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CLASSIFICATION OF EXTINCTION PROFILES FOR A ONE-DIMENSIONAL DIFFUSIVE HAMILTON-JACOBI EQUATION WITH CRITICAL ABSORPTION
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A classification of the behavior of the solutions f (•, a) to the ordinary differential equation

with initial condition f (0, a) = a and f ′ (0, a) = 0 is provided, according to the value of the parameter a > 0, the exponent p ranging in (1, 2). There is a threshold value a * which separates different behaviors of f (•, a): if a > a * then f (•, a) vanishes at least once in (0, ∞) and takes negative values while f (•, a) is positive in (0, ∞) and decays algebraically to zero as r → ∞ if a ∈ (0, a * ). At the threshold value, f (•, a * ) is also positive in (0, ∞) but decays exponentially fast to zero as r → ∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton-Jacobi equation with critical gradient absorption and fast diffusion.

Introduction

Let p ∈ (1, 2). Owing to its scale invariance, the diffusive Hamilton-Jacobi equation

∂ t u -∂ x |∂ x u| p-2 ∂ x u + |∂ x u| p-1 = 0 , (t, x) ∈ (0, ∞) × R , (1.1) 
is expected to have self-similar solutions with separate variables, that is, solutions of the form

u s (t, x) = ((2 -p)(T -t) + ) 1/(2-p) f (|x|) , (t, x) ∈ (0, ∞) × R , (1.2) 
which vanish identically after a finite time T > 0. Inserting this ansatz in (1.1) leads us to the ordinary differential equation

(|f ′ | p-2 f ′ ) ′ + f -|f ′ | p-1 = 0 , r ∈ (0, ∞) , (1.3) 
along with the boundary condition f ′ (0) = 0 stemming from the assumed symmetry and the expected smoothness of u s with respect to the space variable. It is then natural to investigate the behavior of solutions to (1.3) according to the initial value f (0). The main motivation for such an analysis is that non-negative self-similar solutions of the form (1.2) are expected to provide an accurate description of the behavior near the extinction time of non-negative solutions to (1.1) which enjoy the finite time extinction property. Indeed, it follows from [4, Theorem 1.2] that there are many non-negative solutions to (1.1) satisfying the latter property. The classification of solutions to (1.3) performed below allows us to identify the behavior at the extinction time of non-negative solutions to (1.1) in the companion paper [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF], the initial data being even in R, non-increasing on (0, ∞) and decaying sufficiently rapidly as x → ∞. More precisely the main result of this paper is the following classification:

Theorem 1.1. Given a > 0 there is a unique solution f (•, a) to the initial value problem .

(|f ′ | p-2 f ′ ) ′ + f -|f ′ | p-1 = 0 , r ∈ (0, ∞) , (1.4 
Before giving a rough account of the proof of Theorem 1.1, let us complete the discussion started before the statement of Theorem 1.1 on the role of self-similar solutions to (1.1) of the form (1.2) in the description of the dynamics of non-negative solutions to (1.1) near their extinction time. According to Theorem 1.1 we have infinitely many non-negative self-similar solutions of the form (1.2) (corresponding to a ∈ (0, a * ]), but it turns out that only one is selected by the dynamics of (1.1) as the behavior near the extinction time. More precisely, as shown in [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF], if u is a solution to (1.1) emanating from a non-negative even initial condition which is non-increasing on (0, ∞) and decays sufficiently rapidly as x → ∞ and if T e denotes its extinction time, then u(t, x) behaves as ((2p)(T et) + ) 1/(2-p) f (|x|, a * ) as t → T e . Let us point out that this universal behavior is also true in higher space dimensions N ≥ 2 for p ∈ (2N/(N + 1), 2), but the identification of the corresponding self-similar profile is more involved and requires completely different arguments [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF]. We also point out that a similar dynamics as the one described above is observed for the fast diffusion equation

∂ t v -∆v m + v m = 0 , (t, x) ∈ (0, ∞) × R N , when m ∈ ((N -2) + /N, 1) [2, 3].
Let us now describe more precisely the proof of Theorem 1.1. Given a > 0, classical results guarantee the well-posedness of (1.4)-(1.5), see Section 2. In addition, there is R(a) ∈ (0, ∞] such that f (•, a) is a decreasing one-to-one function from [0, R(a)) onto (0, a]. This property allows us to introduce ψ(•, a) defined on (0, 1) by

ψ 1 - f (r, a) a , a := |f ′ (r, a)| p a p , r ∈ [0, R(a)) . (1.7)
Thanks to (1.4)-(1.5), the function ψ(•, a) solves

ψ ′ (y) + p p -1 ψ(y) (p-1)/p (y) = p p -1 a 2-p (1 -y) , y ∈ (0, 1) , ψ(0) = 0 .
(1.8)

The transformation (1.7) thus reduces the second-order differential equation (1.4) to the first-order differential equation (1.8), which is already a valuable feature, but it also has the very interesting property that ψ(•, a) is monotone with respect to a. The latter is in particular of utmost importance to investigate uniqueness issues, see [START_REF] Chen | Self-similar singular solutions of a p-Laplacian evolution equation with absorption[END_REF][START_REF]Eternal solutions to a singular diffusion equation with critical gradient absorption[END_REF][START_REF]Existence and uniqueness of very singular solutions for a fast diffusion equation with gradient absorption[END_REF][START_REF] Shi | Self-similar very singular solution of a p-Laplacian equation with gradient absorption: existence and uniqueness[END_REF][START_REF] Ye | Uniqueness of self-similar very singular solution for non-Newtonian polytropic filtration equations with gradient absorption[END_REF] for instance, where monotonicity with respect to the shooting parameter is used to establish uniqueness of the "fast orbit" for related problems. In addition, the finiteness of R(a) as well as the behavior of f (r, a) as r → ∞ when R(a) = ∞ are directly connected to the behavior of ψ(y, a) as y → 1. The core of the analysis is actually the identification of the behavior of ψ(y, a) as y → 1 according to the value of a and is performed in Section 3. Interpreting the results obtained in Section 3 in terms of f (•, a) is done in Section 4, where we prove Theorem 1.1.

We end this introduction with a couple of remarks: on the one hand, the approach developed in this paper does not seem to extend to the study and classification of self-similar solutions to (1.1) of the form (1.2) in several space dimensions, the main reason being that the variable r = |x| remains in the equation satisfied by ψ. Indeed, it seems that no transformation similar to (1.7) is available in dimension N ≥ 2. Still, it is possible to establish a result similar to Theorem 1.1 in higher space dimensions but completely different arguments are used [START_REF]Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption[END_REF]. On the other hand, there is a striking difference between (1.3) and

(|f ′ | p-2 f ′ ) ′ + f -|f | p-2 f = 0 , r ∈ (0, ∞) , (1.9) 
which involves only zero order reaction terms. Indeed, in general, (1.9) and its generalizations have only one non-negative C 1 -smooth solution which is defined on (0, ∞) and converges to zero as r → ∞, the so-called ground state solution, see [START_REF] Kwong | Uniqueness of positive solutions of ∆uu + u p = 0 in R n[END_REF][START_REF] Serrin | Uniqueness of ground states for quasilinear elliptic equations[END_REF][START_REF] Shioji | Uniqueness and nondegeneracy of positive radial solutions of div(ρ∇u) + ρ(-gu + hu p ) = 0[END_REF][START_REF] Yanagida | Uniqueness of positive radial solutions of ∆u + g(r)u + h(r)u p = 0 in R n[END_REF] and the references therein. This is in sharp contrast with (1.3) for which infinitely many ground states exist, see Theorem 1.1, but a single one features a faster decay as r → ∞. This multiplicity of course complicates the analysis, as it requires not only to identify the possible decay rates as r → ∞, but also the corresponding ranges of the parameter a.

2.

Well-posedness of (1.4)-(1.5)

We begin with the well-posedness of (1.4)-(1.5) and basic properties of its solutions.

Lemma 2.1. Given a > 0, there is a unique solution f (•, a) ∈ C 1 ([0, ∞)) to (1.4)-(1.5) such that |f ′ | p-2 f ′ ∈ C 1 ([0, ∞)). Furthermore, R(a) = inf {r > 0 : f (r, a) = 0} ∈ (0, ∞]
and f (•, a) enjoys the following properties:

0 < f (r, a) < a and -a(1 -e -r ) 1/(p-1) < f ′ (r, a) < 0 , r ∈ (0, R(a)) , (2.1) 
and d dr e r |f ′ (r, a)| p-2 f ′ (r, a) = -e r f (r, a) , r ∈ (0, R(a)) .

(2.2)

Proof. Since p ∈ (1, 2), the Cauchy-Lipschitz theorem ensures the existence and uniqueness of a solution (f, g)

∈ C 1 ([0, R(a)); R 2 ) to the initial value problem f ′ (r) = -|g(r)| (2-p)/(p-1) g(r) , g ′ (r) = -|g(r)| + f (r) , r ∈ (0, R(a)) , f (0) = a , g(0) = 0 , (2.3) 
where

R(a) ∈ (0, ∞] is such that either R(a) = ∞ or R(a) < ∞ and lim sup r→R(a) (|f (r)| + |g(r)|) = ∞ . (2.4) Since g(r) = -|f ′ (r)| p-2 f ′ (r) by (2.3) for r ∈ [0, R(a)), it readily follows from (2.3) that f solves (1.4)-(1.5). A further consequence of (2.3) is that d dr p -1 p |g| p/(p-1) + 1 2 f 2 = |g| (2-p)/(p-1) g(f -|g|) -|g| (2-p)/(p-1) gf = -|g| 1/(p-1) g ≤ p p -1 p -1 p |g| p/(p-1) + 1 2 f 2 ,
which excludes the occurrence of (2.4). Therefore R(a) = ∞ and the positivity of a along with the continuity of f guarantee that R(a) > 0.

We next infer from (1.4)-(1.5) that lim r→0

(|f ′ | p-2 f ′ ) ′ (r) = -a < 0 ,
which implies that f ′ is negative in a right neighborhood of r = 0 as f ′ (0) = 0. Using again (1.4) we note that

d dr e r |f ′ (r)| p-2 f ′ (r) = e r |f ′ (r)| p-2 f ′ (r) + |f ′ (r)| p-1 -f (r) , r > 0 . (2.5)
Consequently, as long as f ′ (r) is negative and r ∈ (0, R(a)), there holds

d dr e r |f ′ (r)| p-2 f ′ (r) = -e r f (r) < 0 ,
from which we deduce that f ′ cannot vanish in (0, R(a)). We have thus proved that f ′ (r) < 0 and f (r) ∈ (0, a) for r ∈ (0, R(a)) as well as (2.2). Combining these properties gives

- d dr e r |f ′ (r)| p-1 ≥ -ae r , r ∈ (0, R(a)) ,
hence, after integration and using (1.5),

-e r |f ′ (r)| p-1 ≥ -a(e r -1) , r ∈ (0, R(a)) .
This completes the proof of Lemma 2.1.

An alternative formulation

Let a > 0 and set f = f (•, a). As f ′ < 0 in (0, R(a)) by (2.1), the function af is an increasing one-to-one function from [0, R(a)) onto [0, a) and we denote its inverse by F . Then F is an increasing function from [0, a) onto [0, R(a)) and we may define

ψ(y) = ψ(y, a) := 1 a p |f ′ (F (ay))| p , y ∈ [0, 1) . (3.1)
Equivalently,

ψ 1 - f (r) a = |f ′ (r)| p a p , r ∈ [0, R(a)) , (3.2) 
and

ψ ′ 1 - f (r) a = - p (p -1)a p-1 |f ′ | p-2 f ′ ′ (r) , r ∈ [0, R(a)) . (3.3) 
We then infer from (1.4)-(1.5), (3.2), and (3.3) that ψ solves

ψ ′ (y) + p p -1 ψ(y) (p-1)/p = pa 2-p p -1 (1 -y) , y ∈ (0, 1) , (3.4) 
ψ(0) = 0 . (3.5)
We also deduce from (3.4)-(3.5) that

ψ ′ (0) = pa 2-p p -1 > 0 . (3.6) 
3.1. Comparison and monotonicity. Though the equation (3.4) involves the exponent (p -1)/p, which ranges in (0, 1), the following comparison principle is available:

Lemma 3.1 (Comparison principle). Let ξ i ∈ C 1 ([0, 1)), i = 1, 2, be two functions satisfying ξ 1 (0) ≤ ξ 2 (0) and ξ ′ 1 (y) + p p -1 ξ 1 (y) (p-1)/p ≤ ξ ′ 2 (y) + p p -1 ξ 2 (y) (p-1)/p , y ∈ (0, 1) . (3.7)
Then ξ 1 (y) ≤ ξ 2 (y) for y ∈ [0, 1).

Proof. Lemma 3.1 actually follows from the monotonicity of z → z (p-1)/p and we recall its proof for the sake of completeness. Let δ > 0 and define

y δ := inf{y ∈ [0, 1) : ξ 1 (y) = ξ 2 (y) + δ} .
Clearly

y δ > 0 since ξ 1 (0) -ξ 2 (0) -δ ≤ -δ < 0. Assume for contradiction that y δ < 1. Then ξ 1 -ξ 2 -δ < 0 in [0, y δ ) and (ξ ′ 1 -ξ ′ 2 )(y δ ) ≥ 0, while (3.7) gives (ξ ′ 1 -ξ ′ 2 )(y δ ) ≤ p p -1 ξ 2 (y δ ) (p-1)/p - p p -1 ξ 1 (y δ ) (p-1)/p = p p -1 ξ 2 (y δ ) (p-1)/p - p p -1 (ξ 2 (y δ ) + δ) (p-1)/p < 0 ,
and a contradiction. Consequently, ξ 1 ≤ ξ 2 + δ in [0, 1) and, since this inequality is valid for any δ > 0, we conclude that ξ 1 ≤ ξ 2 in [0, 1).

The transformation (3.1) has thus reduced the second-order equation (1.4) to the first-order equation (3.4), which lowers the complexity of the problem. An additional property, which turns out to be of high interest as well, of solutions to (3.4)-(3.5) is their monotonicity with respect to a, which is obviously a simple consequence of the comparison principle established in Lemma 3.1. A more precise result is actually available. Lemma 3.2 (Monotonicity with respect to a). Consider 0 < a 1 < a 2 . Then there exists K(p) > 0 depending only on p such that, for y ∈ [0, 1),

ψ(y, a 1 ) ≤ ψ(y, a 2 ) ≤ ψ(y, a 1 ) + K(p)(a 2 -a 1 ) 2-p , |ψ ′ (y, a 1 ) -ψ ′ (y, a 2 )| ≤ K(p) (a 2 -a 1 ) (2-p)(p-1)/p + (a 2 -a 1 ) 2-p .
In addition, ψ(y, a 1 ) < ψ(y, a 2 ) for any y ∈ (0, 1).

Proof. Set ψ i = ψ(•, a i ), i = 1, 2. Since a 1 < a 2 , it readily follows from (1.4)-(1.5) that we can apply Lemma 3.1 with (ξ 1 , ξ 2 ) = (ψ 1 , ψ 2 ). Consequently, ψ 1 ≤ ψ 2 in [0, 1).
We next put M := p a 2-p 2 a 2-p 1 /(p -1) and ξ 2 (y) = ψ 1 (y) + My for y ∈ [0, 1). Then ξ 2 (0) = 0 = ψ 2 (0) and it follows from (3.4) that, for y ∈ (0, 1),

ξ ′ 2 (y) + p p -1 ξ 2 (y) (p-1)/p ≥ ψ ′ 1 (y) + M + p p -1 ψ 1 (y) (p-1)/p ≥ M(1 -y) + pa 2-p 1 p -1 (1 -y) = pa 2-p 2 p -1 (1 -y) = ψ ′ 2 (y) + p p -1 ψ 2 (y) (p-1)/p .
Applying Lemma 3.1 to (ξ 1 , ξ 2 ) = (ψ 2 , ξ 2 ) entails that ψ 2 ≤ ξ 2 in [0, 1), which completes the proof of the first statement of Lemma 3.2. We next infer from (3.4), the Hölder continuity of z → z (p-1)/p , and the first statement of Lemma 3.2 that

|ψ ′ 1 (y) -ψ ′ 2 (y)| ≤ p p -1 |ψ 1 (y) -ψ 2 (y)| (p-1)/p + p p -1 (a 2 -a 1 ) 2-p ≤ p p -1 K(p) (p-1)/p (a 2 -a 1 ) (2-p)(p-1)/p + p p -1 (a 2 -a 1 ) 2-p ,
and thus complete the proof of the continuous dependence with respect to a.

Finally, since a 1 < a 2 , it follows that ȳ := sup{y ∈ (0, 1) :

ψ 1 (z) < ψ 2 (z) for z ∈ (0, y)} > 0.
Assume for contradiction that ȳ ∈ (0, 1). Then ψ 2 (ȳ) = ψ 1 (ȳ) and, since ψ 2 ≥ ψ 1 in (0, 1), then ȳ is a point of minimum for ψ 2ψ 1 , so that (ψ 2ψ 1 ) ′ (ȳ) = 0. We infer from (3.4) that

0 = (ψ 2 -ψ 1 ) ′ (ȳ) + p p -1 ψ (p-1)/p 2 (ȳ) -ψ (p-1)/p 1 (ȳ) = p p -1 (a 2-p 2 -a 2-p 1 )(1 -ȳ),
which leads to a 1 = a 2 , hence a contradiction. This proves that ȳ = 1 and thereby completes the proof of Lemma 3.2.

3.2.

Behavior of ψ(y, a) as y → 1. We next describe the shape of ψ(•, a).

Lemma 3.3. Given a > 0 there is y a ∈ (0, 1) such that ψ ′ (y a , a) = 0 , ψ ′ (y, a)(yy a ) < 0 , y ∈ (0, 1) \ {y a } .

(3.8)

Moreover there is ℓ(a) ≥ 0 such that

lim y→1 ψ(y, a) = ℓ(a) , (3.9) 
and ψ(y, a) ≥ a p(2-p)/(p-1) (1y) p/(p-1) , y ∈ (y a , 1) .

(3.10)

Proof. We define y a := inf{y ∈ (0, 1) : ψ ′ (y) = 0} and note that y a > 0 by (3.6). Assume for contradiction that y a = 1. Then ψ ′ > 0 in [0, 1) and it follows from (3.1) and (3.4) that 0 ≤ ψ(y) (p-1)/p ≤ a 2-p (1y) , y ∈ (0, 1) .

Consequently, ψ(1) = 0 = ψ(0) which contradicts the strict monotonicity of ψ. Therefore y a ∈ (0, 1) with ψ ′ > 0 in [0, y a ), ψ ′ (y a ) = 0, and

ψ ′′ (y a ) = -ψ(y a ) -1/p ψ ′ (y a ) - pa 2-p p -1 = - pa 2-p p -1 < 0 .
In particular, ψ ′ is negative in a right neighborhood of y a . Assume for contradiction that there is z ∈ (y a , 1) such that ψ ′ (y) < 0 for y ∈ (y a , z) and ψ ′ (z) = 0. Then ψ ′′ (z) ≥ 0, while (3.4) entails that ψ ′′ (z) = -pa 2-p /(p -1) < 0, and a contradiction. We have thus proved (3.8) which, together with (3.1), implies in particular that ψ is positive and decreasing on (y a , 1), hence (3.9). Finally, if y ∈ [y a , 1), one has ψ ′ (y) < 0 by (3.8) and we infer from (3.4) that

p p -1 ψ(y) (p-1)/p ≥ pa 2-p p -1 (1 -y) ,
from which (3.10) readily follows.

The next step, which is the cornerstone of the classification of the behavior of ψ(•, a) according to the value of a, is to elucidate the behavior of ψ(y, a) as y → 1. While it is obvious if ℓ(a) > 0, more information is needed when ℓ(a) = 0. Lemma 3.4. Let a > 0 and assume that ℓ(a) = 0. Then y → ψ(y, a)(1y) -p has a limit as y → 1 and

0 ≤ ψ(y, a) ≤ κ(1 -y) p , y ∈ (0, 1) , (3.11) lim y→1 ψ(y, a)(1 -y) -p ∈ {0, κ} , (3.12) 
where κ := (p -1) -p .

Proof. It readily follows from (3.4) that, for y ∈ (0, 1),

ψ 1/p ′ (y) + 1 p -1 = 1 p ψ(y) -(p-1)/p ψ ′ (y) + 1 p -1 = a 2-p p -1 (1 -y)ψ(y) -(p-1)/p ≥ 0 .
Integrating the above differential inequality over (y, 1) and using ℓ(a) = 0 lead us to

1 p -1 ≥ ψ(y) 1/p + y p -1 , y ∈ (0, 1) , hence (3.11). We next define ϕ(y) = ϕ(y, a) := ψ(y, a)(1 -y) -p , y ∈ [0, 1) , (3.13) 
and deduce from (3.4)-(3.5) that ϕ solves

ϕ ′ (y) + p 1 -y ϕ(y) (p-1)/p κ 1/p -ϕ(y) 1/p = pa 2-p p -1 (1 -y) 1-p , y ∈ (0, 1) , (3.14) ϕ(0) = 0 . (3.15)
Integrating (3.16) over (0, y) and using (3.15) give

ϕ(y) + p y 0 Φ(z) dz = pa 2-p (p -1)(2 -p) 1 -(1 -y) 2-p (3.16) 
for y ∈ [0, 1), where Φ(y) := ϕ(y) (p-1)/p κ 1/pϕ(y) 1/p 1y , y ∈ [0, 1) .

We then infer from (3.11) that Φ ≥ 0 in (0, 1), which gives, together with (3.16) and the nonnegativity of ϕ,

0 ≤ p y 0 Φ(z) dz ≤ pa 2-p (p -1)(2 -p) , y ∈ [0, 1) .
Consequently, Φ ∈ L 1 (0, 1) and (3.16) ensures that ϕ(y) has a limit L as y → 1 given by lim

y→1 ϕ(y) = L := pa 2-p (p -1)(2 -p) -p 1 0 Φ(y) dy .
Recalling the definition of Φ, we realize that lim y→1

(1y)Φ(y) = L (p-1)/p κ 1/p -L 1/p , and the integrability of Φ implies that L ∈ {0, κ}. We now provide a more accurate description of these sets and begin with A.

Lemma 3.5. There holds a ∈ A if and only if sup

y∈[0,1)
ψ(y, a)(1y) -p > κ .

(3.17)

Furthermore, there is a * > 0 such that A = (a * , ∞).

Proof. As in the proof of Lemma 3.4, see Equation (3.13), we set ϕ(y) = ψ(y)(1y) -p for y ∈ [0, 1).

Step 1. If a ∈ A then ℓ(a) > 0, from which we readily deduce that ϕ(y) → ∞ as y → 1, and obviously sup

y∈[0,1) {ϕ(y)} > κ. Conversely, if sup y∈[0,1)
{ϕ(y)} > κ, then necessarily ℓ(a) = 0 according to Lemma 3.4 and thus a ∈ A.

Step 2. We claim that A is non-empty. Indeed, assume for contradiction that A = ∅, so that ℓ(a) = 0 for all a > 0. We then infer from (3.11), (3.14), and the non-negativity of ϕ that

ϕ ′ (y) ≥ pa 2-p p -1 (1 -y) 1-p - pκ 1/p 1 -y ϕ(y) (p-1)/p ≥ pa 2-p p -1
(1y) 1-ppκ 1y for y ∈ (0, 1). Integrating over (0, 1/2) and using once more (3.11) give

κ ≥ ϕ(1/2) ≥ pa 2-p (p -1)(2 -p) 1 -2 p-2 -pκ log 2 ,
and a contradiction for a large enough. Consequently, A is non-empty.

Step 3. We put a * := inf A. A straightforward consequence of the characterization (3.17) and the monotonicity of ψ(•, a) with respect to a established in Lemma 3.2 and (3.17) is that (a * , ∞) ⊂ A. Furthermore, if a ∈ A, then ℓ(a) > 0 and it follows from Lemma 3.2 that, for δ ∈ (0, a)

0 < ℓ(a) ≤ ℓ(a + δ) and 0 < ℓ(a) ≤ ℓ(a -δ) + K(p)δ 2-p .
Therefore ℓ(a + δ) > 0 and ℓ(aδ) > 0 for δ small enough, so that (aδ, a + δ) ⊂ A for δ > 0 small enough. In particular, A is open and thus coincides with (a * , ∞).

Concerning C one has the following result.

Lemma 3.6. The following statements are equivalent:

(c1) a ∈ C. (c2) sup y∈[0,1)
{ψ(y, a)(1y) -p } < κ.

(c3) The derivative ϕ ′ (•, a) of the function ϕ(•, a) defined in (3.13) vanishes at least once in (0, 1). (c4) There is Y a ∈ (0, 1) such that

ϕ ′ (Y a , a) = 0 , ϕ ′ (y, a)(y -Y a ) < 0 , y ∈ (0, 1) \ {Y a } . (3.18)
Furthermore there is a * > 0 such that C = (0, a * ).

Proof. Recall that ϕ(y) = ψ(y)(1y) -p for y ∈ [0, 1), see Equation (3.13).

Step 1. Assume first that sup

y∈[0,1)
{ϕ(y)} < κ. This property readily implies that ℓ(a) = 0 and we deduce from Lemma 3.4 that the limit of ϕ(y) as y → 1 is necessarily zero. Therefore a ∈ C and we have proved that (c2) ⇒ (c1). Consider now a ∈ C. Since ϕ(0) = 0 by (3.15) and ϕ(y) → 0 as y → 1, a generalization of Rolle's theorem guarantees that ϕ ′ vanishes at least once in (0, 1), and (c1) ⇒ (c3).

Assume next that ϕ ′ vanishes at least once in (0, 1) and denote its smallest zero by Y a ∈ (0, 1). Since ϕ ′ (0) = pa 2-p /(p -1) > 0 by (3.14), the function ϕ ′ is positive in [0, Y a ) and it follows from

(3.14) that ϕ ′′ (Y a ) = - p(2 -p)a 2-p p -1 (1 -Y a ) -p < 0 .
Consequently, ϕ ′ is negative in a right neighborhood of Y a . Assume for contradiction that there is Y 1 ∈ (Y a , 1) such that ϕ ′ (y) < 0 for y ∈ (Y a , Y 1 ) and ϕ ′ (Y 1 ) = 0. Then ϕ ′′ (Y 1 ) ≥ 0 while (3.14) implies that ϕ ′′ (Y 1 ) = -p(2p)a 2-p (1 -Y 1 ) -p /(p -1) < 0, and a contradiction. Therefore ϕ ′ < 0 in (Y a , 1) and we have shown that ϕ enjoys the property (3.18), that is, (c3) ⇒ (c4). Finally, assume that ϕ satisfies (3.18). Then sup

y∈[0,1)
{ϕ(y)} = ϕ(Y a ) and we deduce from (3.14) that

p 1 -Y a ϕ(Y a ) (p-1)/p κ 1/p -ϕ(Y a ) 1/p = pa 2-p p -1 (1 -Y a ) 1-p > 0 .
Consequently ϕ(Y a ) < κ and (c4) ⇒ (c2).

Step 2. We now check that C is non-empty. To this end, consider a > 0 such that

a 2-p ≤ (p -1) p-1 /p p = max A∈(0,1)
A (p-1)/p -A .

We fix A ∈ (0, 1) such that A (p-1)/p -A ≥ a 2-p and set Σ A (y) = A(1y) p/(p-1) for y ∈ [0, 1). On the one hand,

Σ ′ A (y) + p p -1 Σ A (y) (p-1)/p = p p -1 (1 -y) A (p-1)/p -A(1 -y) (2-p)/(p-1) ≥ p p -1 (1 -y) A (p-1)/p -A ≥ p p -1 (1 -y)a 2-p = ψ ′ (y) + p p -1 ψ(y) (p-1)/p
for y ∈ (0, 1). On the other hand, Σ A (0) = A > 0 = ψ(0). We are then in a position to apply Lemma 3.

1 with (ξ 1 , ξ 2 ) = (ψ, Σ A ) to conclude that 0 ≤ ψ(y) ≤ A(1 -y) p/(p-1) , y ∈ [0, 1) .
Since p < p/(p -1), the above estimate ensures that a ∈ C and we have thus shown that C is non-empty and contains the interval 0, (p -1) (p-1)/(2-p) p -p/(2-p) .

Step 3. Introducing a * := sup{C} > 0, we infer from the monotonicity of ψ(•, a) with respect to a (Lemma 3.2) that (0, a * ) ⊂ C. Assume for contradiction that a * ∈ C. Owing to (3.18) there are δ > 0 and ε > 0 such that We finally turn to the description of the set B and show that it is a singleton. 

ϕ ′ (Y a * + δ, a * ) < -2ε < ϕ ′ (Y a * , a * ) = 0 < 2ε < ϕ ′ (Y a * -δ, a * ) (3.19) and Y a * 2 ≤ Y a * -δ < Y a * < Y a * + δ ≤ 1 + Y a * 2 . ( 3 
G ′ (y) + pκ 1/p 1 -y ϕ(y, a * ) (p-1)/p -ϕ(y, a * ) (p-1)/p = p G(y) 1 -y + p p -1 (a * ) 2-p -(a * ) 2-p (1 -y) 1-p (3.21)
for y ∈ (0, 1). Since a * ∈ B we deduce from the definition of B that there is Y ∈ (0, 1) such that

ϕ(y, a * ) ≥ p - 1 2 -p , y ∈ [Y, 1) .
Therefore, for y ∈ [Y, 1), ϕ(y, a * ) (p-1)/pϕ(y, a * ) (p-1)/p = p -1 p ϕ(y,a * ) ϕ(y,a * )

z -1/p dz ≤ p -1 p ϕ(y, a * ) -1/p G(y) ≤ (p -1)(2p -1) 2p G(y) .
Combining the above estimate with (3.21) gives, for y ∈ [Y, 1),

G ′ (y) + p (p -1)(1 -y) (p -1)(2p -1) 2p G(y) ≥ pG(y) 1 -y + p p -1 (a * ) 2-p -(a * ) 2-p (1 -y) 1-p ≥ pG(y) 1 -y ,
whence, after easy manipulations,

G ′ (y) ≥ G(y) 2(1 -y) , y ∈ [Y, 1).
Integrating the above differential inequality on [Y, y) for some y ∈ (Y, 1), we find Proof. Let a ∈ C.

G(y) ≥ G(Y ) 1 -Y 1 -y , y ∈ (Y, 1) . ( 3 
Step 1. We first prove that there exists M > a p(2-p)/(p-1) such that ψ(y) ≤ M(1y) p/(p-1) , y ∈ [0, 1) .

(3.23) Indeed, let ε ∈ (0, 1) to be determined later and define σ ε (y) := 1 2ε p(2-p)/(p-1) (1y) p/(p-1) , y ∈ (0, 1) .

Owing to the definition of C, there is ε ∈ (0, 1) such that ψ(y) ≤ (1y) p /2 for y ∈ (1ε, 1). On the one hand, if ε ∈ (0, ε), there holds

σ ε (1 -ε) = ε p 2 ≥ ψ(1 -ε) .
On the other hand, for y ∈ (1ε, 1),

σ ′ ε (y) + p p -1 σ ε (y) (p-1)/p = p p -1 (1 -y) 1 2 (p-1)/p ε 2-p - (1 -y) (2-p)/(p-1) 2ε p(2-p)/(p-1) ≥ p p -1 (1 -y) 2 1/p -1 2ε 2-p ≥ pa 2-p p -1 (1 -y) = ψ ′ (y) + p p -1 ψ(y) (p-1)/p ,
as soon as

2 1/p -1 2ε 2-p ≥ a 2-p . (3.24) 
We next choose ε ∈ (0, ε) satisfying (3.24). This allows us to apply Lemma 3.1 with (ξ 1 , ξ 2 ) = (ψ, σ ε ) in order to obtain that ψ(y) ≤ σ ε (y) for y ∈ (0, 1ε). This inequality extends to the whole interval (0, 1), possibly taking a smaller value of ε.

Step 2. The goal of this step is to improve (3.23). To this end, fix A ∈ a p(2-p)/(p-1) , M and ε ∈ (0, 1) such that

ε (2-p)/(p-1) < A (p-1)/p -a 2-p 2M . (3.25) 
We define 1) , y ∈ (0, 1) , and deduce from (3.23) that

τ (y) := A + M -A ε (1 -y) (1 -y) p/(p-
τ (1 -ε) = Mε p/(p-1) ≥ ψ(1 -ε) .
In addition, we infer from (3.4) and (3.25) that, for y ∈ (1ε, 1),

τ ′ (y) + p p -1 τ (y) (p-1)/p ≥ p p -1 (1 -y) A (p-1)/p -A(1 -y) (2-p)/(p-1) - 2p -1 p M -A ε (1 -y) 1/(p-1) ≥ p p -1 (1 -y) A (p-1)/p -A + 2p -1 p (M -A) ε (2-p)/(p-1) ≥ p p -1 (1 -y) A (p-1)/p -2Mε (2-p)/(p-1) ≥ pa 2-p p -1 (1 -y) = ψ ′ (y) + p p -1 ψ(y) (p-1)/p .
Applying Lemma 3.1 with (ξ 1 , ξ 2 ) = (ψ, τ ) implies that ψ(y) ≤ τ (y) for y ∈ (1ε, 1). Consequently,

ψ(y) (1 -y) p/(p-1) ≤ A + M -A ε (1 -y) , y ∈ (1 -ε, 1) , from which we deduce that lim sup y→1 ψ(y) (1 -y) p/(p-1) ≤ A .
As A is arbitrarily chosen in a p(2-p)/(p-1) , M , we end up with lim sup y→1 ψ(y) (1y) p/(p-1) ≤ a p(2-p)/(p-1) . Since ψ(y) ∼ pa 2-p y/(p -1) as y → 0 and p > 1, the function z → ψ(1z) -1/p defined on (0, 1) belongs to L 1 (z 0 , 1) for all z 0 > 0. We may thus integrate (4.1) and find Case 1: a ∈ A. According to the definition of A, ψ(y) has a positive limit ℓ(a) > 0 as y → 1 and the function z → ψ(1z) -1/p actually belongs to L 1 (0, 1). We then deduce from (4.2) that We then infer from the above property, (4.1), and the behavior of ψ(y) as y → 1 that f ′ (r) ∼ -I 1/(p-1) e -r/(p-1) and f ′ (r) ∼ -f (r) p -1 as r → ∞ , so that f (r) ∼ (p -1)I 1/(p-1) e -r/(p-1) as r → ∞. We have thus proved Theorem 1.1 (b).

Since

Case 3: a ∈ C. In that case, ψ(1z) 1/p ∼ a (2-p)/(p-1) z 1/(p-1) as z → 0 by Lemma 3.8. Since p ∈ (1, 2) the function z → ψ(1z) -1/p does not belong to L 1 (0, 1) and we infer from (4. ∼ a (2-p)/(p-1) r as r → ∞ , hence Theorem 1.1 (c).

  ) f (0, a) = a , f ′ (0, a) = 0 , (1.5) and R(a) := inf {r > 0 : f (r, a) = 0} ∈ (0, ∞] . (1.6) Furthermore there is a * > 0 with the following properties: (a) if a > a * then R(a) < ∞, f (R(a), a) = 0, and f ′ (R(a), a) < 0. (b) if a = a * then R(a * ) = ∞ and there is ℓ * > 0 such that lim r→∞ e r/(p-1) f (r, a * ) = ℓ * . (c) if a ∈ (0, a * ) then R(a) = ∞ and lim r→∞ r (2-p)/(p-1) f (r, a) = p -1 2p (2-p)/(p-1)

3. 3 .

 3 Classification. The outcome of Lemma 3.3 and Lemma 3.4 allows us to split the range of a into three sets according to the behavior of ψ(y, a) as y → 1. More precisely, we define A := {a ∈ (0, ∞) : ℓ(a) > 0} , B := a ∈ (0, ∞) : lim y→1 ψ(y, a)(1y) -p = κ , C := a ∈ (0, ∞) : lim y→1 ψ(y, a)(1y) -p = 0 . Indeed, according to Lemma 3.3 and Lemma 3.4, the sets A, B, and C are disjoint and A ∪ B ∪ C = (0, ∞) .

  .20) Thanks to Lemma 3.2, ϕ ′ (•, a) depends continuously on a on [0, (1 + Y a * )/2] and we infer from (3.19) and (3.20) that there is α > 0 small enough such that ϕ ′ (Y a * + δ, a) < -ε < ε < ϕ ′ (Y a *δ, a) , a ∈ [a *α, a * + α] . In particular, for all a ∈ [a *α, a * + α], the function ϕ ′ (•, a) has a zero inside the interval (Y a *δ, Y a * + δ). According to (c3), this means that [a *α, a * + α] ⊂ C, which contradicts the definition of a * . Therefore a * ∈ C and C = (0, a * ).

Proposition 3 . 7 .

 37 There holds a * = a * and B = {a * }, where a * and a * are defined in Lemma 3.5 and Lemma 3.6, respectively. Proof. Owing to Lemma 3.5 and Lemma 3.6 there holds B = [a * , a * ] and ϕ ′ (•, a) > 0 in (0, 1) for a ∈ B, recalling that the function ϕ(•, a) is defined by (3.13). Introducing G := ϕ(•, a * )ϕ(•, a * ) it follows from Lemma 3.2 and (3.14) that G ≥ 0 and

3 . 4 .Lemma 3 . 8 .

 3438 .22) Assume now for contradiction that a * > a * . We deduce from Lemma 3.2 and the fact that Y ∈ (0, 1) that ϕ(Y, a * ) > ϕ(Y, a * ), that is, G(Y ) > 0. It then follows from(3.22) that G(y) → ∞ as y → 1. However, the definition of B entails that G(y) → 0 as y → 1, clearly in contradiction with the previous assertion. Therefore a * = a * and the proof of Proposition 3.7 is complete. Refined asymptotics as y → 1 for a ∈ C. The final step is to identify the behavior of ψ(y, a) as y → 1 for a ∈ C. If a ∈ C then lim y→1 ψ(y, a)(1y) -p/(p-1) = a p(2-p)/(p-1) .

4 .

 4 y) p/(p-1) ≥ a p(2-p)/(p-1) by (3.10), the claimed result follows. Proof of Theorem 1.1We now undo the transformation (3.1) and interpret the outcome of Section 3 in terms of f (•, a). Let a ∈ (0, ∞). It follows from (2.1) and (3.2) that f ′ (r) = -aψ 1 -

1 f

 1 (r)/a dz ψ(1z) 1/p = r , r ∈ [0, R(a)) . (4.2)

  z) 1/p = R(a) ,that is, R(a) < ∞. Furthermore, f ′ (R(a)) = -aℓ(a) 1/p < 0 by (4.1) and the proof of Theorem 1.1 (a) is complete.Case 2: a ∈ B. By Proposition 3.7 there holds a = a * and the definition of B ensures thatψ(1z) 1/p ∼ z/(p -1) as z → 0. Therefore z → ψ(1z) -1/p does not belong to L 1 (0, 1) and we infer from (4.2) that R(a * ) = ∞ and r ∼ -(p -1) log (f (r)) as r → ∞ .In particular, there is R > 0 such thatp -1 r log (f (r)) ≥ 1p)r/2(p-1) dr < ∞ ,(4.3) since p ∈ (1, 2). Recalling (2.1), it follows from (2.2) after integration that -e r |f ′ (r)| p-1 = -r 0 e σ f (σ) dσ , which, together with (4.3), guarantees that e r |f ′ (r)| p-1 has a finite limit as r → ∞ and lim r→∞ e r |f ′ (r)| p-1 = I := ∞ 0 e r f (r) dr .
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