
HAL Id: hal-01324294
https://hal.science/hal-01324294v1

Submitted on 31 May 2016 (v1), last revised 29 Aug 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point-to-hyperplane RGB-D Pose Estimation: Fusing
Photometric and Geometric Measurements

Fernando Ireta, Andrew I. Comport

To cite this version:
Fernando Ireta, Andrew I. Comport. Point-to-hyperplane RGB-D Pose Estimation: Fusing Photo-
metric and Geometric Measurements. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2016), Oct 2016, Daejeon, South Korea. �hal-01324294v1�

https://hal.science/hal-01324294v1
https://hal.archives-ouvertes.fr


Point-to-hyperplane RGB-D Pose Estimation:
Fusing Photometric and Geometric Measurements

Fernando Ireta and Andrew Ian Comport

Abstract— The objective of this paper is to investigate the
problem of how to best combine and fuse color and depth
measurements for incremental pose estimation or 3D tracking.
Subsequently a framework will be proposed that allows to
formulate the problem with a unique measurement vector and
not to combine them in an ad-hoc manner. In particular, the
full color and depth measurement will be defined as a 4-
vector (by combining 3D Euclidean points + image intensities)
and an optimal error for pose estimation will be derived
from this. As will be shown, this will lead to designing an
iterative closest point approach in 4-dimensional space. A kd-
tree is used to find the closest point in 4-space, therefore
simultaneously accounting for color and depth. Based on this
unified framework a novel point-to-hyperplane approach will
be introduced which has the advantages of classic point-to-
plane ICP but in 4-space. By doing this it will be shown that
there is no longer any need to provide or estimate a scale-factor
between different measurement types. Consequently this allows
to increase the convergence domain and speed up the alignment,
whilst maintaining the robust and accurate properties. Results
on both simulated and real environments will be provided along
with benchmark comparisons.

I. INTRODUCTION

Color and depth images acquired from RGB-D sensors
are increasingly useful, especially in robotics for computing
visual odometry, performing autonomous navigation and re-
constructing 3D environments. One of the most fundamental
problems is estimating the pose that relates measurements
obtained from a moving sensor at different times. Some re-
cent approaches have combined both measurements together
in a limited hybrid manner.

The problem of pose estimation from color or depth
images have each been individually studied in the com-
puter vision and robotics literature. Classically color and
depth measurements have been used separately in image-
based and geometric-based pose estimation. In the case of
depth images, the well known Iterative Closest Point (ICP)
algorithm prevails [2] and in particular the point-to-plane
ICP algorithm is especially efficient and robust [3]. On the
other hand, color images have been used to estimate the pose
of the camera using direct and dense error functions based
on view synthesis [4]. The later will be referred to here
as the image-based approach. It can be noted that feature-
based image approaches first extract geometric information
from the image before performing estimation on a geometric
error. Feature-based approaches are a sub-part of the direct
approach and wont be detailed here [9].

Whilst color and depth based pose estimation have been
studied separately, similar solutions have been used for
both using a non-linear iteratively re-weighted least squares

(a)

(b)

Fig. 1. Two hybrid-based approaches to estimate the unknown pose x
between two sequent RGB-D frames. (a) A direct approach for the color
images I and I∗, and a point-to-plane algorithm for the geometric cloud of
points P and P∗ is used. (b) Proposed method: a matching stage considers
the 4-vector for minimizing the integrated error with the point-to-hyperplane
algorithm, which computes the normals N in 4D space. The scale factor λ

is no longer needed.

(IRLS) method. The general IRLS pipeline for pose estima-
tion follows the common strategy across different measure-
ment types:

1) Transform/warp the current measurement onto a refer-
ence frame using the last pose estimate.

2) Find the closest points between the two datasets.
3) Determine an error between the two datasets (and

robust weights).
4) Estimate an incremental update on the pose.
5) Repeat to 1. until convergence.

Recently, several strategies have combined the color and
depth measurements together in different ways and attempt
to retain the respective benefits of each. The advantages
of using both include increased efficiency, accuracy and
robustness. Image-based approaches alone are dependant on
texture in the images to constrain all degrees of freedom.
For example, a wall with only horizontal lines would be
degenerate. ICP approaches require sufficient geometry and
are, for example, degenerate in the case of a movement
parallel to a flat wall. In [21] a recent survey of the real-
time performance of these approaches is provided. In this
paper, those approaches which combine depth and color for
robust and accurate pose estimation will be referred to as
hybrid approaches (See Fig. 1).



Amongst the various hybrid methods, those of most inter-
est are those that minimize a photometric and geometric error
simultaneously in real-time [11], [12], [19], [20]. The two
main differences in the proposed approaches are categorized
as:

• How the closest points are determined between different
RGB-D measurements.

• How the joint optimization is performed.

The aforementioned hybrid approaches are somewhat ad-hoc
because they do not necessarily consider the color and depth
simultaneously when computing closest points. Furthermore,
in the optimization stage they simply combine the classic
ICP and image-based approaches by minimizing both error
types simultaneously. This, however, requires the definition
or estimation of a tuning parameter λ which weights the
respective contribution of each different measurement type.

First consider a fused version of the closest point search
in Step 2 which is required for both ICP and image-based
approaches. In the case of ICP alone, the closest points are
often obtained by performing a kd-tree (k-dimensional) for
nearest neighbours search. Alternatively, in the image-based
approaches the image warping function finds the closest color
values by view interpolation (nearest neighbour, bi-linear,
bi-cubic,...) directly in image space. Of the recent hybrid
approaches [11], [12], [19], [20], each performs finding the
closest point search separately for both color and depth and
no fused information is considered. Methods that consider
both color and depth in the closest point matching stage
include [10], [14], [13]. The former and later approaches
use 3 channels of color and differ in the color spaces used
while [14] considers only greyscale information. Finding
the closest points using both color and depth increases the
accuracy of finding the true nearest neighbour, however, this
requires an efficient search in 4-space (3D points + intensity).

Now consider the joint optimization problem of the IRLS
algorithm that minimizes both a fused ICP and image-based
error. The large majority of classic approaches involve simply
stacking the two error functions and minimizing the resulting
joint error simultaneously [10], [14], [19], [12], [11], [20],
[13]. All except [10] perform ICP point-to-plane combined
with the image-based approach. The drawback of these
approaches is that they require the definition of a tuning
parameter λ which weights the respective contribution of
each measurement. These methods then vary in how this
tuning parameter is determined. In [10], λ is computed by
estimating the ratio between the minimum and maximum
values of both, color space and geometric errrors and the
best value is chosen experimentally in this range. [14]
proposes interestingly an adaptative λ which is varied using
a sigmoidal function which favors the ICP approach far
from the solution and the image-based approach close to
the minimum. This has the benefit of faster convergence and
more accuracy at the solution. In [19], [12], the scale factor
is automatically estimated as the ratio between the Median
Absolute Deviations (MAD) of the color error and the
median of the depth error (i.e. their relative robust variance).

In [11], [17], λ is estimated by computing the covariance
of the residuals for each point individually assuming a t-
distribution of the error. This improved the convergence rate,
however, is computationally expensive to iteratively compute
a λ for each pixel.

The aim of this paper is to propose a unified framework
for fusing both image-based and ICP strategies for pose
estimation at each stage of the IRLS process. As will
be shown, this leads to a novel point-to-hyperplane ICP
approach in 4 dimensions (3D + Intensity) which could
easily be extended to greater dimensions (for example color
RGB). This formulation also naturally leads to a fused closest
point search strategy that exploits both color and geometric
information simultaneously. The approach used in the paper
to find the closest points in 4D space uses a kd-tree, however,
alternative search strategies could also be used. In practice,
and for computational efficiency, the ANN (Approximate
Nearest Neighbour) [15] algorithm is used. Furthermore, the
kd-tree can be built only once from the reference image
before the iterative loop, therefore maintaining efficiency.

The paper is organized as follows. Section II briefly
explains the classic hybrid approach that jointly minimizes
intensities and point-to-plane ICP. In Section III a novel
point-to-hyperplane approach is introduced. Section IV pro-
vides the implementation details common to all the methods
that were evaluated. Finally, simulated and real experimental
results with benchmarks are presented in Section V.

II. JOINT METHOD FOR COMBINING
GEOMETRIC AND PHOTOMETRIC APPROACHES

Pose estimation from hybrid methods is achieved by fusing
the geometric and photometric optimization functions and
minimizing the errors simultaneously. The main feature of
hybrid methods for estimating the camera poses, is that they
constrain the pose estimation better and can converge faster
than using the techniques alone.

The pose will be defined here as the homogeneous pose
matrix T(x)∈R4×4 which depends on a minimal parametri-
sation of 6 parameters which are defined here as the linear
and angular velocity x = [υ ,ω]> ∈ R6. The homogeneous
transformation matrix can be decomposed into rotational and
translational components T(x) = (R(x), t(x)) ∈ SE(3). The
relationship between both is given by the exponential map
as T(x) = e[x]

∧
, with the operator [·]∧ as:

[x]∧ =

[
[ω]× υ

0 0

]
(1)

where [·]× is the skew symmetric matrix operator.
The hybrid approach used to estimate the pose is depicted

in Fig. 1(a). It defines an error function that minimizes the
joint error between subsequent RGB-D image frames (see
[12] for more detail) such as:

eHi = ρi

λ

(
R̂R(x)N∗i

)>(
Pm

i −Π3T̂T(x)P∗i
)

Ii

(
w(T̂T(x),P∗i )

)
− I∗i (p∗)

 ∈R4 (2)



where the first row of equation (2) is the point-to-plane
ICP error with projective data association and the second
row is the photometric term. The superscript ∗ identifies the
reference measurements, Π3 = [1,0]∈R3×4 is the projection
matrix, N∗i ∈R3 is the surface normal for each homogeneous
3D point Pi ∈ R4. The closest point Pm

i can be obtained
by linearly interpolating the warped pixel coordinates into
the current depth map as in [11], [12], [19]. The geometric
warping function w(·) projects a reference 3D point P∗i ∈R3

onto the current image plane. The closest image intensity is
then found by interpolation of the current intensity function
at the warped pixel coordinates to obtain the corresponding
intensity as: Iw

i (p
∗
i ) = Ii(pw

i ) ∈ Z. The 3D point is computed
by back projection as Pi = K−1pi Zi =

[
Xi Yi Zi

]> ∈ R3,
where K ∈R3×3 is the calibration matrix which contains the
intrinsic parameters of the camera, and Zi ∈R+ is the metric
measurement for each pixel coordinate pi = [ui vi 1]> ∈ R3

of the depth image.
The given non-linear error in Equation 2 is minimized

iteratively using a Gauss-Newton approach to compute the
unknown parameter x with increments given by:

x =−(J>WJ>)J>W
[

λeG
eI

]
(3)

where J = [JI JG]
> represents the stacked Jacobian matrices

obtained by derivating the stacked photometric and geometric
error functions (eI and eG respectively), and the weight
matrix W contains the weights ρi associated to each set of
coordinates obtained by M-estimation [8]. The photometric
Jacobian JI is computed using the efficient second order
minimization method (ESM) [1]. The pose estimate T(x)
is computed at each iteration and is updated incrementally
as T̂← T̂T(x) until convergence.

The parameter λ is a constant that scales the relative error
distributions. As mentioned in the introduction, many meth-
ods have been proposed to estimate this parameter ranging
from manual tuning to estimation. Manually fixing λ is not
optimal nor efficient. Two efficient real-time possibilities
include the ratio of the Median Absolute Deviations [19]:
λ =MAD(eI)/MAD(eG) and the adaptative lambda using the
sigmoidal function [14], λ (average(e)), which varies with
the average distance between the two point clouds. As will
be seen in the following section, λ is not required if we
consider a point-to-hyperplane approach.

III. POINT-TO-HYPERPLANE METHOD

As mentioned in the introduction, the objective of this
paper is to perform both closest point matching and mini-
mization using a 4-vector containing color and depth. Since
4D space has an additional degree of freedom, the normal
obtained for the 3D point-to-plane method will be orthogonal
to a surface in 4D which spans both geometry and color. This
surface will be referred in this paper as hyperplane. The 4-
vector is defined as:

Mi =
[
Pi Ii

]> ∈ R4 (4)

where the 3D Euclidean point Pi is fused with its associated
greyscale intensity Ii in a single measurement vector.

Two measurement vectors, M∗i and Mi, obtained at dif-
ferent views of the same scene are generally not in corre-
spondence. The fused error can then be defined as a 4D
IRLS problem between two point clouds. If the hyper-normal
is determined from the surface in 4D then it is possible to
extend the optimisation which will be referred here as the
point-to-hyperplane approach. The hybrid error function is
then defined such as:

eHi = ρiN∗>i (M∗i −Mm
i ) ∈ R4

= ρiN∗i
>

(
P∗i −Π3T̂T(x)Pm

i

I∗i − Ii

(
w(T̂T(x),P∗i )

)) ∈ R4 (5)

where M∗i is the reference 4D point, Mm
i corresponds to the

warped closest points to image according to the unknown
transformation T̂T(x). This is similar to equation 2 except
that the normal is computed in 4D and the closest points can
be determined in 4D. Also, note that the current measure-
ments are all warped to the reference frame so that it is no
longer necessary to rotate the normals.

Alternatively, it is also possible to find the closest points
in the current 4-vector that solve the optimization problem
as:

eHi = ρiNm>
i (Mm

i −Mw
i ) ∈ R4 (6)

where Mw is the warped 4-vector. Solutions to both these
cases will be considered but first lets consider the 4D normal.

In the point-to-hyperplane approach it is necessary to
compute a 4D normal. Mathematically, at least four points
in 4-space are needed to compute three vectors that will
be used to perform a three-way cross product to obtains
the orthogonal normal 4-vector. The cross product does not,
however, account for the uncertainty of the points in its
computation. Alternatively Principal Component Analysis
(PCA) can be computed on covariance matrix of the nearest
neighbours surrounding each point. In that case the smallest
eigenvalue corresponds to the surface normal. Considering
that Nm

i is directly obtained from N∗i , it is only necessary to
compute the normals once for the reference image as in the
case of the inverse compositional algorithm for image-based
registration. The covariance matrix used in computing the
normal 4-vector allows to project and weight the errors such
that the point-to-hyperplane error is invariant to any tuning
parameter λ .

As presented above in equation 5 and 6 it is possible to
find the closest points either in the reference frame M∗i (case
1) or the current frame Mi (case 2).

Consider first case 1. Computing in the reference frame
has the advantage that several parameters can be pre-
computed only once and not at each iteration. In that case
the reference normals can be precomputed along with a quick
search strategy for finding closest points such as a kd-tree.
In this paper the classic kd-tree with an ANN algorithm [15]
is considered. The search function requires as inputs the
current 4-vector Mi and a balanced kd-tree k∗, which is
created from the matrix M∗ = [M∗1 M∗2 · · ·M∗mn] ∈ R4×mn



that contains the reference 4D measurements. Each estimated
matching point will be identified by an index, which is the
result of a function that will be identified in this paper
as: Mm

i = match(k∗,Mi), which gives the i− th nearest
neighbour for each current measurements vector Mi found
in M∗. Each node of the kd-tree contains a subset B⊂M∗

of the reference dataset, which is divided at each level of the
tree by the median of a different coordinate axis until reach
an established number of elements for the end leafs. For this
paper, the median of the so-called buckets [B]1, [B]2, [B]3, [B]4
are computed in that specific order to create the balanced
tree. The operator [·] j extract the j− th row of the subset.

Consider now case 2. When finding the closest points in
the current image it is not possible to recompute the kd-
tree for each new image because it is computationally too
expensive. In this case it is possible to consider approxi-
mating the closest point by simply search for the closest
point in the image (as is done in equation 2). In this case
nearest neighbour, bi-linear or bi-cubic interpolation can be
performed [11], [12], [19], [20].

Both equations 5 and 6 can then be minimized iteratively
as in 3.

x =−(J>WJ>)J>WeH (7)

Another strategy often used in the ICP literature (see for
example [5], [7]), is to compute closest point matching only
in the first iteration of the IRLS minimization loop. This
allows to avoid to much computational complexity while
obtaining the benefits of finding the closest points. In the
first iteration, the transformation matrix T(x) is the identity
matrix which simply means that the closest point is found
by matching the current vector and the reference vector.

IV. IMPLEMENTATION DETAILS
In this section, some parameters considered for the ex-

periments will be established. The experiments were done
for real and synthetic RGB-D greyscale images in MAT-
LAB. The motivation for using synthetic data is that the
generated images provide a groundtruth for evaluation, since
the correspondences between the transformed views are
known. A multi-resolution pyramid was used to improve
the computational efficiency. The comparisons that will be
presented in the following section were done at the second
level of the pyramid (resolution 160×120).

There are two convergence criteria that stop the iterative
loop for real and simulated experiments. The first one is a
maximum number of iterations, which is established as 200,
and the norm of the estimated rotation and translation. If
the transformation matrix T(x) gets closer to the identity
matrix, then the iterative loop stops. The parameters used
to determine this second break is norm(xR) < 1× 10−6 for
rotation and norm(xt)< 1×10−5 for translation. To estimate
the closest points, the optimized search function of the
FLANN library [15] is employed to find the true nearest
neighbours.

To reject outliers, M-estimators were employed. They are
more general because they permit the use of different mini-
mization functions not necessarily corresponding to normally

Fig. 3. Example of 4 estimated camera trajectories between a pair of images
with a random pose in a simulated environment. The green and red dot
indicate the initial and the final pose. Where the strategies 2, 3 & 4 improve
the strategy 1, obtaining more direct trajectories. 1000 synthesized images
with a random pose were equally tested, obtaining a similar performance.

distributed data. In this paper, the Huber influence function
was used for this purpose.

The normal in 4 dimensions are adjusted to a 3×3 window
that perform the PCA algorithm to find the covariance matrix
of the fused error, leading to find the smallest eigenvalue
which corresponds to the normal parameter.

All the experiments were validated on a workstation with
Ubuntu 14.04, Intel Core i7-4770K and 16 GB RAM.

V. RESULTS

An introduction to the improvement can be seen in Fig.
3, where the tracking trajectories estimated by 4 strategies
are shown. These strategies are identified in this paper as
follows:

1) Direct approach + geometric point-to-plane
2) Direct approach + geometric point-to-plane (NN4D)
3) Point-to-hyperplane
4) Point-to-hyperplane (NN4D)
The legend NN4D means that the closest points were

estimated in the first iteration only by finding the nearest
neighbours with a kd-tree in the 4-vector. Bi-objective in-
terpolation at each iteration was used for the method 1 &
3.

During the experimental part, it was seen that the parame-
ter λ , which is used in previous approaches, does not change
the performance or accuracy of the pose estimation when
the point-to-hyperplane approach is used. The normal vector
is directly related to the covariance at the 4D points [16].
In Fig. 4, an example of a cost function is compared for
the hybrid methods with and without the scale parameter
(assigned as the normalization of the intensities), where real
and simulated images with a random position between them
can be equally employed to demonstrate it.

A. Simulated environment

1) Experiment 1 - Tracking: The first experiment demon-
strates the improvement in the convergence for synthesized
images, where a random transformation is applied to the
reference image. The new synthesized image is considered



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples of the Absolute Trajectory Error evaluation, the first and third column show the results obtained by methods that combine the direct
approach with the geometric point-to-plane method. The second and fourth column for the point-to-hyperplane method. The trajectories presented here are
obtained for the simulated (a)(b) lvr/traj0, (c)(d) lvr/traj2, [6] and the real (e)(f) fr1/xyz, (g)(h) fr1/room [18] sequences.

(a) (b)

Fig. 4. Example of the cost function obtained after the alignment of two
images of the same scene at different poses. When a λ is provided (b) the
performance of hybrid approaches is improved due that it scales the error
functions. On the other hand, when the scale factor is not provided (a) the
point-to-hyperplane keeps about the same performance. Similar results are
obtained for synthetic or real images.

as the current image and the methods finds the alignment
between each new image and the reference. The proposed
methods are compared in computational time taken by the
iterative loop and the number of iterations until convergence,
where is already known that the transformation matrix is
about the identity in the solution.

The averages shown in Table I demonstrates that the point-
to-hyperplane method improve the convergence. However,
the time shown does not consider the computation of nor-
mals or construction of the kd-tree. On the other hand, the
matching in 4-vector space improves the hybrid methods by
estimating more direct trajectories between the images.

TABLE I
AVERAGES IN TIME AND IN NUMBER OF ITERATIONS UNTIL

CONVERGENCE FOR 1000 SYNTHESIZED IMAGES AT RANDOM POSES.

Method # Iterations Time (sec)
1) Intensity + point-to-plane 65.6470 0.6076
2) Intensity + point-to-plane (NN4D) 34.2320 0.3550
3) Point-to-hyperplane 53.2410 0.5604
4) Point-to-hyperplane (NN4D) 12.8330 0.1567

TABLE II
AVERAGES IN TIME AND IN NUMBER OF ITERATIONS FOR REAL

IMAGES UNTIL CONVERGENCE.

Method # Iterations Time (sec)
1) Intensity + point-to-plane 53.1489 0.6991
2) Intensity + point-to-plane (NN4D) 49.8511 0.6662
3) Point-to-hyperplane 37.1277 0.4338
4) Point-to-hyperplane (NN4D) 34.5319 0.4136

2) Experiment 2 - Visual odometry: The methods were
evaluated on the ICL-NUIM RGB-D benchmark dataset [6].
The benchmarck contains multiple datasets, where a virtual
RGB-D sensor captures images in a synthesized living room.
All data is compatible with the evaluation tools available for
the TUM RGB-D dataset [18]. Therefore, in order to evaluate
the estimated trajectories, the ATE (Absolute Trajectory
Error) and RPE (Relative Pose Error) are compared alongside
an accurate groundtruth trajectory in Table III.

B. Real environment

1) Experiment 1: Improving the convergence domain:
The second experiment is carried on real images, it consists
in moving the camera along one axis where each new
image obtained generates a bigger error for each different
position along the axis. RGB-D frames from the fr1/xyz
TUM sequence [18] (images 740 - 790) were selected to
verify the performance of the methods.

The first image was established as the reference image,
and the tracking is performed by aligning the following
images into the reference. Is demonstrated in Table II that
the new approaches can get faster convergence even when
the images are taken from different far positions, which aims
to perform 3D reconstruction when keyframes are employed.
However, since the proposed methods here does not include
a keyframe detector, the methods could fails due to blurred
images in real sequences, obtaining wrong pose estimations
(As is shown in Fig. 5). In order to show the improvements in
the convergence domain, the simulated trajectories are used



TABLE III
RELATIVE POSE ERROR (RPE) AND ABSOLUTE TRAJECTORY ERROR (ATE) FOR THE SIMULATED AND REAL DATASET [6], [18]. IT CAN BE SEEN

THAT THE POINT-TO-HYPERPLANE METHODS (3 & 4) IMPROVE THE HYBRID METHODS THAT COMBINE THE DIRECT APPROACH AND THE

GEOMETRIC POINT-TO-PLANE (1 & 2) IN THE MAJORITY OF DATASET FOR THE RPE TRANSLATIONAL EVALUATION AND IN ALL DATASET FOR RPE
ROTATIONAL EVALUATION.

Sequence Method RPE translational (m) RPE rotational (deg) ATE (m)
RMSE MEAN STD RMSE MEAN STD RMSE MEAN STD

fr1/xyz 1 & 2 0.033 0.030 0.014 2.025 1.741 1.034 0.095 0.087 0.039
3 & 4 0.021 0.019 0.008 1.106 0.998 0.477 0.045 0.038 0.024

fr1/rpy 1 & 2 0.062 0.050 0.037 3.161 2.887 1.288 0.136 0.115 0.072
3 & 4 0.038 0.032 0.020 2.820 2.652 0.959 0.035 0.032 0.015

fr1/360 1 & 2 0.146 0.118 0.086 4.171 3.844 1.621 0.520 0.484 0.188
3 & 4 0.152 0.114 0.100 3.159 2.859 1.343 0.322 0.296 0.125

fr1/room 1 & 2 0.076 0.060 0.048 3.285 2.912 1.520 0.434 0.404 0.158
3 & 4 0.056 0.047 0.030 2.673 2.329 1.313 0.174 0.152 0.086

fr1/desk 1 & 2 0.047 0.039 0.027 2.826 2.503 1.312 0.108 0.104 0.029
3 & 4 0.044 0.036 0.025 2.309 2.027 1.106 0.071 0.067 0.023

fr1/desk2 1 & 2 0.058 0.051 0.027 3.483 3.026 1.725 0.189 0.174 0.075
3 & 4 0.060 0.051 0.031 3.026 2.641 1.478 0.133 0.116 0.065

fr1/floor 1 & 2 0.094 0.038 0.086 4.660 1.953 4.231 0.772 0.666 0.391
3 & 4 0.080 0.051 0.062 3.909 1.915 3.408 0.473 0.405 0.244

fr1/plant 1 & 2 0.106 0.067 0.082 3.941 3.223 2.268 0.324 0.296 0.132
3 & 4 0.055 0.043 0.034 2.130 1.947 0.864 0.101 0.093 0.037

fr1/teddy 1 & 2 0.096 0.081 0.051 3.410 3.021 1.583 0.615 0.553 0.271
3 & 4 0.070 0.056 0.043 2.287 1.954 1.187 0.169 0.158 0.059

lvr/traj0 1 & 2 0.001 0.001 0.001 0.044 0.035 0.027 0.128 0.114 0.057
3 & 4 0.002 0.001 0.002 0.042 0.026 0.033 0.050 0.046 0.019

lvr/traj1 1 & 2 0.002 0.001 0.001 0.048 0.041 0.024 0.114 0.104 0.046
3 & 4 0.001 0.001 0.001 0.021 0.017 0.013 0.041 0.032 0.026

lvr/traj2 1 & 2 0.002 0.001 0.001 0.044 0.039 0.021 0.074 0.067 0.030
3 & 4 0.001 0.001 0.001 0.024 0.019 0.014 0.039 0.036 0.016

lvr/traj3 1 & 2 0.002 0.001 0.001 0.070 0.053 0.045 0.218 0.202 0.082
3 & 4 0.001 0.001 0.001 0.044 0.027 0.035 0.080 0.066 0.045

(a) fr1/room groundtruth (b) Intensity + 3D Point to plane (c) Point-to-hyperplane

(d) fr1/360 groundtruth (e) Intensity + 3D Point to plane (f) Point-to-hyperplane

Fig. 5. 3D reconstruction of sequences fr1/room and fr1/360 (first and second row, respectively). In first column the groundtruth obtained with an external
motion capture system is shown, the column in the middle shown the results of the direct approach + 3D point to plane algorithm and the last column
shown the result of the point-to-hyperplane method. It can be seen clearly that the proposed method can achieve more robust estimations. Therefore, the
method could be improved with strategies as loop closure detection algorithms and keyframes detectors strategies.



instead for the video attachment in this paper.
2) Experiment 2 - Visual odometry: The tracking on

full benchmark sequences from TUM [18] will compare
the performance between the proposed methods. In this
paper, only the dataset fr1 was considered to compare the
performance frame-to-frame of the proposed methods. For
both, simulated and real sequences, the online tool was used
with the default settings to evaluate the ATE and RPE (Table
III).

VI. CONCLUSION

A novel point-to-hyperplane strategy was proposed based
on a 4D vector which contains geometry and color. Two
main advantages of this unified framework are underlined.
First it is shown that the sensor pose can be estimated
by minimizing the combined error without computing a
scale parameter between them. Second, it is shown that
nearest neighbour techniques can be used in 4-space to
improve the convergence rate and domain for IRLS pose
estimation. Experimental results and analysis are provided
which compare two variants of the new point-to-hyperplane
approach with the classic hybrid approach. The results show
improved computation time and faster convergence on well
known benchmarks. A demonstration of the performance of
the alignment and the estimation of the camera poses (Fig.
6) can be seen in the video attachment of this paper.

Future work will be dedicated to testing the new approach
in a simultaneously localization and mapping context which
will provide for interesting comparisons with the map re-
construction. In this paper only the ANN algorithm was
employed. In future works alternative and more efficient
search strategies will be investigated.
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Fig. 6. Tracking simulator. (Attached video). The groundtruth is shown in
black and the estimated trajectory in red for the Benchmark sequences.


