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STRICT ω-CATEGORIES ARE MONADIC OVER

POLYGRAPHS

FRANÇOIS MÉTAYER

Abstract. We give a direct proof that the category of strict ω-categories
is monadic over the category of polygraphs.

Introduction

This short note presents a proof of monadicity for the adjunction be-
tween the category Catω of strict ω-categories and the category Polω of
polygraphs (or computads, as first introduced by Street in [Str76]). Here
we follow the presentation and terminology of [Bur93, Mét03]. The reader
may consult [Mét08] for a detailed description of the categories and func-
tors referred to in this particular case, or [Bat98] for a broader perspective
including generalized “A-computads” for a monad A on globular sets. The
latter paper rightly asserts the monadicity theorem, but some parts of the
proof rely on the fact that the category of A-computads is a presheaf cate-
gory, which is precisely not true in the present case, where A is the monad of
strict ω-categories [MZ08, Che13]. Since then, the status of monadicity for
Catω has remained somewhat unclear (see e.g the entry “computad” on the
nLab [nLa]). Our proof is based on the same ideas as developed in [Bat98],
except that we avoid the presheaf argument and establish instead a lifting
result (Lemma 2), possibly of independent interest.

As for notations, whenever a functor F is a right-adjoint, we denote its
left-adjoint by F ∗. Let us finally mention a small point about terminology.
Given a functor F : A → B, with left-adjoint F ∗, and T = FF ∗ the
associated monad on B, there is a comparison functor K from A to the
category B

T of T -algebras: we call F monadic if K is an equivalence of
categories, and strictly monadic if K is an isomorphism. We refer to [ML71,
VI.7] for corresponding variants of Beck’s monadicity criterion.

1. Three adjunctions

In this section, we briefly describe three pairs of adjoint functors between
categories Globω of globular sets, Catω of strict ω-categories and Polω of
polygraphs.
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2 FRANÇOIS MÉTAYER

As ω-categories are globular sets with extra structure, there is an obvious
forgetful functor

U : Catω → Globω

This functor U has a left-adjoint U∗ taking a globular set X to the ω-
category U∗X it generates. Moreover this adjunction is strictly monadic.
A second adjunction involves functors V, V ∗ between Catω and Polω. Un-
like U , the right adjoint V is not quite obvious. Thus, let C be an ω-category,
the polygraph P = V (C) is defined by induction, together with a morphism
ǫC : V ∗(P ) → C:

• For n = 0, P0 = C0 and ǫC0 is the identity.
• Suppose n > 0, and P , ǫC have been defined up to dimension n−1.
The set of n-generators of P is then the set Pn of triples p = (z, x, y)
where z ∈ Cn, x, y are parallel cells in P ∗

n−1 and z : ǫCn−1(x) →

ǫCn−1(y). The source and target of p in P ∗

n−1 are x = sn−1(p) and

y = tn−1(p) respectively, and ǫCn (p) = z. By the universal property of
polygraphs, ǫDn extends uniquely to a map from P ∗

n to Cn preserving
compositions and identities. Functoriality of V is immediate and V

is in fact right-adjoint to V ∗ (see [Bat98, Mét03]).

Note that

ǫC : V ∗V (C) → C

is the counit of this adjunction and determines the standard polygraphic
resolution of C.
We finally describe a functor

G : Polω → Globω

Let P be a polygraph. Let us denote by jn : Pn → P ∗

n the canonical inclusion
of the set of n-generators of P into the set of n-cells of P ∗ = V ∗(P ). We
define the globular set X = G(P ) dimensionwise, so that for each n ∈ N,
Xn ⊂ Pn:

• For n = 0, X0 = P0.
• Let n > 0 and suppose we have defined Xk ⊂ Pk for all k < n,
together with source and target maps building an n−1-globular set.
Let Xn ⊂ Pn be the set of n-generators a of P such that sn−1(a)
and tn−1(a) belong to jn−1(Xn−1) and define source and target maps
sXn−1, t

X
n−1 : Xn → Xn−1 as the unique maps such that jn−1s

X
n−1(a) =

sn−1(a) and jn−1t
X
n−1(a) = tn−1(a) for each a ∈ Xn. This extends

X to an n-globular set.

(1) Xn

tX
n−1

��
sX
n−1

��

�

�

// Pn

tn−1

##G
GG

GG
GG

GG

sn−1 ##G
GG

GG
GG

GG

Xn−1
�

�

// Pn−1
jn−1

// P ∗

n−1
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The previous construction is clearly functorial and defines the required func-
tor G. Remark that G admits a left adjoint G∗ : Globω → Polω which takes
the globular set X to a polygraph P such that Pn = Xn, in other words G∗

defines a natural inclusion of Globω into Polω.
Note that G forgets all generators of P that are not “hereditary globular”,

so that for instance G(P ) may have no cells at all beyond dimension 1.
However, the following result shows that the functor G is not always trivial.

Lemma 1. There is a natural isomorphism φ : GV → U , that is, the

following diagram commutes up to a natural isomorphism

(2) Catω
V //

U
��

Polω

Gzzuu
uu
uu
uu
u

Globω

Proof. Let C be an ω-category, and X = GV (C). For each n ∈ N, let
φC
n : Xn → Cn be the composition of the following maps

Xn
�

�

// V (C)n
jn // V ∗V (C)n

ǫCn // Cn

As ǫC is an ω-morphism and (1) commutes, the family (φC
n )n∈N defines a

globular morphism φC : GV (C) → U(C), natural in C. Thus we get a
natural transformation φ : GV → U .

Let us now define χC
n : Cn → Xn by induction on n such that φC

n ◦ χC
n =

1Cn
:

• For n = 0, X0 = C0 and φC
0 = 1C0

= 1X0
, so that χC

0 : C0 → X0 is
also 1C0

= 1X0
.

• Suppose n > 0 and χC
k has been defined up to k = n−1, and let z ∈

Cn. Let u = sn−1(z) and v = tn−1(z) in Cn−1. By induction hypoth-
esis, χC

n−1(u) and χC
n−1(v) belong to Xn−1. Let x = jn−1χ

C
n−1(u),

y = jn−1χ
C
n−1(v) in V ∗V (C)n−1 and define a = χC

n (z) = (z, x, y).

By construction a ∈ Xn and φC
n (a) = z.

It remains to prove that φC
n is injective. We reason again by induction on

n:

• For n = 0, φC
0 is an identity, hence injective.

• Suppose n > 0 and φC
n−1 injective. Let ai = (zi, xi, yi) ∈ Xn for

i = 0, 1 such that φC
n (a0) = φC

n (a1). Thus z0 = z1. Also

φC
n−1(s

X
n−1(a0)) = sn−1(φ

C
n (a0))

= sn−1(φ
C
n (a1))

= φC
n−1(s

X
n−1(a1))

and because φC
n−1 is injective,

sXn−1(a0) = sXn−1(a1)
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Now

x0 = sn−1(a0)

= jn−1s
X
n−1(a0)

= jn−1s
X
n−1(a1)

= sn−1(a1)

= x1

Likewise y0 = y1, and we get a0 = a1. Hence φC
n is injective and we

are done.

�

2. Lifting lemma

The forgetful functor U : Catω → Globω is faithful, but clearly not
full. However, globular morphisms lift to ω-morphisms in the sense of the
following result:

Lemma 2. Let C, D be ω-categories and α : U(C) → U(D) be a globular

morphism. Then there is a unique morphism α : V (C) → V (D) in Polω

such that the following square commutes:

(3) UV ∗V (C)

U(ǫC)
��

UV ∗(α)
// UV ∗V (D)

U(ǫD)
��

U(C)
α

// U(D)

Proof. We build the required morphism α : V (C) → V (D) by induction
on the dimension. Note that diagram (3) yields a diagram in Sets at any
given dimension n. We may therefore drop the letter U in the following
computations. Also α∗ is short for V ∗(α).

• For n = 0, we have V (C)0 = C0, V (D)0 = D0; also ǫC0 and ǫD0 are
identities, so that α0 = α0 is the unique solution.

• Suppose n > 0 and we have defined α satisfying the commutation
condition, up to dimension n−1. Let p = (z, x, y) be an n-generator
of V (C). Suppose α(p) = (z′, x′, y′): the commutation condition
implies z′ = α(z), x′ = α∗

n−1(x) and y′ = α∗

n−1(x), so that α extends
in at most one way to dimension n, and uniqueness holds. As for
the existence, x, y are parallel (n−1)-cells in V ∗V (C)n−1; by induc-
tion hypothesis, their images x′ = α∗

n−1(x) and y′ = α∗

n−1(x) are
(n−1)-parallel cells in V ∗V (D). Again, by induction hypothesis, (3)
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commutes in dimension n−1; also α is a globular map, hence

sn−1(z
′) = sn−1(αn(z))

= αn−1(sn−1(z))

= αn−1(ǫ
C
n−1(x))

= ǫDn−1(α
∗

n−1(x))

= ǫDn−1(x
′)

and likewise

tn−1(z
′) = ǫDn−1(y

′)

Therefore p′ = (z′, x′, y′) is an n-generator of V (D). Also sn−1(p
′) =

x′ = α∗

n−1(x) = α∗

n−1(sn−1(p)) and tn−1(p
′) = y′ = α∗

n−1(y) =
α∗

n−1(tn−1(p)), so that α extends to a morphism in Polω up to di-
mension n. Finally the diagram (3) commutes in dimension n : it is
sufficient to check this on generators, but

ǫDn α
∗

n(p) = ǫDn (p
′)

= z′

= αn(z)

= αnǫ
C
n (p)

and we are done.

�

3. Monadicity

We now turn to the main result.

Theorem 1. The functor V : Catω → Polω is monadic.

Proof. Recall that monadicity means here that Catω is equivalent to the cat-
egory of algebras of the monad V V ∗ on Polω. By using the corresponding
version of Beck’s criterion, this amounts to show that (i) V reflects isomor-
phisms and (ii) if f , g is a parallel pair of ω-morphisms such that the pair
V (f), V (g) has a split coequalizer in Polω, then f , g has a coequalizer in
Catω, and V preserves coequalizers of such pairs (see for instance [ML71,
VI.7, exercises 3 and 6]).
First, if f : C → D is an ω-morphism such that V (f) is an isomorphism,
then GV (f) is an isomorphism in Globω and by Lemma 1, U(f) is an
isomorphism. Now, U reflects isomorphisms, hence f is an isomorphism.
Therefore V reflects isomorphisms as required.
Now, let f, g : C → D be a pair of ω-morphisms and suppose

(4) V (C)
V (f)

//

V (g)
// V (D)

k
//

b

~~
P

a

��
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is a split coequalizer in Polω where k ◦ a = 1P , V (f) ◦ b = 1V (D) and
V (g)◦ b = a◦k. By applying the functor G to (4), we get a split coequalizer
in Globω:

(5) GV (C)
GV (f)

//

GV (g)
// GV (D)

G(k)
//

G(b)

||
G(P )

G(a)

}}

Then, by using the natural isomorphism φ of Lemma 1, we obtain the fol-
lowing diagram

(6) GV (C)
GV (f)

//

GV (g)
//

φC

��

GV (D)

G(k)
II

I

$$I
II

G(b)

||

φD

��
U(C)

U(f)
//

U(g)
// U(D)

l //

β

bb
G(P )

G(a)mm

α

aa

where α = φD
◦ G(a), l = G(k) ◦ (φD)−1 and β = φC

◦ G(b) ◦ (φD)−1.
Therefore l ◦ α = 1G(P ), U(f) ◦ β = 1U(D) and

U(g) ◦ β = U(g) ◦ φC
◦G(b) ◦ (φD)−1

= φD
◦GV (g) ◦G(b) ◦ (φD)−1

= φD
◦G(a) ◦G(k) ◦ (φD)−1

= α ◦ l

and the bottom line of (6) is a split coequalizer diagram in Globω. Now
the functor U is strictly monadic, so that there is a unique ω-morphism
h : D → E such that U(E) = G(P ) and U(h) = l and moreover this unique
morphism makes

(7) C
f //
g

// D
h // E

a coequalizer diagram in Catω. Note that, by construction, U(E) = G(P ).
It remains to show that V (h) : V (D) → V (E) is a coequalizer of the

pair V (f), V (g) in Polω. By applying Lemma 2 to α : U(E) → U(D) and
to β : U(D) → U(C), we get unique morphisms α : V (E) → V (D) and
β : V (D) → V (C) satisfying the required commutation condition. Consider
the following diagram:

(8) UV ∗V (E)

U(ǫE)
��

UV ∗(α)
// UV ∗V (D)

U(ǫD)
��

UV ∗V (h)
// UV ∗V (E)

U(ǫE)
��

U(E)
α

// U(D)
U(h)

// U(E)
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The left-hand square commutes by hypothesis, and the right-hand square
commutes by the naturality of ǫ, whence the outer square also commutes.
As U(h) ◦ α = 1U(E), the uniqueness of the lifting in Lemma 2 implies that

V (h)◦α = 1V (E). By the same uniqueness argument, we get V (f)◦β = 1V (D)

and V (g)◦β = α◦V (h). Therefore the following diagram is a split coequalizer
in Polω

V (C)
V (f)

//

V (g)
// V (D)

k
//

β

~~
V (E)

α

~~

and we are done. �
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