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Abstract

As a vital task in cancer therapy, accurately predicting the treatment outcome
is valuable for tailoring and adapting a treatment planning. To this end, multi-
sources of information (radiomics, clinical characteristics, genomic expressions,
etc) gathered before and during treatment are potentially profitable. In this
paper, we propose such a prediction system primarily using radiomic features
(e.g., texture features) extracted from FDG-PET images. The proposed system
includes a feature selection method based on Dempster-Shafer theory, a powerful
tool to deal with uncertain and imprecise information. It aims to improve the
prediction accuracy, and reduce the imprecision and overlaps between different
classes (treatment outcomes) in a selected feature subspace. Considering that
training samples are often small-sized and imbalanced in our applications, a
data balancing procedure and specified prior knowledge are taken into account
to improve the reliability of the selected feature subsets. Finally, the Evidential
K-NN (EK-NN) classifier is used with selected features to output prediction
results. Our prediction system has been evaluated by synthetic and clinical
datasets, consistently showing good performance.

Keywords: Dempster-Shafer theory, feature selection, imbalanced learning,

outcome prediction, cancer, PET images
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1. Introduction

Accurate outcome prediction prior to or even during cancer therapy is of
great clinical value. It benefits the adaptation of more effective treatment plan-
ning for individual patient. With the advances in medical imaging technology,
radiomics, referring to the extraction and analysis of a large amount of quanti-
tative image features, provide an unprecedented opportunity to improve person-
alized treatment assessment (Aerts et al., [2014). Positron emission tomography
(PET), with the radio-tracer fluoro-2-deoxy-D-glucose (FDG), is one of the im-
portant and advanced imaging tools for diagnosis, staging , and restaging of
cancers. According to practice guidelines presented by the Society of Nuclear
Medicine and Molecular Imaging (SNMMI)EI, FDG-PET or FDG-PET/CT is
now playing an essential role in clinical oncology, such as initial staging and
gross tumor volume delineation for lung cancer patients receiving radiotherapy ;
initial staging and restaging of esophageal cancer; and routine pre-treatment
staging and restaging of patients with Hodgkin lymphoma and many subtypes
of non-Hodgkin lymphoma, etc.

Apart from diagnosis and staging, the functional information provided by
FDG-PET has also emerged to be predictive of the pathologic response of a
treatment in some types of cancers, such as lung tumor, esophageal tumor (Tan
et al.,[2013)) and cervix tumor (Barwick et al.,|2013)). For this application, variety
radiomic features are well-explored on FDG-PET (Cook et al., 2014, which in-
clude standardized uptake values (SUVs), e.g., SUV 00, SUV peqr and SUV ean,
to describe metabolic uptakes in a region of interest (ROI), and metabolic tu-
mor volume (MTV) and total lesion glycolysis (TLG) to describe metabolic
tumor burdens. Apart from SUV-based features, some complementary charac-
terization of PET images, like texture analysis (Tixier et al., [2011) and shape
analysis (El Naqga et all [2009)), may also provide supplementary knowledge

associated with the treatment outcome. Although the quantification of these

1. http ://www.snmmi.org/ClinicalPractice/
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radiomic features, as well as the calculation of their temporal changes during
the treatment, have been claimed to have the discriminative power (Aerts et al.|
2014)), the solid application is still hampered by some practical difficulties :

First, abounding features (e.g., radiomics and clinical characteristics) can be
collected for outcome prediction, but without any consensus to determine the
most discriminative factors among them. Thus, finding information regarding
the most predictive features could be interesting from the point of clinicians.

Second, comparing to a relatively large amount of input features, only a lim-
ited number of observations (small data size is often encountered in the medical
domain) are available for constructing a prediction system. A high dimensional
feature space may increase the complexity of the learning models, thus leading
to high risk of over-fitting on the small-sized learning set.

Third, it often happens that some of the input features are irrelevant with the
outcome label. Moreover, badly defined features sometimes may even degrade
the performance of a prediction model.

Feature selection is a feasible solution for above challenges. It aims to se-
lect a subset of features that can facilitate data interpretation and improve
prediction accuracy (Guyon and Elisseeff] [2003). Univariate selection and mul-
tivariate selection are two rough categories of feature selection algorithms. Ac-
cording to chosen statistical measures, univariate methods utilize variable rank-
ing as the principal selection mechanism. RELIEF (RELevance In Estimating
Features) (Kira and Rendell, |1992) is considered as one of the most success-
ful univariate selection methods, in which a margin-based criterion is used to
rank the features. FAST (Feature Assessment by Sliding Thresholds) (Chen and
Wasikowski, [2008)), another feature ranking method, has the ability to tackle
small sample size and imbalanced data problems. These univariate algorithms
are simple and scalable ; however, they may produce sub-optimal subsets as they
ignore the interaction between features (Guyon and Elisseeft] 2003]).

Different from ranking features, multivariate methods evaluate a subset of
features ensemble. Sequential Forward Selection (SFS) and Sequential Forward

Floating Selection (SFFS) (Pudil et al., [1994) are two classical subset selec-
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tion methods. According to the prediction accuracy of a specific classifier, and
starting from an empty set, SFS repeatedly selects the best feature among the
remaining features to yield a nested feature subset. Since former included fea-
tures can not be deleted anymore, it has the possibility to be trapped in local
minima. SFFS has been used with learning methods to automatically detect
lung nodules in thoracic CT (Murphy et al., |2009)). It in some sense reduces the
nesting problem of SF'S, but still has the risk to be sub-optimal with limited
learning instances (Mi et al., [2015). To improve the performance of forward se-
lection methods (such as SF'S and SFFS) on small-sized datasets, a Hierarchical
Forward Selection (HFS) method with an advanced searching strategy was pro-
posed by (Mi et al.l[2015). Different with SE'S, HFS retains all candidate feature
subsets that improve the classification accuracy in each iteration. As the result,
it is more likely to obtain the most discriminative feature subset, while with the
cost of increased searching time. Based on a generalization of the Support Vector
Machine (SVM), Guyon et al. embedded a Recursive Feature Elimination pro-
cedure into the construction of the SVM classifier (namely SVMRFE) (Guyon
et all 2002). The variants of this method have been successfully applied for
prostate cancer volume estimation (Ou et al., [2009) and deformable registra-
tion in medical imaging (Ou et al., |2011)). Starting with all input features, and
before reaching a predefined number of remaining features, SVMRFE progres-
sively eliminates the least relevant features. It yields nested feature subsets,
and has the risk of removing useful features that are complementary to others.
Kernel Class Separability (KCS)-based feature selection method ranks feature
subsets according to the class separability (Wang} 2008). As a robust method,
KCS has found promising application for tumor delineation in multi-spectral
MRI images (Zhang et al., |2011). But just like univariate methods, a threshold
should be manually specified for KCS to output a feature subset.

Apart from the prediction accuracy, the stability of feature selection is also
an important issue. As pointed by (Somol and Novovicova, 2010)), the stability
of a feature selection algorithm, referring to its robustness against changing

conditions (e.g., perturbations of training data), can directly effect the reliability
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of a learning system. A key issue of the conventional feature selection methods
discussed above is the difficulty to ensure robust selection performance with
severely imperfect knowledge, such as seriously imbalanced training set, and
high overlapping or noisy training set.

To learn efficiently from noisy and high overlapping training dataset, (Lian
et al., 2015a)) proposed a robust subset selection method, namely Evidential
Feature Selection (EFS), based on the Dempster-Shafer Theory (DST) (Shafer,
1976)), a powerful tool for modeling and reasoning with uncertain and/or im-
precise information. This method allows to quantify the uncertainty and im-
precision resulted by different feature subsets. A specific loss function with a
sparsity constraint is minimized to find a required subset that leads to both
high classification accuracy and small overlaps between different classes. Due to
system noise and low-resolution of PET imaging, as well as the effect of small
tumor volumes (Brooks and Grigsby, 2014)), in our application, the training set
used for constructing the prediction system may contain imprecise or inaccu-
rate observations. Under this condition, EFS can provide better performance
than other conventional methods (Lian et al., 2015b|). However, the imbalanced
learning problem in feature selection (another important issue of medical data)
is still left unsolved for this method.

In this paper, we propose a new framework based on our previous work
(EFS) for PET imaging based treatment outcome prediction. To this end, a data
balancing procedure is added to EFS, so as to control the influence of imbalanced
learning data on feature selection. In addition, to cope with small-sized datasets
and to improve the subset robustness, prior knowledge is included in EFS to
guide the feature selection procedure. The loss function used in the original EFS
is also changed to reduce the complexity of the prediction system. Finally, the
Evidential K-NN (EK-NN) rule (Denceuxl, [1995), a stable classification method
based on DST, is used with selected feature subsets to output prediction results.

The rest of this paper is organized as follows. The background on DST
and the original EFS is recalled in Section Then, an improved EFS with

prior knowledge and data balancing is introduced in Section [3] The proposed
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method is evaluated by three clinical datasets described in Section [ and the
experimental results are summarized in Section [5| Some discussions and the

conclusion are presented in Section [f] and Section [7] respectively.

2. Background

The necessary background on DST and the original EFS is briefly reviewed
in Sections [2.1] and [2.2] respectively.

2.1. Dempster-Shafer Theory

DST is also known as the theory of belief functions or Evidence theory. As
an extension of probability theory and the set-membership approach, DST has
shown remarkable applications in divers fields, such as medical image process-
ing (Blochl [1996; Lelandais et al., 2014; Makni et al. 2014), statistical machine
learning (Zhu and Basir, 2005; |Denceux and Smets, 2006; Masson and Denceux,
[2008; [Liu et al.| 2015)), and computer vision (Xu et al., 2014; Wang et al.l [2014)

etc. DST consists of two main components, i.e., the quantification of a piece of

evidence and the combination of different items of evidence.

2.1.1. Ewvidence Quantification

DST is a formal framework for reasoning under uncertainty based on the
modeling of evidence [1976)). Let w be a variable taking values in a finite
domain = {w1, -+ ,w.}, called the frame of discernment. An item of evidence
regarding the actual value of w can be represented by a mass function m on €,
defined from the powerset 2% to the interval [0, 1], such that

> m(A) =1. (1)

ACQ

Each number m(A) denotes a degree of belief attached to the hypothesis that
w € A. Any subset A with m(A) > 0is called a focal element of mass function m.

Function m is said to be normalized if m(@)) = 0. Corresponding to a normalized
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mass function m, we can associate belief and plausibility functions from 2 to
[0, 1], which are defined as :

Bel(A)= > m(B); PU(A)= Y  m(B). (2)

BCA BNA#D
Quantity Bel(A) can be interpreted as the degree to which the evidence supports
the hypothesis w € A, while PI(A) can be interpreted as the degree to which the
evidence is not contradictory to that hypothesis. Functions Bel and Pl are linked

by the relation PI(A) = 1— Bel(A). They are in one-to-one correspondence with

mass function m.

2.1.2. Evidence Combination

In DST, beliefs are refined by aggregating different items of evidence. Demp-
ster’s rule of combination (Shafer| [1976), as well as its unnormalized version,
i.e., the conjunctive combination rule defined in the Transferable Belief Model
(TBM) (Smets and Kennes, [1994)), are basic mechanisms for evidence fusion.

Let m; and mo be two mass functions derived from two independent items
of evidence. They can be fused via the TBM conjunctive rule to induce a new
mass function miQ)2 defined as

mi@2(4) = Y mi(B)ma(C). (3)
BNC=A

This new mass function reduces uncertainty and imprecision via transferring
masses of belief to conjunctions of the focal elements. Quantity m;@2(0)) mea-
sures the degree of conflict between evidence my and mo. If ml@g(@) < 1, the
new mass function obtained by Dempster’s rule can be represented as

0 if A=0,

mg:2 (A) = (4)

m1@2(A) .
W otherwise.
As can be seen, Dempster’s rule normalizes the conflict obtained by the TBM
conjunctive rule. Both the TBM conjunctive rule and Dempster’s rule are com-

mutative and associative. They can be easily generalized to combine N (> 2)

independent sources of information.
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2.2. BEwidential Feature Selection

Let {(X;,Y;)li = 1,---,N} be a collection of N training pairs, in which
X; = [zi1, -+ ,2v]" is the ith training instance with V features, and Y; €
{w1,- -+ ,wc} is the corresponding class label.

EFS (Lian et all 2015a) searches for a qualified feature subset according to
three requirements : first, high classification accuracy ; second, low imprecision
and uncertainty, namely small overlaps between different classes in the output
feature space; third, sparsity to reduce the risk of over-fitting. To learn such
a feature subset, EFS uses a weighted Euclidian distance measure to represent

the dissimilarity between any two training instances. Hence, the dissimilarity

between X; and X is

14
dij = | > Apdijp®, (5)
p=1

where d;;, = |2;, — x;p| represents the difference between the pth dimension
of X; and X;. Features are selected via changing the value of the binary vector
A =[M,..., \v]T. As the result, the pth dimension of the input feature space
is selected when A, = 1, while eliminated when A, = 0.

We orderly regard each training instance X; as a query object. Then, other
samples in the training pool can be considered as independent items of evidence
that support different hypotheses regarding the class membership of X;. The
evidence offered by the training sample (X;,Y; = w,) is partially reliable, and
can be modeled by a mass function

mij({wg}) = e %,
2 (6)
m; ; () =1—e vy,
where d; ; is the distance between X; and X; that measured by . Positive

parameters v = [v1,...,7.]T are set as the inverse of the mean distance between
training instances from the same class.

After obtaining all the independent mass functions for X;, they can be fur-
ther fused by a mixed combination rule, called Dempster+Yager rule (Lian et al.|

2015al), so as to obtain a global one describing the class membership of X;. This
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rule consists of two main steps : first, using Dempster’s rule to combine mass
functions originated from the same class, and discounting the resulting mass
function according to the number of instances in this class; second, combining
the discounted mass functions originated from different classes via the Yager’s
rule (Yager} |1987) to output the global mass function. This combination pro-
cedure integrates the advantages of Dempster’s and Yager’s rules, thus could
robustly represent all imprecision and uncertainty of the training data on the
whole frame of discernment (i.e., 2).

Finally, based on the global mass functions for all training samples, a loss
function with respect to the binary vector A = [Ay,..., Ay]7 is constructed for
feature selection,

1 N

c N
g 7 323 (Pl = ol + ;;mim) + Bl (7
where m; and Pl;, concerning A, are the global mass function and the cor-
responding plausibility function of the training instance X;. The first term of
is a mean squared error measure corresponding to the first requirement of
EFS (namely high classification accuracy). Binary vector t; is the class label
indicator, with ¢; , = d; 4 if and only if ¥; = w,. The second term of (7)) pe-
nalizes feature subsets that lead to high overlaps between different classes, thus
corresponding to the second requirement of EFS. The last term , which is an
approximation of the lp-norm of A, forces the selected features to be sparse,
thus realizing the last requirement of EFS. Parameter 8 controls the influence
of this sparsity penalty.

The mixed combination rule used in the original EFS can lead to robust
quantification of data uncertainty and imprecision. However, since a discounting
procedure is included, additional parameters increase method’s complexity. To

cope with this problem, we propose a new method described in the next section.
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FIGURE 1: Protocol of the prediction system.

3. Method

The proposed prediction system is learnt on a dataset {(X;,Y;)|li =1,--- ,N}
of N tumor patients with already known treatment outcomes. For each patient
i, vector X; = [z;1,- - ,$i7v]T consists of V' input features extracted from dif-
ferent sources of information. Correspondingly, label Y; denotes the (binary)
outcome after treatment. In our applications, the treatment outcomes always
only have two possible values (e.g., recurrence or no-recurrence). Hence, with-
out loss of generality, the frame of discernment (possible classes) is defined as
Q = {w1,ws} to indicate that only the binary classification problems are con-

sidered in this paper.

3.1. Main Protocol

The rough protocol of the prediction system is shown in Figure [1] To begin
with, features are extracted from multi-sources of information, which include
FDG-PET images of the patients acquired before and during the treatment,
clinical characteristics and genomic expressions, etc. A data balancing method
is then used to balance the training samples, which are originated from two
different classes, for feture selection. An improved EFS is executed to select
features from the balanced datasets. During this procedure, prior knowledge is
incorporated into EFS, so as to improve the robustness of the selected features.

Finally, based on the selected feature subset, the Evidential K-Nearest-Neighbor

10
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(EK-NN) classification rule is trained with the original training dataset to pre-

dict the cancer treatment outcome.

3.2. Feature Extraction

To extract features, FDG-PET images for the same patient acquired at dif-
ferent time points are registered to the baseline image (i.e., image at initial
staging) with a rigid registration method. The registration result is manually
adjusted by physicians to avoid obvious misregistration. The ROIs around tu-
mors are delineated by a relative threshold method, or manually delineated by
experienced physicians when the result obtained by the threshold method is not
reliable. It is worth to mention that the reproducibility of the manual tumor de-
lineation has been evaluated in some clinical studies (Lemarignier et al. [2014)).
Three types of PET imaging features are quantified, namely SUV-based fea-

tures, texture features, and the temporal changes of these two types of features.

SUV-based features. Five types of SUV-based features are calculated from the
ROI of each PET stack, namely SUV i, SUV 40, SUVpeqr, MTV and TLG.
The detail description of these features, and the formulas for calculating them

are shown in the Appendix (Table|A.7)).

Texture features. To characterize tumor uptake heterogeneity, texture features
are also considered in our prediction system. As has been claimed to be effec-
tive in PET image characterization (Tixier et al.| 2011)), Gray Level Size Zone
Matrix (GLSZM) (Thibault et al., [2014)) is used to extract texture features. To
this end, we resample voxel intensities inside the ROI to 23 different values. By
defining the connected voxels with the same gray level as a zone, a matrix with
23 rows is then deduced, in which the element at row r and column s stores
the number of zone with gray level r and size s. The number of columns of this
matrix is determined by the size of the largest zone. Therefore, a wide and flat
matrix indicates that the texture information is homogeneous in the predefined

ROI; while heterogeneity when the matrix is narrow. Based on this matrix,

11
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we compute eleven variables to describe the regional heterogeneity. The formu-

las for calculating these GLSZM-based features are presented in the Appendix

(Table [A.8).

Temporal changes of image features. Considering that the temporal changes of
these SUV-based and GLSZM-based features may also provide discriminative
value, we propose to calculate their relative difference between the baseline and
the follow-up PET acquisitions as additional features. The relative difference
can be generally represented as Af = (f; — fo)/fo, where fo and f; denote
the same kind of feature extracted from the baseline and the follow-up images,

respectively.

Other features. Apart from image features, variables extracted from other sources
of information may be also important knowledge that can be taken into ac-
count. Hence, patients’ clinical characteristics and genomic expressions are also

included in our prediction system as the complementary information.

8.8. Improved EFS

To reduce the complexity of the original EFS, a new criterion is constructed
for feature selection.

Assuming X; is a query pattern, other samples in the training pool can be
regarded as independent evidence regarding the outcome label of patient i. As
discussed in Section the evidence offered by each training instance X; (# 1)
can be quantified as a mass function using @ and . Since this mass function
provides little information when d; ; is too large (m; ;(2) =~ 1), it is sufficient to
just consider the mass functions offered by the first K (with a large value, e.g.,
> 10) nearest neighbors of each query pattern X;.

Let {X;,,..., X, } be the selected training samples for X;. Correspondingly,
{Mi iy, ..., M.} are their mass functions. We assign {X;,,..., X, } into two
different groups (©; and ©5) according to their outcome labels. In each group

with the same outcome label, the TBM conjunctive rule (3)) is used to combine

12
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the corresponding mass functions. Hence, when ©, # () (¢ = 1 or 2), the resulting

q

. 2
mass function m, * can be represented as

=1,.. K —vqd;
m {wgd) = 1- Tl el (1—e %),

W =T (1), ©

while, when ©, is empty, m?" (Q) = 1. After that, mass functions m?l and mie2
are further combined via the TBM conjunctive rule, so as to obtain a global

mass function M; regarding the class membership of X;,

Based on () to @D, M;, Vi € {1,...,N}, is a function of the binary vector
A = [Mi,..., Av]T. Quantity M;(()) measures the conflict in the neighborhood
of X;. A large M;(f)) means X; is locating in a high overlapping area in current
feature subspace. Different with M;((), scalar M;(2) measures the imprecision
regarding the class membership of X;. A large M;(f2) may indicate that X; is
isolated as an outlier from all other training samples in current feature subspace.

According to the requirements of a qualified feature subset described in

Section [2.2] the new loss function with respect to A can be defined as

N 2 N
L) = 5 30 AM{}) — tig bt {0 M 1A (10)

i=1 g=1
In , the first term is a mean squared error measure, where vector t; is a
indicator of the outcome label, with ¢; ;, = §; 4 if Y; = w,. The second term penal-
izes feature subsets that result in high imprecision and large overlaps between

different classes. The last term, namely |[Aljp = 3V

v—1 v, forces the selected

feature subset to be sparse. Scalar 8 (> 0) is a hyper-parameter that controls
the influence of the sparsity penalty. It should be tuned specifically be a rough
gird search strategy.

13
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Considering that the solution of is integer constrained (vector A should
be binary), an integer Genetic Algorithm (GA), namely the MI-LXPM (Deep
et al., |2009), is used to minimize the constructed loss function. As a global
optimization algorithm, the MI-LXPM (like other GAs) is more effective than
classical optimization methods to find the global optima in the case of non-
convex problems. The MI-LXPM method mimics biological evolution. At each
iteration, it modifies a population of individual feasible solutions according to
well-defined selection, crossover and mutation operations, thus producing a new
population for the next iteration. Over successive generations (iterations), the

population of feasible solutions finally moves toward an optimal solution.

3.4. Prior Knowledge

Prior information, such as spatial constraints (Prastawa et all, 2004)), shape
prior (Wang et al. |2015) and expertise knowledge, is often available in the
medical field. In our prediction system, prior knowledge can also be used to
guide the feature selection procedure. Since the SUV-based features have shown
great significance for assessing the response of a treatment (Tan et al.| [2013;
Barwick et al.l [2013)), we incorporate this important information into EFS as a
predefined constraint.

More specifically, a feature ranking method, namely RELIEF (Kira and Ren-
delll [1992), is used to rank all kinds of SUV-based features. Let f be a SUV-based
feature that exists in each instance X;, Vi € {1,..., N}. RELIEF assigns a score
S(f) to f in the form of

B T R [RLA
S(f)zﬁi; %;dzfﬂf,xnmzssj)—%;dzfﬂf,xi,hztj) ;o (1)

where hit; and missz-, j € {1,...,k}, are the nearest neighbors of X; that
originated from the same class and the opposite class, respectively. Function
dif f( f, X1, Xo) calculates the difference between the values of the feature f for
any two instances X7 and Xs. The number of nearest neighbors (i.e. k) used in

(11) was always set to 5 in all our applications.

14
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The obtained score S(f) is directly proportional to the informativeness of the
feature f. Therefore, the SUV-based feature with the largest score is included
in EFS as a fixed element of the optimal feature subset. In other words, if the
pre-determined feature f is located in the first dimension of the input feature
space, the value of A; is forced to be 1 (can not be 0) when minimizing (10).
This added constraint drives EFS into a confined searching space. It ensures
more robust feature selection, thus increasing the reliability of the prediction

system.

3.5. Data Balancing

Ensemble with small training sample size, class imbalance is also a typical
problem of medical data. Since most of the conventional feature selection meth-
ods are designed for well-balanced training data, the class imbalance problem
could hinder them to obtain a qualified feature subset. For example, as selecting
features according to the accuracy of a specific classifier, SF'S and SFFS (Pudil
et al.,|1994)) may output a feature subset that achieves high classification accu-
racy by simply assigning all training instances to the majority class.

Pre-sampling, either over-sampling the minority class or under-sampling
the majority class, is a commonly used approach for the imbalanced learning
problems. As a powerful method, Synthetic Minority Over-sampling TEchnique
(SMOTE) can generalize the decision region of the minority class via generat-
ing synthetic examples (Chawla et al., [2002)). It has shown plenty of successes
in many applications, and its variants, such as ADAptive SYNthetic sampling
(ADASYN) (He et all |2009)), can further improve the performance.

On this account, ADASYN is adopted in our prediction system to balance
the training data for feature selection. The key idea of ADASYN is to adaptively
create synthetic samples according to the distribution of the minority class in-
stances, where more instances are generated for the minority class samples that
have higher difficulty in learning. The level of difficulty in learning for each
minority instance is measured with respect to the ratio of the majority class

instances in its k-nearest-neighborhood (k was set to 5 in all our applications).

15
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Algorithm 1: ADASYN-based balancing for feature selection (He et al.l |2009)
input : imbalanced dataset {(X;,Y;)|[i = 1,---, N}, where X; = [z;1,--- ,xi,v]7 and

Y; € {w1,w2}. Assume w; and ws represent the minority class and the majority
class, respectively. Let 14 and nin be the number of majority class instances

and the number of minority class instances, respectively.

1 Set the number of synthetic minority class instances as nsyn = Nmaj — Mmin-

2 for each sample X; with Y; = w1 do

3 Find k nearest neighbors of X; in the training pool.

4 Calculate the parameter r; for X; as r; = Aj/k, where Aj is the number of nearest
neighbors of X; that belong to the majority class.

5 end

6 for each sample X; with Y; = w; do

7 Define the level of difficulty in learning for X; as 7; = r;/ Z;L;"lm rj.
8 Determine the number of synthetic instances for X; as n; = 7; X nsyn.
9 for=1,2,...,n; do
10 Randomly select a minority class instance, X, from the neighbors of Xj;.
11 Randomly generate a scalar 6 € [0, 1].
12 Generate a minority synthetic instance as Slj =X; +0 x (X, — Xj;).
13 end
14 end

Given an imbalanced training dataset, ADASYN outputs an balanced training
dataset via the procedure summarized in Algorithm [I} However, due to the ran-
dom nature of the data balancing procedure, and also with a limited number
of training samples, the balanced training dataset obtained by Algorithm [1| can
not always be more representative than the original training dataset. Therefore,
in our prediction system, ADASYN is totally executed B (> 1) times to pro-
vide B balanced training datasets. EFS is then executed with these balanced
datasets to obtain B feature subsets. The final output is determined as the most

frequently subset that occurred in the B independent actions.

3.6. Classification

Feature subsets selected by the improved EFS should be used with a clas-
sifier to predict the treatment outcome. To this end, case-based methods, such
as the K-NN rules and the SVM classifier, are practically good alternatives
thanks to their efficiency. As a stable method that offers global treatment of the
imperfect knowledge regarding the training data, the EK-NN (Denceux, {1995)
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classification rule, developed in the DST framework, is selected as the default
classifier in our prediction system. Parameters used in the EK-NN rule are op-
timized using the method proposed by (Zouhal and Denceuxl, [1998]). It is worth
to note that only the original training dataset with selected features are used to
train the classification rule (i.e., no synthetic instance is used during classifica-
tion), since we assume that instances from the two different classes are widely
separated in the feature subspace selected by the improved EFS, while the data
balancing procedure has little influence on the classification performance under

this circumstance.

recurrence no-recurrence disease-free disease-positive

<

(@) Lung Tumors (b) Esophageal Tumors

complete remission  no-complete remission

o,
8 -

(c) Lymph Tumors
Fi1GUurE 2: FDG-PET uptakes at tumor staging. For each dataset, two examples with different

outcome labels are presented from two complementary views (zy-plane and zz-plane); The

arrows point out the tumor locations.

4. Clinical Datasets

The prediction system proposed in this paper has been evaluated by three

real-world datasets.
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1) Lung Cancer Data. A cohort of twenty-five patients with inoperable stage II
or IIT non-small cell lung cancer (NSCLC), treated with curative-intent chemo-
radiotherapy (CRT) or radiotherapy (RT). This dataset was extracted from
three prospective studies (Calais et all [2015]). The total dose of included RT
was 60-70 Gy, delivered in daily fractions of 2 Gy and five days a week. Each
patient had histological proof of invasive NSCLC, and also had evaluable tumor
lesions according to the Response Evaluation Criteria in Solid Tumors (RECIST
1.1). Initial tumor staging was performed based on fibreoptic bronchoscopy, CT
scan, pulmonary function tests and biopsy. All patients also underwent FDG-
PET scans at initial staging (i.e., PETy, the baseline). The following PET scans
for the same patient were acquired using the same device and under the same
operational conditions. The first FDG-PET/CT acquisition (PET;) was ob-
tained after induction chemotherapy and before RT, followed by the second
FDG-PET/CT scan (PET2) performed during the fifth week of RT (approxi-
mately at a total dose of 40-45 Gy). The treatment response was systematically
evaluated and followed-up at three months and one year after RT, or if there
was a suspicious relapse. The endpoint was local/distant relapse (LR/DR) vs.
complete response (CR) at one year, which was primarily defined by clinical eval-
uation and CT according to RECIST 1.1, and supplemented by FDG-PET/CT
and fiberscope. Finally, nineteen LR/DR patients were grouped into the recur-
rence class (majority class), while the remaining six CR patients were labeled

as no-recurrence (minority class).

2) Esophageal Cancer Data. A cohort of thirty-six patients with histologically
confirmed esophageal squamous cell carcinomas, treated with definitive CRT
according to the Herskovic scheme. This dataset was extracted from a retro-
spective clinical trial (Lemarignier et al.l [2014). The included RT delivered 2
Gy per fraction per day, five sessions per week for a total of 50 Gy over five weeks.
The initial tumor staging was performed based on oesophagoscopy with biop-
sies, CT scan, and endoscopic ultrasonography. Each patient also underwent

a FDG-PET/CT scan at initial tumor staging, but the following PET scans
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were not complete for all the thirty-six patients. The patients were systemati-
cally evaluated and followed-up in a long term up to five years. According to
RECIST 1.1 criteria, the response assessment performed one month after CRT
was based on clinical evaluation and CT, and possibly supplemented by FDG-
PET/CT, and oesophagoscopy with biopsies. Thirteen patients were grouped
to the disease-free class (minority class), since neither locoregional nor distant
disease was detected on them ; the remaining twenty-three patients were labeled

as disease-positive (majority class).

3) Lymph Cancer Data. A cohort of forty-five patients with diffuse large B-cell
lymphoma (DLBCL), treated with rituximab and a cyclophosphamide, dox-
orubicin, vincristine and prednisone (CHOP)/CHOP-like regimen. This dataset
was the same as that in (Lanic et al.,|2012). Each patient underwent FDG-PET
scans before the onset of chemotherapy (PET() and also after three/four cycles
of chemotherapy (PET;). At least three wecks after the end of chemotherapy,
the treatment response was evaluated according to the International Workshop
Criteria (IWC) for non-Hodgkin lymphoma (NHL) response and according to
IWC+PET. Thirty-nine patients were observed complete remission (majority
class) ; while, the remaining six patients with refractory or partial response
were grouped to the class non-complete remission (minority class).

For each dataset, PET image examples acquired at tumor staging are pre-

sented in Figure

Feature Description. As discussed in Section[3.2] three types of PET image fea-
tures (SUV-based features, texture features and the temporal changes of them)
were extracted. Apart from these image features, variables extracted from other
sources of information are also potentially predictive factors. For the esophageal
tumor dataset, since only PET images before the treatment were available, some
clinical characteristics (patient gender, tumor stage, tumor location, dysphagia
grade, etc) were included as the complementary knowledge. In the lymph tumor
dataset, only four PET image features were available. As the supplementary in-

formation for them, eighteen genes related to the tumor subtype classification,
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and five genes related to the glucose transportation were also gathered accord-
ing to the molecular analysis (Lanic et al.l|2012)). The three clinical datasets are
briefly summarized in Table [, where the number of features and the number
of instances are presented. In addition, let the minority (majority) class be the
positive (negative) class, we defined the imbalance ratio as r = N, /(N, + N,,),

where N, and N,, are the number of positive and negative samples, respectively.

TABLE 1: Description of the three clinical datasets.

dataset sample size feature size imbalance ratio
lung tumor 25 52 0.24
esoph. tumor 36 29 0.36
lymph tumor 45 27 0.13

5. Experimental Results

The presented experiments consist of two parts. In the first part, the feature
selection performance of the improved EFS was compared with the original
EFS, and also compared with some other feature selection methods. In the
second part, we assessed the predictive power of the selected feature subsets, and
compared them with the predictors that have been proven to be discriminative
in clinical studies (e.g., MTV or TLG at staging for the esophageal cancer
dataset (Lemarignier et al., 2014])).

5.1. Feature Selection Performance

The improved EFS used in our prediction system was compared with seven
other methods, namely two univariate methods (RELIEF and FAST) and five
multivariate methods (SFS, SFFS, SVMRFE, KCS, and HFS). As discussed
in Section [1} the univariate methods rank features according to their individ-
ual discriminative power, while the multivariate methods evaluate a subset of
features ensemble according to the class separability for a predefined classifier.
Because of a limited number of instances, and in order to perform a comprehen-

sive assessment, all the compared methods were evaluated by the Leave-One-
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Out-Cross-Validation (LOOCV), and also by the .632+ Bootstrapping, which
ensures low bias and variance estimation (Efron and Tibshiranil {1997).

As one of the metrics used to evaluate the selection performance, the ro-
bustness of the selected feature subsets was measured by the relative weighted
consistency (Somol and Novovicovay, 2010)). Its calculation is based on feature
occurrence statistics obtained from all iterations of the LOOCYV or the .632+
Bootstrapping. The value of the relative weighted consistency ranges between
[0,1], where 1 means all selected feature subsets are approximately identical,
while 0 represents no intersection between them. Together with the subset ro-
bustness, the classification results obtained during feature selection were also
used to assess the feature selection performance. As the most classical figure of
merit used in general pattern classification applications, the average Accuracy
was adopted, which is defined as

TP+TN

A p—
Y = TP Y TN + FP+ FN'

(12)

where TP (true positives), TN (true negatives), FP (false positives) and FN
(false negatives) represent, respectively, correctly classified positive cases, cor-
rectly classified negative cases, incorrectly classified negative cases, and incor-
rectly classified positive cases. However, the simple Accuracy measure is not
adequate in the context of clinical management, where the TP rate and the
TN rate are more clinically relevant, particularly when instances from different
classes are severely imbalanced. For instance, in cancer diagnosis, there are usu-
ally more benign examples (negative cases) than malignant examples (positive
cases), while a FN decision (i.e., misclassifying malignant as benign) usually
comes at greater costs than a FP decision (i.e., misclassifying benign as malig-
nant). Therefore, to comprehensively assess the classification performance of the
imbalanced learning problems, the Receiver Operating Characteristics (ROC)
analysis, which was also utilized apart from the Accuracy measure, is more suit-

able. The ROC makes use of the TP rate and the FP rate, which are defined as

TP FP

TPraeji; Fpraezi-
"7 TP+FN ““TN+FP

(13)
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Based on the ROC curve, the Area Under the Curve (AUC) was calculated as
the complementary measure of the Accuracy in our applications (since all the
three examples are imbalanced).

Parameters of all the methods used in sequel are summarized as below :

— For the improved EFS, the parameter B was set to 5. The hyper-parameter
[ was determined by a rough grid search strategy according to the train-
ing performance. On average, good results were obtained with 8 between
[0.01,0.07] for the lung and lymph tumor datasets, while between [0.1,0.3]
for the esophageal tumor dataset.

— The cutoff thresholds used in RELIEF, FAST and KCS to output selected
features were changed from 0.5 to 0.9. Then, the best feature subset was
determined according to the average Accuracy. Similarly, the predefined
number of selected features that used in SFS, SFFS and SVMRFE was
changed from 1 to 5 to output a sparsity feature subset.

— In SFS, SFFS and HFS, the SVM classifier (gaussian kernel, o = 1) was
chosen as the predefined classifier.

— All parameters used in HFS were the same as that in (Mi et al., [2015)).

— For the compared feature selection methods, the SVM classifier (gaussian
kernel, o = 1) was adopted to predict the outcome, as it is commonly used
with the multivariate methods, and also often used in clinical studies. In
our prediction system, the EK-NN classification rule (instead of the SVM

classifier) was used with the EFS to predict the treatment outcome.

Evaluation by the LOOC'V. The robustness of the selected feature subsets, the
average Accuracy, the average AUC, and the average subset size for different
methods are summarized in Table [2] where the results for all the input features
(the SVM classifier was used) are also presented as the baselines for comparison.
From Table [2f we can observe that the improved EFS (denoted as ¢{EFS) used
in our prediction system always led to robust feature subsets for all the three
examples as compared to other methods. Furthermore, it had better (for the

esophageal and lymph tumor datasets) or at least the same (for the lung tumor
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TABLE 2: Feature selection performance evaluated by the LOOCYV. EF'S represents our previous
work (Lian et al.| |2015a)), while 4EF'S denotes the improved EFS that proposed in this paper.

7 All” represents the results for all the input features (without selection).

Lung Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | ¢EFS

Robustness | — 0.64 0.65 || 0.85 | 0.32 0.56 0.50 | 1.00 || 0.94 | 1.00

Accuracy |0.76 0.72 0.76 || 0.88 | 0.80 0.76 0.84 | 1.00 (| 1.00 | 1.00
AUC 0.50 0.60 0.35 || 0.95| 0.61 0.74 0.81 | 1.00 || 1.00 | 1.00

Subset size | 52 10 14 2 5 5 3 3 4 4

Esophageal Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | ¢EFS

Robustness | — 0.94 1.00 (| 0.26 | 0.23 0.80 0.94 | 0.53 || 0.92 | 1.00

Accuracy | 0.64 0.56 0.64 || 0.64 | 0.58 0.72 0.69 | 0.72 || 0.83 | 0.89

AUC 0.12 0.54 0.12 || 0.50 | 0.55 0.76 0.57 | 0.67 || 0.69 | 0.77
Subset size | 29 2 27 5 5 5 2 5 3 3

Lymph Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | {EFS

Robustness | — 1.00 0.85 0.72| 0.34 0.64 1.00 | 0.90 || 0.57 | 0.95

Accuracy | 0.87 0.96 0.82 || 0.89 | 0.87 0.89 0.96 | 0.87 || 0.89 | 0.93

AUC 0.50 0.68 0.26 || 0.65 | 0.29 0.83 0.68 | 0.36 || 0.92 | 0.95
Subset size | 27 1 5 2 5 5 1 4 4 4

dataset) AUC as compared to other methods. While the Accuracy of the RE-
LIEF and the KCS was slightly better than the proposed ¢EFS for the lymph
tumor dataset (difference of 0.03), the AUC obtained by our method was much
better than other methods (minimum difference of 0.12) for this severely im-
balanced example (imbalanced ratio r = 0.13). Comparing the results obtained
by the original EFS (Lian et al., [2015a)) with the proposed ZEFS, it can be
found that the data balancing procedure and the incorporated prior knowledge
did improve the reliability (relating to robust feature selection) and accuracy

(relating to the average Accuracy and AUC) of our prediction system.

Evaluation by the .632+ Bootstrapping. The number of Bootstrap samples was
set to 100. The robustness of the selected feature subsets, the average Accu-
racy, the average AUC, and the average subset size are summarized in Table
Consistent with the results presented in Table[2] the robustness of the proposed
t1EFS that evaluated by the bootstrapping was still better than other methods
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TABLE 3: Feature selection performance evaluated by the .632+ Bootstrapping. EF'S represents
our previous work (Lian et al., [2015a), while :EFS denotes the improved EFS that proposed

in this paper. ” All” represents the results for all the input features (without selection).

Lung Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | iEFS

Robustness | — 0.16 0.11 |[ 0.22| 0.14 0.12 0.10 | 0.48 || 0.21 | 0.82

Accuracy | 0.85 0.82 0.82 || 0.80| 0.80 0.84 0.83 | 0.85 || 0.81 | 0.94

AUC 0.37 0.64 0.60 || 0.67| 0.66 0.53 0.65 | 0.81 || 0.77 | 0.94
Subset size | 52 7 10 5 5 5 29 3 4 4

Esophageal Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | iEFS

Robustness | — 0.33 0.61 || 0.30| 0.16 0.31 0.29 | 0.32 || 0.44 | 0.74

Accuracy | 0.74 0.69 0.74 |/ 0.69| 0.66 0.74 0.69 | 0.74 || 0.77 | 0.83

AUC 0.63 0.66 0.63 || 0.64| 0.63 0.75 0.66 | 0.71 || 0.75 | 0.82
Subset size | 29 6 25 2 5 5 3 5 3 3

Lymph Tumor Data
All || RELIEF | FAST || SFS | SFFS | SVMRFE | KCS | HFS || EFS | iEFS

Robustness | — 0.56 0.19 0.25| 0.15 0.37 0.33 | 0.43 || 0.32 | 0.64

Accuracy | 0.92 0.92 0.91 || 0.90| 0.90 0.89 0.93 | 0.91 || 0.90 | 0.93

AUC 0.62 0.75 0.63 || 0.73| 0.67 0.78 0.77 | 0.78 || 0.82 | 0.92
Subset size | 27 4 15 1 5 5 2 3 4 4

for all the three examples. In addition, it also led to the best AUC (especially for
the lymph and lung tumor examples with severely imbalanced ratio) and the best
Accuracy. Comparing the results shown in Table [3] with that in Table[2] we can
find that the performance of all the compared methods was declined when eval-
uated by the bootstrapping. This result is reasonable and foreseeable : Since all
the three datasets are small-sized, and due to the random nature of the .632+
bootstrapping, many bootstrap samples may be greatly underrepresented for
learning a qualified feature subset. However, it is also worth to note that the
difference between the proposed iEFS and other methods was increased un-
der this circumstance, which in some sense confirmed the effectiveness of the

proposed method.

Selected Feature Subsets. The most frequent feature subsets selected by the im-
proved EFS were kept the same between the LOOCYV and the .632+4 Bootstrap-

ping for all the three datasets. The detail of the selected features are summarized
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TABLE 4: The most stable feature subset for the lung tumor dataset.

Feature type Feature description

SUV-based feature SUV,naz extracted from PET5.

GLSZM-based feature Change of gray-level-non-uniformity between PET2 and PET,.
GLSZM-based feature = Change of zone-percentage between PET; and PETy.
GLSZM-based feature Change of zone-percentage between PET> and PETy.

TABLE 5: The most stable feature subset for the esophageal tumor dataset.

Feature type Feature description

SUV-based feature TLG extracted from PET,.

Clinical characteristic =~ Tumor staging as II

Clinical characteristic =~ Patient gender

in Table 4| to Table |§|, respectively. For the lung tumor (Table , the SUV 02
during the fith week of RT (PET2) has also been proven to have significant pre-
dictive power in the clinical study (Calais et al.,2015) ; for the esophageal tumor
(Table [5)), the role of the TLG at tumor staging (PET() has been clinically val-
idated in (Lemarignier et al. [2014)); and for the lymph tumor (Table @, the
difference between the SUV,,,, before chemotherapy (PET() and the SUV 4,
after three/four cycles of chemotherapy (PET;) has also been recognized as a
variable being capable to predict outcome in (Lanic et al., 2012).

According to above analysis, we could say that the feature subsets deter-
mined by our method are in consistent with the predictors that have been ver-
ified in clinical studies. More importantly, other kinds of features selected in
each subset can give complementary information for these existing measures to

improve the prediction performance.

5.2. Prediction Performance

The improved EFS used in our prediction system has robust feature selection
performance. To further evaluate the predictive power of these selected feature
subsets, the EK-NN classifier with K = {1,...,15} was orderly evaluated by
the .632+ Bootstrapping. The number of Bootstrap samples was set to 100.
The prediction performance was compared with that obtained by all the input

features, and also compared with that obtained by the existing measures (pre-
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TABLE 6: The most stable feature subset for the lymph tumor dataset.

Feature type Feature description
SUV-based feature Change of SUV ;4. between PET; and PETy.
SUV-based feature ~ SUV,,,, extracted from PETy.

Gene expression MME Gene that relates to tumor subtype.

Gene expression SLC2A5 Gene that relates to glucose transportation.

dictors) which have been clinically validated and discussed in the last part of
Section The average AUC with respect to different K is shown in Figure [3]
where (a)-(c) correspond to the results for the lung tumor, esophageal tumor and
lymph tumor dataset, respectively. As can be seen, the selected feature subsets
(green line) always led to higher AUC than the input features (blue line) for all
the three examples. In addition, they also outperformed the clinically validated
predictors (orange line) that self-included in these selected feature subsets. It
seems to imply that complementary predictors are well determined for these

existing measures in our prediction system.

) ER————— 1 g all features

existing measure|

0.9 09| =*eeua . 1095 & selected features
O 0.8 0.9

07 \”Nw 06 %W::'{j 08| /o eerreereo
0.6 0.5 0.75

0 5 K10 15 0 5K 10 15 0 5 K10 15

(@ (b) ©)

FI1GURE 3: Prediction performance of the EK-NN classifier with respect to different K : (a) lung
tumor dataset, (b) esophageal tumor dataset, and (c) lymph tumor dataset. ”all features”,
”selected features”, and ”existing measure” denote the results obtained by the input features,

the selected feature subset and the predictor that has been clinically proven, respectively.

Misclassified instances. The main reason of misclassification is that the fea-
tures extracted for these patients are located in the high-overlapping areas in
the selected feature space, such as the boundary between two different classes.
For the lung tumor dataset, only one patient, which belongs to the recurrence

class, was often misclassified ; For the lymph tumor dataset, only two instances
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were frequently misclassified ; The prediction performance for the esophageal
tumor dataset was poorer than the other two examples, due to the lack of time

dependent features extracted from the follow-up PET images.

6. Discussion

Influence of imbalance level. According to the analysis in Section the com-
petitiveness of the improved EFS seems to be strengthened when the dataset
was highly imbalanced (e.g., the lymph tumor example). To support this finding,
we further tested our method on a synthetic dataset with respect to different
imbalance ratio r € {0.1,0.2,...,0.5}. Both classes (positive or negative) of this
synthetic dataset were generated by multivariate normal distributions. Assume
that py, and p, are the mean vectors for the negative class and the positive
class, respectively ; while ¥ is the identical covariance matrix for both classes.
To be consistent with our clinical examples, the values of ji,,, 1, and ¥ were

directly copied as that of the lymph tumor dataset.

0.85 0.87
0.8
ey 0.85
§0.75 / . /
=1 2
3 07 <0.83

<0.65
0.6

- all features 0.81
£ with EFS
0.79

01 02 03 04 05 01 02 03 04 05
imbalance ratio imbalance ratio
(@ (b)

FIGURE 4: (a) Accuracy, and (b) AUC for the synthetic dataset.

Under each level of the imbalance ratio r, 50 samples were generated as a
small-sized and imbalanced training dataset. After selecting features using the
improved EFS, the EK-NN classifier was learnt to classify a balanced testing
dataset. To minimize the uncertainty of the performance estimation, the bal-
anced testing dataset consisted of 3000 test samples, and the evaluation was
repeated 50 times for each level of r. The classification results with respect to
different imbalance ratio are finally shown in Figure[dl As can be seen, Accuracy

and AUC obtained by the proposed method are better than directly using all
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the input features. In particular, the proposed method plays a significant role

when the training dataset is severely imbalanced.

Accuracy
oo oo
N

Lung Esoph. Lymph
@)

Lung Esoph. Lymph
(b)

Lung Esoph. Lymph
©

FIGURE 5: (a) Subset robustness, (b) Accuracy, and (¢) AUC that evaluated by the .632+
Bootstrapping for the improved EFS without data balancing (iEFST), the improved EFS
without prior knowledge (¢EFS*), and the improved EFS ({EFS), respectively.

Role of prior knowledge and data balancing. These two critical modules of our
prediction system were successively removed to study the benefits of them. The
performance that evaluated by the .632+ Bootstrapping (with 100 Bootstrap
Samples) is shown in Figure |5 in which ¢EFS denotes the improved EFS used
in our prediction system ; while, tEFS™ and {EFS* denote ¢EFS without data
balancing and without prior knowledge, respectively. It can be found that both
the included prior knowledge and the data balancing step are helpful for im-
proving the selection performance and the prediction performance. When the
dataset is severely imbalance (e.g., the lung tumor example), the data balancing

procedure is especially significant for enhancing the robustness and the AUC.

m 3| features
B exjsting measures
Olexisting measure+RELIEF

1 1 m selected features
50.8 0.8
©0.6 006
304 04
<o2 0.2
Lung Esoph.  Lymph Lung Esoph.  Lymph
(@) (b)

FIGURE 6: (a) Accuracy and (b) AUC of the logistic regression method that evaluated by the
.632+ Bootstrapping. The selected features were compared with all the input features, the
clinically validated predictors (i.e., existing measures), and the clinically validated predictors

joint with features selected by the classical RELIEF (i.e., existing measure+RELIEF).
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Applicability of the improved EFS. To demonstrate whether the improved EFS
has potential benefits for other classifiers (except the EK-NN), the logistic re-
gression, a well-established method widely used in clinical studies, was also
adopted to classify the three tumor datasets with the feature subsets detailed in
Table [d] to Table[6] The predictive power of the selected features was compared
with that of all the input features, and that of the clinically validated predictors
(i.e., existing measures). Additionally, given the clinically validated predictors
as the prior, the logistic regression joint with the classical RELIEF, involving to
select features to combine with the clinically validated ones, was also presented
as the basis for evaluation. Finally, results obtained by the .632+ Bootstrapping
(with 100 Bootstrap samples) is summarized in Figure@ based on which we may
say that the proposed method is not only useful for the DST-based classifiers,
but also potentially helpful for other classifiers.

Multi-class problems. Apart from the binary-class examples discussed in this
paper, the proposed method can also be easily generalized to handle the multi-

class (¢ > 2) problems. To this end, we need to replace @ with

Mi({wgd) = m " ({wa}) [T5 g me 7 (Q),¥g € {1,... ¢}
Mi(©Q) =TI m" () o (14

M;(0) =130 Mi({wg}) — Mi(9)

and change the first term of as + 25\7:1 D gm1 AMi({wg}) — tig).

7. Conclusion

A new framework for PET imaging based cancer treatment outcome pre-
diction has been proposed in this paper. Features have been extracted from
multi-sources of information, which include PET images acquired before and
during the treatment, clinical characteristics, and gene expression files. Based
on our previous work (Lian et al.l2015a)), an improved EFS with prior knowledge
and data balancing has been proposed to robustly determine the most informa-

tive feature subsets from the small-sized and imbalanced training pool. After
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feature selection, the EK-NN classifier has been trained to predict the outcome.
The new prediction system has been evaluated by three clinical studies, showing
promising performance with respect to feature selection and classification.

In the future, to further improve the reliability of our prediction system,
we plan to include more radiomic features extracted from other image modali-
ties, such as CT, MRI and multi-tracer PETSs. In addition, to tackle the imbal-
anced learning problems, other data balancing or cost-sensitive learning methods

should be studied and compared with the method that has been used in this

paper.

Appendix A. Radiomic Features Extracted from PET Imaging

TABLE A.7: Definition of SUV-based features. Variable X represents SUVs in the ROI. Func-
tion T'[-] is a binary indicator. It equals to 1 iff the argument is true. Function f maps X to
L ={tumor,non-tumor} according to the threshold 40%SUV,qz. Operation |- | calculates the

number of voxels within a region.

Feature Calculation Description
SUVmaz a = max(X) Maximum uptake in the ROI
SUVmean = mean(X) Average uptake in the ROI

Average uptake in the neighborhood
(3 x 3 x 3) of the SUVaz
sum(T[f(X)]) Metabolic tumor volume

SUVpea,k Ho = ﬁ ZwENa r

MTV

3
Il

TLG V=UuXT Total lesion glycolysis

30



TABLE A.8: Definition of GLSZM-based features (Thibault et al., |2014)). Let P be the matrix
with size M x N. Scalar R = Zf\il

;\le P(i,7). Each element p(¢,5) = P(4,5)/R.

Feature

Calculation

Description

Small Zone Emphasis

PP IR

Distribution of small zones.

Large Zone Emphasis

M YN %G, 9)

Distribution of large zones.

Low Gray Level Zone

Emphasis

> M )

Distribution of low gray

level values.

High Gray Level Zone
Emphasis

S M N i%p(i, )

Distribution of high gray

level values.

Small Zone Low Gray

Level Emphasis

M N p(i,5)
DDA

Joint distribution of small
zones and low gray

level values.

Small Zone High Gray
Level Emphasis

.2 L.
ZZM E;V i pﬂ;d)

Joint distribution of small
zones and high gray

level values.

Large Zone High Gray
Level Emphasis

M N .2 .’.
DD IHES S

Joint distribution of large
zones and high gray

level values.

Large Zone Low Gray
Level Emphasis

M ~—N .9 . ..
i 5%, g)

Joint distribution of large
zones and low gray

level values.

Gray Level Non-Uniformity

M (S p.9)

Similarity of gray level

values inside the ROI.

Zone Size Non-Uniformity

SN (SN p6.9)

Similarity of the size of

zones insied the ROI.

Zone Percentage

R/(jp(i, 7))

homogeneity and distribution

of zones inside the ROI.
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