local time of Y . The processes W and Y are defined on the same probability space and are assumed to be independent. We consider the random process in Brownian scenery {∆ t ; t ≥ 0} defined as

∆ t = R L t (x) dW (x).
The process ∆ is itself a self-similar process of index h with stationary increments, with

h := 1 - γ 2 .
Let V 1 := L 2 1 (x) dx be the self-intersection local time of Y . The following assumption is made on the random variable V 1 .

(H1): There exist a real number α > 1, and positive constants C, c such that for any

x ≥ 0,

P V 1 ≥ x ≤ C exp(-cx α ).
In [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF], examples of processes Y satisfying the above assumptions are given: stable Lévy process with index δ ∈ (1, 2] (it satisfies (H1) with α = δ, see Lemma 2.2 in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]), the fractional Brownian motion with index H ∈ (0, 1) (it satisfies (H1) with α = 1 H , see Lemma 2.3 in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]) and the iterated Brownian motion which satisfies assumption (H1) with α = 4 3 (see Lemma 2.4 in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]). Our main result is the following one.

Theorem 18. Assume (H1). There exists a constant c > 0, such that for large enough T ,

c -1 T -γ 2 (ln T ) -1 2-γ (1+ 1 α ) ≤ P sup t∈[0,T ] ∆ t ≤ 1 ≤ cT -γ 2 . ( 23 
)
Conditionally to the process Y , (∆ t ) t≥0 is a centered Gaussian process with positively associated increments. Therefore, the discrete-time process (∆ n ) n∈N (with ∆ 0 = 0) satisfies the assumptions of Theorem 5 (note that E[sup t∈[0,1] ∆ t ] is finite using Lemma 3.3 and inequality (3.6) in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF]) then we deduce the upper bound

P sup t∈[0,T ] ∆ t ≤ 1 ≤ P max k=1,...,⌊T ⌋ ∆ k ≤ 1 = O(T -γ 2 ).
Moreover, from Lemma 3.3 in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF], (∆ n ) n∈N satisfies the assumptions of Theorem 10 with b n = c 0 (log n) (1+α)/2α for a suitable c 0 . Then,

lim inf n→+∞ n γ 2 (ln n) 1+α 2α P max k=1,...,n ∆ k ≤ 0 > 0.
Let us prove the lower bound in Theorem 18. We follow the proof of Theorem 1 by remarking that from (3.2) and (3.6) in [START_REF] Castell | Persistence exponent for random processes in Brownian scenery[END_REF], there exists some constant a > 0 such that

P sup t∈[0,1] ∆ t > x = O e -ax 2α 
1+α .

The Matheron-de Marsily model

Finally, we will consider particular models of random walks (M n ) n∈N in random environment on Z 2 . We are namely interested in the survival probability of a particle evolving on a randomly oriented lattice introduced by Matheron and de Marsily in [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF] (see also [START_REF] Bouchaud | Superdiffusion in random velocity fields[END_REF]) to model fluid transport in a porous stratified medium. Supported by physical arguments, numerical simulations and comparison with the fractional Brownian motion, Redner [START_REF] Redner | Survival Probability in a Random Velocity Field[END_REF] and Majumdar [START_REF] Majumdar | Persistence of a particle in the Matheron -de Marsily velocity field[END_REF] conjectured that the survival probability asymptotically behaves as n - 1 4 . In this paper we rigorously prove their conjecture.

Let us describe more precisely the model and the results. Let us fix p ∈ (0, 1). The (random) environment will be given by a sequence ξ = (ξ k ) k∈Z of i.i.d. centered random variables with values in {±1} and defined on the probability space (Ω, T , P). Given ξ, the position of the particle M is defined as a Z 2 -random walk on nearest neighbours starting from 0 (i.e. P ξ (M 0 = 0) = 1) and with transition probabilities P ξ (M n+1 = (x + ξ y , y)|M n = (x, y)) = p, P ξ (M n+1 = (x, y ± 1)|M n = (x, y)) = 1p 2 .

At site (x, y), the particle can either get down (or get up) with probability 1-p 2 or move with probability p on the y ′ s horizontal line according to its orientation (to the right (resp. to the left) if ξ y = +1 (resp. if ξ y = -1)). We will write P for the annealed law, that is the integration of the quenched distribution P ξ with respect to P.

In the sequel, this random walk will be named MdM random walk. This 2-dimensional random walk in random environment was first studied rigorously [START_REF] Campanino | Random walks on randomly oriented lattices[END_REF]. They proved that the MdM random walk is transient under the annealed law P and under the quenched law P ξ for P-almost every environment ξ. It was also proved that it has speed zero. Actually the MdM random walk is closely related to RWRS. This fact was first noticed in [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF]. More precisely its first coordinate can be viewed as a generalized RWRS, the second coordinate being a lazy random walk on Z (see Section 5 of [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF] for the details). Using this remark, a functional limit theorem was proved in [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF] and a local limit theorem was established in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices[END_REF], more precisely there exists some constant C only depending on p such that P(M 2n = (0, 0)) ∼ Cn -5 4 . Since the random walk M does not have the Markov property under the annealed law, we are not able to deduce the survival probability from the previous local limit theorem. Let us define that the survival probability is the probability that the particle does not visit the y-axis (or the line x = 0) before time n i.e. P(T with Ñn (y) := #{k = 1, ..., n : S k = S k-1 = y}. Observe that Ñ is measurable with respect to the random walk S and that 0 ≤ Ñn (y) ≤ N n (y). Conditionally to the walk S, the increments of (M Remark 20. In the historical model [START_REF] Matheron | Is transport in porous media always diffusive? A counterexample[END_REF], the probability p is equal to 1/3, and in this particular case the survival probability is similar to κn - 1 4 where κ = 3 

( 1 ) 2 S ≤ c 2 E 2 |S ≤ c 2 y∈Z( 1 ) j 2 ≤ c 2 E 3 2

 122221223 n ) n∈N are centered and positively associated. It follows from Theorem 2.1 of[START_REF] Gong | Maximal φ-inequalities for demimartingales[END_REF] that |M(1) n | Ñn (y)) 2 ≤ c 2 V n ,where again V n = y∈Z (N n (y))2 . Therefore E max j=0,...,n M([V n ].Again, the result follows from the fact that E[V n ] ∼ c ′ n . Then, (25) directly follows from (4) or (5) in Theorem 7.
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 25421 sup t∈[0,1] ∆ (0) t. An open question is to compute the value of the above expectation. Numerical simulations giveE sup t∈[0,1] ∆ (0) t ≈ 0.54.Proof of Theorem 4. We conclude due to Theorem 19, since Range in the historical MdM model). It is worth noticing that the range R n of the MdM random walk, i.e. the number of sites visited by M before time n, R n := #{M 0 , . . . , M n } is well understood. Using again[START_REF] Zeitouni | Random walks in random environment[END_REF] Lemma 3.3.27], (R n /n) n∈N * converges P-almost surely to P[M j = 0, ∀j ≥ 1], which contradicts the result announced in[START_REF] Ny | Range of a Transient 2d-Random Walk[END_REF].

  Proof of the lower bound of Proposition 15. Since R n ≤ max k=1,...,n Z kmin k=1,...,n Z k + 1, we already now that lim sup n→+∞ E[R n ]/a n < ∞. Due to Theorem 7, it is enough to prove that lim inf n→+∞ E[R n ]/a n > 0. Let N n (x) := #{k = 1, ..., n : Z k = x}. Applying the Cauchy-Schwarz inequality to n = x N n (x)1 {Nn(x)>0} , we obtain

	n 2 ≤	y	1 {Nn(y)>0}	x

(1) 0 > n) where T

(1) 0 := inf{n ≥ 1 : M (1) n = 0} is the first return time of the first coordinate M (1) of M to 0. Due to [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF], the first coordinate M

(1)

and where ∆ (0) is the Kesten-Spitzer process ∆ with U and Y two independent standard Brownian motions. As for RWRS, the asymptotic behavior of this probability will be deduced from the range R

(1) n of the first coordinate i.e. the number of vertical lines visited by (M k ) k up to time n, namely R (1) n := #{x ∈ Z : ∃k = 0, ..., n, ∃y ∈ Z :

The main result for the MdM random walk is the following.

Theorem 19.

The sequence (R

Proof. Due to [START_REF] Guillotin-Plantard | A functional limit theorem for a 2d-random walk with dependent marginals[END_REF], ((M

t ) t in the Skorohod space endowed with the J 1 -metric. Hence (n -3 4 (max k=0,...,n M

kmin ℓ=0,...,n M

(1)

s ). Let us prove that this sequence is uniformly integrable. To this end we will prove that it is bounded in L 2 . Recall that the second coordinate of the MdM random walk is the lazy random walk. Let us denote it by (S n ) n∈N . Observe that M (1) n :=