N

N

Evidential clustering of large dissimilarity data

Thierry Denoeux, Songsak Sriboonchitta, Orakanya Kanjanatarakul

» To cite this version:

Thierry Denoeux, Songsak Sriboonchitta, Orakanya Kanjanatarakul. Evidential clustering of large
dissimilarity data. Knowledge-Based Systems, 2016, 106, pp.179-195. 10.1016/j.knosys.2016.05.043 .
hal-01324491

HAL Id: hal-01324491
https://hal.science/hal-01324491

Submitted on 1 Jun 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01324491
https://hal.archives-ouvertes.fr

Evidential clustering of large dissimilarity data

Thierry Denceux*!, Songsak Sriboonchittal and
Orakanya Kanjanatarakul*

* Sorbonne Universités
Université de Technologie de Compiegne, CNRS,
UMR 7253 Heudiasyc, France
 Faculty of Economics, Chiang Mai University, Thailand
! Faculty of Management Sciences,
Chiang Mai Rajabhat University, Thailand

May 24, 2016

!Corresponding author. Phone: 433 344 234 496, fax: +33 344234477, email:
tdenoeux@utc.fr.

Abstract

In evidential clustering, the membership of objects to clusters is considered
to be uncertain and is represented by Dempster-Shafer mass functions, form-
ing a credal partition. The EVCLUS algorithm constructs a credal partition
in such a way that larger dissimilarities between objects correspond to higher
degrees of conflict between the associated mass functions. In this paper, we
present several improvements to EVCLUS, making it applicable to very large
dissimilarity data. First, the gradient-based optimization procedure in the
original EVCLUS algorithm is replaced by a much faster iterative row-wise
quadratic programming method. Secondly, we show that EVCLUS can be
provided with only a random sample of the dissimilarities, reducing the time
and space complexity from quadratic to roughly linear. Finally, we intro-
duce a two-step approach to construct credal partitions assigning masses to
selected pairs of clusters, making the algorithm outputs more informative
than those of the original EVCLUS, while remaining manageable for large
numbers of clusters.

Keywords: Dempster-Shafer theory, evidence theory, belief functions, un-
supervised learning, credal partition, relational data, proximity data, pair-
wise data.

1 Introduction

Clustering data into groups is one of the fundamental tasks in data mining
and machine learning. Clustering algorithms can be distinguished accord-
ing to the input data they can process, and according to the outputs they
produce.

Typically, two categories of input data are considered: attribute (vec-
torial) data and dissimilarity (proximity, relational, pairwise) data. In the
former case, each object is described by a vector of numerical or categorical
attributes. In the latter, the data takes the form of a matrix of dissimilarities
between objects. Attribute data can be easily transformed into dissimilarity
data by choosing a suitable distance. The inverse transformation (from dis-
similarity to attribute data) is generally more difficult, except in the special
case of metric dissimilarities, i.e., dissimilarities that are exact Euclidean dis-
tances between vectors in a latent space, a case not so frequent in practice.
Finding an attribute representation of a set of objects, such that distances
between objects approximate a given dissimilarity matrix is often a diffi-
cult task (referred to as multidimensional scaling — MDS), which requires
to solve a large scale nonlinear optimization problem [3,4]. Most cluster-
ing algorithms, such as the c-means algorithms and its numerous variants,
are designed to handle attribute data. A smaller number of algorithms, re-
ferred to as relational clustering methods, can directly handle dissimilarity
data [9-11].

As for the clustering outputs, we can distinguish between partitional
clustering, which aims at finding a partition of the objects, and hierarchical
clustering, which finds a sequence of nested partitions. Over the years, the
notion of partitional clustering has been extended to several important vari-
ants, including fuzzy [2] and possibilistic [16] clustering, and more recently,
rough [20,27] and evidential [7,25] clustering. Contrary to classical (hard)
partitional clustering, in which each object is assigned unambiguously and
with full certainty to a single cluster, these variants allow for ambiguity, un-
certainty or doubt in the assignment of objects to clusters. For this reason,
they are referred to as “soft” clustering methods [28], in contrast with classi-
cal, “hard” clustering. Among soft clustering paradigms, evidential cluster-
ing describes the uncertainty in the membership of each object to clusters
using a Dempster-Shafer mass function [30], which assigns a mass to each
subset of clusters. This is a rich and informative description of the clustering
structure of a data set, which can be shown to include hard, fuzzy and rough
partitions as special cases. Recently, evidential clustering has been success-
fully applied in various domains such as machine prognosis [29], medical

image processing [17,24] and analysis of social networks [34]. Similar ideas
have also been exploited in supervised classification (see, e.g., [18,21,22]).

In [7], one of us (the first author) introduced EVCLUS, an evidential
clustering algorithm that handles (non necessarily metric) dissimilarity data.
EVCLUS is based on the natural assumption that the plausibility of two
objects belonging to the same cluster is higher when the two objects are more
similar. This assumption translates into the search for a credal partition
minimizing a cost function. A variant of EVCLUS allowing one to use prior
knowledge in the form of pairwise constraints was later introduced in [1].

The EVCLUS algorithm has several advantages. It is conceptually sim-
ple and it can handle non metric dissimilarity data (even expressed on an
ordinal scale). It was also shown to outperform some of the state-of-the-
art relational clustering techniques on a number of datasets [7]. On the
minus side, the main drawback of EVCLUS is its computational complex-
ity. As other relational clustering algorithms, it requires to store the whole
dissimilarity matrix; the space complexity is thus O(n?), where n is the
number of objects, which precludes application to datasets containing more
than a few thousand objects. Furthermore, each iteration of the gradient-
based optimization procedure implemented in the EVCLUS algorithm re-
quires O(f3n?) operations, where f is the number of focal sets of the mass
functions, i.e., the number of subsets of clusters being considered. In the
worst case, f = 2¢, where ¢ is the number of clusters. To make the method
usable even for moderate values of ¢, we need to restrict the form of the
mass functions so that masses are only assigned to focal sets of size 0, 1
or ¢, which prevents us from fully exploiting the potential generality of the
method.

In this paper, we propose some improvements to the EVCLUS algo-
rithm, making it applicable to very large datasets. These improvements are
threefold. First, the gradient-based optimization procedure in the original
EVCLUS algorithm is replaced by an adaptation of the much faster itera-
tive row-wise quadratic programming method proposed in [31]. Secondly,
we show that EVCLUS does not need to be provided with the whole dis-
similarity matrix, reducing the time and space complexity from quadratic
to roughly linear. Finally, we introduce a two-step approach to construct
credal partitions assigning masses to selected pairs of clusters, making the
algorithm outputs more informative than those of the original EVCLUS,
while remaining manageable for large numbers of clusters.

The rest of the paper is organized as follows. The background on belief
functions, evidential clustering and the EVCUS algorithm will first be re-
called in Section 2. The new optimization procedure will be described and

evaluated in Section 3. Improvements of EVCLUS making it applicable to
problems with large numbers of objects and large numbers of clusters will
then be described, respectively, in Sections 4 and 5. Finally, Section 6 will
conclude the paper.

2 Background

In this section, a brief reminder on Dempster-Shafer theory will first be
provided in Section 2.1. Credal partitions and related necessary notions will
then be recalled in Section 2.2, and the EVCLUS algorithm will be presented
in Section 2.3.

2.1 Mass functions

Let Q = {w1,...,w.} be a finite set representing the possible answers to
some question), one and only one of which is true. The true answer is
denoted by w. A mass function § is a mapping from the power set 2 to
[0, 1] such that

> m(A) = 1. (1)
ACO
Each number m(A) represents the degree of support attached to the propo-
sition w € A, and to no more specific proposition [30]. The subsets A of
such that m;(A4) > 0 are called the focal sets of m. A mass function m is
said to be

e normalized if () is not a focal set;
e logical if it has only one focal set;
e Bayesian if its focal sets are singletons;

e certain if it is both logical and Bayesian, i.e., if it has only one focal
set, and this focal set is a singleton;
e consonant if its focal sets are nested.

To each mass function m, we may associate belief and plausibility functions
from 2% to [0, 1] defined, respectively, as follows,

Bel(A)= Y m(B) (2a)

04BCA

Pl(A)= > m(B), (2b)

BNA#)

for all A C Q. These two functions are linked by the relation PI(A) =
Bel(Q2) — Bel(A), for all A C Q. The quantity Bel(A) is a measure of how
much the proposition “w € A” is supported by the available evidence. In
contrast Bel(Q) — PI(A) = Bel(A) is a measure of how much the comple-
mentary hypothesis A is supported, so that PI(A) can be seen as a measure
of lack of support for A. The function pl : Q@ — [0, 1] that maps each ele-
ment w of §2 to its plausibility pl(w) = Pl({w}) is called the contour function
associated to m.

If m is Bayesian, then Bel = PIl, and this function is a probability
measure; the contour function is thus the usual probability mass function,
i.e., Bel(A) = PI(A) = > capl(w) for all A C Q. If m is consonant, then
Pl is a possibility measure, i.e., we have P{(A U B) = max(PI(A), Pl(B))
for all A,B C , and Bel is the dual necessity measure; pl is then the
corresponding possibility distribution, i.e., PI(A) = max,eca pl(w) for all
A C Q. A consonant mass function can be uniquely recovered from its
contour function.

Let mq and mg be two mass functions defined on the same set 2. Their

degree of conflict [30] is defined as

K=Y mi(A)my(B). (3)

ANB=0

It is comprised between 0 and 1. When m; and mo are two mass functions
representing two independent pieces of evidence about the same question, k
is interpreted as a measure of conflict between these two pieces of evidence.
A different interpretation of x was provided in [7], for the case where m; and
msy represent independent pieces of evidence about two different questions
@1 and @2, with the same set of possible answers €): in that case, 1 — & is
the plausibility that the true answers to ()1 and Q)9 are identical.

Example 1 Let us assume that the questions of interest concern the nation-
alities of Ann and Henri. Let Q) = {Singapore, Thailand, France, Canada} be
the set of possible answers to both questions. We receive some evidence that
Ann comes from an Asian country, with probability 0.8, and independent
evidence that Henri originates from a country where French is an official
language, with probability 0.5. What is the plausibility that Ann and Henri
have the same nationality? The two pieces of evidence translate into the
following mass functions

m1({Singapore, Thailand}) = 0.8, m1(Q2) = 0.2, (4a)
ma({France, Canada}) = 0.5, ma(Q2) = 0.5. (4b)

The degree of conflict between my and mo is

k = my ({Singapore, Thailand})mg({France, Canada}) (5a)
= 0.8 % 0.5=0.4. (5b)
The requested plausibility is thus 1 — 0.4 = 0.6. O

Assume now that our state of knowledge about w is described by a mass
function m, and we need to pick one or several elements of {2 as our best
guess about w. This is the decision problem, to which several solutions have
been proposed. A simple solution is to pick the element w* with the highest
plausibility,

w* = arg max pl(w). (6)
weN

This rule yields a precise decision, i.e., it picks a single element in 2. How-
ever, as a mass function assigns masses to subsets of w, and is thus less
precise than a probability distribution, it can be argued that it cannot al-
ways provide the basis for a precise decision. Another decision rule allowing
for ambiguity is the following. We say that hypothesis w is strictly preferable
to, or dominates, ', iff Bel({w}) > PI({w'}), which we denote by w > w’.
Relation > is a partial order on 2. We then consider the set of its maximal
(non dominated) elements,

OF = {w e QW' € Q, Bel({w'}) < Pl({w})}. (7)

In this approach, we no longer achieve a single decision, but a set of potential
decisions. This ambiguity in the decision is a consequence of the ambiguity
of assigning masses to sets, and not to elements of {2. This decision rule will
be referred to as the interval dominance rule.

Example 2 Let Q = {w1,wa,ws} and consider the following mass function,

m({wi}) = 0.3, m({w2}) = 0.4, m({w1,ws}) = 0.3. (8)

The contour function is pl(wi) = 0.6, pl(w2) = 0.4, pl(ws) = 0.3, hence
w* = wy. Furthermore, we have Bel({wi}) = 0.3, Bel({w2}) = 0.4 and
Bel({ws}) = 0. As Bel({wa2}) > pl(ws), wa dominates ws, but w1 and w
are not dominated. Consequently, Q0* = {w1,ws}. O

2.2 Credal partition

Assume that we have aset O = {0y, ..., 0, } of n objects , each one belonging
to one and only one of ¢ groups or clusters. Let Q@ = {wi,...,w.} denote
the set of clusters. If we know for sure which cluster each object belongs
to, we can provide a partition of the n objects. Such a partition may be
represented by binary variables u;; such that u;, = 1 if object o; belongs to
cluster wg, and u;, = 1 otherwise. If objects cannot be assigned to clusters
with certainty, then it is natural to quantify cluster-membership uncertainty
by mass functions myq,...,m,, where each mass function m; is defined on
) and describes the uncertainty about the cluster of object . The n-tuple
M = (my,...,my,) is called a credal partition [7].

Example 3 Consider, for instance, the “Butterfly” dataset shown in Figure
1. This dataset is adapted from the classical example by Windham [33], with
an added outlier (point 12). Figure 2 shows the credal partition with ¢ = 2
clusters produced by the EVCLUS algorithm (see Section 2.3 below). In
this figure, the masses m;(0), m;({w1}), mi({w2}) and m;(Q) are plotted
as a function of i, for i = 1,...,12. We can see that mg({w2}) ~ 0.8,
which means that object o3 most probably belongs to cluster wo. Similarly,
my({w1}) =~ 0.8, indicating strong support in the assignment of object og
to cluster wi. In contrast, objects og and o012 correspond to two different
situations of mazximum uncertainty. Object og has a large mass assigned
to): this reflects ambiguity in the class membership of this object, which
means that it might belong to w1 as well as to wo. The situation is quite
different for object 012: here, we have mi2(0) = 1, indicating that this object
does not seem to belong to any of the two clusters. U

The notion of credal partition is very general, in the sense that it boils
down to several alternative clustering structures when the mass functions
composing the credal partition have some special forms:

e If all mass functions m; are certain, then we have a hard partition, in
which object 0; is unambiguously assigned to cluster wy if m;({wi}) =
1.

e If the m; are Bayesian, then the credal partition is equivalent to a
fuzzy partition [2]; the degree of membership of object i to cluster k is
then w;, = mi({wg}), with > 5 mi({wg}) =1fori=1,...,n.

e If the mass function m; are consonant, then they are uniquely de-
scribed by their contour functions pli(wk) = > 4cq 4, e ™i(A), Which

6

Butterfly data

S 1 12

1 2 10

11 3 56 7 911

c'\‘7\ 4 T 8 T T
-5 0 5 10

X1

Figure 1: Butterfly dataset.

0.8 1.0
|

masses
0.6

0.4

0.2

objects

Figure 2: Credal partition of the Butterfly dataset.

are possibility distributions. We then have a possibilistic partition [16],
with w;, = plj(wg) for all i and k. We note that maxy pl;(wx) =
1-— mz(@)

e Finally, if each m; is logical, with m;(A;) = 1 for some A; C Q, we
can define lower and upper approximations of each cluster, as in rough
clustering [20,27]. The lower approximation of cluster wy, is the set of
objects that surely belong to wy,

wi = {0 € O|Ai = {wi}} = {0i € O|Beli({wi}) = 1}, (9)

and the upper approximation of cluster wy is the set of objects that
possibly belong to wy,

wg = {OZ' S O|wk S Al} = {07; S O’Plz({wk}) = 1}. (10)

The membership values to the lower and upper approximations of clus-
ter wy are then, respectively, w;;, = Bel;({wy}) and u;, = Pl;({wi}).

Hard, fuzzy, possibilistic and rough partitions may also be computed
from a credal partition as by-products, by applying some of the opera-
tions described in Section 2.1. Specifically, let my,...,m, be a credal par-
tition, and let ply,...,pl, be the corresponding contour functions. Then
u;, = pli(wg) can be interpreted as the possibility that object i belongs to
cluster wg, and the matrix U = (u;) defines a possibilistic partition. By
normalizing the u; as uj; = u; /> ie, we get a fuzzy partition. Selecting,
for each object %, the cluster wy with the highest plausibility gives us a hard
partition. Finally, selecting for each m; a set of clusters using the interval
dominance decision rule (7) yields a rough partition.

2.3 EVCLUS algorithm

The first evidential clustering procedure, called EVCLUS, was introduced
in [7]. It applies some ideas from Multidimensional Scaling (MDS) [3] to
clustering. Let D = (d;;) be an n x n dissimilarity matrix, where d;; denotes
the dissimilarity between objects o; and o;. Dissimilarities may be distances
computed from attribute data, or they may be provided directly, in which
case they need not satisfy the axioms of a distance function.

To derive a credal partition M = (my,...,m,) from D, we assume that
the plausibility pl;; that two objects o; and o; belong to the same class
is a decreasing function of the dissimilarity d;;: the more similar are two
objects, the more plausible it is that they belong to the same cluster. Now,

as recalled in Section 2.1, the plausibility pl;; is equal to 1 — k;j, where x;;
is the degree of conflict between m; and m;. The credal partition M should
thus be determined in such a way that similar objects have mass functions
m; and m; with low degree of conflict, whereas highly dissimilar objects are
assigned highly conflicting mass functions.

This problem is similar to the one addressed by MDS, which aims to
represent objects in some Euclidean space, in such a way that the distances
in that space match the observed dissimilarities [3,4]. Here, we want to find a
credal partition that minimizes the discrepancy between the pairwise degrees
of conflict and the dissimilarities, up to some increasing transformation.
In [7], we proposed to minimize the following stress function,

. —d..\2
S(M,a,b) = 3 4% +dl.’, bi)” (11)
)

1<J

where a and b are two coefficients that make the solution invariant under
any affine transformation of the dissimilarities. The division of each term in
the sum by d;; gives more weight to smaller dissimilarities’.

New stress function. A simpler stress function, which will be used in
the rest of this paper, is

J(M) =0 (ki — 6i)%, (12)
1<]

where n = (ZK]- 63]) ' is a normalizing constant, and the 6;; = ¢(d;;)
are transformed dissimilarities, for some fixed increasing function ¢ from
[0, +00) to [0,1]. How to choose function ¢? If we could guess the value of
some threshold dp such that any objects o; and o; probably belong to the
same cluster whenever d;; < dp, and to different clusters otherwise, then we
could define ¢ as

p(d) = (13)

0 ifd<dp,
1 otherwise.

However, such a step function is not differentiable, which would make the
minimization of J(M) difficult. We thus replace it by a soft threshold

n [7], we actually proposed to minimize the sum of S(M, a,b) and an entropy term,
aimed at penalizing more complex mass functions. In later investigations, we found that
this entropy term adds unnecessary complexity to the method. It will not be used in the
new version of EVCLUS described in this paper.

function, such as
p(d) =1 — exp(—d?), (14)

where v is a user-defined parameter. Parameter v in (14) can be fixed as
follows. For o € (0,1), let dy be the distance such that

¢p(do) = 1 — exp(—vdg) =1 - a. (15)

Solving Equation (15) for v, we find v = —loga/d3. Parameter dy has
a simple interpretation: two objects o; and o; such that d;; > do have a
plausibility at least 1—« of belonging to different clusters. In the simulations
presented in this paper, we used o = 0.05, leaving dy as the only parameter
to be adjusted. Our results suggest that the results of EVCLUS are not very
sensitive to the choice of dy. Typically, dg can be set to some quantile of the
dissimilarities d;;. We suggest to start with the 0.9-quantile, but finding a
suitable value of dy may sometimes require a trial and error process.

Remark: We can remark here an important difference between EVCLUS
and MDS: in (11) and (12), the degrees of conflict k;; are not distances.
They are not even dissimilarities, because the degree of conflict between a
mass function and itself is nonnull, in general. However, we do have k;; ~ 0
whenever m;({w}) ~ 1 for some w € 2, and ;; ~ 1 whenever m;({w}) ~ 1
and m;({w'}) =~ 1, for some w # w'. Consequently, criteria (11) and (12) are
minimized when mass functions of similar (respectively, dissimilar) objects
are focussed on the same cluster (respectively, on different clusters).

Example 4 For the Butterfly data of Figure 1, let « = 0.05 and dg = 11.
Figure 3 shows the transformed dissimilarities ¢(d;j) as a function of the
Euclidean distances d;;. Figure 4 is a plot, called a “Shepard diagram” in
MDS [3], showing the degrees of conflict k;ij as a function of the transformed
dissimilarities 0;;. O

In [7], we proposed to minimize stress function (11) or (12) using an itera-
tive gradient-based optimization procedure. The constraints Z£:1 mi(F) =
1 and m;(Fy) > 0, where Fi, ..., Fy are the focal sets of the mass functions
m;, are implicitly taken into account by the following reparametrization,

exp(q;
m(F) = — 2Pl (16)
Zz:1 exp(ap)
where the oy for ¢ = 1,...,n and &k = 1,...,f are nf real parameters

representing the credal partition.

10

0 5 10 15 20

Figure 3: Transformed dissimilarities 6;; = ¢(d;;) vs. Euclidean distances
d;; for the Butterfly dataset.

o
-] ° o,
@ |
o
o o
©
S o
&

<
© o

o
N
o o o o

o

o
T T T T T
0.2 0.4 0.6 0.8 1.0

Figure 4: Shepard diagram for the Butterfly dataset: degrees of conflict x;;
(y-axis) vs transformed dissimilarities d;; (z-axis).

11

2.4 Discussion

In [7], the EVCLUS algorithm was shown to perform very well in discovering
meaningful clusters in several non-Euclidean datasets, a notoriously difficult
problem (see, e.g., [9,15]). In particular, its performances compared favor-
ably with those of state-of-the-art techniques such as the Non Euclidean
Relational Fuzzy c-Means (NRFCM) algorithm [9]. In addition, the very
general concept of credal partition results in greater expressive power and
in improved robustness with respect to atypical data.

Yet, the original EVCLUS also has some limitations. First, as most
clustering algorithms for proximity data, it requires storing the whole dis-
similarity matrix, which has space complexity O(n?), where n is the number
of objects. Consequently, the algorithm is not suitable for datasets con-
taining more than a few thousand objects. Secondly, each gradient calcula-
tion needed in the non linear optimization procedure of EVCLUS requires
O(f3n?) operations, where f is the number of focal sets of the mass func-
tions in the credal partition. Except for very small numbers of clusters, we
thus need to restrict the form of the mass functions, in such a way that the
number of focal sets remains proportional to c¢. In [7], we proposed to limit
the focal sets to the singletons {wy}, the empty set (), and the whole set
of clusters €). Whereas this restriction makes EVCLUS potentially applica-
ble to datasets with a large number of clusters, it also severely limits the
expressive power of the generated credal partitions.

After EVCLUS, other evidential clustering algorithms have been pro-
posed. The Evidential c-Means (ECM) algorithm, introduced in [25], is an
alternating optimization algorithm akin to the fuzzy c-means (FCM) algo-
rithm [2], which alternatively searches for the best credal partition given
a set of prototypes, and then for best prototypes given the credal parti-
tion. The main difference with FCM is that prototypes are defined not
only for clusters, but also for sets of clusters (or “meta-clusters”). In [23],
a variant of the ECM algorithm (called CCM) was proposed, based on an
alternative definition of the distance between a vector and the prototype of
a meta-cluster. This modification sometimes produces more sensible results
in situations where the prototype of a meta-cluster is close to that of sin-
gleton cluster. The ECM and CCM algorithms work only with attribute
data, but a version of ECM for dissimilarity data, the Relational Evidential
c-Means (RECM) was proposed in [26]. The RECM algorithm was shown
to yields results comparable to those of EVCLUS for some datasets, while
being significantly faster. One iteration of RECM involves O(nfc? + n?c)
operations: it thus takes time proportional to the number f of focal sets.

12

This lower complexity makes it possible to generate credal partitions with
general mass functions for moderate values of ¢. However, RECM assumes
the dissimilarities to be Euclidean distances. If this assumption is not ver-
ified, it may produce poor results, or even fail to converge. Also, RECM
needs to store the whole dissimilarity matrix in memory, and is thus not
suitable for very large datasets.

In [34], Zhou et al. introduce another variant of ECM, called the Me-
dian Evidential c-means (MECM), which is an evidential counterpart to the
median c-means and median fuzzy c-means algorithms. The MECM can
be used with dissimilarity data, and it does not require the dissimilarities
between objects to verify the axioms of distances. Yet, it still requires to
store the whole dissimilarity matrix. Recently, we introduced another evi-
dential clustering procedure based on the evidential k-nearest neighbor rule,
called Ek-NNclus [6]. The Ek-NNclus uses only the k nearest neighbors of
each object: consequently, it has lower storage requirements than EVCLUS,
RECM or MECM, which makes it suitable for clustering very large datasets.
However, Ek-NNclus generates only very simple credal partitions, in which
masses are assigned only to singletons {wy} and to the set Q of clusters. Its
outputs thus do not have as much expressive power as those of EVCLUS
and RECM.

From this general overview of evidential clustering algorithms?, we can
conclude that EVCLUS has some distinctive advantages over competing
algorithms in terms of applicability to non-metric dissimilarities and ex-
pressive power. However, it suffers from a relatively high complexity, which
limits its application to datasets of a few thousand objects with a small
number of clusters. In the rest of this paper, we will see how EVCLUS can
be modified to overcome these limitations.

3 Fast optimization

In this section, we show experimentally that the Iterative Row-wise Quadratic
Programming (IRQP) algorithm introduced in [31] can, by exploiting the
particular form of stress function (12), drastically speed up the EVCLUS
procedure. The method will be described in Section 3.1, and experimental
results will be presented in Section 3.2.

2ECM, RECM, Ek-NNclus, and k-EVCLUS introduced in this paper, have been im-
plemented in the R package evclust [5] available on the first author’s web page at
https://www.hds.utc.fr/ tdenoeux.

13

3.1 Algorithm

To simplify the presentation of the proposed optimization algorithm, let
us rewrite (12) using matrix notations. Let us assume that the f focal
sets F1,...,F}y of mass functions mq,...,m, have been ordered in some
way. We can then represent each mass function m; by a vector m; =
(m1(F1),...,mi(Ff))T of length f. The credal partition M = (my,...,my)
can then be represented by a matrix M = (m? ..., ml)T of size n x f.

The degree of conflict (3) between two mass functions m; and m; can be
written as

Kij = 'ITI/;-F(;"I’I’L]'7 (17)

where C' is the square matrix of size f, with general term

1 if F,NnE, =10,
Cre = . (18)
0 otherwise.
With these notations, the stress function (12) can be written as
J(M) =n) _(m]Cm; —5;)*. (19)

i<j

The idea behind the IRQP algorithm is to minimize J(M) with respect to
each row of M at a time, keeping the other rows constant [31]. Minimizing
J(M) with respect to m; is equivalent to minimizing

g(m;) = |[M_,Cm; — &, (20)

where M _; is the matrix obtained from M by deleting row ¢, and §; is
the vector of transformed dissimilarities d;; between object o; and all other
objects 0;, j # 4. Minimizing g(m;) under the contraints m!1 = 1 and
m; > 0 is a linearly constrained positive least-squares problem, which can
be solved using efficient algorithms (see, e.g., [14]).

By iteratively updating each row of M as described above, as long as
the overall function value decreases, the algorithm converges to a stable
function value, which is at least a local minimum. To decide when to stop
the algorithm, we compute a running mean of the relative error as follows,

ep =1, (21a)
|t — S|

, t=1,2,..., 21b
7 (21b)

ee=pe—1+(1—p)

14

where t is the iteration counter, J; is the stress value at iteration ¢, and
p = 0.5. The algorithm is then stopped when e; < ¢, for some threshold e.
The whole procedure is summarized in Algorithm 1.

The complexity of Algorithm 1 depends on the complexity of the Quadratic
Programming (QP) problem (20) solved at each iteration. Each instance of
this problem has f variables and f + 1 constraints: it is thus much smaller
than the initial nonlinear optimization problem, which has nf variables and
n(f 4+ 1) constraints. Furthermore, the quadratic function (20) being mini-
mized in convex. It is known [32] that convex QP problems can be solved in
polynomial time. Worst case theoretical bounds exist [32], but they are of
little use in practice, because the actual running time depends critically on
the particular instance of the problem and the algorithm used. As we will
see in Section 3.2 below, we found experimentally the IRQP algorithm to be
much faster than the gradient algorithm for minimizing the stress function
(12).

Algorithm 1 EVCLUS-IRQP algorithm.
Input: Dissimilarities D = (d;;), do, a, €
v+ —loga/d3
Compute d;; < 1 — exp(—fyd?j) forl<i<j<n

Compute n = (Zi<j 5%) '
Compute matrix C' using (18)
Initialize credal partition matrix M randomly
t<0,e9 1
Compute Jy using (19)
while ¢; > € do
t+—t+1
Jy+0
for i =1ton do

Delete row 4 from current matrix M to get M _;
0
Jt = Jr +ng(m
end for
e — 0.5e;_1 + 0.5’Jt — Jt—l‘/t]t—l
end while
Output: Credal partition M

by minimizing (20) subject to m!1 =1 and m; > 0
(t))

[

Find m

15

3.2 Simulation results

In this section, we first compare the Gradient-based and IRQP optimization
algorithms on real data: the protein dataset, and then on simulated data, for
which we can vary the number of objects. For all the experiments reported
in this section, we used the version of EVCLUS with the empty set (3, the
singletons {wy }, and € as focal sets.

Experiment 1: Protein dataset. The Protein dataset [7,8,12] consists
of a dissimilarity matrix derived from the structural comparison of 213 pro-
tein sequences. Each of these proteins is known to belong to one of four
classes of globins: hemoglobin-a (HA), hemoglobin-g (HB), myoglobin (M)
and heterogeneous globins (G). Figure 5 displays a two-dimensional MDS
configuration of the data with the true partition, as well as the clustering
result obtained by EVCLUS, with ¢ = 4 and dp = max; j d;j. We show both
the hard partition obtained by assigning each object to the cluster with the
highest plausibility, as well as the lower and upper approximations of each
cluster, obtained using the interval-dominance rule. We can see that the
clustering structure of the data is well recovered, with only two misclassified
objects.

We ran the Gradient and IRQP algorithms on the Protein dataset with
¢ =4 and e = 107°. Both algorithms were run 20 times from random initial
values. In each run, both algorithms were started from the same initial
conditions. Figure 6 shows the evolution of stress as a function of time for
the Gradient (left) and IRQP (right) algorithms. We can see that, on this
data, the IRQP algorithm converges more than 10 times faster than the
Gradient algorithm. We also see that the stress values at convergence for
TRQP have lower variability and are consistently smaller than those obtained
by the Gradient algorithm. This is also illustrated by Figure 7, which shows
boxplots of the stress values at convergence and computing times, for both
algorithms.

Experiment 2: Simulated dataset To study the influence of the num-
ber of objects on the computing time of both algorithms, we generated
artificial datasets with four clusters of n/4 two-dimensional vectors, gen-
erated from a multivariate ¢ distribution with five degrees of freedom and
centered, respectively, on [0,0], [0,5], [5,0] and [5,5]. The dissimilarities
were computed as the Euclidean distances between the data points. A typ-
ical dataset with n = 200 is shown in Figure 8, together with the result of
EVCLUS with ¢ = 4 and dy equal to the 0.8-quantile of the Euclidean dis-

16

1.
N 4&222
P 2 =5 P G
N o % 2]
8 % MX& S
D I X
+
yrs
|
T T T T T T
-2 0 2 4 6 6

axis 2
0
|
g
axis 2
0
|

axis 1 axis 1

Figure 5: Lower and upper approximations of four clusters for the Protein
dataset. The true classes are HA (black), HB (red), M (green) and G (blue).
The clusters found by EVCLUS are plotted with different symbols. The
convex hulls of the cluster lower and upper approximations are displayed
using solid and interrupted lines, respectively.

17

Gradient, Protein data

0.100

0.050

stress
0.020
L

0.010
L

0.005
L

time (s)

(a)

40

stress

0.020 0.050 0.100

0.010

0.005

IRQP, Protein data

time (s)

(b)

Figure 6: Stress vs. time (in seconds) for 20 runs of the Gradient (a) and
IRQP (b) algorithms on the Protein data. Note the different scales on the

ZT-axes.

Protein

40

time
20

00

T
gradient

(a)

T
IRQP

stress

0.0025

0.0027

0.0026

0.0024

Protein

T
gradient IRQP

(b)

Figure 7: Boxplots of computing time (a) and stress value at convergence
(b) for 20 runs of the Gradient and IRQP algorithms on the Protein data.

18

tances. In Figure 8, the outliers, shown as circles, are defined as points such
that m;(0) > m;(A), for all non empty subset A of . The lower and upper
approximations of each cluster are computed using the interval dominance
rule, but the outliers are excluded from the lower approximations.

Figure 9 shows stress as a function of time for both optimization al-
gorithms applied to a single dataset of n = 200 objects, with 20 different
random initial conditions. Figure 10 shows boxplots of computing times and
stress for the 20 runs of both algorithms. From Figure 9, we can see that
the Gradient algorithm was trapped three times in a local minimum, while
the IRQP algorithm was trapped only once. Overall, the results for this
dataset are similar to the previous ones with the Protein data: the IRQP
algorithm converges more than 10 times faster than the Gradient algorithm,
and it converges to lower values of the stress function.

To study the influence of the number n of objects on computing time,
we varied n from 100 to 600. For each value of n, we generated 20 different
datasets, which we clustered using EVCLUS, with the two optimization
algorithms. As a comparison, we also applied the RECM algorithm [26]
to the same data. For RECM, the parameters were set to ¢ = 4, o = 1,
B=1.5,8 =dyand e =1075. As for EVCLUS, the focal sets were restricted
to the empty set (), singletons {wy}, and 2. The results are shown in Figure
11. These results show that the computing time of the Gradient algorithm
increases much faster as a function of n, than those of the IRQP and RECM
algorithms (Figure 11(a)).

When comparing IRQP with RECM (Figure 11(b)), we can see that the
latter is still faster, and its computing time increases more slowly with n
than that of EVCLUS with IRQP. The difference, however, is much smaller
than that reported in [26], where the Gradient algorithm was used. For this
dataset, where dissimilarities are metric, EVCLUS and RECM yield similar
results. It must be recalled, however, that RECM may yield poor results or
even fail to converge when applied to non metric dissimilarities, in contrast
with EVCLUS (see Section 4.2 below).

We also applied the MECM algorithm [34], using R code provided by the
authors. We found this implementation of MECM much slower than both
EVCLUS and RECM. For the simulated data studied in this section, the
average computing time was 46.0 s for n = 100 and 141.0 s for n = 200. It
is clear that this algorithm (at least, in this implementation) is not suitable
for the clustering of large data sets. For this reason, we did not consider
it for further analysis. We will come back in Section 4 to the comparison
between evidential clustering algorithms.

In this section, we have shown that the IRQP optimization algorithms

19

© ©
© ©
< <
N (5\]
X o X
o o
vL e ¥
T T T T T T
-2 0 2 4 6 8
X1
+ a
© e ; R ©
© 1 S aaf%%a 4 ©
' a a8
+ 'y £ wBan
< P‘}qi_:” MY TN <
SEEN v PR < o
P2 . %0?&29%0 .
o »ogi?g NT 0(% o o
Box XXX &>88 %
N N /7
N /
= ® < 4 ®
' T T T T T T ' T T T T T T
-2 0 2 4 6 8 -2 0 2 4 6 8
X1 X1

Figure 8: Lower and upper approximations of the four clusters for one gen-
erated dataset with n = 200. The true classes are displayed with different
colors. The clusters found by EVCLUS are plotted with different symbols.
The convex hulls of the cluster lower and upper approximations are dis-
played using solid and interrupted lines, respectively. The two outliers are
indicated by circles.

20

Gradient, n=200 IRQP, n=200

o
~N o
: N
© =}
S | El
S o
2 2
[s 8
® 94 » o
o
~N
o
N S}
o 4
<}
T T T T
0.0 0.5 1.0 15
time (s) time (s)
(a) (b)

Figure 9: Stress vs. time (in seconds) for 20 runs of the Gradient (a) and
IRQP (b) algorithms on the synthetic data, with n = 200. Note the different
scales on the x-axes.

n=200 n=200
. B °
: n
o
e S o
o
°
i 0
0
o 3 : 3 8]
£ [S, © o
= 4‘7; i
wn
<
=
0 S
o
°]
<
Sl)
T T o T T
gradient IRQP gradient IRQP
(a) (b)

Figure 10: Boxplots of computing time (a) and stress value at convergence
(b) for 20 runs of the Gradient and IRQP algorithms on the synthetic data,
with n = 200.

21

e Gradient ¥
& |IRQP
o RECM

150

100
I

time

50
|
\M

o2 & 8) 8 8
T T T T T T

100 200 300 400 500 600

3.0
1

time

1.5 2.5

1 1
o>
o2
mo
o
Z'U

\%

1.0
1

T T
100 200 300 400 500 600

(b)

Figure 11: Computing time (in seconds) as a function of the number n of
objects for EVCLUS with the Gradient and IRQP algorithms and for RECM
(a), and zoom on the curves corresp%ding to IRQP and RECM (b).

allows us to gain several orders of magnitude in computing time, as com-
pared to the Gradient algorithm, when using the EVCLUS algorithms with
data sets of moderate size (from several hundred to a few thousand objects).
However, because it uses the full dissimilarity matrix, the space and time
complexity of EVCLUS remains proportional to n?, which makes it inappli-
cable to very large datasets. In Section 4, we will see that this limitation can
be overcome, making EVCLUS competitive with other evidential clustering
algorithms for large datasets.

4 Handling large datasets

As mentioned above, the O(n?) complexity of EVCLUS, where n is the
number of objects, makes it inapplicable to large dissimilarity data. The
fundamental reason for this high complexity is the fact that the calculation
of stress criterion (12) requires the full dissimilarity matrix. However, as
is well-known, there is usually some redundancy in a dissimilarity matrix,
even if the dissimilarity measure is not a distance. In particular, if two
objects 01 and oy are very similar, then any object o3 that is dissimilar
from o7 is usually also dissimilar from os. Because of such redundancies, it
might be possible to compute the differences between degrees of conflict and
dissimilarities, for only a subset of randomly sampled dissimilarities.

More precisely, let j1(i),...,jx(i) be k integers sampled at random from
theset {1,...,i—1,i4+1,...,n}, fori =1,...,n. Let Ji the following stress
criterion,

n k
Jp (M) =n Z Z(’%‘,jr(z‘) - 5@];(@'))2, (22)

i=1 r=1

where, as before, 1 is a normalizing constant,

n k -1
_ 2
= (Z %‘r(i)) ' (23)

i=1 r=1

Obviously, J(M) is recovered as a special case when k = n— 1. However, in
the general case, the calculation of Ji(M) requires only O(nk) operations.
If k£ can be kept constant as n increases, or, at least, if k increases slower
than linearly with n, then significant gains in computing time and storage
requirement could be achieved. In the experiments below, we show that this
version of EVCLUS (hereafter referred to as k-EVCLUS) is more scalable
than the original version, and applicable to large dissimilarity datasets. The
results of these experiments will also provide guidelines for the choice of k.

23

4.1 Results with simulated data

First, we simulated data from the same distribution as that used in Experi-
ment 2 of Section 3.2, with different numbers n of objects, and we used the
Euclidean distances as dissimilarities. Algorithm k-EVCLUS was run with
do equal to the 0.9-quantile of distances, ¢ = 4, and € = 107°.

Figures 12-14 shows the ARI, computing time® and average nonspeci-
ficity as functions of k for a simulated dataset with n = 2000. The values of
k were chosen as 10, 20, 50, 100, 200, 500 and 1999. When k£ = 1999 = n—1,
the whole distance matrix is used, and k-EVCLUS boils down to EVCLUS.
The average nonspecificity, defined as

n

N =SS mi(A)logy 4]+ mi(@) loga(c) |, (24)

= nlOgQ(C) i— AEQQ\@

was shown in [25] to a good validity index for a credal partition. It is
comprised between 0 and 1. Smaller values mean that masses are assigned
to non empty focal sets with small cardinality, which is evidence for the
adequacy of the credal partition to the data. For each k, the algorithm was
run 10 times with different random initial conditions. The median as well
as the lower and upper quartiles are reported.

As we can see, k-EVCLUS performs as well as EVCLUS (k = 1999) in
terms of ARI and nonspecificity (Figures 12 and 14), as long as k > 100,
with a significant gain in training time (Figure 13). We observe that the
computing time is higher for £ = 10 than it is for k¥ = 20, which is due to
the fact that the algorithm took more time to converge for k = 10. Figure
15 displays lower and upper approximations of the four clusters obtained
by k-EVCLUS, with & = 50 (Figure 15(a)) and & = 1000 (Figure 15(b)).
We can see that the credal partitions obtained for these two values of k are
qualitatively very similar, which confirms that very little information is lost
by taking k as small as 50, in which case only 5% of the distance matrix is
actually used.

We can wonder if the necessary value of k increases in proportion of n,
i.e., if n is multiplied by some positive number, do we need to also multiply
k by the same amount? To answer this question, we repeated the above
experiments with n = 10000. The results are shown in Figures 16-18. We
can see that three curves in this figure are very similar to those of Figures

3 All simulations reported in this paper were performed on an Apple MacBook Pro
computer with a 2.5 GHz Intel Core i7 processor.

24

0.86
|
\
—o—
L
]
.

0.85
|
——

ARI
0.83 0.84
! !

0.82
|

0.81
!

0.80
|

T T T T
0 500 1000 1500 2000
k

Figure 12: Adjusted Rand Index between the true partition and the max-
imum plausibility partition found by k-EVCLUS as a function of k£ for the
simulated data with n = 2000. The error bars show the median as well as
the lower and upper quartiles over 10 runs of the algorithm.

25

14 16 18
I I
e

time
12
I
i

o] LI;/

T T \
1000 1500 2000
k

o -
a
o 4
o

Figure 13: Computing time of k-EVCLUS as a function of & for the simulated
data with n = 2000. The error bars show the median as well as the lower
and upper quartiles over 10 runs of the algorithm.

26

s}
<
P
o
o
<
p—
o
2
S
S 1
v ™
o«
2 o
o
<
o
7]
a9 3
) “&
\E\I = - *
T T T T T
0 500 1000 1500 2000

k

Figure 14: Nonspecificity of the maximum plausibility partition found by
k-EVCLUS as a function of k for the simulated data with n = 2000. The
error bars show the median as well as the lower and upper quartiles over 10
runs of the algorithm.

27

x[, 2]

T T T T T T T T T T T T T T T T
-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10
X[11 X[, 1 [, 1] X[11

Figure 15: Lower and upper approximations of the four clusters for the
simulated dataset of size n = 2000, obtained by k-EVCLUS with k£ = 50 (a)
and k& = 1000 (b). The outliers are indicated by circles.

12-14, and k-EVCLUS again performs similarly to EVCLUS for & > 100.
We note that, for &k = 100, k-EVCLUS uses only 2% of the distances.

It is also interesting to find out how k-EVCLUS compares with RECM
and EK-NNclus in terms of quality of the results and computing time:

e The RECM algorithm was run 10 times with random initialization and
the following default parameter values: o = 1, 8 = 1.5 and §° = 0.95
quantile of dissimilarities. For n = 2000, the mean computing time of
RECM was 12.99 s, and the mean ARI was 0.86. For n = 10000, it
was not possible to run RECM because of memory limitations.

e EK-NNclus was also run 10 times with random initialization (with
1000 initial clusters) and ¢ = 0.95. For n = 2000, we set K = 100; the
mean computing time was 3.46 and the mean ARI was 0.74 (maximum:
0.83). For n = 10000 with K = 300, the mean computing time was
72.06 s, and the mean ARI was 0.73 (maximum: 0.86).

Comparing these results with those of Figures 12-13 and 16-17, we can see
that RECM performs comparably with k-EVCLUS for n = 2000, but it does
not scale to significantly larger datasets. As far as EK-NNclus is concerned,
it is slightly faster than k-EVCLUS for n = 2000, but it becomes slower for
n = 10000; it is also less robust than k-EVCLUS to initial conditions.

28

B
L F 3

A2}

Wi

ARI
0.82 0.83 0.84 0.85 0.86
|

0.80 0.81

T T T T
0 500 1000 1500 2000
k

Figure 16: Adjusted Rand Index between the true partition and the max-
imum plausibility partition found by k-EVCLUS as a function of k£ for the
simulated data with n = 10000. The error bars show the median as well as
the lower and upper quartiles over 10 runs of the algorithm.

29

70

time
60
|
Heo—

50
!
——

30
!

\ T T T \
0 500 1000 1500 2000
k

Figure 17: Computing time of k-EVCLUS as a function of & for the simulated
data with n = 10000. The error bars show the median as well as the lower
and upper quartiles over 10 runs of the algorithm.

30

n
<
S
o
o
S
2 3
S
:‘5
(0]
o
2
2 9
S
5] |
@
o I.'\
- - - -
T T T T T
0 500 1000 1500 2000

k

Figure 18: Nonspecificity of the maximum plausibility partition found by
k-EVCLUS as a function of k, as a function of k, for the simulated data
with n = 10000. The error bars show the median as well as the lower and
upper quartiles over 10 runs of the algorithm.

31

To compare these three algorithms in a more systematic way, we let
n vary in from 1000 to 5000 (by 1000 increments), and we generated 10
datasets of each size, from the same distribution. We then recorded the
computing times and ARI values for k-EVCLUS (with & = 100 and dy equal
to the 0.9-quantile of the distances), RECM (with the same parameters as
above), and EK-NNclus with K = 3/n and ¢ = 0.95. The results are
reported in Figure 19. From Figure 19(a), we can see that k-EVCLUS and
EK-NNclus are comparable in terms of computing time for different values
of n, whereas the time complexity of RECM seems to be considerably higher.
On the other hand, k-EVCLUS and RECM yield comparable results in terms
of ARI (see Figure 19(b)), whereas the partitions obtained by EX-NNclus
have higher variability. It must be noticed that the number ¢ of clusters is
specified for k-EVCLUS and RECM, but it is not for EKX-NNclus. Overall,
k-EVCLUS seems to provide the best results (for correctly specified ¢) in
the least amount of time.

4.2 Results with real data

In this section, we consider two real dissimilarity datasets, both available
from http://prtools.org/disdatasets/index.html. In these two datasets,
the dissimilarities are non metric, i.e., they are not Euclidean distances.

Zongker Digit dissimilarity data. This dataset contains similarities
between 2000 handwritten digits in 10 classes, based on deformable template
matching. The dissimilarity measure is the result of an iterative optimization
of the non-linear deformation of the grid [13]. As the dissimilarity matrix
was initially non symmetric, we symetrized it by the transformation d;; <
(dij + dji) 2

The k-EVCLUS algorithm was run with ¢ = 10 and the following values
of k: 30, 50,100, 200, 300, 400, 500, 1000 and 1999. Parameter dy was fixed
to the 0.3-quantile of the dissimilarities. For each value of k, k--EVCLUS was
run 10 times with random initializations. The results are shown in Figures
20-22. We can see that optimal results (with an ARI roughly equal to 0.8)
are reached for & > 300.

In contrast, RECM does not perform well on this data set, probably
because of the non-metric nature of the dissimilarities. With the default
values a = 1, f = 1.5, and 8% = equal to the 0.95-quantile of dissimilarities,
we obtained an average ARI over 10 trials equal to 0.25 (maximum: 0.36).
The mean running time was 13.1s, and the mean nonspecificity was 0.01.

32

150
1

& k-EVCLUS
e RECM
x EK-NNCclus
o
£ S
= r
Q
Yo}
- /34;
o 4 Qéxﬁ/“
T T T T T
1000 2000 3000 4000 5000
n
(a)
o
o
[S)
£ 4 ﬁ%/&ﬁ E@:‘
[S) \
o
0 4
r R
< o
o
~
© a k-EVCLUS
¢ RECM
) x EK-NNclus
©o
[S]
o
@_ -
© T T T T T
1000 2000 3000 4000 5000

(b)

Figure 19: Computing time (a) and ARI (b) for &-EVCLUS, RECM and
EKNNclus for simulated datasets with different values of n.

33

0.8

0.6 0.7
|

ARI

0.4
!

T T T
0 500 1000 1500 2000
k

Figure 20: Adjusted Rand Index between the true partition and the max-
imum plausibility partition found by k-EVCLUS as a function of k£ for the
Zongker digits data. The error bars show the median as well as the lower
and upper quartiles over 10 runs of the algorithm.

We also tested EK-NNclus on this dataset. For K = 50 and ¢ = 0.3,
EENNclus found 9 clusters in 9.53 s on average (over 10 trials). The mean
ARI was equal 0.55 (with a maximum of 0.58), which is significantly less
that the values obtained by k-EVCLUS with the correct number of clusters.

Delft Gestures data This dataset consists of the dissimilarities com-
puted from a set of gestures in a sign-language study [19]. They were mea-
sured by two video cameras observing the positions the two hands in 75 rep-
etitions of creating 20 different signs. There are thus 1500 objects grouped
in 20 clusters. The dissimilarities result from a dynamic time warping pro-
cedure.

Figures 23-25 shows the results obtained by k-EVCLUS with ¢ = 20, dg
fixed to the 0.2-quantile of the dissimilarities, and the following values of k:
30, 50, 100, 200, 300, 400, 500, 1000 and 1499. The three curves showing

34

o
2 -
i
o
© 37
(0]
£
3
/I
)
ry _;/
\;-‘_I,t
T T T T I
0 500 1000 1500 2000
k

Figure 21: Computing time of k-EVCLUS as a function of k for the Zongker
digits data. The error bars show the median as well as the lower and upper
quartiles over 10 runs of the algorithm.

35

0.37 0.38 0.39
| | |

nonspecificity

0.36
|

0.35
|
/

Er). | -f- I A
o T T T T T
0 500 1000 1500 2000
k

Figure 22: Nonspecificity of the maximum plausibility partition found by
k-EVCLUS as a function of k for the Zongker digits data. The error bars
show the median as well as the lower and upper quartiles over 10 runs of
the algorithm.

36

~
© |
o
.
E o
<
<
o
@
o
T T T I
0 500 1000 1500

Figure 23: Adjusted Rand Index between the true partition and the maxi-
mum plausibility partition found by k-EVCLUS as a function of k, for the
Gestures dataset. The error bars show the median as well as the lower and
upper quartiles over 10 runs of the algorithm.

the evolution of ARI, computing time and nonspecificity as a function of k
follow the same patterns as in the previous examples: k-EVCLUS performs
as well as EVCLUS for £ > 100, with a significant reduction in training
time.

Here again, RECM performed quite poorly on this dataset. With the
same parameters as above, we obtained an average ARI (out of 10 trials)
of 0.11 (with a maximum of 0.17). The mean computing time was 5.71s
and the mean nonspecificity was 0.00621. For EK-NNclus with K = 50 and
q = 0.2, the mean computing time over 10 trials was 4.16 s, the mean ARI
was 0.59 (maximum: 0.66). The number of clusters ranged from 19 to 24,
with a mean equal to 21.3.

In this section, we have shown that the principle underlying EVCLUS
(i.e., constructing a credal partition by minimizing the discrepancy between
degrees of conflict and dissimilarities) can be applied to large dissimilarity

37

200
|

time (s)
150
|

100
|

50
/

T T
0 500 1000 1500

Figure 24: Computing time of k-EVCLUS as a function of k for the Gestures
dataset. The error bars show the median as well as the lower and upper
quartiles over 10 runs of the algorithm.

38

nonspecificity
0.260 0.265 0.270 0.275 0.280 0.285 0.290

|]

T T
0 500 1000 1500

Figure 25: Nonspecificity of the maximum plausibility partition found by
k-EVCLUS as a function of k, for the Gestures dataset. The error bars
show the median as well as the lower and upper quartiles over 10 runs of
the algorithm.

39

data sets, by randomly sampling the dissimilarities. The resulting method,
called k-EVCLUS, is both faster than RECM (which is also limited by the
requirement of storing the whole dissimilarity matrix), and more accurate
than Ek-NNclus, provided that the number of clusters is correctly specified.
In the next section, we address another issue with EVCLUS, which does not
fully exploit the generality of credal partitions. We show how this limitation
can be overcome by some simple post-processing operations.

5 Generating more informative credal partitions

As mentioned in the introduction, a limitation of the initial EVCLUS algo-
rithm, as introduced in [7], is the fact that the complexity of the gradient
calculation is proportional to f2, where f is the number of focal sets in the
credal partition. As a consequence, when using this algorithm, we need to
drastically limit the number of the focal sets. The most stringent restriction
that preserves the needed expressivity of the credal partition is to select as
focal sets the empty set, the singletons, and the whole frame of discernent,
in which case we have f = c+ 2.

When using the IRQP algorithm introduced in Section 3.1, we no longer
need to compute the gradient. However, there remains the problem that, if
no restriction is imposed on the focal sets, the number of parameters in the
optimization problem grows exponentially with the number of clusters. If we
allow masses to be assigned to pairs of clusters, as suggested in [7] and [25],
the number of focal sets becomes proportional to ¢?, which is manageable
for moderate values of ¢ (say, until 10), but still makes the optimization of
the stress function more difficult. It is clear, however, that only a few pairs
of clusters will be assigned some mass during the learning process.

Example 5 Consider, for instance, the So dataset* shown in Figure 26.
This dataset is composed on n = 5000 two-dimensional vectors grouped in
15 Gaussian clusters. We show the lower and upper approximations of the
clusters obtained by EVCLUS with ¢ = 15, k = 100, and dy fixed to the 0.2-
quantile of the FEuclidean distances. It is clear that, for instance, clusters
1 and 7 are not contiguous, and there can never be any ambiguity about
assigning an object to one of these two clusters. Consequently, the mass
assigned to the pair {w1, w7} will always be null. In contrast, clusters 1 and
4, for instance, partially overlap: some objects are located at the boundary

4This dataset is available at https://cs.joensuu.fi/sipu/datasets.

40

(o)
o
+_
(]
—
LN
o
+_
(]
(o0]
Lo
2. 1
[
8 A2
2 3
x 4
§ 5
. 6
< 7
S
&
8 e 10
3 o 11
N 8 12
:
n
(@]
= 15
[I I I I I
o

2e+05 4e+05 6e+05 8e+05 le+06

X1

Figure 26: The S5 dataset, and the 15 clusters found by k-EVCLUS with
k = 100.

between these two clusters. For these objects, a positive mass should be
assigned to the pair {wi,ws}. O

To determine which pairs of clusters can potentially become focal sets,
we propose a two-step approach:

1. In the first step, k~-EVCLUS is run in the basic configuration, with focal
sets of cardinalities 0, 1 and c. A credal partition My is obtained. The
similarity between each pair of clusters (wj,wy) is measured by

S) = plijplie, (25)
=1

41

where pl;; and pl;, are the normalized plausibilities that object i be-
longs, respectively, to clusters j and £. We then determine the set Px
of pairs {wj,wy} that are mutual K nearest neighbors, according to
the similarity measure S.

2. In the second step, k-EVCLUS is run again, starting from the previous
credal partition Mg, and adding as focal sets the pairs in Pg.

Example 6 Consider again the Sy dataset displayed in Figure 26. The
similarities S(1,¢) between cluster wi and each of the ¢ = 15 clusters are

275.5,9.2,4.0,61.4,6.5,59.8,4.4,7.1,5.5,8.3,7.4,6.7,6.5,4.4,4.0,
and the similarities S(4,£) between cluster wy and the 15 clusters are
61.4,30.2,5.8,219.6,8.8,9.1,6.2,34.2,7.3,16.7,9.2,8.5,8.3,6.2, 5.8,

where we have underlined the highest similarity of each object with other
objects (excluding itself). We can see that wy is the nearest neighbor of w1,
and wy 1s the nearest neighbor of wy. By definition, they are mutual nearest
neighbors. For this dataset, there are four pairs of mutual neighbors, out of
the 105 pairs of clusters: {wi,ws}, {wr,wi1}, {wy, w12}, {wio,wi4}. Setting
k =2, we get 12 pairs of 2-nearest neighbors: in addition to the four pairs
above, we have {w1,ws}, {ws,ws}, {ws,ws}, {wo,wi0}, {wg, w11}, {ws, w12},
{W3,w14} and {wlg,w15}. O

Figure 27 shows the lower approximations of the clusters, and the points
assigned to pairs of clusters by the interval dominance rule, for the initial
credal partition Mg. Only 9 points out of 5000 have an ambiguous clas-
sification, which does not reflect the actual ambiguity of the classification
for some points at the boundaries between clusters. Figure 28 displays the
clustering result after integrating the four pairs of clusters in P;. The 139
ambiguous points shown in Figure 28 are objects at the boundary between
neighboring clusters. The final credal partition, which allows us to iden-
tify these points, is clearly more informative than the initial one. For this
dataset with 5000 objects, the first and step steps took, respectively, 29.5 s
and 31.3 s.

6 Conclusions

Among evidential clustering algorithms, EVCLUS has the distinctive advan-
tage of being applicable to general non metric dissimilarity data. However,

42

O
o
+_
(]
—
Ln
o
+_
(]
0]
LN
z - 1
[
8 A2
2 03
X
:
N v
E °
5
&
8 e 10
3 w11
I3\ B8 12
:
n
S 15
+_
(] I I I I I
o

2e+05 4e+05 6e+05 8e+05 1e+06

X1

Figure 27: So dataset: lower approximations and ambiguous objects for the
initial credal partition Mg obtained by k-EVCLUS.

43

O
o
+_
(]
—
Lo
o
+_
(]
o0]
Ln
T 1
1 o)
38 A2
2 03
X
§ 5
_ o2
5 7
5
&
8 e 10
3 w11
3\ 8 12
E
o n
2 | 15
(0] I I I I I
o

2e+05 4e+05 6e+05 8e+05 1le+06

X1

Figure 28: S5 dataset: lower approximations and ambiguous objects for the
final credal partition obtained by k-EVCLUS, after taking into account the
four pairs of clusters that are mutual nearest neighbors.

44

in its original version, it also had a number of limitations. First, it was signif-
icantly slower than more recently introduced relational evidential clustering
algorithms such as RECM and EK-NNclus. Because of its computational
complexity, the expression power of belief functions could not be fully ex-
ploited, as the form of the focal sets had to be severely constrained. Finally,
and most importantly, EVCLUS was limited to datasets of a few thousand
objects, due to the necessity to store the whole dissimilarity matrix.

In this paper, we have been able to overcome these limitations, thanks
to some major improvements to the original EVCLUS algorithm. First, the
original gradient algorithm has been replaced by a much more efficient iter-
ative row-wise quadratic programming procedure, which exploits the partic-
ular structure of the optimization problem. Secondly, we have shown that
EVCLUS can only be provided with a randomly sampled subset of the dis-
similarities. Specifically, we only need to supply the dissimilarities between
each object and k randomly selected objects, reducing the space complexity
from O(n?) to O(kn). Our results suggest that, for a number n of objects
between 1000 and 10,000, optimal results are obtained with & in the range
100-500. Finally, we have proposed a way to construct richer credal parti-
tions, even with large numbers of classes, through a two-step procedure: in a
first step, EVCLUS (or A-EVCLUS, the variant of EVCLUS with randomly
sampled dissimilarities) is run with only the empty set, singletons and the
whole set of clusters as focal sets; the similarity between clusters is com-
puted, and pairs of neighboring clusters are identified. In a second step, the
clustering algorithm is run again, starting from the previous solution, and
adding to the focal sets the pairs of neighboring clusters found in the previ-
ous step. This simple procedure has been shown to provide more informative
credal partitions, at the expense of a moderate increase on computing time,
even for large numbers of clusters.

The improvements described in this paper make EVCLUS potentially
applicable to large dissimilarity data, with of the order of 10 or even 10°
objects. Analyzing even larger datasets (with millions of objects, as arising
in social network studies, for instance), would probably require to sample
the rows of the dissimilarity matrix. This issue obviously requires further
investigation. Combining the ideas developed in this paper with the integra-
tion of instance-level constraints and active learning strategies, as introduced
in [1], is also an interesting perspective.

45

Acknowledgements

This research was supported by the Labex MS2T, which was funded by the
French Government, through the program “Investments for the future” by
the National Agency for Research (reference ANR-11-IDEX-0004-02). It
was also supported by the Center of Excellence in Econometrics at Chiang
Mai University.

References

1]

V. Antoine, B. Quost, M.-H. Masson, and T. Denoeux. CEVCLUS:
evidential clustering with instance-level constraints for relational data.
Soft Computing, 18(7):1321-1335, 2014.

J. Bezdek. Pattern Recognition with fuzzy objective function algorithm.
Plenum Press, New-York, 1981.

I. Borg and P. Groenen. Modern multidimensional scaling. Springer,
New-York, 1997.

T. F. Cox and M. A. Cox. Multidimensional scaling. Chapman and
Hall, London, 1994.

T. Denceux. evclust: Fwvidential Clustering, 2016. R package version
1.0.0. url:https://www.hds.utc.fr/ tdenoeux

T. Denceux, O. Kanjanatarakul, and S. Sriboonchitta. EK-NNclus: a
clustering procedure based on the evidential k-nearest neighbor rule.
Knowledge-based Systems, 88:57-69, 2015.

T. Denceux and M.-H. Masson. EVCLUS: Evidential clustering of prox-
imity data. IEEE Trans. on Systems, Man and Cybernetics B, 34(1):95—
109, 2004.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Clas-
sification on pairwise proximity data. In Advances in Neural Informa-
tion Processing Systems 11, pages 438-444, Cambridge, MA, 1999. MIT
Press.

R. Hathaway and J. Bezdek. NERF c-means: Non-Euclidean relational
fuzzy clustering. Pattern Recognition, 27:429-437, 1994.

46

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Hathaway, J. Bezdek, and J. Davenport. On relational data versions
of c-means algorithms. Pattern recognition Letters, 17:607-612, 1996.

R. Hathaway, J. Davenport, and J. Bezdek. Relational duals of the c-
means clustering algorithms. Pattern recognition, 22(2):205-211, 1989.

T. Hofmann and J. Buhmann. Pairwise data clustering by determin-
istic annealing. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 19(1):1-14, 1997.

A. K. Jain and D. Zongker. Representation and recognition of handwrit-
ten digits using deformable templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(12):1386-1391, 1997.

M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller. An algo-
rithm for linear least squares problems with equality and nonnegativity
constraints. Mathematical Programming, 21:98-118, 1981.

M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller. Improve-
ments to the relational fuzzy c-means clustering algorithm. Pattern
Recognition, 47(12):3920-3930, 2014.

R. Krishnapuram and J. Keller. A possibilistic approach to clustering.
IEEE Trans. on Fuzzy Systems, 1:98-111, May 1993.

B. Lelandais, S. Ruan, T. Denceux, P. Vera, and I. Gardin. Fusion of
multi-tracer PET images for dose painting. Medical Image Analysis,
18(7):1247-1259, 2014.

C. Lian, S. Ruan, and T. Denceux. An evidential classifier based on fea-
ture selection and two-step classification strategy. Pattern Recognition,
48:2318-2327, 2015.

J. Lichtenauer, E. A. Hendriks, and M. J. T. Reinders. Sign language
recognition by combining statistical DTW and independent classifica-

tion. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
30:2040-2046, 2008.

P. Lingras and G. Peters. Applying rough set concepts to clustering.
In G. Peters, P. Lingras, D. Slezak, and Y. Yao, editors, Rough Sets:
Selected Methods and Applications in Management and Engineering,
pages 23-37. Springer-Verlag, London, UK, 2012.

47

[21]

[22]

Z.-G. Liu, Q. Pan, and J. Dezert. A new belief-based k-nearest neighbor
classification method. Pattern Recognition, 46(3):834-844, 2013.

7Z.-G. Liu, Q. Pan, J. Dezert, and G. Mercier. Credal classification
rule for uncertain data based on belief functions. Pattern Recognition,
47(7):2532-2541, 2014.

Z.-G. Liu, Q. Pan, J. Dezert, and G. Mercier. Credal c-means clus-
tering method based on belief functions. Knowledge-Based Systems,
74(0):119-132, 2015.

N. Makni, N. Betrouni, and O. Colot. Introducing spatial neighbour-
hood in evidential c-means for segmentation of multi-source images:
Application to prostate multi-parametric MRI. Information Fusion,
19:61-72, 2014.

M.-H. Masson and T. Denoeux. ECM: an evidential version of the fuzzy
c-means algorithm. Pattern Recognition, 41(4):1384-1397, 2008.

M.-H. Masson and T. Denccux. RECM: relational evidential c-means
algorithm. Pattern Recognition Letters, 30:1015-1026, 2009.

G. Peters. Is there any need for rough clustering? Pattern Recognition
Letters, 53:31-37, 2015.

G. Peters, F. Crespo, P. Lingras, and R. Weber. Soft clustering: fuzzy
and rough approaches and their extensions and derivatives. Interna-
tional Journal of Approzimate Reasoning, 54(2):307-322, 2013.

L. Serir, E. Ramasso, and N. Zerhouni. Evidential evolving Gustafson-
Kessel algorithm for online data streams partitioning using belief
function theory. International Journal of Approrimate Reasoning,
53(5):747-768, 2012.

G. Shafer. A mathematical theory of evidence. Princeton University
Press, Princeton, N.J., 1976.

C. J. ter Braak, Y. Kourmpetis, H. A. Kiers, and M. C. Bink. Approx-
imating a similarity matrix by a latent class model: A reappraisal of
additive fuzzy clustering. Computational Statistics & Data Analysis,
53(8):3183-3193, 20009.

S. A. Vavasis. Complexity theory: quadratic programming. In C. A.
Floudas and P. M. Pardalos, editors, Encyclopedia of Optimization,
pages 304-307. Springer US, Boston, MA, 2001.

48

[33] M. Windham. Numerical classification of proximity data with assign-
ment measures. Journal of classification, 2:157-172, 1985.

[34] K. Zhou, A. Martin, Q. Pan, and Z.-G. Liu. Median evidential c-means
algorithm and its application to community detection. Knowledge-
Based Systems, 74(0):69-88, 2015.

49

