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Abstract:
The aim of the paper is the design and the analysis of a gain scheduled controller for an accurate
and fast positioning with nanometer resolution of a nonlinear electrostatic microgripper. The
controller is designed to achieve a positioning of the gripping arm from few hundred nanometers
to several tens of micrometers with some performance criteria. This very large operating range is
crucial for a range of microrobotics applications and has never been addressed in existing control
techniques of microgrippers. The controller is designed considering noises that are relevant
at the nanometer scale and nonlinearities that become significant at the micrometer scale.
Therefore, a nonlinear model of the system is proposed and is reformulated into a polynomial
LPV (Linear Parameter Varying) model. The most relevant source of noise to be considered for
the controller synthesis is defined taking into account results from previous works. Considering
the particular polynomial parametric dependence of the LPV model, a multivariable controller
is designed using an affine LPV descriptor representation of the system and specific linear matrix
inequalities. The efficiency of the controller and the relevance of the theoretical approach are
demonstrated through experimental implementation results.

Keywords: Microelectromechanical systems, Microrobotics, Linear Parameter Varying (LPV),
Singular implicit modeling, H∞ control, Linear Matrix Inequality (LMI).

1. INTRODUCTION

The manipulation of micrometer sized and nanometer
sized objects is very challenging in microrobotics (Chaillet
et al. [2010]). For instance, single living cells manipulation
has a great interest for a range of biomedical disciplines
(Sun et al. [2002];Kimuraet al. [1995]). The size of biolog-
ical cells is ranging from few nanometers to several tens
of micrometers. Microgrippers are therefore an interesting
solution to perform manipulation tasks at such scales.

MEMS (Micro Electro Mechanical systems) based mi-
crogrippers using electrostatic comb drive actuators are
one of the most popular micromanipulation systems in
biological research (Muntwyler et al. [2010];Yamahata et
al. [2006]). Although, comb drive actuators are highly
nonlinear when exceeding few micrometer displacements
(Legtenberg et al. [1996]), they allow positioning gripping
arms over several tens of micrometers, they have no hys-
teretic behavior and they do not generate heating.

Nonlinearities of comb drive actuators are due to electro-
static potentials (Lee et al. [2007]) and axial forces acting
on compliant mechanisms (Legtenberg et al. [1996]). The
side instability is also a non-linearity that occurs when
the gap spacing between fixed and movable electrodes of
the actuator is no longer constant (Alwi et al. [2012]). It
is therefore very difficult to control such actuators with
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robust performances in a wide operating range. This is
nevertheless fundamental for an efficient manipulation of
fragile samples such as biological cells regardless their size.

An extensive literature is available for the control of
comb drive actuators (Bryzek et al. [2003];Borovic et al.
[2006]). Open loop control strategies are very useful for
MEMS (Acar et al. [2001]) but they are most of time not
robust w.r.t model uncertainties and nonlinear dynamics.
Linear closed loop controllers are often sufficient to ensure
the stability and robust performances when the actuator
is driven for few micrometers only. The linear quadratic
Gaussian control (Boudaoud et al. [2013]) is powerful to
filter dynamic noises but requires a full state estimate and
is not robust w.r.t model uncertainties and environmental
disturbances. Linear time invariant H∞ control (Haddab
et al. [2008]) can improve both positioning precision and
bandwidth of the actuator but is limited to satisfy ro-
bust performances in a wide operating range due to fixed
weights. The H∞ loop shaping controller is useful to con-
trol multiple degrees of freedom of MEMS by decoupling
several input/output transfers functions and satisfying
robust performances (Pang et al. [2009]). Direct and in-
direct sliding mode control with an adaptive gain (Fei et
al. [2009]) or with an observer (Fei et al. [2007]) proved
its efficiency to control comb drive actuators in MEMS
gyroscopes. Closed loop stability and robust performances
are satisfied with an on-line identification of the upper
bounds of uncertainties (Fei et al. [2009]) or by considering
a single non-linearity such as the damping (Ebrahimi et al.
[2006]) for the controller synthesis. To deal with the side



instability, linear and nonlinear control approaches have
been proposed. They are based on input/output lineariza-
tion (Maithripala et al. [2003]), differential flatness (Zhu
et al. [2005]), backstepping (Salah et al. [2010]) or robust
PID (Vagia et al. [2008]). Recent works demonstrated the
interest of Linear Parameter Varying (LPV) controllers
to deal with this non-linearity (Shirazi et al. [2011]; Alwi
et al. [2012]). Such controllers allow driving the actuator
beyond the side instability (generally less than 10 µm dis-
placement). Nevertheless, they do not provide degrees of
robustness to matched nonlinearities such as damping and
stiffness variation. The problem of positioning comb drive
actuators from few hundred nanometers to several tens of
micrometers is not addressed. Moreover, the design of the
controllers assumes that the MEMS is working in ideal
conditions and the effect of environmental noises on the
positioning resolution is not considered. Such issues have
not been analyzed previously and remain an open research
area although it is crucial for MEMS based microgrippers.

The aim of this paper is to provide a new approach
to control MEMS based microgrippers using comb drive
actuators. A multivariable controller is designed through
the LPV theory in order to ensure the stability and some
closed loop performances (precision, nanometer resolution,
no overshoot, fast response time) over a very wide oper-
ating range despite significant noises and nonlinearities.
Nonlinearities arise from a large variation of the stiffness
and the damping when increasing the displacement of
the actuator. Nonlinear parameters, namely the stiffness
and the damping, are matched. Therefore instead of using
them “independently” as scheduling variables, the use of
only one scheduling parameter is proposed. To do so,
a multivariable polynomial LPV model of the system is
introduced. The polynomial parametric dependence of the
model causes some issues for the derivation of the con-
troller. As such, an affine LPV descriptor model and a
finite number of linear matrix inequalities are used for the
controller synthesis. In order to achieve resolution require-
ment, the main source of noise to be considered for the
controller synthesis is defined taking into account results
from previous works (Boudaoud et al. [2011]; Boudaoud et
al. [2012]). A specific weighting function is introduced to
ensure a high positioning resolution.

The relevance of the control approach is demonstrated
considering a commercial microgripper (FT-G100 from
FemtoTools Company) and shows that large positioning
with nanometer resolution can be achieved using two
sensors only and does not require the use of expensive
vibration isolation tables commonly employed in micro-
robotics which is a great advantage from application point
of view. The paper is organized as follow. In section 2,
the global architecture of the microgripper is presented.
Sections 3 and 4 deal with the nonlinear modeling and the
LPV modeling of the actuation mechanism. The proposed
control strategy is presented in the fifth section. In section
6, experimental control results are presented.

2. FEATURES OF THE MICROGRIPPER

The FT-G100 microgripper is designed to handle objects
ranging from 1µm to 100µm. To pick up an object, an
actuated arm is pushed toward closure thanks to a comb
drive actuator. The base of the actuated arm is fixed to a
flexure joint Fig.1 and a suspension mechanism including
two pairs of clamped-clamped beams holds the movable
part of the actuator. While the gripping arms are closed
around an object, the deflection of the sensing arm is
detected by a capacitive sensor. The sensor consists of

a transverse comb-drive with a differential capacity pro-
portional to the displacement of the movable fingers. This
displacement (due to the gripping force) is translated into
analog voltage Vout throughout a MS3110 readout chip
(Irvine Sensors). Two pairs of clamped-clamped beams
and a flexure joint are also attached to the sensor and
the base of the sensing arm respectively.

Fig. 1. Structure of the FT-G100 microgripper (Femto-
Tools GmbH).

Table 1. Dimensions of the actuation mecha-
nism

Actuated arm Doubly-clamped beams

Length L = 5150 µm Ls = 915 µm (half length)

Width l = 150 µm ls = 50 µm

Thickness e = 50 µm es = 8 µm

The FT-G100 microgripper is used in many robotics
laboratories. Very few control solutions are nevertheless
provided by the manufacturer. In this work, the designed
controller can be applied to any MEMS based micro-
gripper using a comb drive actuator (Yamahata et al.
[2006];Beyeler et al. [2007];Muntwyler et al. [2010];Vijaya-
sai et al. [2010]) and leads to new perspectives for high
precision micro/nano-manipulation tasks.

3. NONLINEAR MODELING AND IDENTIFICATION

The aim is the accurate position control of the actuated
arm tip ya(L) in the direction of y axis (see Fig.2). In
this section, a nonlinear dynamic model of the actuation
mechanism is proposed. The model describes the dynamic
transfer between the input voltage Vin and the position



ya(L). Input noises are also considered. Static and dy-
namic parameters of the model are identified experimen-
tally and a final nonlinear model is derived for the control.

3.1 Nonlinear dynamic modeling

The modeling approach is performed under the following
assumptions (see Boudaoud et al. [2013] for assumptions
verification): (i) the actuated arm is rigid in the direction
of y axis, (ii) the slender beam between the shuttle and
the actuated arm is not subject to buckling and (iii) the
pseudo rigid beams behaves as a hinge joint.
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Fig. 2. Simplified scheme of the actuation mechanism (a)
and equivalent scheme of suspensions (b).

Therefore, let us consider a nonlinear Euler Bernoulli
equation describing the undamped bending of the suspen-
sion mechanism at the midpoint of the doubly clamped
beams ya(xea) in the direction of y axis (see Fig.2.a):

EIs
∂4ya(xea)

∂x4
+ ρlses

∂2ya(xea)

∂t2
(1)

+N
∂2ya(xea)

∂x2
= Felecδ (x− Ls)

where E is the Young’s modulus, Is is the area moment
of inertia of the doubly-clamped beams, ρ is the mass
density, Felec is the electrostatic force and δ is the Dirac
delta function. Moreover, Ls, ls and es are dimensions as
described in Table.1.

The two first terms of equation (1) relates to the linear
Euler Bernoulli beam equation. The third term introduces
a non-linearity due to the so called inplane tension located
at the clamped parts of the suspensions (see Fig.2.a). The
inplane tension N is given by (Kovacicv et al. [2011]):

N =
Elses
4Ls

2Ls∫
0

(
∂ya
∂x

)2

∂x (2)

The electrostatic force is governed by the following
equation (Moussa et al. [2002]):

Felec =
Naεhz

2g
.V 2
in (3)

where Vin is the actuation voltage, Na = 1300 is the total
number of fingers (movable and fixed) in the actuator,
ε = 8.85 pF/m is the permittivity of the dielectric material
(air), hz = 50 µm is the thickness of comb fingers, and
g = 6 µm is the gap spacing between two fingers.

Considering the assumptions of the modeling, the vari-
able ya(L) is introduced in equation (1) leading to:

EIs
Da

∂4ya(L)

∂x4
+
ρlses
Da

∂2ya(L)

∂t2
(4)

+
N

Da

∂2ya(L)

∂x2
= Felecδ (x− Ls)

where Da = L/xea is an amplification parameter (xea =

1100 µm).

Substituting equation (2) into (4) gives the partial
differential equation:

EIs
Da

∂4ya(L)

∂x4
+
ρlses
Da

∂2ya(L)

∂t2
(5)

+

 Elses
4LsDa

2Ls∫
0

(
∂ya
∂x

)2

∂x

 ∂2ya(L)

∂x2
= Felecδ (x− Ls)

Thus, using the perturbation method (see (Kovacicv
et al. [2011]) for more information), equation (5) can be
simplified into a lumped parameter equation of the first
Eigen mode of the system as follows:

ma0

∂2ya(L)

∂t2
+ k1aya(L) + k3ay

3
a(L) =

1

Da
Felec (6)

with:

ma0 =
ρlses

φ2
1(2Ls)D2

a

2Ls∫
0

φ2
1(x).∂x

k1a =
2EIs

φ2
1(2Ls)D2

a

2Ls∫
0

(φ′′1(x))2.∂x

k3a =
E

φ2
1(2Ls)D2

a

(

2Ls∫
0

(φ′1(x))2.∂x)2

The parameter φ1 is the shape mode of the first Eigen
mode of the suspensions. k1a is the effective linear stiffness
of the actuation mechanism. The nonlinear term k3a is the
cubic stiffness (it is due to the inplane tension N).

In the partial differential equation (1) and in equation
(6) , the damping of the system is not taking into account
and only the mass of the suspension mechanism (i.e.
doubly clamped beams) is considered.

Hence, in order to account the mass of the complete
actuation mechanism, the mass Msh is added to ma0 . The
parameter Msh is the mass of the shuttle and that of
the actuated arm. Moreover, to account the real dynamic
behavior of the system, the term da is introduced to define
the damping of the actuation mechanism.

As such, equation (6) becomes:

ma
∂2ya(L)

∂t2
+da

∂ya(L)

∂t
+k1aya(L)+k3ay

3
a(L) =

1

Da
Felec

(7)

where ma = ma0 + Msh is the mass of the actuation
mechanism.

In the next section, both static and dynamic parameters
of the nonlinear model are identified using experimental
data from a commercial FT-G100 microgripper.



3.2 Identification

A high resolution (0.01 nm) laser interferometer (SP-120
SIOS Metechnik GmbH) is used to perform measurements
of the displacement ya(L) at the tip of the actuated arm
(see Fig.3). Input voltages are generated using a dSPACE
control board (DS1103). First, k1a and k3a are identified

through the experimental static characteristic ya(L)/Vin
for 0 < Vin < 200 V . Experimental data are then fitted
using equation (7) in static mode.

Fig. 3. Measurement of the actuated arm position using a
laser interferometer sensor.

Let us recall that in the modeling part, equation (6) is
related to the Euler Bernoulli equation (1). This modeling
approach justify and explain why a cubic stiffness term k3a

appear in the lumped parameter equation (6). However,
from experimental data, it has been shown that for the
FT-G100 actuation mechanism, a third order polynomial
(related to the nonlinear stiffness with a cubic term) is not
sufficient to describe accurately the static characteristic
ya(L)/Vin. The mean error of the static characteristic in
the whole operating range of the system is found to be
equal to 17.11 %. . The reason is that in addition to the
inplane tension (which produce the cubic stiffness k3a),
other sources of nonlinearities such electrostatic ones can
produce nonlinear stiffness terms of higher orders (Ye et
al. [1998]). Therefore, in this study, we increase the order
of the nonlinear stiffness in order to reduce the mean
fitting error to less than 10 %. The nonlinear stiffness
is described by a sixth order polynomial leading to the
following expression:

ka =

6∑
i=1

kiay
i−1
a (L) =

1

Daya(L)
Felec (8)

As such, in static mode, the equation governing the
displacement ya(L) becomes:

k1aya(L) + k2ay
2
a(L) + k3ay

3
a(L) + k4ay

4
a(L)

+k5ay
5
a(L) + k6ay

6
a(L) =

1

Da
Felec

(9)

Equation (9) is not deduced from equation (6) when
t→ +∞. Only the parameters ya(L),Felec,k1a,k3a and Da

are the same in the two equations. Other terms are due to
the polynomial order extension.

The mean fitting error is then reduced to 3.66 % and
results are presented in Fig.4.a. The identified linear,
quadratic, cubic and higher order stiffness terms are given
in Table.2. Consequently, the nonlinear characteristic of
the stiffness is deduced as shown in Fig.4.b.

Thereafter, step voltages are applied to the actuator
with amplitudes ranging from 5 V to 200 V (40 steps exci-

Table 2. Identified static and dynamic param-
eters of the actuation mechanism.

Symbol Value Description

ma 3.9843 × 10−8 kg mass

k1a 1.85N/m stiffness terms
k2a −1.6 × 103 N/m2

k3a 4.88 × 108 N/m3

k4a −1.69 × 1012 N/m4

k5a −3.98 × 1016 N/m5

k6a 4.71 × 1020 N/m6

d0a 1.76 × 10−6 Ns/m damping terms
d1a 0.378 Ns/m2

d2a −1.58 × 104 Ns/m3

d3a 1.67 × 108 Ns/m4

d4a 2.47 × 1012 Ns/m5

tation are applied). For each excitation step, the response
ya(L) is measured experimentally. The mass is identified
from the step response which corresponds to 5 V step
excitation and the damping is identified at each operating
point (from 5 V to 200 V). Results show that the damping
is nonlinear. It increases with increasing the amplitude
of the step excitation starting from ya(L) = 60 µm (see
Fig.4.c).
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Fig. 4. Nonlinear characteristics of the FT-G100 actuation
mechanism (a) ya(L)/Vin, (b) ka/Vin and (c) da/Vin.

To describe accurately the damping of the system, it has
been sufficient to model it by a fourth order polynomial
(using identification results) of the form:

da =

4∑
i=0

diay
i
a(L) (10)

Taking into account the nonlinear terms of the stiffness
and the damping, the nonlinear state space model of the
actuation mechanism is given as:



[
ẏa(L)

ÿa(L)

]
=

 0 1

− 1
ma

6∑
i=1

kiay
i−1
a (L) − 1

ma

4∑
i=0

diay
i
a(L)

[ ya(L)

ẏa(L)

]

+

[
0

Ke

maDa

]
.V 2

in

ya(L) =
[

1 0
][ ya(L)

ẏa(L)

]
Ke =

Naεhz

2g

(11)



To validate the modeling approach based on nonlin-
ear polynomial terms, frequency responses of the model
are compared with experimental ones. For each operat-
ing point, experimental and simulated step responses are
recorded and a Fast Fourier Transform (FFT) is computed.
Results are presented in Fig.5.

The nonlinear model describes accurately the increase
of the fundamental resonance frequency with increasing
the input voltage due to the nonlinear stiffness. The
fundamental resonance frequency increases from 827 Hz to
more than 2 kHz for 5 V < Vin < 175 V . For Vin > 70 V ,
higher order eigenmodes can be observed experimentally.
The model is able to capture this characteristic. For Vin >
155 V , the value of the fundamental resonance frequency
obtained by simulation does not agree with experiments.
This is due to the fact that the actuated arm is close to
the sensing arm. Hence, the overshoot of the step response
causes a contact between the two arms. This contact is not
considered in the model.
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Fig. 5. Frequency responses of the nonlinear actuation
mechanism: experimental data (continuous line) and
simulation data (dashed line).

3.3 Noise influences

In (Boudaoud et al. [2011]) and (Boudaoud et al. [2012]),
a detailed study on environmental noises and their ef-
fect on the positioning resolution of micromanipulation
systems is performed. Three main sources of noise have
been studied: cultural noises (ground vibrations), acoustic
noises and thermal noises. Models and experiments allowed

the determination of the frequency range and the root
mean square (r.m.s) amplitude of each source of noise:

(1) The power spectrum of the cultural noise has a 10−11

f4

shape (f is the frequency) (see Fig.6). In the frequency
range [1 Hz 100 Hz], the r.m.s amplitude of the cultural
noise is about 223 nm. The r.m.s amplitude reaches 6 nm
and 1.2 nm in the frequency ranges [100 Hz 250 Hz] and
[300 Hz 450 Hz] respectively.

(2) Acoustic noise can amplify the r.m.s amplitude of
the cultural noise by a factor of ten beyond 35 dB Sound
Pressure Level (SPL). This threshold of acoustic noise can
be easily reached in laboratories environments.

(3) The thermal noise is a pseudo white noise. Its
r.m.s amplitude is related to the damping of a mechanical
system. The thermal noise is often considered as the
main limitation of the positioning resolution in MEMS.
In (Boudaoud et al. [2012]), it has been found that the
positioning resolution of AFM (Atomic Force Microscopy)
based microgrippers is ranging from 365 pm to 675 pm. It
is shown that resolutions are limited by both thermal and
acoustic noises.
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a vibration isolation table (Boudaoud et al. [2011]).
The cultural noise b(t) considered in this paper relates
to the noise measured out of the vibration isolation
table. Its PDS has a 10−11/f4 shape.

Both the cultural noise and the thermal noise will be
considered as input signals (Fig.7) to define their effect on
the positioning resolution of the actuation mechanism.
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Cultural noise

The cultural noise b(t) is introduced at the input of
the nonlinear model (11) such that the dynamic transfer
Gya(L)/b

satisfies (Younis et al. [2011]):
lim
f→0

Gya(L)/b
(f) = 1

Gya(L)/b
(f = fra) = Qa = d−1

a

√
maka

(12)



where fra and Qa are respectively the fundamental res-
onance frequency and the quality factor of the actuation
mechanism.

These conditions allow introducing b(t) in (11) as:



[
ẏa(L)

ÿa(L)

]
=

 0 1

− 1
ma

6∑
i=1

kiay
i−1
a (L) − 1

ma

4∑
i=0

diay
i
a(L)

[ ya(L)

ẏa(L)

]

+

[
0

Ke

maDa

]
.V 2

in +

[
0

Kbt

ma

]
.b (t)

ya(L) =
[

1 0
] [ ya(L)

ẏa(L)

]
(13)

with:

Ke = Naεhz

2g , Kbt =
6∑
i=1

kiay
i−1
a (L)

Therefore, around an operating point δa, the Power
Spectral Density (DSP) of the displacement ỹa(L) =
ya(L)−δa in response to the cultural noise can be deduced
from the following relation:

Scult(f, δa) = |KbtGỹa(f, δa)|2 Sb(f) (14)

where

Gỹa(f, δa) =
1

mas2 + da (δa) s+ ka (δa)
(15)

with:

ka (δa) =

6∑
i=1

ikiaδ
i−1
a , da (δa) =

4∑
i=0

diaδ
i
a

Scult(f, δa) and Sb(f) are respectively the PSD of the
displacement ỹa (in response to the cultural noise) and
the PSD of the cultural noise.

Thermal noise

The thermal noise is considered as the main source of
noise that limits the absolute resolution of MEMS (Younis
et al. [2011]). For this reason, this source of noise is
initially considered in the study. In the case of the FT-
G100 actuation mechanism, one can describe the PSD of
the displacement ỹa(L) = ya(L) − δa in response to the
thermal noise as follow:

Stherm(f, δa) = |Gỹa(f, δa)|2 Sξ(f, δa) (16)

where Stherm(f, δa) and Sξ(f, δa) are respectively the PSD
of the displacement ỹa (in response to the thermal noise)
and the PSD of the thermal noise.

The thermal noise ξ, also called Langevin force, is a
white noise. Its PSD is related to the damping of the
mechanical system, the temperature T expressed in Kelvin
and the Boltzman constant KB = 1.38× 10−23 J/Kelvin
(Callen et al. [1951]).

In the case of the actuation mechanism:

Sξ(f) = 4.KB .T.da (δa) (17)

Equations (15) and (16) are then used to define the PSD
of the displacement ỹa when the actuation mechanism is
subject to the thermal noise:

Stherm(f, δa) =
4KBTma

ka(δa)da(δa)

×

[(
1− 4π2 ma

ka(δa)
f2

)2
maka(δa)

da(δa)
+ 4π2 ma

ka(δa)
f2

]−1

(18)

To define the effect of the cultural noise and that of the
thermal noise on the resolution of the system, Scult(f, δa)
and Stherm(f, δa) are computed for δa ∈ [5 µm 100 µm]. In
order to compute Scult(f, δa), the PSD of the cultural noise

set at the model input is Sb = 10−11

f4 . The temperature is

set at 22◦C for the computation of Stherm(f, δa). Results
are presented in Fig.8.
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Fig. 8. PSD of the cultural noise (Sb(f)) and PSD of ỹa(L)
in response to the cultural noise (Scult(f, δa)) and
in response to the thermal noise (Stherm(f, δa)) for
δa ∈ [5 µm 100 µm].

The r.m.s. values of ỹa are derived from the PDSs
according to:

r.m.sỹa(L) (f1, f2) =

√√√√ f2∑
f1

PSD (f) ∆f (19)

With ∆f = f2−f1 = 1 kHz. The r.m.s of ỹa is the absolute
positioning resolution.

When the system is subject to the thermal noise only,
the absolute positioning resolution of the actuation mech-
anism is 59.8 pm. Such a displacement cannot be measured
by the laser interferometer due to its resolution (0.01 nm).
On the other hand, the absolute positioning resolution
of the system subject to the cultural noise only is much
higher. Results show that r.m.sỹa(L) (f1, f2) is in this case
equal to 230.32 nm. As such, the cultural noise is the most
relevant source of noise to be considered. Therefore, the
final model for the controller synthesis is that given in
(13). The controller will be designed taking into account
frequential properties of the cultural noise in order to
reduce r.m.sỹa(L) to less than 80 nm in the frequency range
[1 Hz 1 kHz].



4. LPV MODELING

4.1 Polynomial LPV model

To design a gain scheduled controller based on LMI and
the H∞ theory (see (Apkarian et al. [1995]; Chilali et al.
[1996]; Gahinet et al. [1996]; Scherer et al. [1997]; de Souza
et al. [2005])) a LPV model is derived from the nonlinear
model (13). This nonlinear model can be reformulated into
an affine (i.e. linear) LPV model if the stiffness ka and the
damping da (see equations (8) and (10)) are selected as
independent varying parameters for which only the lower
and the upper bounds of variation are considered. In this
case, well known gain scheduled control strategies based on
the LPV/H∞ methodology can be used (see an example
in (Poussot-Vassal et al. [2008])).

In the case of comb drive actuators, the nonlinear
parameters ka and da are matched and they have a
polynomial structure. Such properties are not taken into
account with a classical affine LPV/H∞ design which
is very conservative. In the present work, the use of
the operating point δa as the only varying parameter is
proposed. Using a Jacobian linearization, the nonlinear
plant (13) is formulated into a polynomial LPV model of
the form:

Ga (s, δa) :

 Ẋp(t) = Ap (δa)Xp(t) +Bp

[
U(t)

b(t)

]
ya(L, t) = CpXp(t)

(20)

Ap (δa) =

[
0 1
−k1a
ma

−d0a
ma

]
+ δa

[
0 1

−2k2a
ma

−d1a
ma

]
+ · · ·

· · ·+ δ2
a

[
0 1

−3k3a
ma

−d2a
ma

]
+ δ3

a

[
0 1

−4k4a
ma

−d3a
ma

]
+ · · ·

· · ·+ δ4
a

[
0 1

−5k5a
ma

−d4a
ma

]
+ δ5

a

[
0 1

−6k6a
ma

0

]

Bp =

[
0 0
Ke

maDa

Kbt

ma

]
, Cp =

[
1

0

]T
, Xp =

[
ya(L)

ẏa(L)

]

where Ap ∈ Rna×na , Bp ∈ Rna×m and Cp ∈ Rp×na , with
na = 2, m = 2 and p = 1.

To simplify notations, from now on, the variable ỹa(L)
will be designed by ya(L). The non-linearity arising from
the square voltage is overcome by considering U = V 2

in
as the input of the model for the controller design. This
consideration is performed since only positive values of the
input voltage are applied to the actuator.

By referring to Fig. 5, the amplitude of the 2nd eigen-
mode is at least 18 times smaller than that of the first
eigenmode. It frequency is two times higher than that of
the first eigenmode. Therefore, we assume that unmodeled
dynamics due to the linearization have a very little influ-
ence on the closed loop dynamic of the nonlinear system.

In LMI based H∞ theory, controllers are derived form
decision variables (i.e. solutions) of a set of LMI condi-
tions depending on the varying parameters. Since varying
parameters have an infinite number of values between their
lower and upper bounds, deriving a LPV controller would
require solving an infinite number of LMIs. To deal with
this constraint, a commonly used solution consists in solv-
ing LMIs only on the vertices of a polytopic model. This

solution can be easily applied when the LPV model of the
system is affine w.r.t the varying parameters (see examples
in (Biannicet al. [1996];Poussot-Vassal et al. [2008])).

For model (20), the varying parameter enters in a
polynomial way into the system definition which causes
some issues for the controller derivation. To deal with this
problem, a Linear Fractional Transformation of the model
(20) is proposed. The polynomial LPV model is translated
into an affine LPV descriptor model using a singular
implicit modeling by a LFT. Afterwards, a polytopic
controller is derived considering control specifications and
specific LMI conditions (Fig.9).
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Fig. 9. Derivation of the gain scheduled polytopic con-
troller from the polynomial LPV model.

4.2 Derivation of an affine LPV descriptor model

In order to simplify the parametric dependence of the
state matrix Ap (δa) and to define an affine LPV descriptor
model, a LFT (see Fig.10) is performed from the model
Ga (s, δa) such that: Ẋp

ya
zp

 =

[
N11 N12 N13

N21 N22 N23

N31 N32 N33

][
Xp

Ub
vp

]
(21)

where zp ∈ Rnz and vp ∈ Rnv are the input and output
signals of the uncertainty block (i.e. varying parameter δa)
as shown in Fig.10, with vp = δazp.

The sub-matrices {Ni,j}i,j=1,...,3 are defined from the

interconnection of the LFT. The sizes of the vectors vp
and zp are related to the polynomial orders of the stiffness
and the damping. As such, nz and nv are defined by
nz = nv = 7 (i.e. order of the highest polynomial + 1).
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Fig. 10. Linear Fractional Transformation of the polyno-
mial LPV model.

To transform the polynomial LPV model to an affine

descriptor model, a new state vector Xdes =
[
XT
p vTp

]T
is chosen. The obtained affine LPV descriptor model is:

Gdes (s, δa) :

EẊdes(t) = Ades (δa)Xdes(t) +Bdes

[
U(t)

b(t)

]
ya(L, t) = CdesXdes(t)

(22)



Ades =

[
N11 N13

δaN31 δaN33 + Inv

]
, Bdes =

[
N12 N

′

12

δaN32 δaN32

]
Cdes = [Cp 01×nv ] , E = diag (Ina

, 0nv
)

E is a singular matrix (i.e. non invertible matrix).

Moreover:

N11 =

[
0 1
−k1a
ma

−d0a
ma

]
+ δa

[
0 1

−2k2a
ma

−d1a
ma

]
, N12 =

 0

Ke

Dama

 ,
N
′

12 =

 0

ka (δa)

ma


N13 = δa

[
0 0 0 0 0 0 0

−3k3a
ma

−4k4a
ma

−5k5a
ma

−6k6a
ma

−d2a
ma

−d3a
ma

−d4a
ma

]
,

N21 = [ 1 0 ] , N22 = 0, N23 = 0
1×nv

,

N31 =



1 0
0 0
0 0
0 0
0 1
0 0
0 0

+ δa



0 0
1 0
0 0
0 0
0 0
0 1
0 0

 , N32 = 0nv×1,

N33 = δa



0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0



The vector N
′

12 describes the transfer between the
cultural noise b(t) and the state vector Xp. The PSD
of the cultural noise is predominant at low frequencies
(see Fig.6). As such, the effect of this source of noise on
the positioning resolution is the most significant in the
linear range of the actuation mechanism. Therefore, for
the controller synthesis, N

′

12 is defined considering a frozen
value of δa which is equal to 5 µm.

The descriptor model is used only for the synthesis of the
scheduled controller via the resolution of a finite number
of LMIs conditions. The controller is thereafter applied on
the real microgripper.

5. LPV BASED ROBUST CONTROL DESIGN

The controller is designed based on the multivariable
descriptor model (22). In order to achieve a fast and
accurate positioning of the actuated arm in a large op-
erating range (from few hundred nanometers to several
tens of micrometers) with a nanometer resolution, control
performances are defined as follow:

(1) The closed loop response time of the system must be
lower than 30 ms (5 times smaller than the response time
of the open loop system).

(2) No overshoot is admitted. An overshoot of few mi-
crometers can destroy an object to be manipulated.

(3) The maximum static error lower than 0.1 %.

(4) The r.m.s of ya(L) must be lower than 80 nm in the
frequency range [1 Hz 1 kHz].

In order to satisfy control specifications, two weighting
transfer functions W1 and W2 are introduced. The weight
W1 allows tracking performances (1), (2) and (3) by
applying constraints to the sensitivity function of the
closed loop system (see Fig.11). The function W2 is used
for the cultural noise rejection.
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Fig. 11. Control scheme with the augmented LPV descrip-
tor model considering the input noise b(t).

The controller is designed based on the multivariable
descriptor model (22). The cultural noise can be measured
in real time by fixing the laser spot of the interferometer
on a solid block (see (Boudaoud et al. [2011]) for more
details). The noise measurement is used by the controller
to reduce the effect of b(t) on the position ya(L) of the
actuated arm. In this work, the use of a shaped form of
the signal b(t) as a second input of the controller for the
synthesis is proposed (see Fig.11). This allows obtaining
nanometer resolution while keeping a high bandwidth in
closed loop.

5.1 Control design

The LPV control problem consists in finding a dynamic
multivariable scheduled controller K (s, δa) that stabilize
the closed loop system and minimize the H∞ norm γ of a
performance channel ω → z for any value of the varying
parameter δa between its lower bound δa− and its upper

bound δ̄a. Here, for the LPV design presented in Fig.11,
the control problem is defined considering ω = [yc b(t)]

T as
the external input, z = e1 as the controlled output, UH∞
as the control input and [ya(L, t) d(t)]T as the measured
variable.

From now on, let us consider the following transfer func-

tions: Gya/UH∞
= ya(L)

UH∞
, Gya/d

= ya(L)
d , KUH∞/ε

= UH∞
ε

and KUH∞/d
= UH∞

d .

The relationship between the controlled output z and
the external input ω is defined by:

e1 =

(
Sε/yc

W1

)
yc

−
(
Sε/yc

(
Gya/d

+Gya/UH∞
KUH∞/ε

)
W1W2

)
d

(23)

where Sε/yc
=

[
1 +Gya/UH∞

KUH∞/ε

]−1

is the sensitivity

function.

Taking into account the relations (23), the control
problem described above can be solved if the following



conditions are satisfied for any admissible value of the
varying parameter:

∥∥∥∥Sε/yc
∥∥∥∥
∞

6
γ

‖W1‖∞∥∥∥∥Sε/yc
(
Gya/d

+Gya/UH∞
KUH∞/ε

)∥∥∥∥
∞

6
γ

‖W1W2‖∞
(24)

To design W1, a reference closed loop transfer function
Td is defined based on control specifications:

Td =
Kd

1
ω2

d

s2 + 2ξd
ωd
s+ 1

(25)

where Kd = 0.9995, ωd = 500 rad/s and ξd = 1.5 Ns/m.

The weighting function W1 is designed considering the
desired closed loop dynamic behavior of the system. Hence:

W1 =
1

1− Td
(26)

For the noise rejection, the weight W2 is selected such
that the H∞ norm of the transfer ε/d is reduced by 10 dB
in the frequency range [1 Hz 10 Hz] where the cultural
noise is the most significant (see Fig.6) and by 6 dB in
the frequency range [10 Hz 350 Hz]. This ensures a
positioning resolution of less than 80 nm despite of the
cultural noise. Thus, for nominal performances, W2 is
defined as:

W2 =
6.39× 10 - 8s2 + 8.75× 10 - 7s+ 3

1× 10 - 7s2 + 1× 10 - 7s+ 1.5
(27)

Now, considering the LPV descriptor model (22) and
the weight functions, a generalized augmented plant de-
scription is introduced:

Pdes (s, δa) :


EgẊg(t) = Ag (δa)Xg(t) +B1gω(t) +B2gU(t)

z(t) = C1gXg(t) +D11gω(t) +D12gU(t)[
ya(L, t)

d(t)

]
= C2gXg(t) +D21gω(t)

(28)

where :

Ag ∈ Rr×r, B1g ∈ Rr×nw , B2g ∈ Rr×1, C1g ∈ Rnz×r,
C2g ∈ R2×r,D11g ∈ Rnz×nw ,D12g ∈ Rnz×r,D21g ∈ R2×nw ,
with r = na + nv + nw

The real nw is equal to the order of W1 + the order of
W2. Moreover, Eg = diag [E, Inw ].

In order to derive the controller K (s, δa) satisfying
required closed loop performances, it is necessary to use
specific LMI conditions that takes into account that the
matrix Eg is singular. Among LMIs that meet this prob-
lem, one can use those proposed in (Masubuchi et al.
[2004]) given as:

[
Y ETg Eg
ETg ETg χ

]
=

[
Y ETg Eg
ETg ETg χ

]T
> 0MA +MT

A MB MT
C

MT
B −γI MT

D
MC MD −γI

 < 0

(29)

where

MA =

[
Ag (δa)Y T +B2gF

T Ag (δa)
HT χTAg (δa) +GTC2g

]
,

MB =

[
B1g

χTB1g +GTD21g

]
,

Mc =
[
C1gY

T +D12gF
T C1g

]
et MD = D11g

The matrices χ and Y are Lyapunov matrices which
are considered constant herein. Decision variables of LMIs
(29) are the matrices χ, Y , F , G and H with appropriate
dimensions.

As emphasized in Section.4.1, the LMI problem (29)
results in an infinite set of LMIs to solve since δa ∈[
δa− δ̄a

]
. Nevertheless, thanks to the affine dependence

of Ades(δa) w.r.t the varying parameter, the LMI can be
solved only on the vertices (see (Zin et al. [2006]) for

an example) of the set δa ∈
[
δa− δ̄a

]
. Here, two sets of

LMIs must be solved because one varying parameter is
considered. If the LMI problem is feasible, the solution
leads to a LPV polytopic controller with the following state
space representation:

K (s, δa) = α1 (δa)

[
Ak1 Bk1

Ck1 0

]
+α2 (δa)

[
Ak2 Bk2

Ck2 0

]
(30)

The couple {α1 (δa) , α2 (δa)} is defined by:

α1 (δa) = δ̄a−δa
δ̄a−δa−

et α2 (δa) = 1− α1 (δa)

For the computation of the matrices {Aki, Bki, Cki}i=1,2,

the generalized augmented descriptor plant (28) is trans-
lated back into a polytopic form. At each vertex of the
polytope, the affine descriptor model must be translated
into a polynomial form. To address this requirement, the
following transformation is performed: for a vertex i, the
affine LPV descriptor model that can be represented by
the form

Pdesi :

[
[Agi ] [B1gi ] [B2gi ]
[C1gi ] [D11gi ] [D12gi ]
[C2gi ] [D21gi ] 0

]

=


[
A11gi A12gi
A21gi A22gi

] [
B11gi
B12gi

] [
B21gi
B22gi

]
[C11gi C12gi ] [D11gi ] [D12gi ]
[C21gi C22gi ] [D21gi ] 0


(31)

is equivalent to the polynomial LPV model

Ppoli :

[
Asi B1si B2si
C1si D11si D12si
C2si D21si 0

]
=

[
A11gi B11gi B21gi
C11gi D11gi D12gi
C21gi D21gi

]

−

A12gi

C12gi

C22gi

A−1
22gi

[A21gi B12gi B22gi ]

(32)

This transformation is feasible if the following conditions
are satisfied:

(1) B12gi = 0 and C12gi = 0,

(2) B22gi = 0 and C22gi = 0;

(3) A22gi
is an invertible matrix.



The conditions (2) and (3) are satisfied in this work.
However, the first condition is not satisfied. Therefore, in
the generalized state vector Xg of (28), the state vector
XW1 of the weight function W1 and the state vector XW2

of the weight function W2 are placed from the line na + 1.
In other words, initially Xg was defined by

Xg =

[
Xdes

XW1

XW2

]
=


Xp

vp
XW1

XW2


and now, it becomes

Xg =


Xp

XW1

XW2

vp


Finally, the matrices {Aki, Bki, Cki}i=1,2 are computed

from the decision variables of the LMIs and from the
matrices {Asi, C2si, B2si}i=1,2 of the polynomial model.
The controller is implemented into a transfer function
form.

5.2 Control implementation

In this section, we first compare the performance of
two LTI controllers with the performance of the proposed
gain scheduled controller in ideal conditions (low noise
condition). This work shows the importance of using
a scheduled controller in the case of the microgripper.
Thereafter, the input noise b(t) is taken into account for
the design of the multivariable scheduled controller aiming
at satisfying precision requirements.

5.3 Low noise condition

Control strategies are implemented considering that the
microgripper is working on a vibration isolation table.
Single input/output type controllers are sufficient in this
case (the noise input is not considered). In addition to the
gain scheduled controller, a LTI/H∞ controller and a PID
controller are designed for comparison.

For the scheduled controller, the control problem is
solved using the LMIs (29). The gain Kbt is set at zero
and only the weight W1 is taken into account in the
augmented LPV descriptor model (see Fig.12). Here, the
control problem is defined considering ω = yc as the
external input, z = e1 as the controlled output, UH∞ as
the control input and ya(L, t) as the measured variable
(see Fig.12). The LMIs are then solved on each vertex of
the polytopic model using the Yalmip interface (Lofberg
et al. [2004]) with the solver SeDuMi (Sturm et al. [1999]).
For the resolution, the bounds of δa have been defined such
that δa− = 1 µm and δ̄a = 80 µm.

When considering this set, the optimal obtained perfor-
mance indice γ is equal to 2.73 ensuring a modulus margin
greater than 1

γ = 0.36. Therefore, two 4th order controllers

Gki {Aki, Bki, Cki, 0}i=1,2 are obtained.

The frequency responses of the sensitivity function

Sε/yc
= ε(t)

yc(t) is computed and is compared with the

frequency response of 1
W1

. The computation is performed
considering 5 µm < δa < 80 µm. Results are pre-
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Fig. 12. Control scheme with the augmented LPV descrip-
tor model considering the input noise b(t) =0. Here
Kbt = 0 in Ga(s, δa).

sented in Fig.13. The obtained bandwidths are of about
500 rad/s.

The LTI/H∞ controller is designed using the polyno-
mial LPV model (20) for a frozen value δa = 5 µm and for
Kbt = 0. The controller is based on the scheme presented
in Fig.12 (without the scheduling part). In other words,
the LTI/H∞ control problem is defined considering also
ω = yc as the external input, z = e1 as the controlled
output, UH∞ as the control input and ya(L, t) as the
measured variable. The same weighting function W1 is
used for the controller synthesis. As a result, a fourth order
controller is obtained.
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Fig. 13. Frequency responses of the sensitivity function
(dynamic transfer ε/yc) and that of the function 1

W1
.

The PID controller is designed using the nonlinear
model (11) and its parameters are identified using Ziegler-
Nichols method. For an input reference yc = 5 µm, the
ultimate gain Ku for which the output of the closed loop
system oscillates with a constant amplitude is Ku = 8.91.
The period of such oscillations is Tu = 0.9 ms. Therefore,
the proportional, the derivative and the integral gains of
the controller are respectively Kp = 5.34, Kd = 1.12×10−4

and Ki = 2.22× 103. Real time implementation results of
the three controllers are presented in section 6.2.

5.4 Significant noise condition

In this condition, the microgripper is considered to be
working out of a vibration isolation table. Therefore, we
consider the multivariable control problem taking into
account noise influence. The LMIs (29) are solved on each
vertex of the polytopic model derived from (28). For the
resolution, the bounds of δa have been defined such that
δa− = 1 µm and δ̄a = 85 µm.

When considering this set, the optimal obtained per-
formance indice γ is equal to 5.65 ensuring a modulus
margin greater than 1

γ = 0.17. Therefore, two 6th order

controllers Gki {Aki, Bki, Cki, 0}i=1,2 are obtained. Each

controller has two inputs [ε(t) b(t)] and one output UH∞.
In their transfer function form, the controllers are given in
equations (33), (34), (35) and (36) (see also Fig.18).



Gk11 =
7.42 × 105s5 + 1.25 × 109s4 + 6.89 × 1013s3 + 1.09 × 1017s2 + 1.6 × 1021s+ 2.38 × 1024

s6 + 2519s5 + 4.65 × 109 s4 + 7.64 × 1012s3 + 2.13 × 1017s2 + 3.19 × 1020s+ 2.66 × 1019
(33)

Gk12 =
7.95 × 105s5 + 4.33 × 109s4 + 2.44 × 1014s3 + 5.27 × 1017s2 + 9.6 × 1021s+ 1.4 × 1025

s6 + 4.26 × 105s5 + 5.89 × 109 s4 + 2.82 × 1013s3 + 2.68 × 1017s2 + 3.57 × 1020s1 + 2.97 × 1019
(34)

Gk21 =
- 1.69 × 105s5 - 8.05 × 1011s4 - 1.32 × 1015s3 - 3.74 × 1019s2 - 5.58 × 1022s - 4.65 × 1021

s6 + 2519s5 + 4.65 × 109 s4 + 7.64 × 1012s3 + 2.13 × 1017s2 + 3.19 × 1020s+ 2.66 × 1019
(35)

Gk22 =
7.39 × 105s5 - 9.86 × 1011s4 - 4.87 × 1015s3 - 4.62 × 1019s2 - 6.13 × 1022s - 5.11 × 1021

s6 + 4.26 × 105s5 + 5.89 × 109 s4 + 2.82 × 1013s3 + 2.68 × 1017s2 + 3.57 × 1020s1 + 2.97 × 1019
(36)
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Fig. 14. Frequency responses of the dynamic transfer ε/b
and that of the function 1

W1W2
.

The frequency responses of the function Sε/b
= ε(t)

b(t)

is computed and is compared with the frequency re-
sponses of 1

W1W2
. The computation is performed consid-

ering 100 nm < δa < 90 µm. Results are presented in
Fig.14. Real time implementation results of the controller
are presented in section 6.3.

6. EXPERIMENTAL SETUP AND REAL TIME
IMPLEMENTATION

6.1 Experimental setup

For the real time implementation of the controllers, the
experimental setup of Fig.15 is used. It is composed of:

- The FT-G100 microgripper.

- A laser interferometer sensor (SP-120 SIOS Mebtechnik
GmbH) with two heads. The fist head (head 1) is used for
the measurement of the actuated arm tip position. The
second head (head 2) allows the real time measurement of
the cultural noise.

- A 3 degrees of freedom (dof) positioning system which
allows the alignment of the laser spot (head 1) with the
gripping arm tip.

- A vibration isolation table.

- A controller board (dSPACE DS1103) with a Real Time
Interface (RTI).

- An amplifier used to amplify the voltage signal at the
output of the controller board which is limited to 10 V .

Each controller is designed through the Matlab/Simulink
software and is implemented into the controller board. The
RTI allows applying different kind of reference trajectories
yc. The laser spot of the interferometer head 1 is fixed on
the actuated arm tip. The laser spot of the interferometer
head 2 is fixed on a solid block. Measured signals are taken
into account in real time by the controller board through a

Fig. 15. Experimental setup when the microgripper is
working out of the vibration isolation table.

digital/digital interface. The root square of the controller
output (i.e.

√
UH∞) is applied to the comb drive actuator.

6.2 Controllers implementation in low noise condition

The controllers designed in section 5.3 are implemented
in real time on the FT-G100 microgripper with 20 kHz
sampling frequency. In such condition, the 3 dof posi-
tioning system is fixed on the vibration isolation table.
Only the head 1 of the interferometer is used for the
measurement. The measured signal is used as a feedback
signal.

The sub figures (a), (b) and (c) of Fig.16 show the
normalized (to unity) controlled positions ya(L) for step
references yc in the set [5 µm 65 µm]. Results are obtained
with the scheduled controller Fig.16.a, the LTI/H∞ con-
troller Fig.16.b and the PID controller Fig.16.c. With the
scheduled controller, the worst (i.e. highest) response time
is 13.64 ms, there is no overshoot and the highest static
error is equal to 0.06 %. With the LTI/H∞ controller,
the worst response time is much bigger (38.92 ms), there
is no overshoot and the highest static error is equal to
0.02%. With the PID controller, the worst response time
is 81.12 ms.

It is clear that the scheduled controller is essential to
satisfy robust performances over a large operating range of
the system. In Fig.17, position of the gripping arm ya(L)
in response to a reference trajectory are presented (ex-
perimental results). The proposed gain scheduled control
strategy gives in this case satisfactory results.

In the next section, experimental controlled positioning
results of the actuated arm are shown with the LPV con-
troller taken into account the noise influence. Experiments
are performed out of the vibration isolation table.
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Fig. 16. Experimental normalized (to unity) step responses
of the controlled gripping arm at different operating
points (from 5 µm to 65 µm) with the scheduled
controller (a), the LTI/H∞ controller (b) and with
the PID controller (c).
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Fig. 17. Experimental position of the gripping arm ya(L) in
response to a reference trajectory with the scheduled
controller and with the LTI/H∞ controller.

6.3 Significant noise condition

The scheduled controller designed in Section.5.4 is im-
plemented on the microgripper which is located out of
the vibration isolation table. The experimental setup is as
shown in Fig.15. The position ya(L) is used as a feedback
signal and also as scheduling variable for the controller (see
Fig.18). The signal b(t) is the experimental cultural noise
measured in real time by the interferometer head 2.

The multivariable controller faced real time implemen-
tation constraints. Since two digital/digital interfaces are
used and since the controller is of high order (transfer
functions of 6th order), it was not possible to implement
the controller with a sampling frequency higher than 5
kHz. As such, the transfer functions (33), (34), (35) and
(36) have been reduced into a third order. As such, the
maximum sampling frequency that can be used is equal to
17 KHz.

Experiments show that the response time of the closed
loop system is higher than the one measured with the
single input single output LPV controller. However, for
high amplitude displacements, the response time of the
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Fig. 18. Block diagram of the closed loop control system.

multivariable LPV controller remains smaller than of the
LTI controllers.

To assess the effectiveness of the scheduled controller
for small displacements, input references yc have been
applied with amplitudes equal to 100 nm, 250 nm, 500 nm,
750 nm, 1 µm, 5 µm, 10 µm, 15 µm and 20 µm. Results of
the controlled displacements ya(L) are presented in Fig.19
and Fig.20. For each controller, experiments have been
performed considering the case when the input b(t) of the
controller is taken into account (referred to ”with noise
rejection”), and the case when this input is not considered
(i.e. the input b(t) of the controller is set to zero) which is
referred to ”without noise rejection”.
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Fig. 19. Controlled positioning (experimental results) of
the gripping arm for different input reference (100
nm, 250 nm, 500 nm, 750 nm, 1 µm, 5 µm, 10 µm,
15 µm and 25 µm) with the multivariable scheduled
controller.

Results show that it is crucial to consider the noise signal
b(t) when the system is subjected to important noise per-
turbation which is the case in robotics laboratory. This is
fundamental for nanopositioning operations. When consid-
ering the noise input in the controller, some vibrations are
undamped in the controlled position of the gripping arm.
This is due to the measurement delay of the digital/digital
interface. In Fig.21, nanopositioning simulation results are
demonstrated using the multivariable LPV controller. The
input noise is that measured experimentally in (Boudaoud
et al. [2011]). In this case, since no delay is introduced, vi-
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Fig. 20. Controlled positioning (experimental results) of
the gripping arm for 5 µm input reference with the
multivariable scheduled controller.

brations are damped. Experimental results (with the delay
of the measurements) show nevertheless very good results
comparing with results obtained without considering the
noise input.
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Fig. 21. Controlled positioning (simulation) of the gripping
arm for different input reference (100 nm, 250 nm,
500 nm, 750 nm and 1 µm) with the multivariable
scheduled controller.

7. CONCLUSIONS

In this paper, a new control approach of MEMS based
electrostatic microgrippers is proposed. The controller
allows positioning the gripping arm from few hundred
nanometers to several tens of micrometers with a nanome-
ter resolution and a fast response time despite of non-
linearities and significant noises. Such performances are
greatly needed in biomedical microrobotics applications
and have never been achieved previously with MEMS
based microgrippers. To this end, a nonlinear dynamic
model of the actuation mechanism has been proposed.
First, it has been shown experimentally that the damping
of the system is nonlinear and that the use of a third
order polynomial to describe the nonlinear stiffness of a
comb drive actuator is limited. Therefore, both the stiff-
ness and the damping have been described by polynomials
of higher orders. Afterward, two sources of noise that
reduce the resolution of MEMS have been studied and
the most relevant source of noise to be considered for the
control design has been identified and introduced into the
nonlinear model. Therefore, the nonlinear model has been
reformulated into a polynomial LPV model. To deal with
the particular structure of the LPV model, the later has
been reformulated into an affine LPV descriptor model
and a multivariable gain scheduled control strategy has
been proposed. The effectiveness of the controller for noise
rejection has been demonstrated experimentally and sim-
ulations showed that control results can be improved for
nanopositioning if the measurement delay is canceled. The
effectiveness of the controller for high amplitude displace-
ments, in terms of precision and closed loop response time,
has been demonstrated with experimental arguments. The
control strategy allows new perspectives for high precision
and high speed micromanipulation tasks in noisy labora-
tories environments.
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