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Abstract

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube
Qn induced by vertices with no consecutive 1’s. In this short note we give an
immediate proof that asymptotically all vertices of Γn are covered by a maximum
set of disjoint subgraphs isomorphic to Qk, answering an open problem proposed
in [2] and solved with a longer proof in [3].
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1 Introduction

Let n be a positive integer and denote [n] = {1, . . . , n}, and [n]0 = {0, . . . , n− 1}. The
n-cube, denoted as Qn, is the graph with vertex set

V (Qn) = {x1x2 . . . xn |xi ∈ [2]0 for i ∈ [n]} ,

where two vertices are adjacent in Qn if the corresponding strings differ in exactly
one position. The Fibonacci n-cube, denoted by Γn, is the subgraph of Qn induced
by vertices with no consecutive 1’s. Let {Fn} be the Fibonacci numbers: F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. The number of vertices of Γn is |V (Γn)| = Fn+2.
Fibonacci cubes have been investigated from many points of view and we refer to the
survey [1] for more information about them. Let qk(n) be the maximum number of
disjoint subgraphs isomorphic to Qk in Γn. This number is studied in a recent paper
[2]. The authors obtained the following recursive formula

Theorem 1.1 For every k ≥ 1 and n ≥ 3 qk(n) = qk−1(n − 2) + qk(n− 3).
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In [3] Elif Saygı and Ömer Eǧecioǧlu, solved an open problem proposed by the authors
of [2]. They proved that asymptotically all vertices of Γn are covered by a maximum
set of disjoint subgraphs isomorphic to Qk thus that

Theorem 1.2 For every k ≥ 1, limn→∞
qk(n)

|V (Γn)| =
1
2k
.

The ingenious, but long, proof they proposed is a nine cases study of the decomposition
of the generating function of qk(n). The purpose of this short note is to deduce from
Theorem 1.1 a recursive formula for the number of non covered vertices by a maximum
set of disjoint hypercubes. We obtain as a consequence an immediate proof of Theorem
1.2.

2 Number of non covered vertices

Definition 2.1 Let {Pk(n)}
∞
k=1 be the family of sequences of integers defined by

(i)Pk(n+ 3) = Pk(n) + 2Pk−1(n+ 1) for k ≥ 2 and n ≥ 0
(ii)Pk(0) = 1,Pk(1) = 2,Pk(2) = 3, for k ≥ 2
(iii)P1(n) = 0 if n ≡ 1[3] and P1(n) = 1 if n ≡ 0[3] or n ≡ 2[3].

Solving the recursion consecutively for the first values of k and each class of n modulo
3 we obtain the first values of Pk(n).

n mod 3 0 1 2

P1(n) 1 0 1
P2(n) 1 2

3n+ 4
3

2
3n+ 5

3
P3(n)

2
9n

2 + 2
3n+ 1 2

9n
2 + 8

9n+ 8
9

2
3n+ 5

3
P4(n)

4
81n

3 + 2
9n

2 + 2
9n+ 1 2

9n
2 + 8

9n+ 8
9

4
81n

3 + 4
27n

2 + 10
27n+ 103

81

Table 1: Pk(n) for k = 1, . . . , 4

Proposition 2.2 Let n = 3p+r with r = 0, 1 or 2. For a fixed r, Pk(n) is a polynomial
in n of degree at most k − 1.

Proof. From (i) we can write

Pk(n) = 2

p−1∑

i=0

Pk−1(n− 2− 3i) + Pk(r).

For any integer d the classical Faulhaber’s formula expresses the sum
∑n

m=0 m
d as a

polynomial in n of degree d + 1. Thus if Q(n) is a polynomial of degree at most d

then
∑n

m=0 Q(m) is a polynomial in n of degree at most d + 1. Let Q′(m) = Q(m) if
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m ≡ 0[3] and 0 otherwise. Applying this to Q′ we obtain that
∑n

m=0,m≡0[3] Q(m) is
also a polynomial in n of degree at most d + 1. Thus if Pk−1(n) is a polynomial in n

of degree at most k − 2 then
∑p−1

i=0 Pk−1(n− 2− 3i) is a polynomial of degree at most
k− 1. Since for a fixed r P1(n) is a constant, by induction on k, Pk(n) is a polynomial
in n of degree at most k − 1. �

Theorem 2.3 The number of non covered vertices of Γn by qk(n) disjoint Qk’s is
Pk(n).

Proof. This is true for k = 1 since the Fibonacci cube Γn has a perfect matching for
n ≡ 1[3] and a maximum matching missing a vertex otherwise.
For k > 1 this is true for n = 0, 1, 2 since the values of Pk(n) are respectively 1,2,3 thus
are equal to |V (Γn)| and there is no Qk in Γn.
Assume the property is true for some k ≥ 1 and any n. Then consider k + 1. By
induction on n we can assume that the property is true for Γn−3. Let us prove it for
Γn.
From Theorem 1.1 we have qk+1(n) = qk(n− 2) + qk+1(n− 3).
Thus the number of non covered vertices of Γn by qk+1(n) disjoint Qk+1’s is

|V (Γn)|−2k+1qk+1(n) = Fn+2−2k+1[qk(n−2)+qk+1(n−3)] = Fn+2−2·2kqk(n−2)−2k+1qk+1(n−3).

Using equalities Pk(n−2) = Fn−2kqk(n−2) and Pk+1(n−3) = Fn−1−2k+1qk+1(n−3)
we obtain

|V (Γn)| − 2k+1qk+1(n) = Fn+2 + 2(Pk(n− 2)− Fn) + Pk+1(n− 3)− Fn−1.

From Fn+2 − 2Fn − Fn−1 = 0 and 2Pk(n− 2) + Pk+1(n − 3) = Pk+1(n) the number of
non covered vertices is Pk+1(n). So the theorem is proved.
�

For any k, since the number of non covered vertices is polynomial in n and |V (Γn)| =

Fn+2 ∼
3+

√
5

2
√
5
(1+

√
5

2 )n we obtain, like in [3], that

lim
n→∞

Pk(n)

|V (Γn)|
= 0

thus

lim
n→∞

qk(n)

|V (Γn)|
=

1

2k
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joint hypercubes in Fibonacci cubes, Discrete Applied Mathematics, Volumes 190–
191(2015) 50-55, http://dx.doi.org/10.1016/j.dam.2015.03.016.
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