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2Université Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée Cedex 2, France

Abstract

We devise and analyze an edge-based scheme on polyhedral meshes to approximate a vector
advection-reaction problem. The well-posedness of the discrete problem is analyzed first under the
classical positivity hypothesis of Friedrichs’ systems that requires a lower bound on the lowest eigen-
value of some tensor depending on the model parameters. We also prove stability when the lowest
eigenvalue is null or even slightly negative if the mesh size is small enough. A priori error estimates
are established for solutions in W4(Q) with ¢ € (%,2]. Numerical results are presented on three-
dimensional polyhedral meshes.

AMS Subject Classification. 65N12, 65N15, 65Zxx, 76Dxx, 7T6Wxx

1 Introduction

Let © be a polyhedral domain of R with d = 3 and consider a polyhedral mesh of Q. We use boldface
fonts for R? or R*%-valued quantities. The purpose of this paper is to devise an approximation, using
scalar degrees of freedom (dofs) attached to the edges of a mesh, of the R%valued function u solving the
vector advection-reaction problem:

V(Bu)+ (Vxu)xB+pu=s ae. inQ, (1a)
u =wup a.e. on I . (1b)

The R%valued advective field B is assumed to be Lipschitz continuous in Q and the R%*?-valued reaction
tensor p is assumed to be bounded in €. The subset 902~ C 92 denotes the inflow part of the boundary
where 8-n < 0 with n the unit outward normal to 2.

The model problem (1) is encountered in various situations. For example, it models the static advection
of a magnetic field (u here) by a moving plasma of velocity 3 and of anisotropic conductivity . In the
context of differential geometry, the operator V(3-u) + (Vxu)x3 is the proxy of the Lie derivative
of a differential 1-form (also called circulation) in R?® (see Abraham et al. [1] or Heumann [17]). The
Lie derivative describes more generally the advection along the vector field 3 of a differential form on
a manifold. The model problem (1) is also relevant to study, in the advection-dominant regime, the
advection-diffusion of a R%valued field, which is one the building blocks of the Oseen problem or of
the magneto-hydrodynamic problem. Using vector calculus rules, we observe that V(8-u) = (V3)'u +
(Vu)'B and (Vxu)xB = (Vu)B — (Vu)' 3, yielding V(B-u) + (Vxu)x8 = (Vu)3 + (VB) u. Hence,
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the particular choice p = —(V3)" yields the pure advection problem (with the more usual writing
(Vu)B = (B-V)u in this context):

(B-V)u=s ae. inQ, (2a)
u =up a.e. on 02 . (2b)

Edge-based schemes are rarely addressed in the literature; some examples for the Maxwell or the
Navier-Stokes equations can be found in Zaglmayr [23] and Girault [16], respectively. Edge-based schemes
are actually the natural way to discretize differential 1-forms. In this context, Heumann and Hiptmair
recently studied in [18] H(curl; 2)-conforming discretizations of arbitrary order using Nédélec edge finite
elements on simplicial meshes with a stabilization term penalizing jumps of the normal component across
mesh interfaces in the spirit of the discontinuous Galerkin method (see Lesaint & Raviart [20], or Johnson
& Pitkaranta [19]). They also analyzed a discretization using a cell-based fully discontinuous polynomial
approximation of arbitrary order, this time penalizing the full jump across mesh interfaces. In a different
context and motivated by the discretization of the Lie derivative, we also mention the Ph.D. of Palha [22]
approximating on square meshes a problem similar to (1) with the spectral element method (see also
Gerritsma [15]). Based on the work of Bossavit [6], Mullen et al. also studied in [21] an approximation
of (1) by extruding the edges of a simplicial mesh along the vector field 3.

To the authors’ knowledge, edge-based schemes approximating the problem (1) on polyhedral meshes
are not available in the literature. Recently, Bonelle & Ern proposed in [5] a Compatible Discrete Operator
(CDO) scheme for the Stokes problem, where the velocity is attached to edges and the pressure to vertices.
The present scheme could be combined with this work to devise a polyhedral discretization of the Oseen
problem. The advantage of considering polyhedral meshes is multifold; it allows for more flexibility when
meshing a complex geometry, it provides a natural framework to handle non-matching mesh refinement
and mesh coarsening by cell agglomeration, and it may even yield lower computational costs and better
accuracy compared to the case of the simplicial meshes (see Bonelle’s Ph.D. [2]).

The first important contribution of this work is to provide a polyhedral edge-based scheme, with scalar
degrees of freedom attached to the edges of the mesh leading to an O(h?) convergence rate as soon as
the solution belongs to W14(Q) with ¢ € (%,2]. To reach our goal, we first consider on each cell of
the mesh a diamond partition composed of volumes surrounding each edge of the mesh. Our scheme
is formulated using a reconstruction map defining piece-wise constant vector-valued functions on each
diamond of this partition. This map was first considered by Codecasa et al. in [9] for electromagnetism
and by Bonelle & Ern in [5, 3] for scalar elliptic problems. In the present work, we additionally establish
the local Li-stability of this map.

The second important contribution of this work concerns the well-posedness of the discrete problem.
We introduce the symmetric tensor

o= (VB+VE") - (V-BId+ (n+ p"),
and we denote )\, its minimal eigenvalue over the domain §2, ie.

g x)y,
A\, = ess inf min (@8.u( )23/ Y)pe
z€Q ycRd |y|z2

)

where |-|2 denotes the Euclidean norm induced by the Euclidean inner-product (-, )y in RY. Assuming
that s € L?(Q), up € L?(|B-n|;0Q) and that dist (9Q~,0QF) > 0 (with 9QF the outflow part of the
boundary), we infer from Ern & Guermond in [13] that the problem (1) is well-posed in the graph space
V() = {v e L*Q) | (B-V)v € L*(Q)} if the fields B and p satisfy the following Hypothesis:

(H1) A, > 0. We define the reference time 7 = )\b_l.

Under this hypothesis, the well-posedness of the discrete problem hinges on a coercivity argument. How-
ever, this assumption is somehow restrictive; e.g., the basic case of a constant vector field 8 with no



reaction term does not fulfill this hypothesis. Motivated by our recent work [7] related to scalar advection-
diffusion problem (see also the work of Deuring et al. in [10] for faced-based finite volume schemes), we
propose to extend the analysis so as to include a second hypothesis, where the minimal eigenvalue A, can
take null or slightly negative values:

(H2) —C)\ < A\, <0, where Cy > 0 is a constant independent the mesh size, and there exists a potential
¢ € Whe(Q) satisfying ¢ > 1 and ess infg (=3-V() > 0. We define the reference time 7 =
(ess infq (—B-V¢)) ™.

In the case of a continuously differentiable vector field 8 € C'(), the existence of the potential ¢ is proved
by Devinatz et al.in[11, Lemma 2.3] by considering the Cauchy problem d;z(t) = B(x(t)), (0) = &y € Q
when the solution remains in the domain 2 for a finite time only. As a result, the hypothesis (H2) is
satisfied if the vector field 3 has no closed curves and no stationary points in 2. The analysis of the
polyhedral edge-based scheme under this second hypothesis (H2) is more complex since the stability
of the scheme now hinges on an inf-sup condition which is satisfied if the mesh size is smaller than a
reference length that linearly depends on |VAB" + |k ()- Moreover, for the advective problem (2)

(where p = —V3"), we prove the stability of the scheme without any restriction on the mesh size.

This paper is organized as follows. In Section 2, we introduce the notation and the analysis tools on
polyhedral meshes. In Section 3, we introduce the edge-based reconstruction map and we present the
numerical scheme with dofs attached to edges. In Section 4, we state the main analytic results, namely,
stability under hypothesis (H1) or (H2), boundedness and a priori error estimates delivering quasi-optimal
decay rates for solutions in WLq(Q) with g € (%, 2]. The proofs are postponed to Section 6 to facilitate
the reading. Finally, we present in Section 5 numerical results on three-dimensionnal polyhedral meshes.

2 Notation and analysis tools on polyhedral meshes

We consider a general mesh M of Q € R? with d = 3, composed of polyhedral cells ¢ € C (3-cells), planar
faces f € F (2-cells), straight edges e € E (1-cells), and vertices v € V (0-cells). We collect the interior
faces in the set F° = {f = 0cN O |c # ¢ and ¢, € C}, and we define F? = F\F° the set collecting
boundary faces as . For any A, X € {V,E,F,C}, we define the subset X, with a € A as {x € X|a C 0z}
if the dimension of a is smaller than that of the elements of X and as X, = {x € X|z C da} otherwise;
for example, C, = {c € C|e C Oc}, E. = {e € E|e C Oc}, Ef = {e € E|e C 0f} and so on. For any
geometric entity z, we denote |z| its Hausdorff measure. In this paper, we assume mesh regularity in the
sense that

e The mesh M := {V,E,F,C} defines a cellular complex (see Christiansen [8]), ie. the boundary of
any k-cell, 1 <k <d (recall d = 3), is composed of a uniformly finite number of (k¥ — 1)-cells in M.

e Faces and cells are star-shaped with respect to their barycenters.

e Let x, denote the coordinates of v € V in R Let xy and x. denote the coordinates of the
barycenters of f € F and ¢ € C, respectively, in R?. Then, the simplicial sub-mesh composed of the
tetrahedra [x,, ., s, .| (Where [T1,...,2541] is the convex hull of the set {x1,...,xp11}) for all
ce C,all feF.andall e € Ef with e = [x,, ] (see Figure 1, left panel) is shape-regular in the
usual sense of Ciarlet.

For every cell ¢ € C, we introduce the edge-based diamond partition B, which plays a central role in
our analysis. We define P. = U{p.; e € E.} where the diamond p. . is defined by

Pe,c = U [wva Ly, L f, mc] with e = [mva mv/] 5
fEFNFe
see Figure 1, right panel. Note that 9. is composed of #E. diamonds and that each diamond p. . is
composed of two tetrahedra, since #(F. N F.) = 2, with # the cardinal operator. Owing to the star-
shaped property of faces and cells, we have ¢ = U{p; p € B.}. The skeleton of the global partition



Figure 1: Left panel: tetrahedron [x,,x,, 2, z.]. Right panel: local diamond pe .

P = U{P. | c € C} consists of the collection of all the triangular sub-faces defining the boundary of each
diamond p. .. There are two types of sub-faces: intra-cell sub-faces attached to a cell ¢ € C and collected
in the set §c = {f = Ipec NI c|e # € and e,€’ € E.} so that §f ¢ dc, (see Figure 2, left panel) and
inter-cell sub-faces attached to a interior face f € F° and collected in the set §; = {f = Ope,c N O |c #
d and ¢,d € Cy, e € Ef} (see Figure 2, right panel). All the sub-faces are oriented by a fixed unit normal

Figure 2: In blue. Left: intra-cell sub-face f = Ope. N Oper . € Fe. Right: inter-cell sub-face §f =
8p&c N 8pe,c’ S %’f

vector 5. For all f = Ope . N Oper . € Fe with e, e’ € E. and n; pointing from p. . to per ., we define the
jump and the average, respectively, as

[v] = 0p... 0, and o} =5 (vp.. +0p,,)

Similarly, for all f = Ope. NP, € Ff with ¢, € Cy, e € Ef, and n; pointing from pe . to pe s, we define

[[’U]] = v|p6,c - vlpe,c and {{’U}} o (/v‘pe ¢ v|pe’cl> '

We denote |-,z the Euclidean and the Frobenius norm on R? and R?*?, respectively. For every set
w C Q, we denote L%(w) with ¢ € [1,00] the Banach space of R? or R?*?-valued functions v such that
[v]Lew) == lwle |Law) < oo
Lemma 2.1 (Mutliplicative trace inequality). There ezists Cy > 0 such that

-1 11
folzagy < Celolyidy (e 191 + 9lignagy ) 3)
for all ¢ € C with h. the diameter of ¢, all p € B, all f € dp and all v € WH(p) with q € [1, 00].

Proof. Observing that p € P, is composed of two tetrahedra connected by a sub-face f € §., this result
follows proceeding as in Ern & Guermond [14]. O



3 Discrete Scheme

3.1 Degrees of freedom

We consider an approximation of the continuous problem (1) with scalar dofs attached to edges. We
denote & = R#F the linear space collecting these dofs and we denote v, the entry of v € £ attached to
the edge e € E. We additionally introduce the linear space &, collecting the dofs attached to the subset
E. for all ¢ € C. We denote v a generic element of £ or &..

3.2 Reconstruction map

The global reconstruction map Lg is defined locally, so that Lg(v). = Lg,(v), for all ¢ € C. The local
reconstruction map Lg, : & — Po(Pe; RY), where Py (B.; R?) is composed of piece-wise constant R%-valued
polynomials over the diamond partition ., is such that

Le, (v)(x) := Z Veleo(x), YWe&, Vxec, (4)
€€Ec
where for all e € E,, the basis function £, . € Po(B.; R?), is defined by

fc(e’)®el> O OIS 5)

+
d|pes o |c| dlpe,c|

and d. . is the Kronecker symbol equal to 1 if e = ¢’ and 0 otherwise. Moreover, for all e € E, ¢, is a
fixed unit tangent vector to e, such that e = |e|t., and f.(e) = ffc(e) N () Where the dual face f(e) is
composed of two elementary triangles

fc(e) = U [we7xf;mc]7

feF.NF,

see Figure 3, and where n 7o(e) is the unit normal vector to fc(e) satisfying n 7ol e)'te > 0. The basis

Figure 3: Local dual face f.(e).

functions £. . were first considered in the context of the Discrete Geometric Approach by Codecasa et
al. [9] and were recently revisited by Bonelle & Ern in [4, 5] to build Hodge operators within the CDO
framework. They satisfy the following properties:

(€1) [Unisolvence] For all e, e’ € E., £ o(x)-€ = . for all x € per .
(€2) [Primal Po-consistency]| > cp_£ec(x)®e = Id for all z € c.
(£3) [Dual Po-consistency] For all e € E., [, £ec(z) = f.(e).
The property (€1) relies on the geometric relation [pec| = % f.(e)-e whereas the property (£2) results
from the geometric relation ) cp e®f.(e) = > g, fo(e)®@e = |c[Id.

5



3.3 Discrete scheme

The discrete scheme is formulated using the global bilinear form Ag,, : £x& — R such that

AIB,”(U,V) = Aﬂ7u(uvv) +A6(13.n)*(uav)v (6)

where Ag , approximates (la) and A} gon)- Weakly enforces the boundary condition (1b). The bilinear
form Ag, : EXE — R is composed of three bilinear forms also defined on £x&:

Ag.pu(u,v) :=gg u(u,v) + ng(u,v) +sg(u,v). (7)
The bilinear form gg ,, is assembled cell-wise as
ga.u(1,v) =D _ggpelu,V) (8)
ceC

and each local bilinear form gg ;.. results from the standard Galerkin approximation of (la) in ¢ using
the reconstruction map Lg, :

go (V) = 3 / (V(BLe, (W) + (VxLe, (u)xB) - Le, (v) + / pLe, (u) - Le, (v). (9)

peP. P

Using identities from vector calculus and since Lg, (v) is piece-wise constant, we can reformulate this
expression as

g8, uic(U, V) = /(VﬁT + 1) Le,(u) - Le (v). (10)

C

Because Lg, (v) jumps across inter-cell and intra-cell sub-faces, we also consider the bilinear form ng such

that
v) = Z nﬁ;c(u7v) + Z nﬁ;f(uvv)ﬂ (11)

ceC feFre

where the local bilinear forms ng., with x = f or x = ¢ are defined as
(0.0 = =Y [(Brlte@lLe)). (12)
f€Sz
and the stabilization bilinear form sg such that
V)= sge(uv)+ Y sap(u,v), (13)
ceC feFe
where the local bilinear forms sg., with x = f or x = c are defined as
spa(09) = Y [IBmILe@] L] (14
fES2

The bilinear forms ng and sg are devised similarly to the discontinuous Galerkin method; ng corresponds
to centered fluxes and ng + sg to upwind fluxes. Finally, the Dirichlet boundary condition is weakly
enforced by means of the bilinear form A? : £ x £ — R (with o = (8-n)™) such that

A2 (u,v) Z A, (15)

fer?

The local bilinear form Aaa; ¥ is defined as
(U, V) = /faLgcf (u)-Lng (v), (16)

6



with ¢y is the unique cell containing the boundary face f.
The discrete scheme consists in finding u € £ such that

Ag,(u,v) = X(s,up;v), WeE, (17)

with the right-hand side form ¥(s,up;-) : £ — R such that

S(s.upi)i= 3 [sLe (v Z/ﬂn “upLe, (v). (18)

ceC fero

4 Stability and error analysis

4.1 Properties of the reconstruction map

Proposition 4.1 (Stability). There exists Cy > 0 such that

e < tee(Wlzae) < Cyllv

q,C»

forallce C, allv €&, all g € [1,00) and where

IVllg.e = (Ejm“|4ﬂ . (19)
ecE,

Remark 4.1 (Alternative definition). In lieu of (19), we could also consider the simpler discrete L?-norm
given by ||v||¢. = hd—1 > ek, [Ve|?. Owing to mesh regularity, this definition is equivalent to (19) up to
a uniform constant with respect to the mesh-size. We prefer to use (19) since it simplifies the proof of
Proposition 4.1.

We introduce the reduction map Rg : L'(Q) — & such that

Re(v)le := |ple’ </pe v-e> , VeekE, (20)

where p. = U{pe,; ¢ € Cc} is the diamond volume surrounding the edge e and ¢ is the local diamond
patch ¢ = U{pe; e € E.} surrounding the cell ¢; notice that ¢ C ¢. We also define the local reduction map
Re, : LY(¢) — &, from definition (20) for all e € E.

Remark 4.2 (De Rham’s map). Requiring more regularity, the usual de Rham’s reduction map defined
by Re(v)|e = |e|™! [, v-e for every e € E can be used as well, provided that v € H'**(Q) or v € {w €

H2T(Q), Vxw € L2T(Q)} with € > 0.

For each cell ¢ € C, we denote Zg, the interpolation operator obtained by composing the local
reconstruction map with the local reduction map, ie. Zg, = Lg, o Rg,, so that Zg, : L1(¢) — Po(Pe; RY).

Proposition 4.2 (Consistency). For all ¢ € C and all U € Py(&;R?) (so that U is a constant function
in ¢), we have Zg, (U) = U|.

Lemma 4.3 (Interpolation error). There exists Cyy, > 0 such that for all ¢ € C and all v € W19(¢) with
q€[1,00),

|v = Ze.(v)[Lo(e) < Cran he |U‘W1’Q(a) ’ (21)
and for all p € P,

1

1-1
[0 — Ze.(0)acon) < Cir e * [olyyrage- (22



4.2 Stability and well-posedness
We consider the following stability norm on the edge dof space &:

1
_ 2 2\ 2
vl = (7 I3 + M3 + IvE2) (23)

where the reference time 7 > 0 is defined by assumption (H1) or (H2), ||-|3 = > CEQ\H~|||§7C is the discrete
(e}

L?-norm with ||:||2,. defined by (19), Hg = Alg.n| (,+) is the semi-norm induced by the bilinear form Ag.y,
defined by (16), and |-|? := sg(-,-) is the semi-norm induced by the bilinear form sg defined by (13).

Proposition 4.4 (Coercivity). Assume that (H1) holds. Then,
L2
M2 < Apulvv), We

Consequently, the discrete problem (17) is well-posed.

We now study the stability of the bilinear form Ag, under the hypothesis (H2). We consider the
reference length hal = 4Cﬁ2LCT”u+VﬁT | o2 () where Cj results from Proposition 4.1 and L; = |C|W1,oo(g)

is the Lipschitz constant of . If u = —V 3", we set conventionally hy = +o0o. Recalling that A\, denotes
the smallest eigenvalue of the tensor o3, over the domain (2, we assume that

14+207A, >0 and h < ho(1+207\,), (24)
where ¥ > 0 is a constant that linearly depends on || e (q) + CrCyL¢ max(\Q]é, |8l Lo (@)7). By conven-
tion, the second condition in (24) is void if p = —V3".

Proposition 4.5 (Inf-sup stability). Assume that (H2) and (24) hold. Then, there exists ¢ > 0 such
that

olvl < sup  Agp(v,w), WeE.
wee Jwl=1

Consequently, the discrete problem (17) is well-posed.

Table 1 recapitulates the different situations where the discrete problem (17) is well-posed.

A, >0 *ﬁ <A <0
(H1) (H2)
p=-vg" n#-vVg'
heRso| heRyg h e (0, ho (1 + 2’197'Ab))

Table 1: Stability of the discrete problem (17) with respect to A, and the mesh-size h.

4.3 Bound on consistency error and a priori error estimate

In this section, we derive an a priori error estimate by bounding the consistency error

E(u) = gsmq;ﬁ' |Ag,u(Re(u),v) — 3(s,up;v)]|.
vel,||v]|=1

In what follows, the notation A < B stands for A < C'B where C' is a positive non-dimensional constant
uniform with respect to the mesh size and the model parameters.



Lemma 4.6 (Bound on consistency error). Assume that the exact solution satisfies uw € W14(Q) with
q € [1,2]. Then, the following holds:

1
g 4(g—2 ?
E(u) S (Z”V,@ +u" = (V-B)Id |4 oo(c)fghg (g )Hu — Igc(u)”%q(c)>

ceC
1
q

q (d—1)
2 5—(g—2)
+ Z Z HBHioo(c)hc 2 ||U_ISC(U)||qu(3p)
ceC pePe

We can now state the main result of this paper which follows from Lemmata 4.3 and 4.6.

Theorem 4.7 (A priori estimate). Assume that the assumptions stated in Table 1 hold. Assume that the
ezact solution of (1) satisfies u € W4(Q) with q € (dQ—fl, 2] Then, we have

Qe

g, H2(g—2L)
Ju—Re(w)] < (vamm—<v-ﬁ>1d||qoo(c>73hc2 “lu %V1,q<a>>
ceC

3 GHa-F1) | 1
+ Z Z ”B”Lw(c)hc lu wha(g)

ceC peP.

For d =3, it follows that |Ju — Re(u)|| = O <h27%) for all g € (3,2].

5 Numerical results

We investigate numerically the edge-based scheme (17) on four sequences of three-dimensional polyhedral
meshes. Each mesh is obtained as a uniform refinement of an initial mesh. Meshes from the first sequence,
denoted H, are composed of hexahedra, those from the second one, denoted PrT, are composed of prisms
with a triangular basis, those from the third one, denoted PrG, are composed of prisms with a hexagonal
basis, and those of the last one, denoted CB, are composed of hexahedra with non-matching interfaces;
see Figure 4. The domain is the unit cube Q := [0, 1]3. The exact solution corresponds to a Taylor-Green

NN i =\
Neepoom NS
s‘\‘\;\‘ugﬂm&’gﬂgﬁxi k‘é\:\\\w‘“'"
SRR R
va‘yﬁ{kk%\xmﬂﬂ’l’i‘ i

Figure 4: Examples of meshes from the four sequences. From left to right: hexahedral mesh (H), prismatic
mesh with triangular basis (PrT), prismatic mesh with hexagonal basis (PrG), and Checkerboard mesh

with non-matching interfaces (CB).

velocity field, the advective vector field 3 is affine (see Figure 5, left panel) and the reaction tensor p is

diagonal and constant:

sin(7x) cos(my/2) cos(mz/2) 1 (x —2y)/2 1
u = | cos(mz/2)sin(ny) cos(wz/2) | , B = 3 (y—2x)/2|, wp= §Id'
cos(mx/2) cos(my/2) sin(mz) —z



Note that V-8 = 0 and that the eigenvalues of the tensor og, are {O,%, %}, so that the discrete
scheme (17) is well-posed owing to Proposition 4.5 if the mesh size is small enough.
We perform a convergence study by computing the relative discrete L2-error attached to edge dofs,
denoted Erg(u), and defined by
llu—Re(w)ll2
Bre(u) = ot 2
IR (w)ll2

with the norm ||-||2 on every cell of the mesh by (19). The convergence rates, shown in the left panel of

W0

2

w0

" 5
1071 .

0.2
% L 1 vl v el il A
02 04 ¢ 0.5 y 10 103 104 10 108
e 08 10 4F

Figure 5: Left panel: inflow boundary 92~ in blue and some streamlines of the vector field 3. Right
panel: Discrete errors on H (—=—), PrT (——), PrG (-=—), and CB (—e—) mesh sequences.

Figure 5, lie between % and 1 for the PrT and PrG mesh sequences and are closer to 1 for the H and CB

mesh sequences. Table 6 provides additional information on the computational costs by reporting the size

of the linear system (#E), the mean stencil St, the values of the discrete error Erg(u), and the ratios

#E/#V and #E/#C, indicating that the present scheme may involve less dofs than traditional Finite

Volume schemes placing R%valued unknowns at mesh vertices or at mesh cells. Note that owing to the
# L #E_ #4002 _1x1.

Euler relation, mtiE - =4E

#E St Erg(u) % % #E St Erg(u) % %
3.0e+02 21 3.9e-01 240 4.69 4.7e+03 38 2.4e-01 3.55 2.37
1.9e4+03 25 1.8e-01 2.67 3.80 3.5e+04 46 1.5e-01 3.76 2.18
1.4e+04 28 9.4e-02 2.82 3.39 1.1e+05 48 1.1e-01 3.84 2.12
1.0e4+05 30 4.9e-02 2.91 3.19 2.7e+05 49 9.1e-02 3.88 2.09

#E St Erg(u) Iy I #E St Erg(u) Zy IE
7.2e403 83 2.2e01 234 595 1.5e4+03 112 3.6e-01 246 5.33
4.9e+04 110 1.4e-01 241 5.51 1.2e4+04 144 1.8e-01 2.61 5.00
1.5e+05 120 1.1e-01 244 5.35 8.9e+04 162 9.8e-02 2.70 4.83
3.5e+05 125 8.5e-02 2.45 5.26 7.0e+05 180 5.1e-02 2.75 4.75

Figure 6: Mean stencil St and discrete error Erg(u) for the H (upper left panel), PrT (upper right panel),
PrG (lower left panel), and the CB (lower right panel) mesh sequences.

Remark 5.1 (Stabilization parameter). As observed in Bonelle et al. [3], one can reformulate the basis
functions £, . as a consistent term plus a stabilization term:

PR (R N E ACT-0 ACY {CON N
e = T T el T e 1)
~——

Consistent term Stabilization term
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Numerical experiments show that it is possible to replace the parameter d~' by a positive value that is
reasonably close to d~!; however, in the stability analysis, this modification impacts the property (£1)
which is used to obtain the lower bound in Proposition 4.1.

6 Proofs

6.1 Properties of the reconstruction map
Proof of Proposition 4.1. Let ¢ € C, let v € & and let ¢ € [1,00).
i) Lower bound. Owing to the definition (4) of Lg,, we infer that

ILe. (V)H%q(c) = Z H|Veae + b, ’g2

eGEc

ae:%and b. = (Eec—| |2>ve—i— Zveffe/ )
e

e’cE:\{e}
Using the Property (£1), we observe that ac-be =0 on pe, so that |veae + be|p2 > |Veae|s2, whence

”LS Lq(c > Z H‘Veae’ﬁ - Z’Ve’ ”a’enLq p c

L(pe,c)’

with

BEEC GEC
Hence, the expected lower bound follows from [a.|?, (Pee) = ‘Tgl’(?'.

ii) Upper bound. The discrete Holder inequality yields

Le. )20y < (#ET S el

EEEC

)

Since [€e el ooy < lellleclfoey W have [€ecldq ) < C(#E)' 152l with the constant

le|d
o I )i
E q el ol
- (#m.)" ee&((me’c, lle., <>)

that is uniformly bounded owing to mesh regularity, yielding the expected upper bound. Specifically, a

straightforward calculation shows that
- 1
1 2
STACIY A |
2 |c] cos?(te, nfc(e,))

|fe(e)] < || >
< and
ez~ dlpe,c|

1
3 . 1
S CTZEA T R
|c| d|pec|l) €€k, e'#e oS (te’v”fc(e'))

Proof of Proposition 4.2. Let ¢ € C and let ¢’ € E.. The consistency property relies on the property (£2).
Indeed, given U € Py(¢;R?), we infer that, for all € pr .,

LgcRg ZRg |e ec ) Z(Ue (Zfac 6>U=U.

ecBE. ecE. ecE.

e,c|pe’c e,c|pe/’C

leading to

le[|£e,

O]

11



Proof of Lemma 4.3. Let ¢ € C and let v € W14(¢) with ¢ € [1,00). Owing to the triangle inequality
and the Py-consistency of the reconstruction map from Proposition 4.2, we infer that

v = Ze,(v)|La(e) < v —velpae) + | Ze.(v — ve) | o)

with vz = [¢]~! [, v. In addition, we observe that, for all w € L%(¢é),

_ 1 \pec\
fe= 2 |pe|/e ' Zw L60) Zwﬂ” 1% 5oy

ecE.
where we have used that |pe .| < |pe| to infer the last inequality. Owing to the Hélder inequality, it then
follows that Hw||qu(pe) < ||w||qu(pe)H1H‘éq,(pe) with % + % = 1. Since Hl”i'/(pe) = |pe|?7!, we infer that

IRe. (w)]

Using this estimate and the upper bound from Proposition 4.1, we obtain

IRe. (w)

Z¢ g|h””%¢@)

|1 Ze. (v —ve)lzae) < CillRe, (v — ve)

ge < Cylv —ve|pa
so that v —Ze¢, (v)| o) < (1+Cy)|v—ve|Le(e). Hence, |v—Ze. (v)|pa(e) < (1+C4)deqhe|v|pwrag with

|w — we|pa
¢é,q = sup h—c(c)
wewla(e) ‘e |w’W1’q(a)
Finally, we observe that the diamond ¢ can be decomposed as
é:LJpe:L_J Upa,a

ecE, ecE. ceCe

where pe . consists of two tetrahedra, so that ¢ is composed of 2}, #C, tetrahedra connected through
elements of §. and §y with f € F.. Then, proceeding as Ern & Guermond in [14, Lemma 5.5], we infer
that the quantity ¢¢, is uniformly bounded for all ¢ € C and all ¢ € [1,00). O

6.2 Stability and well-posedness

Proof of Proposition 4.4. Let ¢ € C and consider v,w € &.. The definition of the bilinear form gg ;.
together with the definition of the tensor og ,, yield

8 uie(Vs W) + 8, pie(W, V) = / Le.(v)}ogpule(w) + D / V-(BLe. (v)Le. (w)). (25)
c pEP.
Choosing w = v in this relation leads to
Z/v (BlLe,(v)[2) Z/ﬂnf ILeW)]-fLe(v) Z/ﬂnclLs W,

P€‘43c fES. fEF
with n. the unit outward normal vector to ¢, so that recalling the definition (12) of ng.., we infer that
3 (@ev:¥) + v, v) = Z/Lg Dopute® 533 [ @Erole
ceC ceC feF,

The above rightmost term is reformulated as

Zz/gncu_g V% =2 Z/ n)|Le, , (v |,52+ZZ/ ng)[Le(v)[-{Le(v) }

ceC feF. feFf’ feFe fesy
= Z / n)|Le, (V2 + Y ngp(v,v)
feFa feFe

12



so that, using the definition (11) of ng, we arrive at
gouv) +nple) = 53 [LeWopte®) +5 3 [ @m0
ceCv e fch?

Recalling the definition (6) of Ag, and combining the above relation with the bilinear forms sg and
A‘?B.n)_, defined by (13) and (15) respectively, we obtain

hale) = 5 3 [Le.0)0pLe (0 + Al (v0) + 53a(vev). (26)
ceC
The expected result is inferred from (H1) . O

To prove the inf-sup condition in Proposition 4.5, we need the two following Lemmata, where we
consider the function §(v), such that its restriction to any mesh cell ¢ € C is

d(v)jc = Le(Qv) — CLe.(v), WEE, (27)

where ¢ € WH%°(Q) is the potential defined by (H2) and where (v € £ is defined by ((v)e = ((@e)Ve, for
all e € E.

Lemma 6.1 (Bounds on §). For all ¢ € C, we have
620y < 2CiLchelVlloe, W € & (25a)

and for all f € F,
1
6(v) () < 2CoCoLehZ IWhae, W € & (28h)
Proof. Let v e & and let ¢ € C.
i) Proof of (28a). Let (. be the mean-valuel of ¢ over ¢ given by . = |c|™* [, ¢. Since Lg, ((v) = (eLe.(v)

because (. is constant, we have 6(v)|. = (¢ —{c)Le.(v) — Le. ((C—(c)v), so that the triangle inequality, the
Holder inequality and the upper bound in Proposition 4.1 yield

16022y < 1€ = Cell oo () ILe. (V) 2oy + [be. ((C = V)l L2
< Gil¢ = Cell e ) Ivll2.e + Cll (€ = Ce)v
< 2G4 = Cellpoe () [IVll2.e-

Observing that [¢ — Cclpeo(c) < Lche, the expected result follows.
i1). Proof of (28b). Let p € P, and let f C dp. Owing to the multiplicative trace inequality (3), we have

18521 = Colo, (e 180y + 00y )

Observe that |§(v)| g1, = |IV(V) 2] 12 where [VE(v)|72 = 327 [0;6(v)i|* in the Cartesian basis of RY
and where 0; is the weak derivative in the direction 7. Since Lg,(v) is piece-wise constant on PB., it then
follows that [VE(v)[7 = 37 [Le, (v)i0;¢I° = [Le. (V)72 [VC[%. As a result, [6(v)] g1 < Lelle, (V] g2y
Moreover, proceeding as in %), we infer that [6(v)|g2(,) < 2Lche[|Le, (V) f2(y)- Collecting these bounds,
we infer that

1
160 L2y < 2CrLehé L. (V)] p2 ()
Then, summing over §; and using the upper bound of Proposition 4.1 yield the expected result. ]

In what follows, we consider the non-dimensional number we = L¢ max(\Q]é, 18] Lo ()7)-
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Lemma 6.2 (Multiplicative stability). There exists C; > 0 independent of the mesh size and the model
parameters such that

vl < Ce (Il () + we) VI Vv € €.

Proof. Let v € £ and let us rewrite ||Cv[? as

|||CV|||2 = ZT_ 2, + Zsﬂ,c(CW v) + Z A|I@.n|;f(CV, Qv) + Z ngf((:v, v)

ceC ceC fEFo feEFe°
=T +T2+T3+T4.

We want to use the Lipschitz regularity of ¢ to bound separately these terms by |lv||?>. we recall the
notation (. = |c|~! J.¢ from the proof of Lemma 6.1.
i) Bound on Ty. First, the triangle inequality implies that

1 _ _
sh < S I3 + > T =GB = T + The.
ceC ceC

Since |G| < ¢l o we infer that Ti 1 < X0 7 1€ g I, < 1€ oy IMIP. The bound Ty casily
5e< Lghg”\va Combining these

follows from the Lipschitz regularity of ¢ since T12 <> ¢ Tfnghz
two bounds with h, < \Q]é the definition of w¢ yields

T <2 (2 + 1< By ) IMIP.

ii) Bound on T,. Since the bilinear form sg.. is symmetric and positive, we infer that

7T2 < Zsﬁc Cev, Cev) + ZSB, ((C=C)Vv, (C=Ce)v) = Toq + a2,

ceC ceC
and we have directly that T5; < ECECHCHLOO(C sgc(v,v) < ||C||2OQ(Q) Iv[>. To bound Th s, we use the
multiplicative trace inequality (3) and that Lg, is piece-wise constant to infer that
58:0((C—CV, (C=Cov) = / Byl [[Le. (= CMIee < 2638l D Y he ' Le. (=) 32y
IS IS pemcﬂmf

where B = {p € P|f C Ip}. Observing that the boundary of each diamond p.. is composed of 4
sub-faces in §., exchanging the sums yields

53:0((C—=Cov, (C—CV) < 8CTIBlL=() D he ' Le.((G=Ce)IFzy) = BCRIBI L= (e he e, (C—CV) 2

pePe

Owing to upper bound from Proposition 4.1, the Lipschitz regularity of ¢, and the definition of w¢, we
infer that

56:c((C = o)V, (€= Co)V) < 8CECE Bl Lo (e g (6 = CV)IF e < BCFCFWET VIS .-

Finally, collecting these two bounds leads to
Ty < 2 (|1 () + 8CECE?) VI
iti) Bound on T3. We proceed as in the previous step i) to infer that

Ty < 2 (I¢I ) + 1m0 CECE2) VIR,

14



where np 5 = (maxcec #(F. NF?)) is the naximal number of boundary faces that a mesh cell can have.
iv) Bound on Ty. To bound this last term, we use a different decomposition, namely

Ty = Z sc2g, (v, V) + Z Ay(v) =Ty + Typ,
fere feFe

with A¢(v) = sg.f(Qv, Qv) — sc2g.¢(v,v). Observing that sc2g.(v,v) < ||C||%oo(f)sﬁ;f(v,v) for all f € F°,
it follows that Ty 1 < [¢[? @ [Iv[I?>. To bound the second term T} 2, we recall the quantity 6(v) defined
by (27) and we obtain

2
250 = [ 181 (1801 + clte(l)” - e
f
Then, applying Young’s inequality and the trace inequality (28b) yields
850 <2 [ |Bng B + [ 8] ClLel
f f

<420 CyLe)?1Blr=(r) Y, helVIIB.e + 1C17 (5585 (v, V).
CECf

As a result, since #Cy = 2 for all f € F° and introducing w¢, we infer that

Tys < 32CECHET VB + 1By D 507w v) < (32C3CEE + [Chm ey ) IMIP,

feke
whence
Ty < 2 (16C3CR2Leh + [C1 () ) IVIZ
v) Conclusion. The expected inequality then follows from the above four bounds. O

Proof of Proposition 4.5. Let v € £ and define

A
S= sup 76’“(\/’\/\/).

weevoy vl
Let us take w = (v + Ov with 8 > 0 to be chosen below. We infer from Lemma 6.2 that
Ag (v, w) < Slwll <S (0 + Ce (I¢] Lo () +w)) IVl

so that it remains to prove that Ag ,(v,w) > |lv||>. First, we split Ag,, as follows:

Ag u(v,w) = Aﬁ77vﬁT+%(vﬂ)Id(v, w) + Hu+VﬁT—%(V-B)Id(V7W) =T +Ts,
where the bilinear form Hg, is defined on £x& by
Halv.w) = [ aLe ) Le,(w).
ceCc Ve
for all @ € L*°(Q). Let us bound from below the two terms T} and T5.
i) Bound on T;. We bound from below this term by considering the following decomposition
Ni=Ag_vpiiwonaVW) =Ag _viariiovemalvv)

+Ag v (v, &) = Acg _v(cpy (V>V)

+ H%(Vﬂ)ld("? Qv) — H%Q(V,B)Id(vv v)

+ 9A37_V5T+%(v.,@)1d(V7 V) =Ti1+Ti2+Ti3+T14.
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Regarding T 1, we use the relation (26) to infer that

Tia= (Z/'—S V)05, -v(ch) +1o(v-pyd Le (V) + g (v, V) +s¢a (v, V)>
ceC

23 (Z/'—S V)0 ea _vicpy+iev-gate. (V) + Algp (v, V) +sp(v, V)) :
ceC

since ¢ > 1. Then, observing that OB, V(B LV = —B3-V(1d and using Hypothesis (H2) together

with the lower bound from Proposition (4.1), we infer that 717 > %[lv||>. The next step consists in
bounding the perturbation term 77 2. To do so, we recall the identity (10) for gg ,.., and we observe that
8s,-vpre =0 and g.g _gcgymc = 0, so that 77 o solely consists of surfacic terms:

Tio= (nﬁ(v, lv) — ncﬂ(v,v)> + <55(v, lv) — scg(v,v)> + (A?B,n),(v, lv) — A?Cﬁ.n),(v,v)) :

Now, introducing the function §(v) locally defined by (27) and recalling that 8 € W1>(Q), ¢ > 1, and
¢ € Wh(Q), so that ({Lg.(v)} = {¢Le.(v)}, we observe that

180V, C) — (v, v) = Z/ﬂnf ILeW)-{8) Y,
feFe

S0 (v, OV) — s (v, V) = Z/Iﬁnfl L] 16,

fES2

for all x € F° or « € C, and
Ry (V5 C0) = Al (V) = /f (B-n) " Le(v)-8(v),

for all f € F2. Then, applying the Cauchy—Schwarz inequality to these three terms yields

2

1
Tio <6 (WG +v2)" (2218l D 160132

ceC peP.

In addition, observing that OB, VB +L(V-B)Id = 0 and using the identity (26), we have

L/ o2 2
Ap_variivpuaV:V) =3 (MB * |V|S> ’

so that combining this expression with the above estimate yields

Tz =12 (AB ~vp i (vaalV:V ) 2 IBlz=(0) 18Iz o
ceC pE‘ﬁc

Finally, we use the inequalities (28a)-(28b) together with the definition of w¢, to infer that

1 1
T < Cowe (Ap voriswama(vv) (7 IVIB)?

where Cs > 0 depends exclusively on the numerical constants Cr and C. Now, we collect the bounds on
Ty 1 and Ti 2 and we apply Young’s inequality to obtain

1 2
Ag vy pralvow) = JlIvIT+ (0~ C(Sw()AB,—VBH-%(V-B)M(V’V) + Th,3.
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As a result, choosing 0 = ngg yields

1
Ag _vpriLwpralv,w) > EH\VW? + T3 (29)
ii) Bound on Ty. First, we rewrite this term as:
Ty = GHu—i—V,BT—%(Vﬂ)Id(Va v)

tH(urvpr- L (v p1a) (v V)
tHuve 1wV )~ Heuivp -t vpna) (V) = Tor + Too + Tog.

Concerning 75 1, we have

2

Z /%L& Le,(v) > quLgc W32

cGC ceC

where we have used Hypothesis (H2) (recall that A, < 0) and the upper bound from Proposition 4.1. The
second term 75 o is treated similalrly:

C2)\,
T2 =33 [Copule)Le) >~ Il pm VB

CEC ¢
Collecting these bounds yields
A
Ty > ZOlull3 + Tzs. (30)

with 9 = 05(9 + ¢l pee())-
iti) Bound on Ty + T». Collecting the estimates (29) and (30), we obtain

™

1 .
Agu(v,w) = L IVI* + Z0m VIS + Tas + Tos.

We observe that

2

—Hmﬁw ) = Heguropn () = 3 / M+W3T)|—sc( )-8(v).

ceC

Applying successively the Holder inequality, the inequality (28a) and the upper bound from Proposi-
tion 4.1, we infer that

T3+ Toal <Y i+ VB | =(o) ILe Ml 2 18 2y < It + VB | (@) CF LIV
ceC

As a result, we obtain

1 TN h _
hauvow) = 4P+ (20 = o) B,

-1
with the reference length hy = (4Cﬁ2||lt+ V,BTHLOO(Q)TLC) . Hence, there exists ¢’ > 0 such that
Ag u(v,w) > d[Iv]|%, as soon as A, and h satisfy (24). O

17



6.3 Bound on consistency error and a priori estimate

Proof of Lemma 4.6. Let yj. = (u — Ig(u))‘c for all c € C. Note that yjg, € L(0p) for all p € P.. Let v €
€. Owing to the definitions of Ag ,, and ¥, it follows that (s, up;v) —Ag u(Re(u),v) = T1 +To + T3+ 1y,
with

ni=Y [(V8+u - (VO Ly, Toim >3 Z/ﬂn JLeW)]-y}.

ceC Xe{F°,C} zeX f€Fs
e YN [l wd T XY [ ke,
Xe{F°,C} zeX €3, FEF? fe§2

Indeed, the first term 77 is obtained using the definition (10) of gg ,.. together with the following inte-
gration by part formula (25) and

Z/ (BV)y) Le,(v Z/ BIe )y~ [(VB)Le.v y+2/v (ByLe.(v)),

pEP. pPEPC peEPe

holding for all ¢ € C and all v € &.. The terms T3 and T3 result from the rightmost term of the relation (25)
and the fact that (8-n)[u]; = 0 for all f € §,. Finally, the term T} is inferred observing that up = ujsq.
It remains to bound tese four terms. First, let us consider 7. Let g € [1, 2] and denote ¢’ > 2 its conjugate
number, ie., 1 =1/q+ 1/¢’. From the Holder inequality, we infer that

[ B+t = (VN L, <v>-y1 < Noolyl oo ILe. )] o

C

with Noo = [VB 4 p" — V-BId| (). Then, using a local inverse inequality (see [12, Lemma 1.138]), we
infer that

/(Vﬂ +up' —(V-B)Id) LSC(V)'y‘ < Nooh|yl o ILe. (W 2o,

C
with 0 = d (% — %), so that the Holder inequality yields

1

(Zthf’q”y“ch)) (ZIILs LQ(C> :

ceC ceC

> [ (VB+p" = (V-B)Id) L. (v)y

ceCc ¢

Moreover, recalling that ¢’ > 2 so that |-, < |-|,2, and using the upper bound in Proposition 4.1 leads to

1= |% [(98+u" = (V) Le. v

ceC

1
(ZN" helyl ) [Ivll2-

ceC

To bound the two terms T and T3, we consider a sub-face f € §, for all x € X with X € {F°,C}. As
above, the Holder inequality yields

| / (B L]0} < 181 Mublaxg 1l 1Ll

so that using a local inverse inequality, we obtain

S

\ /wnf)uLg {{y}}\ W 181 M ol (B0l Ll 2o,
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with 8 = (d — 1) (% - %) Hence, denoting > ; = > xcipo 0} Dzex 2_jeg, it follows from the triangle
inequality, the Holder inequality and ¢’ > 2 that

> /f(ﬂ-nf)[[l-g(v}]]{y} < | ST RUB M%) | | SSUIBmlE a2,
f f f

Q
N[ =

Next, owing to the definitions (11) and (13) of ng and sg respectively, the mesh regularity and recalling
the inequality |a & b7 < 297 1(]a|? + |b|?), we infer that

Q=

[NIES

, q
T T3 S (30 3 A0U81E v Wy | 580v:0)%.
ceCpeP.

Finally, proceeding similarly, we also infer that

Q=

D=

, q
Ta S | D0 BB Ly | Al (V)2
fEF?

and the expected result follows from the above bounds. O
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