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Study of the Bending Modes in Circular
Quartz Resonators

Philippe Leclaire, Jozefien Goossens, Löıc Martinez, Nicolas Wilkie-Chancelier, Stéphane Serfaty,
and Christ Glorieux

Abstract—An experimental and theoretical study of
bending modes in a partially electroded circular piezoelec-
tric quartz (AT-cut) with free edge is presented. The quartz
is excited by a voltage pulse applied on the electrodes,
and its surface is scanned by a laser vibrometer that mea-
sures the out-of-plane displacements. The classical theory of
bending of thin disks is used to describe the flexural modes
at frequencies lower than the first thickness shear resonance
(6 MHz). A fairly good agreement is found between exper-
imental and theoretical results for the forced mode shapes
and for the resonance frequencies. However, it appears that
the two springs used to maintain the disk in position intro-
duce extra clamping conditions. Several source shapes were
studied, among which a collection of an arbitrary number of
forces is particularly useful. The two-dimensional wavenum-
ber representation shows the presence of anisotropy related
to the crystallographic axes at higher frequencies, which is
not predicted by the model. The experimental phase veloc-
ities are compared to those given by the classical theory
of disks and to those of Lamb A0 mode. This study con-
firms the correspondence at low frequencies between the
A0 mode and the bending eigenmodes of a disk with finite
size.

I. Introduction

Piezoelectric quartz resonators are widely used as
frequency-time delay control devices in numerous elec-

tronic appliances such as watches, cellular phones, televi-
sion sets, or computers. In these applications, the high-
quality factor of quartz and the low-dependency of the
resonance frequency to perturbing parameters result in an
accurate control of the resonance frequency or time period.
Quartz is anisotropic and, depending on the way it is cut,
it also can be used in other applications as sensors for tem-
perature, stress, or pressure for example. A review of vari-
ous applications of homogeneous and composite quartz has
been given by Benes et al. [1]. In one of these applications,
the surface of an AT cut quartz is applied to a Newtonian
liquid with a viscosity η [2]. The thickness shear resonance
is used to generate a rapidly vanishing wave in the liquid
with a typical viscous skin depth of a few micrometers.
Thickness resonances of a quartz can be described by the
equations of piezoelectricity. The boundary conditions are
applied to the governing equation of piezoelectricity and,
for a plate of infinite lateral extent, the problem can be

In this article, we present a study of the bending modes
that occur at low frequencies (as opposed to the higher fre-
quency thickness modes) in an AT-cut quartz disk used in
shear thickness mode for monitoring the liquid-solid phase
transition in gels [6]. It is shown experimentally from laser
Doppler surface scanning experiments that these bending
modes are efficiently excited. The normal and forced modes
are studied theoretically, and a comparison with the exper-
imental results is carried out for a disk with a free edge.
To the best of our knowledge, theoretical and experimen-
tal results on the forced bending vibrations of free disks
are scarce. Transverse modes as well as thickness modes
in piezoceramic disks were studied recently by Huang et
al. [7] and Huang [8]. The approach adopted here is dif-
ferent from the one by these authors in that the classical
theory of thin plates and disks is used [9]. The equations
of piezoelectricity are not used, and the stresses induced
by the electrodes are taken to be external forces. The elec-
tromechanical coupling responsible for a stiffening of the
material is not considered because it was shown by Huang
[8] to be small.

The main benefit of the approach proposed here is that
simpler equations are involved, that the effect of the source
can be studied more easily, and that many source con-
figurations can be modeled and tested. Different sources
are included in the model, including a point force located
arbitrarily on the disk, a circular line source, a constant
pressure spread over a circular region, and a collection of
an arbitrary number of forces, which is very convenient to
model any source shape. The forced motion corresponding
to the appropriate source is calculated as a function of fre-
quency and compared with the experimental results. Other
original aspects developed are the connection between the
bending modes and the Lamb first antisymmetrical mode
(A0) as well as the transient aspect of the wave propaga-
tion from the electrodes.

II. Bending Modes of a Circular Plate with

Free Edge

A. Normal Modes

The normal modes (following the terminology in [9])
correspond to the “natural” vibration modes associated
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treated as one dimensional [3]. Equations, including the
lateral dependency, also have been established and used
to study plates with varying thickness such as the beveled
plate with tapered surface [4]. Détaint et al. [5] studied
the effect of the electrode shape on the forced resonance
modes of planes and corrugated resonators.



with particular shapes of the disk surface. The normal
modes can occur only at certain frequencies determined
by the disk properties and edge conditions, the natural fre-
quencies. The normal modes also can be called the eigen-
modes for the reason that they form a basis of functions
upon which any forced vibration at a frequency imposed
by the source can be decomposed.

A disk of thickness h, radius a, density ρ, Young’s mod-
ulus E, and Poisson ratio ν is considered. The classical
plate equation is [9]:

D∇4w + hρ∂2
t w = 0, (1)

where w is the lateral displacement of the disk and D is
the bending stiffness, given by:

D =
Eh3

12 (1 − ν2)
. (2)

In polar system of coordinates (r, θ), solutions of the
form:

w = W (r, θ)eiωt, (3)

where ω is the angular frequency are admissible, and the
plate equation can be written:(

∇2 − γ2) (
∇2 + γ2)W = 0, (4)

with:

γ2 = ω

√
hρ

D
. (5)

This leads to the following possible general solutions for
the plate equation:

W =
cos
sin (nθ)Jn(γr) or W =

cos
sin(nθ)IN (γr), (6)

where Jn is the Bessel function of the first kind and In is
the modified Bessel function of the first kind:

In = i−nJn. (7)

The general solutions for the bending of a disk are of the
form:

W = cos
sin (nθ) [AJn(γr) + B In(γr)] , (8)

where A and B are constants to be determined from the
boundary conditions.

The case of a disk with a clamped edge was treated by
Morse and Ingard [9]. For a plate with a free edge, the
boundary conditions are such that the radial bending mo-
ment and Kelvin-Kirchoff shear [10], [11] are zero at the
edge of the disk at r = a. Using the notations of Gabriel-
son [10]:

AMn1(γa) + B Mn2(γa) = 0, (9a)

and:

AVn1(γa) + B Vn2(γa) = 0, (9b)

with:

Mn1(γa) =
(

n(n − 1)(1 − ν)
(γa)2

− 1
)

Jn(γa)

+
(1 − ν)

γa
Jn+1(γa),

Mn2(γa) =
(

n(n − 1)(1 − ν)
(γa)2

+ 1
)

In(γa)

− (1 − ν)
γa

In+1(γa),

Vn1(γa) =
n

γa

(
n(n − 1)(1 − ν)

(γa)2
+ 1

)
Jn(γa)

−
(

n2

γa

(1 − ν)
γa

+ 1
)

Jn+1(γa),

Vn2(γa) =
n

γa

(
n(n − 1)(1 − ν)

(γa)2
− 1

)
In(γa)

+
(

n2

γa

(1 − ν)
γa

− 1
)

In+1(γa).

(10)

The roots of the determinant:∣∣∣∣Mn1 Mn2
Vn1 Vn2

∣∣∣∣ = 0, (11)

impose the allowed values of γ. For a given value of n
corresponding to the number of nodal diameters (n =
0, 1, 2, . . . ), the roots of the determinant provide m val-
ues of allowed γ, m corresponding to the number of nodal
circles (m = 1, 2, . . . ). The parameter γ becomes γnm and
the frequencies of the normal modes are given by:

ωnm = γ2
nm

√
D

hρ
. (12)

Eq. (11) corresponds to the dispersion relation between
the frequencies and the spatial wavenumbers of the allowed
modes. The amplitudes of the normal modes can be deter-
mined from either (9a) or (9b) and from normalizing one
of the constants, say A = 1. A and B become Anm and
Bnm, respectively, and:

Bnm = −Anm
Mn1 (γnma)
Mn2 (γnma)

= −Anm
Vn1 (γnma)
Vn2 (γnma)

.
(13)

The frequencies and the mode shapes of the normal
modes are given by (8), (12), and (13). The squared veloc-
ity of the calculated normal modes of the free disk between
0 and 100 kHz are shown in Fig. 1. The quartz used is
anisotropic and belongs to the trigonal class of symmetry.
However, it was considered as isotropic in the model, and
the values of the Young’s modulus and of the Poisson ratio
were taken such that a good fit was obtained between ex-
perimental results and the model, which in its present form
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Fig. 1. The bending normal modes of a disk with a free edge in a
frequency range between 0 and 100 kHz.

does not include several elastic coefficients. The properties
used for the calculation were the following: a density of
ρ = 2650 kg/m3, a Young’s modulus of E = 8.8×1010 Pa,
and a Poisson ratio of 0.3. The value of Young’s modu-
lus of the crystal studied is between 9.72 × 1010 Pa (crys-
tal with crystallographic axis parallel to the z-axis) and
7.65 × 1010 Pa (crystal with crystallographic axis perpen-
dicular to the z-axis). The crystal used is cut at an angle
of 35.25◦ about the z axis. It will be seen that, although
a model for isotropic material is used, a fairly good match
will be found between experimental and theoretical results.

B. Forced Motion

Forced motions are modeled by including a source term
in the equation of motion, which becomes:

D∇4w + hρ∂2
t w = s(r, θ, t), (14)

where s(r, θ, t) has the dimensions of a pressure and is of
the form:

s(r, θ, t) = S0(r, θ)eiωt. (15)

The solutions of (14) are written as double infinite se-
ries:

W (r, θ) =
∞∑

n=0

∞∑
m=1

W e
nmRmn(r) cos(nθ)

or

W (r, θ) =
∞∑

n=0

∞∑
m=1

W o
nmRmn(r) sin(nθ),

(16)

where W e
nm and W o

nm are the amplitude coefficients of even
and odd, forced modes and with:

Rnm(r) = AnmJn (γnmr) + BnmIn (γnmr) .
(17)

Inserting these series in the plate equation (14), multi-
plying each term by Rpq(r) cos(pθ) with p, q integers and
integrating each term over the disk surface yields (18) (see
next page) for the solution in cos(nθ), where use has been
made of the fact that, in polar coordinates, the biharmonic
operator is:

∇4 ≡ γ4
nm.

Interchanging the integral and summation operators
and making use of the orthogonality relations yield the
amplitude coefficients:

W e
nm =

2π∫
0

a∫
0

S0(r, θ)Rmn(r) cos(nθ)r dr dθ

(
Dγ4

nm − ρhω2) a∫
0

R2
nm(r)r dr

2π∫
0

cos2(nθ)dθ

,

(19)

and a similar expression for W o
nm where sin(nθ) is involved

instead of cos(nθ). The orthogonality requirement is such
that the terms with nonidentical indices n, p and m, q are
zero. The forced solutions of the disk then are given by:

w(r, θ, t) =( ∞∑
n=0

∞∑
m=1

W e
nmRmn(r) cos(nθ) + W o

nmRmn(r) sin(nθ)

)
eiωt.

(20)

C. Modeling the Source

In this study, the stresses induced by the electrodes are
taken to be external forces that are decoupled from the
other stresses in the disk. This is possible because the elec-
tromechanical coupling responsible for a stiffening of the
material is fairly small [8]. Also, the electrode thickness
(500 nm) can be considered to be acoustically negligible.
We have studied several source configurations from the
general expressions of W e

nm and W o
nm.
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2π∫
0

a∫
0

∞∑
n=0

∞∑
m=1

(
Dγ4

nm − ρhω2)W e
nmRnm(r) cos(nθ)Rpq(r) cos(pθ)r dr dθ =

2π∫
0

a∫
0

∞∑
n=0

∞∑
m=1

S0(r, θ)Rpq(r) cos(pθ)r dr dθ, (18)

1. Point Force: For a point force F0 located at (r0, θ0),
the source term can be written as:

S0(r, θ) = F0
δ (r − r0) δ (θ − θ0)

2πr
. (21)

F0 has the dimensions of a force, δ (r − r0) is expressed
in m−1 and S0 is a pressure. From the property of the
delta function:

W e
nm =

F0Rmn (r0) cos (nθ0)

(
Dγ4

nm − ρhω2) a∫
0

R2
nm(r)r dr

2π∫
0

cos2(nθ)dθ

.

(22)

2. Line Source: We consider the example of a line
source consisting of a constant force applied on a concen-
tric circle of radius r0:

S0(r, θ) = F0
δ (r − r0)

2πr
∀θ. (23)

The symmetry of this source imposes the absence of angu-
lar modes, i.e., n = 0; (19) then is simplified to:

W e
0m = F0

R0m (r0)

2π
(
Dγ4

0m − ρhω2) a∫
0

R2
0m(r)r dr

.
(24)

3. Uniform Pressure: For a constant pressure P0 on a
disk of radius r0 (smaller than the quartz radius):

S0(r, θ) = P0 for r ≤ r0 and ∀θ. (25)

Here too the symmetry imposes n = 0 and:

W e
0m = P0

r0∫
0

R0m(r)r dr

(
Dγ4

0m − ρhω2) a∫
0

R2
0m(r)r dr

. (26)

4. Collection of Forces: A collection of several forces
can be simply modeled by adding their individual con-
tributions. Anticipating the experimental configuration, a
series of 20 forces oriented upward on the horizontal disk
(Fig. 2), 20 forces oriented downward, spread over a cir-
cle of radius r0 and with amplitudes varying sinusoidally

Fig. 2. Distribution of 40 forces on a circle of radius r0 with sinu-
soidally varying amplitude starting from an angle of −90◦ (in this
example).

Fig. 3. Circular quartz resonator partially covered with electrodes.

starting from an initial angle θ0 has been modeled. For a
series of forces starting at an angle of 0 radian, the ampli-
tude coefficients are given by (27) (see next page).

The collection of forces as a source is particularly useful
because it can be represented by a matrix of experimental
data. In this study, both the series of 40 forces given by
(27) and a matrix of 80 by 80 forces obtained from exper-
imental results will be tested in the comparison between
experimental and theoretical results.

III. Laser Doppler Surface Scanning

Experiments on a Circular Quartz Resonator

The sample studied was a partially electroded AT-cut
quartz disk (the crystal was cut along the x and y crystal
axes and at an angle of 35.25◦ with the z axis) of 13.8 mm
diameter, 0.29 mm thickness designed to have a thickness-
shear fundamental frequency at 6 MHz and with a free
edge (Fig. 3). The disk was maintained in position with
the help of two soft metal springs in contact with the rect-
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W e
nm = F0

sin
( π

20

)
Rmn (r0) cos

(
n

π

20

)
+ · · · + sin

(
40π

20

)
Rmn (r0) cos

(
n

40π

20

)

(
Dγ4

nm − ρhω2) a∫
0

R2
nm(r)r dr

2π∫
0

cos2(nθ)dθ

. (27)

angular parts of the electrodes and ensuring the electrical
connection of the electrodes. The metal springs were made
of very thin steel wires so that the plate could be consid-
ered to have a free edge. The electrodes are deposited gold
disks of 5-mm diameter. The width of the connecting strip
is 1.82 mm.

The experimental approach consisted in scanning the
surface of the quartz by the beam of the laser vibrometer
while the transducer was excited by a pulse generator at
a repetition rate of a few kilohertz. The probe laser beam
scanning was achieved by mounting a mirror/lens arrange-
ment on an xy-controller so that the focusing point could
move on the surface. The spatial step was 0.125 mm. In or-
der to get a reflective surface for the probe beam, the disk
was covered with an acoustically negligible, very thin (less
than 0.5 µ) layer of chromium by use of an evaporator.

The cut-off frequency of the displacement detecting
Polytec Laser Doppler Vibrometer (Polytec PI, S.A.,
Pantin, France) was 20 MHz. This was high enough to
visualize the transient response of the transducer and the
most important eigenmodes. During the signal acquisition,
a compromise was made between collecting long signal
traces (198 µs duration), in order to track several peri-
ods of the low-frequency eigenmodes, and keeping a high
sampling rate (50 MHz), in order to resolve the fast initial
transient response. This was made possible by averaging
rather large signal traces of 104 points. The scanned region
was a rectangular area that included almost the whole sur-
face of the quartz (40 by 54 positions, with 250 µm steps).

IV. Effect of the Electrode Shape on the

Propagation of Bending Waves in the Disk

A. Transient Behavior of the Bending Waves

The initial transient response resulting from a pulse ap-
plied to the electrodes is shown in Fig. 4 in which two
surface waves are generated at the edge of the electrode,
propagating along the radii of the disk. One wave focuses
to the center, then defocuses toward the edge. The other
wave propagates toward the edge, is reflected, and focuses
to the center. The transient analysis also shows the effect
of the connecting strip on the generation of surface waves.
Although displacements are excited all over the electrode
region, mainly the propagating sharp wave features are
visible. These short wave packets are excited where the
stress-gradient is large, i.e., at the electrode edges. Note
the phase opposition between the upper and lower parts of
the quartz, with an axial symmetry along the central hor-
izontal axis x. This is due to the opposite exciting shear

stress gradient at the electrode edges. The group velocity
of the wave packets can be determined from their time-of-
flight. The value obtained is close to the shear velocity of
quartz (3570 m/s for a shear modulus of 3.38 × 1010 Pa
and a density of 2650 kg/m3).

B. Modeling the Source from the Experimental Data on
the Transient Response

Our aim is to compare experimental and theoreti-
cal modes; so the calculation of the source-excited mode
shapes requires a realistic modeling of the source (the ex-
perimental results on the modes and their comparison with
theory are presented in the next section). Fig. 5(a) shows
the initial deformation of the disk near the electrode ob-
tained from the transient analysis of the previous section.
In order to approach this shape, the source was first mod-
eled as a collection of 40 forces on a circle of radius r0
with sinusoidally varying amplitude starting from an an-
gle of 0◦ as described in Section II-C. The symmetry of
this theoretical source is such that only the modes which
are symmetrical about the horizontal axis are predicted.
It also appears that the connecting strips of the electrodes
play a role and have to be included. Both the connecting
strips and the two clamping springs are responsible for the
existence of a horizontal symmetry axis (see Fig. 3) that
does not exist in [8]. Yet, even after having accounted for
the connecting strips, the theoretical source could not pre-
dict all the experimental results on the forced modes, and
more modes than predicted were detected. For this rea-
son, it was decided to improve the modeling of the source,
and the solution chosen was to use the matrix of forces of
Fig. 5(b) as a collection of forces in the model. Fig. 5(b)
shows a 80 by 80 matrix corresponding to the experimen-
tal level of deformation on and near the electrode. At first
sight, the source imposes a symmetry about the horizon-
tal axis. However, asymmetries in the deformation over the
surface and experimental noise [the black and white spots
in Fig. 5(b)] are responsible for the breaking of the symme-
try and will result in the excitation of all the modes. An-
other cause of breaking of the symmetry is the anisotropy
of the crystal, which is not included in the model.

V. Comparison Between Experimental and

Theoretical Modes

In this experiment, the pulsed excitation according to
the symmetry of the electrodes initiates a continuum of vi-
brations in a wide band of frequencies. Mainly vibrations
with frequencies corresponding to eigenmodes are excited
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Fig. 4. Snapshots of the initial deformation of the disk surface. The dimensions of the disk are shown in the first image.

Fig. 5. (a) Initial deformation of the disk surface due to the electrode. (b) Matrix of forces used as source in the model.

with an efficiency proportional to the overlap between their
spatial pattern and the source pattern. Because of their
abundance, the modes are impossible to distinguish in the
temporal behavior of the displacement response. There-
fore, we have analyzed the individual experimental modes
by taking the t → ω Fourier transform of the signal matrix
S(t, x, y), and plotting the |S(t, x, f)|2 for discrete eigen-
frequencies ω (Fig. 6). The comparison of the experimen-
tal results to the calculated forced modes (Fig. 7) shows a
good match for the mode shapes, except for the following
striking differences:

• For some modes, there are fairly high differences be-
tween the experimental and the predicted frequency.

• Even with the realistic modeling of the source with the
help of the 80 by 80 matrix of forces shown in Fig. 5(b),

some calculated modes could not be observed experi-
mentally, e.g., the (0,1) mode in the frequency range
between 0 and 100 kHz. The theoretical modes dis-
played in Fig. 7 were restricted to those that were
observed experimentally.

• When displaying the modes as a function of increasing
frequency in a movie, the (2,1), (4,1), (2,2), and (1,2)
modes vibration symmetry axis “rotated” in such a
way that a symmetry axis for these modes coincided
with the horizontal axis after rotation.

The main reason for the discrepancies observed between
experimental and theoretical results is most likely the pres-
ence of the metal springs used to maintain the disk. These
were located at the edge at the angles 0◦ and 180◦ in Fig. 3.
Although the springs are fairly soft, they still have an ef-
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Fig. 6. Experimental results on the forced modes. The disk motion is
forced and evolves continuously from mode (2,1) to mode (1,2) from
0 to 100 kHz.

fect on the clamping of the disk so that it is not truly free
everywhere. The (0,1) mode is such that the displacement
of the disk is nonzero everywhere on the edge. Because the
two metal springs tend to impose a zero displacement at
the clamping points, the (0,1) mode was flattened and did
not appear in the experiments.

The modes with a symmetry axis different from the
clamping axis seem to have been forced to rotate. It ap-
pears that the springs have a non-negligible effect on the
resonance frequencies, especially at very low frequency for
the (2,1) mode, with an error of about 22%. For higher fre-
quency modes (3,1), (1,1), (4,1), (5,1), (2,2), (0,2), (3,2),
and (1,2) the relative error is, respectively, of 5%, 0.2%,
6%, 1.2%, 3.7%, 0.1%, 0.3%, and 0.2% and seems to de-
crease with increasing frequency.

The fact that some theoretical modes have symmetry
axes at particular angles [modes (2,1), (4,1), (2,2), and
(1,2)] is interpreted as a consequence of the source asym-
metry. The source in the model was taken from the ex-
perimental results [Fig. 5(b)] and is not perfectly symmet-
rical. The purely theoretical source made of 40 forces of
Section II-C has a symmetry axis as can be seen in the
example of Fig. 2. Computing the mode shapes with this
source and changing the angle of its symmetry axis shows
that the symmetry axes of the calculated modes turn ac-
cordingly. The particular angles of the (2,1), (4,1), (2,2),

Fig. 7. Theoretical results on the forced modes at frequencies close
to those of the normal modes.

and (1,2) modes are determined by the 80 by 80 matrix
source and cannot be predicted with precision.

Fig. 8 shows the mean square velocity (proportional to
the mechanical energy density [12]) as a function of fre-
quency. As already observed, the clamping springs are re-
sponsible for the imperfect match between both the reso-
nance frequencies and the general shape of the curve. The
bumpy aspect of the experimental curve at low frequencies
is due to the limited time window used for the signal acqui-
sition and to the periodization in the numerical calculation
of the Fourier transform. This region of frequencies corre-
sponds to the limit sensitivity of the laser Doppler. The
theoretical mean square velocity was calculated in polar
coordinates by integrating the values of squared velocity
over the disk surface. The (0,1) and the (6,1) modes were
not clearly observed experimentally.

VI. Two-Dimensional Wavenumber

Representation and Comparison with

Lamb A0 Mode

A. Representation of the Modes in Wavenumber Space

The top row of Fig. 9 shows the forced bending modes
of the disk in the (x, y) plane in a frequency range between
33.3 kHz and 734 kHz. Interestingly, the mode shapes at
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Fig. 8. Mean square velocity as a function of frequency. Plain curve,
theoretical; dotted curve, experimental. The (0,1) and the (6,1)
modes were not observed experimentally.

471.1 kHz and 734 kHz are unexpected and not predicted
by the theory. An explanation for this occurrance can be
that, at higher frequencies, the modes are influenced by the
anisotropy of the quartz so that the modes are oriented
along certain axes corresponding to the crystallographic
axes of the quartz.

The double spatial Fourier transforms (i.e., the kx,
ky representation) of the experimental forced modes are
shown in the middle row of Fig. 9. Modes with compli-
cated shapes in the x-y domain are often simpler in their
wavenumber representation. The anisotropy at 471.1 kHz
and 734 kHz again appears in the last two images of the
middle row. The bottom row of Fig. 9 shows the theo-
retical wavenumber representation of the forced modes at
frequencies close to the experimental frequencies. The the-
oretical model is valid for an isotropic material, and so the
anisotropic behavior neither appears in the last two im-
ages of the bottom row nor in the theoretical x-y mode
representation. The theoretical results at 98.7 kHz and at
195.6 kHz show once again that the symmetry axes are
not horizontal and the experimental ones are, due to the
clamping springs. As already observed, the particular an-
gles of the symmetry axis in the theoretical mode shapes
at 98.7 and 195.6 kHz are imposed by the source, which
is not perfectly symmetrical (the source in the model was
an 80 by 80 matrix of forces obtained from experimental
results).

B. Experimental and Theoretical Dispersion of the
Bending Modes

The (kx, ky) representation at different frequencies pro-
vides wavenumber-frequency data and yields the disper-
sion diagram of the bending modes. In Fig. 10, the ex-

perimental phase velocities are compared to the velocities
obtained theoretically from the model presented in Sec-
tion II. Each experimental data point was obtained from
the angular average of the modulus of the wavevector k
at maximum amplitude in the (kx, ky) plane (Fig. 9, sec-
ond row) and from using the relation caverage = ω/kaverage.
The representation of the wavenumber or of the slowness
in the (x, y) plane makes it possible to detect the possi-
ble anisotropy of the crystal. However, here the anisotropy
was averaged out over the angles.

The theoretical data for the phase velocity were ob-
tained from the relation between γnm and ωnm for the
different eigenmodes in (12), which predicts a square root
behavior. In our case of a finite disk, the boundary con-
ditions imply the existence of only a discrete number of
eigenmodes, resulting in a discrete number of points on
the dispersion curve. In Fig. 10, the agreement between
the experimental and the theoretical results is fairly good
at low frequencies. For frequencies above 40 kHz, a sys-
tematic difference starts to appear as the frequency in-
creases, to reach a value of about 200 m/s at 1 MHz. This
is due to the limited validity of the approximation in the
model of a thin disk. The wavelength at 1 MHz is of about
1.6 mm, which is only 5.3 times greater than the thick-
ness (0.29 mm). A more accurate dispersion curve for a
thicker disk can be obtained from Lamb wave theory in
which bending corresponds to the antisymmetrical Lamb
A0 mode. Its dispersion curve was obtained by numerically
solving the Rayleigh-Lamb dispersion equation for guided
waves in an isotropic material (see [13] for the derivation
of the Rayleigh-Lamb equation). Fig. 10 shows a better
agreement between the experimental data and the Lamb
A0 dispersion curve. At sufficiently low frequencies, the be-
havior of the Lamb curve corresponds to the square root
behavior of the thin disk approximation. Note that, be-
cause the bandwidth of the experiment was limited, the
wavelengths did not become much smaller than the plate
thickness, such that the modes were always guided and the
high-frequency Rayleigh surface wave limit of the disper-
sion curve was not reached.

VII. Conclusions

An experimental and theoretical study of bending
modes in a partially electroded circular piezoelectric
quartz with free edge was proposed. It was found exper-
imentally that the two springs used to maintain the disk
in position introduce extra clamping conditions. This re-
sulted in a substantial change in the resonance frequencies
for some modes and in a rotation of their symmetry axis
toward the axis of the clamping spring.

The classical theory of thin disks was used, and several
source shapes were studied. A collection of forces obtained
from the experimental results was used to model a realistic
source to simulate the experimental condition. The model
only describes bending modes and does not include thick-
ness shear or compressional modes. It does not account
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Fig. 9. Top row: spatial (x, y) dependence of the displacement amplitude of bending eigenmodes. From left to right: deformation amplitude
at 33.3 kHz, 83.3 kHz, 98.7 kHz 152.6 kHz, 195.2 kHz, 471.1 kHz, and 734 kHz. Middle row: Amplitude (kx, ky) representation of the
experimental disk deformation at the same frequencies. Bottom row: theoretical modes at 33.2 kHz, 82.9 kHz, 98.5 kHz, 157.5 kHz, 195.6 kHz,
472 kHz, and 733.9 kHz. The units are shown in the first image of each row.

Fig. 10. Comparison between the experimental phase velocities (black
dots) obtained from the angular average of the maximum values of k
for every frequency via the relation c = ω/k in the diagrams of Fig. 9
(middle row) and the dispersion curve obtained from the classical
theory of plates and disks presented in Section II (circles), and the
first antisymmetrical A0 Lamb mode (plain curve).

for the electromechanical coupling, i.e., the stiffening ef-
fect. However, the agreement between experimental and
theoretical results on the mode shapes using this source
was fairly good.

A wavenumber analysis of the experimental modes
showed the presence of anisotropy related to the crystallo-
graphic axes at higher bending frequencies. However, the

anisotropy was weak and, although the theoretical model
was developed for isotropic materials, the experimental
and theoretical results corresponded quite well. There was
only a slight discrepancy between the dispersion curves
at high frequencies, at which the thin disk approxima-
tion of the model leads to a deviation from the Lamb A0
mode, which matches very well the experimental data in
the whole accessible frequency range.
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