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DOUBLY-RESONANT SADDLE-NODES IN
(

C3, 0
)

AND THE FIXED

SINGULARITY AT INFINITY IN THE PAINLEVÉ EQUATIONS. PART III:
LOCAL ANALYTIC CLASSIFICATION

AMAURY BITTMANN

Abstract. In this work which follows directly [Bit16b, Bit16c], we consider analytic singular vec-
tor fields in C3 with an isolated and doubly-resonant singularity of saddle-node type at the ori-
gin. Such vector fields come from irregular two-dimensional differential systems with two opposite
non-zero eigenvalues, and appear for instance when studying the irregular singularity at infinity
in Painlevé equations (Pj)j=I...V

, for generic values of the parameters. Under suitable assump-
tions, we provide an analytic classification under the action of fibered diffeomorphisms, based on the
study of the Stokes diffeomorphisms obtained by comparing consecutive sectorial normalizing maps
à la Martinet-Ramis / Stolovitch [MR82, MR83, Sto96]. These normalizing maps over sectorial do-
mains are obtained in the main theorem of [Bit16c], which is analogous to the classical one due to
Hukuhara-Kimura-Matuda [HKM61] for saddle-nodes in C2. We also prove that these maps are in
fact the Gevrey-1 sums of the formal normalizing map, the existence of which has been proved in
[Bit16b].

1. Introduction

As in [Bit16b, Bit16c], we consider (germs of) singular vector fields Y in C3 which can be written
in appropriate coordinates (x,y) := (x, y1, y2) as

Y = x2
∂

∂x
+
(

− λy1 + F1 (x,y)
) ∂

∂y1
+
(

λy2 + F2 (x,y)
) ∂

∂y2
,(1.1)

where λ ∈ C∗ and F1, F2 are germs of holomorphic function in
(

C3, 0
)

of homogeneous valuation (order)
at least two. They represent irregular two-dimensional differential systems having two opposite non-
zero eigenvalues and a vanishing third eigenvalue. These we call doubly-resonant vector fields of saddle-
node type (or simply doubly-resonant saddle-nodes). For a historical context, a presentation of the
main motivations (the study of the irregular singularity at infinity in Painlevé equations (Pj)j=I...V ),

and a review of some results linked with this study, we refer to [Bit16b].

Several authors studied the problem of convergence of formal transformations putting vector fields as
in (1.1) into “normal forms”. Shimomura, improving on a result of Iwano [Iwa80], shows in [Shi83] that
analytic doubly-resonant saddle-nodes satisfying more restrictive conditions are conjugate (formally
and over sectors) to vector fields of the form

x2
∂

∂x
+ (−λ+ a1x) y1

∂

∂y1
+ (λ+ a2x) y2

∂

∂y2

via a diffeomorphism whose coefficients have asymptotic expansions as x → 0 in sectors of opening
greater than π.

Stolovitch then generalized this result to any dimension in [Sto96]. More precisely, Stolovitch’s
work offers an analytic classification of vector fields in Cn+1 with an irregular singular point, without
further hypothesis on eventual additional resonance relations between eigenvalues of the linear part.
However, as Iwano and Shimomura did, he needed to impose other assumptions, among which the

Key words and phrases. Painlevé equations, singular vector field, irregular singularity, resonant singularity, analytic
classification, Stokes diffeomorphisms.
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condition that the restriction of the vector field to the invariant hypersurface {x = 0} is a linear vector
field. In [BDM08], the authors obtain a Gevrey-1 summable “normal form”, though not as simple
as Stolovitch’s one and not unique a priori, but for more general kind of vector field with one zero
eigenvalue. However, the same assumption on hypersurface {x = 0} is required (the restriction is a
linear vector field). Yet from [Yos85] (and later [Bit16b]) stems the fact that this condition is not met
in the case of Painlevé equations (Pj)j=I...V .

In comparison, we merely ask here that this restriction be orbitally linearizable (see Definition 1.6),
i.e. the foliation induced by Y on {x = 0} (and not the vector field Y|{x=0} itself) be linearizable.
The fact that this condition is fulfilled by the singularities of Painlevé equations formerly described is
well-known. As discussed in Remark 1.16, this more general context also introduces new phenomena
and technical difficulties as compared to prior classification results.

1.1. Scope of the paper.
The action of local analytic / formal diffeomorphisms Ψ fixing the origin on local holomorphic vector

fields Y of type (1.1) by change of coordinates is given by

Ψ∗Y := (DΨ.Y ) ◦Ψ−1 .

In [Bit16b] we performed the formal classification of such vector fields by exhibiting an explicit universal
family of vector fields for the action of formal changes of coordinates at 0 (called a family of normal
forms). Such a result seems currently out of reach in the analytic category: it is unlikely that an
explicit universal family for the action of local analytic changes of coordinates be described anytime
soon. If we want to describe the space of equivalent classes (of germs of a doubly-resonant saddle-node
under local analytic changes of coordinates) with same formal normal form, we therefore need to find a
complete set of invariants which is of a different nature. We call moduli space this quotient space and
give it a (non-trivial) presentation based on functional invariants à la Martinet-Ramis [MR82, MR83].

In this paper we will therefore present only the x−fibered local analytic classification for vector fields
of the form (1.1), with some additional assumptions detailed further down (see Definitions 1.1, 1.2 and
1.6). Importantly, these hypothesis are met in the case of Painlevé equations mentioned above. The
full analytic classification (under the action of all local diffeomorphisms, not necessarily x−fibered)
will be done in a forthcoming work.

In [Bit16c], we have proved the existence of analytic sectorial normalizing maps (over a pair of
opposite “wide” sectors of opening greater than π whose union covers a full punctured neighborhood
of {x = 0}). Then we attach to each vector field a complete set of invariants given as transition maps
(over “narrow” sectors of opening less than π) between the sectorial normalizing maps. Although this
viewpoint has become classical since the work of Martinet and Ramis, and has latter been generalized
by Stolovitch as already mentioned, our approach has a more geometric flavor (for instance, we perform
a precise study of the Stokes diffeomorphisms in the space of leaves).

As a by-product, we deduce that the normalizing sectorial diffeomorphisms of [Bit16c] are Gevrey-
1 asymptotic to the normalizing formal power series of [Bit16b], retrospectively proving their 1-
summability. When the vector field additionally supports a symplectic transverse structure (which
is again the case of Painlevé equations) we prove a theorem of analytic classification under the action
of transversally symplectic diffeomorphisms.

1.2. Definitions and previous results.
To state our main results we need to introduce some notations and nomenclature.

• For n ∈ N>0, we denote by (Cn, 0) an (arbitrary small) open neighborhood of the origin in Cn.
• We denote by C {x,y}, with y = (y1, y2), the C-algebra of germs of holomorphic functions at

the origin of C3, and by C {x,y}× the group of invertible elements for the multiplication (also
called units), i.e. elements U such that U (0) 6= 0.
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• χ
(

C3, 0
)

is the Lie algebra of germs of singular holomorphic vector fields at the origin C3. Any

vector field in χ
(

C3, 0
)

can be written as

Y = b (x, y1, y2)
∂

∂x
+ b1 (x, y1, y2)

∂

∂y1
+ b2 (x, y1, y2)

∂

∂y2

with b, b1, b2 ∈ C {x, y1, y2} vanishing at the origin.
• Diff

(

C3, 0
)

is the group of germs of holomorphic diffeomorphisms fixing the origin of C3. It

acts on χ
(

C3, 0
)

by conjugacy: for all

(Φ, Y ) ∈ Diff
(

C3, 0
)

× χ
(

C3, 0
)

we define the push-forward of Y by Φ by

(1.2) Φ∗ (Y ) := (DΦ · Y ) ◦ Φ−1 ,

where DΦ is the Jacobian matrix of Φ.
• Difffib

(

C3, 0
)

is the subgroup of Diff
(

C3, 0
)

of fibered diffeomorphisms preserving the x-
coordinate, i.e. of the form (x,y) 7→ (x, φ (x,y)).

• We denote by Difffib

(

C3, 0, Id
)

the subgroup of Difffib

(

C3, 0
)

formed by diffeomorphisms tan-
gent to the identity.

All these concepts have formal analogues, where we only suppose that the objects are defined with
formal power series, not necessarily convergent near the origin.

Definition 1.1. A diagonal doubly-resonant saddle-node is a vector field Y ∈ χ
(

C3, 0
)

of the
form

Y = x2
∂

∂x
+
(

− λy1 + F1 (x,y)
) ∂

∂y1
+
(

λy2 + F2 (x,y)
) ∂

∂y2
,(1.3)

with λ ∈ C∗ and F1, F2 ∈ C {x,y} of order at least two. We denote by SN diag the set of such vector
fields.

Based on this expression, and considering the expansion

Fj (x,y) =
∑

k=(k0,k1,k2)

Fj,kx
k0yk11 yk22

for j = 1, 2, we state:

Definition 1.2. The residue of Y ∈ SN diag as in (1.3) is the complex number

res (Y ) := F1,(1,1,0) + F2,(1,0,1) .

We say that Y is non-degenerate (resp. strictly non-degenerate) if res (Y ) /∈ Q≤0 (resp.
ℜ (res (Y )) > 0).

Remark 1.3. It is obvious that there is an action of Difffib

(

C3, 0, Id
)

on SN diag. The residue is an

invariant of each orbit of SN fib under the action of Difffib

(

C3, 0, Id
)

by conjugacy (it is actually
invariant by formal conjugacies, see[Bit16b]).

The main result of [Bit16b] can now be stated as follows:

Theorem 1.4. [Bit16b] Let Y ∈ SN diag be non-degenerate. Then there exists a unique formal fibered

diffeomorphism Φ̂ tangent to the identity such that:

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (y1y2)) y1

∂

∂y1

+(λ+ a2x+ c2 (y1y2)) y2
∂

∂y2
,(1.4)

where λ ∈ C∗, c1, c2 ∈ vC JvK are formal power series in v = y1y2 without constant term and a1, a2 ∈ C

are such that a1 + a2 = res (Y ) ∈ C\Q≤0.
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Definition 1.5. The vector field obtained in (1.4) is called the formal normal form of Y . The

formal fibered diffeomorphism Φ̂ is called the formal normalizing map of Y .

The above result is valid for formal objects, without considering problems of convergence. The main
result in [Bit16c] states that this formal normalizing map is analytic in sectorial domains, under some
additional assumptions that we are now going to precise.

Definition 1.6.

• We say that a germ of a vector field X in
(

C2, 0
)

is orbitally linear if

X = U (y)

(

λ1y1
∂

∂y1
+ λ2y2

∂

∂y2

)

,

for some U (y) ∈ C {y}× and (λ1, λ2) ∈ C2.
• We say that a germ of vector field X in

(

C2, 0
)

is analytically (resp. formally) orbitally
linearizable if X is analytically (resp. formally) conjugate to an orbitally linear vector field.

• We say that a diagonal doubly-resonant saddle-node Y ∈ SN diag is div-integrable if Y|{x=0} ∈
χ
(

C2, 0
)

is (analytically) orbitally linearizable.

Remark 1.7. Alternatively we could say that the foliation associated to Y|{x=0} is linearizable. Since

Y|{x=0} is analytic at the origin of C2 and has two opposite eigenvalues, it follows from a classical result
of Brjuno (see [Mar81]), that Y|{x=0} is analytically orbitally linearizable if and only if it is formally
orbitally linearizable.

Definition 1.8. We denote by SN diag,0 the set of strictly non-degenerate diagonal doubly-resonant
saddle-nodes which are div-integrable.

The main result of [Bit16c] can now be stated (we refer to section 2. for precise definitions on weak
1-summability)).

Theorem 1.9. [Bit16c]Let Y ∈ SN diag,0 and let Φ̂ (given by Theorem 1.4) be the unique formal fibered
diffeomorphism tangent to the identity such that

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x+ c1 (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c2 (y1y2)) y2

∂

∂y2
=: Ynorm ,

where λ 6= 0 and c1 (v) , c2 (v) ∈ vC JvK are formal power series without constant term. Then:

(1) the normal form Ynorm is analytic (i.e. c1, c2 ∈ C {v}), and it also is div-integrable, i.e. c1+c2 =
0;

(2) the formal normalizing map Φ̂ is weakly 1-summable in every direction θ 6= arg (±λ);
(3) there exist analytic sectorial fibered diffeomorphisms Φ+ and Φ−, (asymptotically) tangent to

the identity, defined in sectorial domains of the form S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respec-
tively, where

S+ :=
{

x ∈ C | 0 < |x| < r and
∣

∣

∣
arg
( x

iλ

)
∣

∣

∣
<
π

2
+ ǫ
}

S− :=

{

x ∈ C | 0 < |x| < r and

∣

∣

∣

∣

arg

(−x
iλ

)∣

∣

∣

∣

<
π

2
+ ǫ

}

(for any ǫ ∈
]

0,
π

2

[

and some r > 0 small enough), which admit Φ̂ as weak Gevrey-1 asymptotic

expansion in these respective domains, and which conjugate Y to Ynorm. Moreover Φ+ and Φ−

are the unique such germs of analytic functions in sectorial domains (see Definition 2.2).

Definition 1.10. We call Φ+ and Φ− the sectorial normalizing maps of Y ∈ SN diag,0.
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They are the weak 1-sums of Φ̂ along the respective directions arg (iλ) and arg (−iλ). Notice that
Φ+ and Φ− are germs of analytic sectorial fibered diffeomorphisms, i.e. they are of the form

Φ+ : S+ ×
(

C2, 0
)

−→ S+ ×
(

C2, 0
)

(x,y) 7−→ (x,Φ+,1 (x,y) ,Φ+,2 (x,y))

and

Φ− : S− ×
(

C2, 0
)

−→ S− ×
(

C2, 0
)

(x,y) 7−→ (x,Φ−,1 (x,y) ,Φ−,2 (x,y))

(see section 2. for a precise definition of germ of analytic sectorial fibered diffeomorphism). The fact
that they are also (asymptotically) tangent to the identity means that we have:

Φ± (x,y) = Id + O
(

‖(x,y)‖2
)

.

Another result proved in [Bit16c], is that the uniqueness of the sectorial normalizing maps holds in
fact under weaker assumptions.

Proposition 1.11. Let ϕ+ and ϕ− be two germs of sectorial fibered diffeomorphisms in S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respectively, where S+ and S− are as in Theorem 1.9, which are (asymptotically)
tangent to the identity and such that

(ϕ±)∗ (Y ) = Ynorm .

Then, they necessarily coincide with the weak 1-sums Φ+ and Φ− defined above.

1.3. Main results.
The first main result of this paper is the following.

Theorem 1.12. Let Y ∈ SN diag,0 and let Φ̂ (given by Theorem 1.4) be the unique formal fibered
diffeomorphism tangent to the identity such that

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
=: Ynorm ,

where λ 6= 0 and c (v) ∈ vC {v}. Then Φ̂ is 1-summable (with respect to x) in every direction θ 6=
arg (±λ), and Φ+,Φ− in Theorem 1.9 are the 1-sums of Φ̂ in directions arg (iλ) , arg (−iλ) respectively.

Since two analytically conjugate vector fields are also formally conjugate, we fix now a normal form

Ynorm = x2
∂

∂x
+ (−λ+ a1x− c (v)) y1

∂

∂y1
+ (λ+ a2x+ c (v)) y2

∂

∂y2
,

with λ ∈ C∗, ℜ (a1 + a2) > 0 and c ∈ vC {v} vanishing at the origin.

Definition 1.13. We denote by [Ynorm] the set of germs of holomorphic doubly-resonant saddle-nodes
in
(

C3, 0
)

which are formally conjugate to Ynorm by formal fibered diffeomorphisms tangent to the

identity, and denote by [Ynorm]
/

Difffib

(

C3, 0, Id
)

the set of orbits of the elements in this set under

the action of Difffib

(

C3, 0, Id
)

.

According to Theorem 1.9, to any Y ∈ [Ynorm] we can associate two sectorial normalizing maps
Φ+,Φ−, which can in fact extend analytically in domains S+ ×

(

C2, 0
)

and S− ×
(

C2, 0
)

, where S± is
an asymptotic sector in the direction arg (±iλ) with opening 2π (see Definition 2.3):

(S+, S−) ∈ ASarg(iλ),2π ×ASarg(−iλ),2π .

Then, we consider two germs of sectorial fibered diffeomorphisms Φλ,Φ−λ analytic in Sλ, S−λ, with

Sλ := S+ ∩ S− ∩
{

ℜ
(x

λ

)

> 0
}

∈ ASarg(λ),π(1.5)

S−λ := S+ ∩ S− ∩
{

ℜ
(x

λ

)

< 0
}

∈ ASarg(−λ),π ,
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defined by:
{

Φλ :=
(

Φ+ ◦ Φ−1
−

)

|Sλ×(C2,0)
∈ Difffib

(

Sarg(λ),ǫ; Id
)

, ∀ǫ ∈ [0, π[

Φ−λ :=
(

Φ− ◦ Φ−1
+

)

|S−λ×(C2,0)
Difffib

(

Sarg(−λ),ǫ; Id
)

, ∀ǫ ∈ [0, π[ .

Notice that Φλ,Φ−λ are isotropies of Ynorm, i.e. they satisfy:

(Φ±λ)∗ (Ynorm) = Ynorm .

Definition 1.14. With the above notations, we define Λλ (Ynorm) (resp. Λ−λ (Ynorm)) as the group
of germs of sectorial fibered isotropies of Ynorm, tangent to the identity, and admitting the identity
as Gevrey-1 asymptotic expansion (see Definition 2.4) in sectorial domains of the form Sλ ×

(

C2, 0
)

(

resp. S−λ ×
(

C2, 0
))

, with S±λ ∈ ASarg(±λ),π.
The two sectorial isotropies Φλ and Φ−λ defined above are called the Stokes diffeomorphisms

associate to Y ∈ [Ynorm].

Our second main result gives the moduli space for the analytic classification that we are looking for.

Theorem 1.15. The map

[Ynorm]
/

Difffib

(

C3, 0, Id
) −→ Λλ (Ynorm)× Λ−λ (Ynorm)

Y 7−→ (Φλ,Φ−λ)

is well-defined and bijective.

In particular, the result states that Stokes diffeomorphisms only depend on the class of Y ∈ [Ynorm]

in the quotient [Ynorm]
/

Difffib

(

C3, 0, Id
)

. We will give a description of this set of invariants in terms

of power series in the space of leaves in section 4.

Remark 1.16. In [Bit16c] we have proved a theorem of sectorial normalizing map analogous to the
classical one due to Hukuhara-Kimura-Matuda for saddle-nodes in

(

C2, 0
)

[HKM61], generalized later
by Stolovitch in any dimension in [Sto96]. Unlike the method based on a fixed point theorem used
by these authors, we have used a more geometric approach (following the works of Teyssier [Tey03,
Tey04]) based on the resolution of an homological equation, by integrating a well chosen 1-form along
asymptotic paths. This latter approach turned out to be more efficient to deal with the fact that
Y|{x=0} is not necessarily linearizable. Indeed, if we try to adapt the proof of [Sto96], one of the first
new main difficulties is that in the irregular systems that needs to be solved by a fixed point method
(for instance equation (2.7) in the cited paper), the non-linear terms would not be divisible by the
independent variable (i.e. the time) in our situation. This would complicate the different estimates
that are done later in the cited work. This was the first main new phenomena we have met.

In contrast to a result of [Bit16c] which states that the only sectorial isotropy (tangent to the
identity) of the normal form over wide sectors (of opening > π) is the identity, we will see here that
the situation is rather different over sector with narrow opening. In order to prove both Theorems
1.12 and 1.15, we will show that the Stokes diffeomorphisms Φλ and Φ−λ obtained from the germs of
sectorial normalizing maps Φ+ and Φ−,admit the identity as Gevrey-1 asymptotic expansion. In the
cited reference we were only able to establish that fact with a weaker notion of Gevrey-1 expansion.
The main difficulty is to prove that such a sectorial isotropy of Ynorm over the “narrow” sectors described
above is necessarily exponentially close to the identity (see Proposition 3.5). This will be done via a
detailed analysis of these maps in the space of leaves (see Definition 4.4). In fact, this is the second
main new difficulties we have met, which is due to the presence of the “resonant” term

cm (y1y2)
m
log (x)

x

in the exponential expression of the first integrals of the vector field (see (4.1)). In [Sto96], similar
computations are done in subsection 3.4.1. In this part of the paper, infinitely many irregular differ-
ential equations appear when identifying terms of same homogeneous degree. The fact that Y|{x=0} is
linear implies that these differential equations are all linear and independent of each others (i.e. they
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are not mixed together). In our situation, this is not the case and then more complicated. Using a
“non-abelian” version of the Ramis-Sibuya theorem due to Martinet and Ramis [MR82], we prove both

sectorial normalizing maps Φ+ and Φ− admit the formal normalizing map Φ̂ as Gevrey-1 asymptotic

expansion in the corresponding sectorial domains. This establishes the Gevrey-1 summability of Φ̂.

1.4. The transversally Hamiltonian case.
In order to motivate the following definition, we refer to [Bit16c] where the study of the Painlevé

case is performed.

Definition 1.17. Consider the rational 1-form

ω :=
dy1 ∧ dy2

x
.

We say that vector field Y is transversally Hamiltonian (with respect to ω and dx) if

LY (dx) ∈ 〈dx〉 and LY (ω) ∈ 〈dx〉 .

For any open sector S ⊂ C∗, we say that a germ of sectorial fibered diffeomorphism Φ in S ×
(

C2, 0
)

is transversally symplectic (with respect to ω and dx) if

Φ∗ (ω) ∈ ω + 〈dx〉

(here Φ∗ (ω) denotes the pull-back of ω by Φ).
We denote by Diffω

(

C3, 0; Id
)

the group of transversally symplectic diffeomorphisms which are
tangent to the identity.

Remark 1.18. A fibered sectorial diffeomorphism Φ is transversally symplectic if and only if det (DΦ) =
1.

Definition 1.19. A transversally Hamiltonian doubly-resonant saddle-node is a transversally
Hamiltonian vector field which is conjugate, via a (fibered) transversally symplectic diffeomorphism,
to one of the form

Y = x2
∂

∂x
+
(

− λy1 + F1 (x,y)
) ∂

∂y1
+
(

λy2 + F2 (x,y)
) ∂

∂y2
,

with λ ∈ C∗ and F1, F2 analytic in
(

C3, 0
)

and of order at least 2.

Notice that a transversally Hamiltonian doubly-resonant saddle-node is necessarily strictly non-
degenerate (since its residue is always equal to 1), and also div-integrable (see section 3).

We recall the second main result from [Bit16b].

Theorem 1.20. [Bit16b]
Let Y be a diagonal doubly-resonant saddle-node which is transversally Hamiltonian. Then, there

exists a unique formal fibered transversally symplectic diffeomorphism Φ̂ tangent to identity such that:

Φ̂∗ (Y ) = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
=: Ynorm ,(1.6)

where λ ∈ C∗, c (v) ∈ vC JvK a formal power series in v = y1y2 without constant term and a1, a2 ∈ C

are such that a1 + a2 = 1.

The second main result in [Bit16c] is the following.

Theorem 1.21. Let Y be a transversally Hamiltonian doubly-resonant saddle-node. Let Φ̂ be the
unique formal normalizing map given by Theorem 1.20. Then the associate sectorial normalizing maps
Φ+ and Φ− given by Theorem 1.9 are also transversally symplectic.
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Let us fix a normal form Ynorm as in Theorem 1.21, and consider two sectorial domains Sλ ×
(

C2, 0
)

and S−λ ×
(

C2, 0
)

as in (1.5). Then, the Stokes diffeomorphisms (Φλ,Φ−λ) defined in the previous
subsection as

{

Φλ :=
(

Φ+ ◦ Φ−1
−

)

|Sλ×(C2,0)

Φ−λ :=
(

Φ− ◦ Φ−1
+

)

|S−λ×(C2,0)
,

are also transversally symplectic.

Definition 1.22. We denote by Λωλ (Ynorm)
(

resp. Λω−λ (Ynorm)
)

the group of germs of sectorial fibered
isotropies of Ynorm, admitting the identity as Gevrey-1 asymptotic expansion in sectorial domains of
the form Sλ ×

(

C2, 0
) (

resp. S−λ ×
(

C2, 0
))

, and which are transversally symplectic.

Let us denote by [Ynorm]ω the set of germs of vector fields which are formally conjugate to Ynorm
via (formal) transversally symplectic diffeomorphisms tangent to the identity. As a consequence of
Theorems (1.15) and (1.21), we can now state our third main result:

Theorem 1.23. The map

[Ynorm]ω
/

Diffω
(

C3, 0; Id
) −→ Λωλ (Ynorm)× Λω−λ (Ynorm)

Y 7−→ (Φλ,Φ−λ)

is a well-defined bijection.

1.5. Outline of the paper.
In section 2, we recall the different tools, notations and nomenclature we will need regarding as-

ymptotic expansion, Gevrey-1 series, 1-summability and sectorial germs.
In section 3, we prove the main theorems presented above, assuming the Proposition 3.5 holds.
In section 4, we prove the key Proposition 3.5 by studying the automorphisms of the space of leaves.
In section 5, we give a description of the moduli space in Theorem 1.15 in terms of power series in

the space of leaves, and present some applications.
In section 6, we present a generalization of Theorem 1.15 where we study the action of Diff

(

C3, 0
)

instead of Difffib

(

C3, 0
)

.
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2. Background

We refer the reader to [MR82], [Mal95] and [RS93] for a general and detailed introduction to
the theory of asymptotic expansion, Gevrey series and summability (see also [Sto96] for a useful
discussion of these concepts). We refer more precisely to [Bit16c] when it comes to the notion of weak
1-summability.

We call x ∈ C the independent variable and y := (y1, . . . , yn) ∈ Cn, n ∈ N, the dependent variables.

As usual we define yk := yk11 . . . yknn for k = (k1, . . . , kn) ∈ Nn, and |k| = k1 + · · ·+ kn. The notions
of asymptotic expansion, Gevrey series and 1-summability presented here are always considered with
respect to the independent variable x living in (open) sectors

S (r, α, β) = {x ∈ C | 0 < |x| < r and α < arg (x) < β} ,

the dependent variable y belonging to poly-discs

D (0, r) := {y = (y1, . . . , yn) ∈ Cn | |y1| < r1, . . . |yn| < rn} ,

of poly-radius r = (r1, . . . , rn) ∈ (R>0)
n
. Given an open subset U ⊂ Cn+1 , we denote by O (U) the

algebra of holomorphic function in U .

2.1. Sectorial germs.
Let θ ∈ R, η ∈ R≥0 and n ∈ N.

Definition 2.1. (1) An x-sectorial neighborhood (or simply sectorial neighborhood) of the origin
(in Cn+1) in the direction θ with opening η is an open set S ⊂ Cn+1 such that

S ⊃ S
(

r, θ − η

2
− ǫ, θ +

η

2
+ ǫ
)

×D (0, r)

for some r > 0, r ∈ (R>0)
n and ǫ > 0. We denote by (Sθ,η,≤) the directed set formed by all

such neighborhoods, equipped with the order relation

S1 ≤ S2 ⇐⇒ S1 ⊃ S2 .

(2) The algebra of germs of holomorphic functions in a sectorial neighborhood of the origin in the
direction θ with opening η is the direct limit

O (Sθ,η) := lim−→O (S)
with respect to the directed system defined by {O (S) : S ∈ Sθ,η}.

We now give the definition of a (germ of a) sectorial diffeomorphism.

Definition 2.2. (1) Given an element S ∈ Sθ,η, we denote by Difffib (S, Id) the set of holomorphic
diffeomorphisms of the form

Φ : S → Φ (S)
(x,y) 7→ (x, φ1 (x,y) , φ2 (x,y)) ,
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such that Φ (x,y) − Id (x,y) = O
(

‖x,y‖2
)

, as (x,y) → (0,0) in S. 1

(2) The set of germs of (fibered) sectorial diffeomorphisms in the direction θ with opening η, tangent
to the identity, is the direct limit

Difffib (Sθ,η; Id) := lim−→Difffib (S, Id)
with respect to the directed system defined by {Difffib (S, Id) : S ∈ Sθ,η}. We equip Difffib (Sθ,η; Id)
of a group structure as follows: given two germs Φ,Ψ ∈ Difffib (Sθ,η; Id) we chose correspond-
ing representatives Φ0 ∈ Difffib (S, Id) and Ψ0 ∈ Difffib (T , Id) with S, T ∈ Sθ,η such that
T ⊂ Φ0 (S) and let Ψ ◦ Φ be the germ defined by Ψ0 ◦ Φ0.

2

We will also need the notion of asymptotic sectors.

Definition 2.3. An (open) asymptotic sector of the origin in the direction θ and with opening η is an
open set S ⊂ C such that

S ∈
⋂

0≤η′<η

Sθ,η′ .

We denote by ASθ,η the set of all such (open) asymptotic sectors.

2.2. Gevrey-1 power series and 1-summability.
In this subsection we fix a formal power series

f̂ (x,y) =
∑

k≥0

fk (y)x
k =

∑

(j0,j)∈Nn+1

fj0,jx
j0yj ∈ C Jx,yK .

Definition 2.4.

• An analytic (and bounded) function f in a sectorial domain S (r, α, β)×D (0, r) admits f̂ as
Gevrey-1 asymptotic expansion in this domain, if for all closed sub-sector S′ ⊂ S (r, α, β), there
exists A,C > 0 such that:

∣

∣

∣

∣

∣

f (x,y) −
N−1
∑

k=0

fk (y) x
k

∣

∣

∣

∣

∣

≤ ACN (N !) |x|N

for all N ∈ N and (x,y) ∈ S′ ×D (0, r).

• A formal power series f̂ ∈ C Jx,yK is 1-summable in the direction θ if and only if there exists a

germ of a sectorial holomorphic function fθ ∈ O (Sθ,π) which admits f̂ as Gevrey-1 asymptotic
expansion in some S ∈ Sθ,π.

Remark 2.5. In the definition above, fθ is unique
(

as a germ in O (Sθ,π)
)

, and is called the 1-sum of

f̂ in the direction θ.

Lemma 2.6. The set Σθ ⊂ C Jx,yK of 1-summable power series in the direction θ is an algebra closed
under differentiation. Moreover the map

Σθ −→ O (Sθ,π)
f̂ 7−→ fθ

is an injective morphism of differential algebras.

Proposition 2.7. Let Φ̂ (x,y) ∈ C Jx,yK be 1-summable in directions θ and θ − π, and let Φ+ (x,y)

and Φ− (x,y) be its 1-sums directions θ and θ − π respectively. Let also f̂1 (x, z) , . . . , f̂n (x, z) be 1-
summable in directions θ, θ− π, and f1,+, . . . , fn,+, and f1,−, . . . , fn,− be their 1-sums in directions θ
and θ − π respectively. Assume that

(2.1) f̂j (0,0) = 0, for all j = 1, . . . , n .

1This condition implies in particular that Φ (S) ∈ Sθ,η.
2One can prove that this definition is independent of the choice of the representatives
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Then

Ψ̂ (x, z) := Φ̂
(

x, f̂1 (x, z) , . . . , f̂n (x, z)
)

is 1-summable in directions θ, θ − π, and its 1-sum in the corresponding direction is

Ψ± (x, z) := Φ± (x, f1,± (x, z) , . . . , fn,± (x, z)) ,

which is a germ of a sectorial holomorphic function in directions θ and θ − π.

Proof. See [Bit16b]. �

Consider Ŷ a formal singular vector field at the origin and a formal fibered diffeomorphism ϕ̂ :

(x,y) 7→
(

x, φ̂ (x,y)
)

. Assume that both Ŷ and ϕ̂ are 1-summable in directions θ and θ− π, for some

θ ∈ R, and denote by Y+, Y− (resp. ϕ+, ϕ−) their 1-sums in directions θ and θ − π respectively. As a
consequence of Proposition 2.7 and Lemma 2.6, we can state the following:

Corollary 2.8. Under the assumptions above, ϕ̂∗

(

Ŷ
)

is 1-summable in both directions θ and θ − π,

and its 1-sums in these directions are ϕ+ (Y+) and ϕ− (Y−) respectively.

2.3. An important result by Martinet and Ramis.
We are going to make an essential use of an isomorphism theorem proved in [MR82]. This result

is of paramount importance in the present paper since it will be a key tool in the proofs of both
Theorems 1.9 and 1.15 (see section 3).

Let us consider two open asymptotic sectors S and S ′ at the origin in directions θ and θ − π
respectively, both of opening π:

S ∈ ASθ,π
S′ ∈ ASθ−π,π

(see Definition 2.3). In this particular setting, the cited theorem can be stated as follows.

Theorem 2.9. [MR82, Théorème 5.2.1] Consider a pair of germs of sectorial diffeomorphisms

(ϕ, ϕ′) ∈ Difffib (Sθ,0; Id)×Difffib (Sθ−π,0; Id)
such that ϕ and ϕ′ extend analytically and admit the identity as Gevrey-1 asymptotic expansion in
S ×

(

C2, 0
)

and S′ ×
(

C2, 0
)

respectively. Then, there exists a pair (φ+, φ−) of germs of sectorial
fibered diffeomorphisms

(φ+, φ−) ∈ Difffib

(

Sθ+π
2
,η; Id

)

×Difffib

(

Sθ−π
2
,η; Id

)

with η ∈ ]π, 2π[, which extend analytically in S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respectively, for some
S+ ∈ ASθ+π

2
,2π and S− ∈ ASθ−π

2
,2π , such that:
{

φ+ ◦ (φ−)−1
|S×(C2,0) = ϕ

φ+ ◦ (φ−)−1
|S′×(C2,0) = ϕ′ .

There also exists a formal diffeomorphism φ̂ which is tangent to the identity, such that φ+ and φ− both

admit φ̂ as Gevrey-1 asymptotic expansion in S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respectively.

In particular, in the theorem above φ̂ is 1−summable in every direction except θ and θ − π, and
its 1-sums in directions θ + π

2 and θ − π
2 respectively are φ+ and φ−. For future use, we are going to

prove a “transversally symplectic” version of the above theorem.

Corollary 2.10. With the assumptions and notations of Theorem 2.9, if ϕ and ϕ′ both are transver-
sally symplectic (see Definition 1.17), then there exists a germ of an analytic fibered diffeomorphism
ψ ∈ Difffib

(

C3, 0, Id
)

(tangent to the identity), such that

σ+ := φ+ ◦ ψ and σ− := φ− ◦ ψ



ANALYTIC CLASSIFICATION OF DOUBLY-RESONANT SADDLE-NODES 12

both are transversally symplectic. Moreover we also have:
{

σ+ ◦ (σ−)−1
|S×(C2,0) = ϕ

σ+ ◦ (σ−)−1
|S′×(C2,0) = ϕ′ .

Proof. We recall that for any germ ϕ of a sectorial fibered diffeomorphism which is tangent to the
identity, ϕ is transversally symplectic if and only if det (Dϕ) = 1.

First of all, let us show that

det (Dφ+) = det (Dφ−) in (S+ ∩ S−)×
(

C2, 0
)

.

Since φ+ and φ− both are sectorial fibered diffeomorphism which are tangent to the identity and
transversally symplectic, then

det
(

φ+ ◦ (φ−)−1
|(S+∩S−)×(C2,0)

)

= 1 .

The chain rule implies immediately that

det (Dφ+) = det (Dφ−) in (S+ ∩ S−)×
(

C2, 0
)

.

Thus, this equality allows us to define (thanks to the Riemann’s Theorem of removable singularities)
a germ of analytic function f ∈ O

(

C3, 0
)

. Notice that f (0, 0, 0) = 1 because φ+ and φ− are tangent

to the identity. Now, let us look for an element ψ ∈ Difffib

(

C3, 0, Id
)

of the form

(2.2) ψ : (x, y1, y2) 7→ (x, ψ1 (x,y) , y2)

such that

σ+ := φ+ ◦ ψ and σ− := φ− ◦ ψ
both be transversally symplectic. An easy computation gives:

det (σ±) = (det (Dφ±) ◦ ψ) det (Dψ) = 1

i.e.

(f ◦ ψ) det (Dψ) = 1 .

According to (2.2), we must have:

(2.3) (f ◦ ψ) ∂ψ1

∂y1
= 1 .

Let us define

F (x, y1, y2) :=

ˆ y1

0

f (x, z, y2) dz ,

so that (2.3) can be integrated as

F ◦ ψ = y1 + h (x, y2) ,

for some h ∈ C {x, y2}. Notice that
∂F

∂y1
(0, 0, 0) = 1

since f (0, 0, 0) = 1. Let us chose h = 0. Then, we have to solve

F ◦ ψ = y1 ,

with unknown ψ ∈ Difffib

(

C3, 0, Id
)

as in (2.3). If we define

Φ : (x,y) 7→ (x, F (x,y) , y2) ,

the latter problem is equivalent to find ψ as above such that:

Φ ◦ ψ = Id .

Since DΦ0 = Id, the inverse function theorem gives us the existence of the germ ψ = Φ−1 ∈
Difffib

(

C3, 0, Id
)

. �
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2.4. 1-summability implies weakly 1-summability.
Any function f (x,y) analytic in a domain U ×D (0, r), where U ⊂ C is open, and bounded in any

domain U ×D (0, r′) with r′1 < r1, . . . , r
′
n < rn, can be written

(2.4) f (x,y) =
∑

j∈Nn

Fj (x)y
j ,

where for all j ∈ Nn, Fj is analytic and bounded on U , and defined via the Cauchy formula:

Fj (x) =
1

(2iπ)n

ˆ

|z1|=r′1

. . .

ˆ

|zn|=r′n

f (x, z)

(z1)
j1+1

. . . (zn)
jn+1 dzn . . . dz1 .

Notice that the convergence of the series above is uniform on every compact with respect to x and y.

In the same way, any formal power series f̂ (x,y) ∈ C Jx,yK can be written as

f̂ (x,y) =
∑

j∈Nn

F̂j (x)y
j .

We present here a weaker notion of 1-summability that we will also need.

Definition 2.11.

• A function
f (x,y) =

∑

j∈Nn

Fj (x)y
j

analytic and bounded in a domain S (r, α, β)×D (0, r), admits f̂ as weak Gevrey-1 asymp-
totic expansion in x ∈ S (r, α, β), if for all j ∈ Nn, Fj admits F̂j as Gevrey-1 asymptotic
expansion in S (r, α, β).

• The formal power series f̂ is said to be weakly 1-summable in the direction θ ∈ R, if the
following conditions hold:

– for all j ∈ Nn, F̂j (x) ∈ C JxK is 1-summable in the direction θ, whose 1-sum in the direction
θ is denoted by Fj;

– the series fθ (x,y) :=
∑

j∈Nn

Fj (x)y
j defines a germ of a sectorial holomorphic function in

a domain of the form

S
(

r, θ − π

2
− ǫ, θ +

π

2
+ ǫ
)

×D (0, r) .

In this case, fθ (x,y) is called the weak 1-sum of f̂ in the direction θ.

The following proposition is an analogue of Proposition 2.7 for weak 1-summable formal power
series, with the a stronger condition instead of (2.1).

Proposition 2.12. Let

Φ̂ (x, z) =
∑

j∈Nn

Φ̂j (x) z
j ∈ C Jx,yK

and
f̂ (k) (x,y) =

∑

j∈Nn

F̂
(k)
j (x)yj ∈ C Jx,yK ,

for k = 1, . . . , n, be n+1 formal power series which are weakly 1-summable in directions θ and θ − π,

and let us denote by Φ+, f
(1)
+ , . . . , f

(n)
+

(

resp. Φ−, f
(1)
− , . . . , f

(n)
−

)

their respective weak 1-sums in the

direction θ ( resp. θ − π). Assume that F̂
(k)
0 = 0 for all k = 1, . . . , n. Then,

Ψ̂ (x,y) := Φ̂
(

x, f̂ (1) (x,y) , . . . , f̂ (n) (x,y)
)

is weakly 1-summable directions θ and θ − π, and its 1-sum in the corresponding direction is

Ψ± (x,y) = Φ±

(

x, f
(1)
± (x,y) , . . . , f

(n)
± (x,y)

)

,

which is a germ of a sectorial holomorphic function in the direction θ ( resp. θ − π) with opening π.
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Proof. See [Bit16c]. �

As proved in [Bit16c], the next corollary gives the link between 1-summability in some direction and
weak 1-summability in the same direction (we refer to [Bit16c], Definition 2.8, or to [MR82], section
IV, for a definition of the norm ‖·‖λ,θ,δ,ρ associate to the space of 1-summable formal power series in

the direction θ).

Corollary 2.13. Let

f̂ (x,y) =
∑

j∈Nn

F̂j (x)y
j ∈ C Jx,yK

be a formal power series. Then, f̂ is 1-summable in the direction θ ∈ R, of 1-sum f ∈ O (Sθ,π), if and
only if the following two conditions hold:

• f̂ is weakly 1-summable in the direction θ, i.e. there exists λ, δ, ρ such that ∀j ∈ Nn,
∥

∥

∥
F̂j

∥

∥

∥

λ,θ,δ,ρ
<∞

• the power series
∑

j∈Nn

∥

∥

∥
F̂j

∥

∥

∥

λ,θ,δ,ρ
yj is convergent in some polydisc D (0, r).

Proof. See [Bit16c]. �

3. Proofs of the main theorems

The aim of this section is to prove the main results of this paper, assuming Proposition 3.5 below
holds.

3.1. Analytic invariants: Stokes diffeomorphisms.
From now on, we fix a normal form

Ynorm = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
,

with λ ∈ C∗,ℜ (a1 + a2) > 0 and c ∈ vC {v} vanishing at the origin. We denote by [Ynorm] the set of
germs of holomorphic doubly-resonant saddle-nodes in

(

C3, 0
)

, formally conjugate to Ynorm by formal
fibered diffeomorphisms tangent to the identity. We refer the reader to Definition 2.1 for notions
relating to sectors.

Definition 3.1.

• We define Isotfib (Y ;Sθ,η; Id), for all θ ∈ R and η ∈ [0, 2π], as the group of germs of sectorial
fibered isotropies of Ynorm in sectorial domains in Sθ,η (see Definition 2.3), which are tangent
to the identity.

• We define Λ
(weak)
λ (Ynorm)

(

resp. Λ
(weak)
−λ (Ynorm)

)

as the group of germs of sectorial fibered

isotropies of Ynorm, admitting the identity as weak Gevrey-1 asymptotic expansion in sectorial
domains of the form Sλ ×

(

C2, 0
) (

resp. S−λ ×
(

C2, 0
))

, where:

Sλ ∈ ASarg(λ),π

S−λ ∈ ASarg(−λ),π

(see Definition 2.3).

We recall the notations given in the introduction: we have defined Λλ (Ynorm) (resp. Λ−λ (Ynorm))
as the group of germs of sectorial fibered isotropies of Ynorm, admitting the identity as Gevrey-1
asymptotic expansion in sectorial domains of the form Sλ ×

(

C2, 0
) (

resp. S−λ ×
(

C2, 0
))

. It is clear
that we have:

Λ±λ (Ynorm) ⊂ Λ
(weak)
±λ (Ynorm) ⊂ Isotfib

(

Y ;Sarg(±λ),η; Id
)

, ∀η ∈ ]0, π[ .
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According to Theorem 1.9, to any Y ∈ [Ynorm], we can associate a pair of germs of sectorial fibered
isotropies in Sλ ×

(

C2, 0
)

and S−λ ×
(

C2, 0
)

respectively, denoted by (Φλ,Φ−λ):

{

Φλ :=
(

Φ+ ◦ Φ−1
−

)

|Sλ×(C2,0)
∈ Isotfib

(

Y ;Sarg(λ),η; Id
)

, ∀η ∈ ]0, π[

Φ−λ :=
(

Φ− ◦ Φ−1
+

)

|S−λ×(C2,0)
∈ Isotfib

(

Y ;Sarg(−λ),η; Id
)

, ∀η ∈ ]0, π[ ,

where (Φ+,Φ−) is the pair of the sectorial normalizing maps given by Theorem 1.9.

Proposition 3.2. For any given η ∈ ]0, π[ the map

[Ynorm] −→ Isotfib
(

Y ;Sarg(λ),η; Id
)

× Isotfib
(

Y ;Sarg(−λ),η; Id
)

Y 7−→ (Φλ,Φ−λ) ,

actually ranges in Λ
(weak)
λ (Ynorm)× Λ

(weak)
−λ (Ynorm).

Proof. The fact that the sectorial normalizing maps Φ+,Φ− given by Theorem 1.9 both conjugate
Y ∈ [Ynorm] to Ynorm in the corresponding sectorial domains proves that the arrow above is well-
defined, with values in Isotfib

(

Y ;Sarg(λ),η; Id
)

× Isotfib
(

Y ;Sarg(−λ),η; Id
)

, for all η ∈ ]0, π[. The fact

that Φ±λ admits the identity as weak Gevrey-1 asymptotic expansion in S±λ ×
(

C2, 0
)

comes from

the fact that Φ+ and Φ− admits the same weak Gevrey-1 asymptotic expansion in Sλ ×
(

C2, 0
)

and

S−λ ×
(

C2, 0
)

, and from Proposition 2.12. �

The subgroup Difffib

(

C3, 0, Id
)

⊂ Difffib

(

C3, 0
)

formed by fibered diffeomorphisms tangent to the
identity acts naturally on [Ynorm] by conjugacy. Now we show that the uniqueness of germs of secto-
rial normalizing maps (Φ+,Φ−) implies that the Stokes diffeomorphisms (Φλ,Φ−λ) of a vector field
Y ∈ [Ynorm] is invariant under the action of Difffib

(

C3, 0, Id
)

. Furthermore, this map is one-to-one.

Proposition 3.3. The map

[Ynorm] −→ Λ
(weak)
λ (Ynorm)× Λ

(weak)
−λ (Ynorm)

Y 7−→ (Φλ,Φ−λ)

factorizes through a one-to-one map

[Ynorm]
/

Difffib

(

C3, 0, Id
) −→ Λ

(weak)
λ (Ynorm)× Λ

(weak)
−λ (Ynorm)

Y 7−→ (Φλ,Φ−λ) .

Remark 3.4. This very result means that the Stokes diffeomorphisms encode completely the class of

Y in the quotient [Ynorm]
/

Difffib

(

C3, 0, Id
)

as they separate conjugacy classes.

Proof. First of all, let us prove that the latter map is well-defined. Let Y, Ỹ ∈ [Ynorm] and Θ ∈
Difffib

(

C3, 0, Id
)

be such that Θ∗ (Y ) = Ỹ . We denote by Φ± (resp. Φ̃±) the sectorial normalizing

maps of Y (resp. Ỹ ), and (Φλ,Φ−λ)
(

resp.
(

Φ̃λ, Φ̃−λ

))

the Stokes diffeomorphisms of Y (resp. Ỹ ).

By assumption, Φ̃± ◦Θ is also a germ of a sectorial fibered normalization of Y in S± ×
(

C2, 0
)

, which
is tangent to the identity. Thus, according to the uniqueness statement in Theorem 1.9:

Φ± = Φ̃± ◦Θ .

Consequently, in S±λ ×
(

C2, 0
)

we have

Φλ =
(

Φ+ ◦ Φ−1
−

)

|Sλ×(C2,0)

= Φ̃+ ◦Θ ◦Θ−1 ◦ Φ̃−

= Φ̃λ ,
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and similarly

Φ−λ =
(

Φ− ◦ Φ−1
+

)

|S−λ×(C2,0)

= Φ̃− ◦Θ ◦Θ−1 ◦
(

Φ̃+

)−1

= Φ̃−λ .

Let us prove that the map is one-to-one. Let Y, Ỹ ∈ [Ynorm] share the same Stokes diffeomorphisms

(Φλ,Φ−λ). We denote by Φ± (resp. Φ̃±) the germ of a sectorial fibered normalizing map of Y (resp.

Ỹ ) S± ×
(

C2, 0
)

. We have:










Φ+ ◦ (Φ−)
−1

= Φλ = Φ̃+ ◦
(

Φ̃−

)−1

in Sλ ×
(

C2, 0
)

Φ− ◦ (Φ+)
−1

= Φ−λ = Φ̃− ◦
(

Φ̃+

)−1

in S−λ ×
(

C2, 0
)

.

Thus:










(

Φ̃+

)−1

◦Φ+ =
(

Φ̃−

)−1

◦Φ− in Sλ ×
(

C2, 0
)

(

Φ̃+

)−1

◦Φ+ =
(

Φ̃−

)−1

◦Φ− in S−λ ×
(

C2, 0
)

.

We can then define a map ϕ analytic in a domain of the form (D (0, r) \ {0})×D (0, r) by setting:










ϕ|S+
=
(

Φ̃+

)−1

◦Φ+ in S+

ϕ|S−
=
(

Φ̃−

)−1

◦Φ− in S− .

This map is analytic and bounded in (D (0, r) \ {0})×D (0, r), and the Riemann singularity theorem
tells us that this map can be analytically extended to the entire poly-disc D (0, r) × D (0, r). As a

conclusion, ϕ ∈ Difffib

(

C3, 0, Id
)

, Φ± = Φ̃± ◦ ϕ and ϕ∗ (Y ) = Ỹ . �

3.2. Proof of Theorem 1.12: 1-summability of the formal normalization.
We fix a normal form

Ynorm = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2
,

with λ ∈ C∗,ℜ (a1 + a2) > 0 and c ∈ vC {v} vanishing at the origin. In section 4 we will prove the
following result.

Proposition 3.5. Any ψ ∈ Λ
(weak)
±λ (Ynorm) admits the identity as Gevrey-1 asymptotic expansion in

S±λ ×
(

C2, 0
)

. In other words:

Λ
(weak)
±λ (Ynorm) = Λ±λ (Ynorm) .

As a first consequence of Proposition 3.5, we obtain Theorem 1.12 which states that the formal
normalizing map from [Bit16b] is in fact 1-summable.

Proof of Theorem 1.12.
Let us consider the unique germs of a sectorial normalizing map Φ+ and Φ− in S+ ×

(

C2, 0
)

and

S− ×
(

C2, 0
)

respectively, and their associated Stokes diffeomorphisms:
{

Φλ =
(

Φ+ ◦ Φ−1
−

)

|Sλ×(C2,0)
∈ Λ

(weak)
λ (Ynorm)

Φ−λ =
(

Φ− ◦ Φ−1
+

)

|S−λ×(C2,0)
∈ Λ

(weak)
−λ (Ynorm) .

According to Proposition 3.5,

Λ
(weak)
±λ (Ynorm) = Λ±λ (Ynorm) ,
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so that Φλ and Φ−λ both admit the identity as Gevrey-1 asymptotic expansion, in Sλ ×
(

C2, 0
)

and

S−λ ×
(

C2, 0
)

respectively. Then, Theorem 2.9 gives the existence of

(φ+, φ−) ∈ Difffib

(

Sarg(iλ),η; Id
)

×Difffib

(

Sarg(−iλ),η; Id
)

for all η ∈ ]π, 2π[, such that:






φ+ ◦ (φ−)−1

|Sλ×(C2,0)
= Φλ

φ− ◦ (φ+)−1

|S−λ×(C2,0)
= Φ−λ ,

and the existence of a formal diffeomorphism φ̂ which is tangent to the identity, such that φ+ and φ−
both admit φ̂ as Gevrey-1 asymptotic expansion in S+ ×

(

C2, 0
)

and S− ×
(

C2, 0
)

respectively. In
particular, we have:

(

(Φ+)
−1 ◦ φ+

)

|(Sλ∪S−λ)×(C2,0)
=
(

(Φ−)
−1 ◦ φ−

)

|(Sλ∪S−λ)×(C2,0)
.

This proves that the function Φ defined by (Φ+)
−1 ◦ φ+ in S+ ×

(

C2, 0
)

and by (Φ−)
−1 ◦ φ− in

S− ×
(

C2, 0
)

is well-defined and analytic in D (0, r) \ {0}×D (0, r). Since it is also bounded, it can be
extended to an analytic map Φ in D (0, r)×D (0, r) by Riemann’s theorem. Hence:

{

φ+ = Φ+ ◦ Φ
φ− = Φ− ◦ Φ .

In particular, by composition, Φ+ and Φ− both admit φ̂ ◦ Φ−1 as Gevrey-1 asymptotic expansion in
Sλ×

(

C2, 0
)

and S−λ×
(

C2, 0
)

respectively. Since Φ+ and Φ− conjugates Y to Ynorm and since the notion
of asymptotic expansion commutes with the partial derivative operators, the formal diffeomorphism

φ̂ ◦ Φ−1 formally conjugates Y to Ynorm. Finally, notice that φ̂ ◦ Φ−1 is necessarily tangent to the
identity. Hence, by uniqueness of the formal normalizing map given by Theorem 1.4, we deduce that

φ̂ ◦ Φ−1 = Φ̂, the unique formal normalizing map tangent to the identity. �

3.3. Proofs of Theorems 1.15 and 1.23.
Let us now present the proofs of Theorems 1.15 and 1.23, assuming Proposition 3.5.

3.3.1. Proof of Theorem 1.15.

Proof of Theorem 1.15. �

Propositions 3.3, together with Proposition 3.5, tell us that the considered map is well-defined and
one-to-one. It remains to prove that this map is onto. Let

{

Φλ ∈ Λλ (Ynorm)

Φ−λ ∈ Λ−λ (Ynorm) .

According to Theorem 2.9, there exists

(φ+, φ−) ∈ Difffib

(

Sarg(iλ),η; Id
)

×Difffib

(

Sarg(−iλ),η; Id
)

with η ∈ ]π, 2π[, which extend analytically to S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respectively, such that:

φ± ◦ (φ∓)−1
|S±λ×(C2,0) = Φ±λ

and there also exists a formal diffeomorphism φ̂ which is tangent to the identity, such that φ± both

admit φ̂ as asymptotic expansion in S± ×
(

C2, 0
)

. Let us consider the two germs of sectorial vector
fields obtained as

Y± :=
(

φ−1
±

)

∗
(Ynorm)
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In particular, since φ̂ is the Gevrey-1 asymptotic expansion of φ±, the vector fields Y± both admit
(

φ̂
)

∗
(Ynorm) as Gevrey-1 asymptotic expansion. The fact that φ+ ◦ (φ−)

−1
is an isotropy of Ynorm

implies immediately that Y+ = Y− on

(S+ ∩ S−)×
(

C2, 0
)

= (Sλ ∪ S−λ)×
(

C2, 0
)

.

Then, the vector field Y , which coincides with Y± in S± ×
(

C2, 0
)

, defines a germ of analytic vector

field in
(

C3, 0
)

by Riemann’s theorem. By construction, Y ∈ Difffib

(

C3, 0, Id
)

∗
(Ynorm) and admits

(Φλ,Φ−λ) as Stokes diffeomorphisms.

3.3.2. Proof of Theorem 1.23.
In a similar way, we prove now Theorem 1.23.

Proof of Theorem 1.23.
Let Ynorm ∈ SN diag,0 be a normal form which is also transversally symplectic. We refer to subsection

1.4 for the notations. It is clear from Theorems 1.15 and 1.21 that the mapping is well-defined and
one-to-one. It remains to prove that it is also onto. Let

{

Φλ ∈ Λωλ (Ynorm)

Φ−λ ∈ Λω−λ (Ynorm) .

Since Λωλ (Ynorm) ⊂ Λλ (Ynorm) and Λω−λ (Ynorm) ⊂ Λ−λ (Ynorm), according to Theorem 2.9 there exists

(φ+, φ−) ∈ Difffib

(

Sarg(iλ),η; Id
)

×Difffib

(

Sarg(−iλ),η; Id
)

with η ∈ ]π, 2π[, which extend analytically in S+ ×
(

C2, 0
)

and S− ×
(

C2, 0
)

respectively, such that:

φ± ◦ (φ∓)−1
|S±λ×(C2,0) = Φ±λ

and there also exists a formal diffeomorphism φ̂ which is tangent to the identity, such that φ± both

admit φ̂ as Gevrey-1 asymptotic expansion in S± ×
(

C2, 0
)

. According to Corollary 2.10, there exists

a germ of an analytic fibered diffeomorphism ψ ∈ Difffib

(

C3, 0, Id
)

(tangent to the identity), such that

σ± := φ± ◦ ψ
both are transversally symplectic. Then, we have:

σ± ◦ (Ψ∓)
−1
|S±λ×(C2,0) = Φ±λ .

The end of the proof goes exactly as at the end of the proof of the previous theorem. �

4. Sectorial isotropies and space of leaves: proof of Proposition 3.5

A normal form

Ynorm = x2
∂

∂x
+ (−λ+ a1x− c (y1y2)) y1

∂

∂y1
+ (λ+ a2x+ c (y1y2)) y2

∂

∂y2

is fixed for some λ ∈ C∗, ℜ (a1 + a2) > 0 and c ∈ vC {v} (vanishing at the origin). The aim of this
section is to prove Proposition 3.5 stated in Section 3.

Let us denote a := res (Ynorm) = a1 + a2, m :=
1

a
and

c (v) =

+∞
∑

k=1

ckv
k .

If m /∈ N>0, we set cm := 0. We also define the following power series

c̃ (v) = m
∑

k 6=m

ck
k −m

vk ,

and we notice that c̃ (v) ∈ vC {v}.
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4.1. Sectorial first integrals and the space of leaves.
In a sectorial neighborhood of the origin of the form Sλ×

(

C2, 0
) (

resp. S−λ ×
(

C2, 0
))

,with S±λ ∈
Sarg(±λ),ǫ and ǫ ∈ ]0, π[, we can give three first integrals of Ynorm which are analytic in the considered
domain. Let us start with the following proposition.

Proposition 4.1. The following quantities are first integrals of Ynorm, analytic in S±λ ×
(

C2, 0
)

:

(4.1)



























w±λ :=
y1y2
xa

h1,±λ (x,y) := y1 exp

(−λ
x

+
cm (y1y2)

m
log (x)

x
+
c̃ (y1y2)

x

)

x−a1

h2,±λ (x,y) := y2 exp

(

λ

x
− cm (y1y2)

m
log (x)

x
− c̃ (y1y2)

x

)

x−a2

(we fix here a branch of the logarithm analytic in S±λ, and we write simply hj and w instead of hj,±λ
and w±λ respectively, if there is no ambiguity on the sector S±λ).

Moreover, we have the relation:

h1h2 = w .

Proof. It is an elementary computation. �

Remark 4.2. In other words, in a sectorial domain, we can parametrize a leaf (which is not in {x = 0})
of the foliation associated to Ynorm by:















y1 (x) = h1 exp

(

λ

x
− cm (h1h2)

m log (x)− c̃ (h1h2x
a)

x

)

xa1

y2 (x) = h2 exp

(

−λ
x
+ cm (h1h2)

m
log (x) +

c̃ (h1h2x
a)

x

)

xa2
(4.2)

(h1, h2) ∈ C2 .

Corollary 4.3. The map

H±λ : S±λ ×
(

C2, 0
)

→ S±λ × C2

(x,y) 7→ (x, h1,±λ (x,y) , h2,±λ (x,y)) ,

(where h1,±λ, h2,±λ are defined in (4.1)) is a sectorial germ of a fibered analytic map in S±λ×
(

C2, 0
)

,

which is into. Moreover, there exists an open neighborhood of the origin in C2, denoted by Γ±λ ⊂ C2,
such that

H±λ

(

S±λ ×
(

C2, 0
))

= S±λ × Γ±λ .

In particular, H± induces a fibered biholomorphism

S±λ ×
(

C2, 0
) H±λ−→ S±λ × Γ±λ

which conjugates Ynorm to x2 ∂
∂x

, i.e.

(H±λ)∗ (Ynorm) = x2
∂

∂x
.

Definition 4.4. We call Γ±λ the space of leaves of Ynorm in S±λ ×
(

C2, 0
)

.

Remark 4.5. The set Γ±λ depends on the choice of the neighborhood
(

C2, 0
)

, but also on the choice
of the sectorial neighborhood S±λ ∈ Sarg(±λ),ǫ.
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4.2. Sectorial isotropies in the space of leaves.
Now, we consider a germ of a sectorial isotropy ψ±λ ∈ Λ

(weak)
±λ (Ynorm) and we denote by Γ′

±λ the

(germ of an) open subset of C2 such that:

H±λ ◦ ψ±

(

S±λ ×
(

C2, 0
))

= S±λ × Γ′
±λ .

Proposition 4.6. With the notations and assumptions above, the map

Ψ±λ := H±λ ◦ ψ± ◦ H−1
±λ : S±λ × Γ±λ −→ S±λ × Γ′

±λ

is a sectorial germ of a fibered biholomorphism from S±λ × Γ±λ to S±λ × Γ′
±λ, which is of the form:

Ψ±λ (x, h1, h2) = (x,Ψ1,±λ (h1, h2) ,Ψ2,±λ (h1, h2)) .

In particular, Ψ1,±λ and Ψ2,±λ are analytic and depend only on (h1, h2) ∈ Γ±λ, while Ψ±λ induces a
biholomorphism (still written Ψ±λ):

Ψ±λ : Γ±λ → Γ′
±λ

(h1, h2) 7→ (Ψ1,±λ (h1, h2) ,Ψ2,±λ (h1, h2)) .

Proof. We only have to prove that Ψ1,±λ and Ψ2,±λ depend only on (h1, h2) ∈ Γ±λ. By assumption,

Ψ±λ is an isotropy of x2 ∂
∂x

:

(Ψ±λ)∗

(

x2
∂

∂x

)

= x2
∂

∂x
.

We immediately obtain:
∂Ψ1,±λ

∂x
=
∂Ψ2,±λ

∂x
= 0 .

�

In the space of leaves Γ±λ equipped with coordinates (h1, h2), we denote by w the product of h1
and h2:

w (h1, h2) := h1h2 .

We define the two following quantities:

(4.3)







f1 (x,w) := exp
(

λ
x
− cmw

m log (x)− c̃(wxa)
x

)

xa1

f2 (x,w) := exp
(

−λ
x
+ cmw

m log (x) + c̃(wxa)
x

)

xa2 ,

such that the leaves of the foliations are parametrized by:
{

y1 (x) = h1f1 (x, h1h2)

y2 (x) = h2f2 (x, h1h2)
, (h1, h2) ∈ C2 .

Notice that:

f1 (x,w) f2 (x,w) = xa .

Moreover, one checks immediately the following statement.

Fact 4.7. For all w ∈ C:














lim
x→0
x∈Sλ

|f1 (x,w)| = lim
x→0
x∈S−λ

|f2 (x,w)| = +∞

lim
x→0
x∈S−λ

|f1 (x,w)| = lim
x→0
x∈Sλ

|f2 (x,w)| = 0 .

Using notations of Proposition 4.6, we also assume from now on that
(

C2, 0
)

= D (0, r), with

r = (r1, r2) ∈ (R>0)
2

and r1, r2 > 0 small enough so that

ψ±λ (S±λ ×D (0, r)) ⊂ S±λ ×D (0, r′)

for some r′ = (r′1, r
′
2) ∈ (R>0)

2
. Let us now define in a general way the following set associated to the

sector S±λ and to a polydisc D (0, r̃), with r̃ := (r̃1, r̃2).
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Figure 4.1. Representation of the space of leaves in terms of |h1| and |h2| when
c = 0: in this case, it is a Reinhardt domain (cf. [Hor73]).

Definition 4.8. For all x ∈ S±λ et r̃ := (r̃1, r̃2) ∈ (R>0)
2
, we define

Γ±λ (x, r̃) :=

{

(h1, h2) ∈ C2 | |hj| ≤
r̃j

|fj (x, h1h2)|
, for j ∈ {1, 2}

}

.

We also consider the:

Γ±λ (r̃) :=
⋃

x∈S±λ

Γ±λ (x, r̃)

=

{

(h1, h2) ∈ C2 | ∃x ∈ S±λ s.t. |hj | ≤
r̃j

|fj (x, h1h2)|
, for j ∈ {1, 2}

}

(cf. figure 4.1).

Since we assume now that
(

C2, 0
)

= D (0, r), then we have:

Γ±λ = Γ±λ (r) ,

and

Γ′
±λ ⊂ Γ±λ (r

′) .

Remark 4.9.

(1) It is important to notice that the particular form of Ψ±λ implies that the image of any fiber

{x = x0} × Γ±λ (x0, r)

by Ψ±λ is included in a fiber of the form

{x = x0} × Γ±λ (x0, r
′) .

(2) If (h1, h2) ∈ Γ±λ (x, r), then

|h1h2| <
r1r2
|xa| .

(3) As (h1, h2) ∈ Γ±λ varies the values of w = h1h2 cover the whole C.
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4.3. Action on the resonant monomial in the space of leaves.
Let us study the the action of Ψ±λ on the resonant monomial w = h1h2 in the space of leaves.

Lemma 4.10. We consider a biholomorphism

Ψ±λ : Γ±λ →̃ Γ′
±λ

(h1, h2) 7→ (Ψ1,± (h1, h2) ,Ψ2,± (h1, h2)) ,

such that for all x ∈ S±λ, we have

Ψ±λ (Γ±λ (x0, r)) ⊂ Γ±λ (x0, r
′) .

We also define Ψw,±λ := Ψ1,±λΨ2,±λ. Then, for all n ∈ N, there exists entire ( i.e. analytic over C)
functions Ψw,λ,n and Ψw,−λ,n such that















Ψw,λ (h1, h2) =
∑

n≥0

Ψw,λ,n (h1h2)h
n
1

Ψw,−λ (h1, h2) =
∑

n≥0

Ψw,−λ,n (h1h2)h
n
2 .

Moreover, the series above uniformly converge (for the sup-norm) in every subset of Γ±λ of the form
Γ±λ (r̃), with r̃ := (r̃1r̃2) and

0 < r̃j < rj , j ∈ {1, 2}
( cf. Definition 4.8). More precisely, for all r̃1, r̃2, δ > 0 such that

0 < r̃j + δ < rj , j ∈ {1, 2}
for all x ∈ S±λ and w ∈ C we have

|wxa| ≤ r̃1r̃2 =⇒







|Ψw,λ,n (w)| ≤ r′1r
′
2

|xa|

∣

∣

∣

f1(x,w)
r̃1+δ

∣

∣

∣

n

|Ψw,−λ,n (w)| ≤ r′1r
′
2

|xa|

∣

∣

∣

f2(x,w)
r̃2+δ

∣

∣

∣

n , ∀n ≥ 0 .

Proof. Let us give the proof for Ψw,λ,Ψ1,λ and Ψ2,λ in Γλ (the same proof applies also for Ψw,−λ in
Γ−λ by exchanging the role played by h1 and h2). We fix some 0 < r̃j < rj , j ∈ {1, 2}, and δ > 0 such
that

0 < r̃j + δ < rj , j ∈ {1, 2} .
For a fixed value w ∈ C, we consider the restriction of Ψw,λ to the hypersurfaceMw := {h1h2 = w}∩Γλ:
this restriction is analytic in Mw. The map

ϕw : h1 7→ Ψw,λ

(

h1,
w

h1

)

is analytic in

Mw,1 :=
⋃

x∈Sλ

|wxa|<r1r2

Ωx,w ,

where for all x ∈ Sλ with |wxa| < r1r2, the set Ωx,w is the following annulus:

Ωx,w :=

{

h1 ∈ C |
∣

∣

∣

∣

wf2 (x,w)

r2

∣

∣

∣

∣

< |h1| <
∣

∣

∣

∣

r1
f1 (x,w)

∣

∣

∣

∣

}

.

In particular, ϕw admits a Laurent expansion

ϕw (h1) = Ψw,+

(

h1,
w

h1

)

=
∑

n≥−L

Ψw,+,n (w) h
n
1

in every annulus Ωx,w, with x ∈ Sλ such that |wxa| < r1r2. Moreover for all x ∈ Sλ such that
|wxa| < r1r2, Cauchy’s formula gives

Ψw,λ,n (w) =
1

2iπ

˛

γ(x,w)

Ψw,λ

(

h1,
w
h1

)

hn+1
1

dh1 , for all n ∈ Z,



ANALYTIC CLASSIFICATION OF DOUBLY-RESONANT SADDLE-NODES 23

where γ (x,w) is any circle (oriented positively) centered at the origin with a radius ρ (x,w) satisfying
∣

∣

∣

∣

wf2 (x,w)

r2

∣

∣

∣

∣

< ρ (x,w) <

∣

∣

∣

∣

r1
f1 (x,w)

∣

∣

∣

∣

.

If |wxa| < (r̃1 + δ) (r̃2 + δ), we can take for instance

ρ (x,w) =

∣

∣

∣

∣

r̃1 + δ

f1 (x,w)

∣

∣

∣

∣

.

Therefore, for all x ∈ Sλ and all w ∈ C such that |wxa| ≤ r̃1r̃2, for all ξ ∈ C with |ξ| < δ, we also have:

Ψw,λ,n (w + ξ) =
1

2iπ

˛

γ(x,w)

Ψw,λ

(

h1,
w+ξ
h1

)

hn+1
1

dh1 , for all n ∈ Z,

where γ (x,w) is the same circle
(

of radius ρ (x,w) =

∣

∣

∣

∣

r̃1 + δ

f1 (x,w)

∣

∣

∣

∣

)

for all |ξ| < δ. Moreover, since for

all x ∈ Sλ, we have

Ψλ (Γλ (x, r)) ⊂ Γλ (x, r
′) ,

and since for all (h′1, h
′
2) ∈ Γλ (x, r

′) we have

|h′1h′2| ≤
r′1r

′
2

|xa| ,

then for all x ∈ Sλ and w ∈ C such that |wxa| ≤ r̃1r̃2, the following inequality holds for all h1 with
|h1| < r1

f1(x,w) :
∣

∣

∣

∣

Ψw,λ

(

h1,
w

h1

)∣

∣

∣

∣

<
r′1r

′
2

|xa| .

The well-known theorem regarding integrals depending analytically on a parameter asserts that for
all n ∈ Z the mapping Ψw,λ,n is analytic near any point w ∈ C. Hence, it is an entire function (i.e.
analytic over C). Moreover, the inequality above and the Cauchy’s formula together imply that for all
n ∈ Z and for all (x,w) ∈ Sλ × C such that |wxa| ≤ r̃1r̃2, we have:

|Ψw,λ,n (w)| <
r′1r

′
2

|xa| ρ (x,w)n =
r′1r

′
2

|xa|

∣

∣

∣

∣

f1 (x,w)

r̃1 + δ

∣

∣

∣

∣

n

.

According to Fact 4.7, for a fixed value w ∈ C, if n < 0, the right hand-side tends to 0 as x tends to 0
in Sλ. This implies in particular that Ψw,λ,n = 0 for all n < 0. Consequently:

Ψw,λ

(

h1,
w

h1

)

=
∑

n≥0

Ψw,λ,n (w) h
n
1 .

Moreover, for all w ∈ C the series converges normally in every domain of the form

Ωx,w :=

{

h1 ∈ C | |h1| ≤
∣

∣

∣

∣

r̃1
f1 (x,w)

∣

∣

∣

∣

}

, for all x ∈ Sλ , 0 < r̃1 < r1,

since the Laurent expansion’s range is n ≥ 0. This actually means that the series converges normally
in an entire neighborhood of the origin in C. In particular, for all fixed w ∈ C, the map

h1 7→ Ψw,λ

(

h1,
w

h1

)

=
∑

n≥0

Ψw,λ,n (w) h
n
1

is analytic in a neighborhood of the origin. Finally, the series

Ψw,λ (h1, h2) =
∑

n≥0

Ψw,λ,n (h1h2)h
n
1

converges normally, and hence its sum is analytic in every domain of the form Γλ (r̃), with 0 < r̃1 < r1
and 0 < r̃2 < r2. �
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4.4. Action on the resonant monomial.
Since ψ±λ ∈ Λ

(weak)
±λ (Ynorm), the mapping ψ±λ is of the form

ψ±λ (x,y) = (x, ψ1,±λ (x,y) , ψ2,±λ (x,y)) ,

with ψ1,±λ, ψ2,±λ analytic and bounded in S±λ ×D (0, r). Moreover, by assumption ψ±λ admits the
identity as weak Gevrey-1 asymptotic expansion, i.e. we have a normally convergent expansion:

ψi,±λ (x,y) = yi +
∑

k∈N2

ψi,±λ,k (x)y
k ,

where ψi,±λ,k is holomorphic in S±λ and admits 0 as Gevrey-1 asymptotic expansion, for i = 1, 2 and
all k = (k1, k2) ∈ N2.

Lemma 4.11. With the notations and assumptions above, let us define ψv,±λ := ψ1,±λψ2,±λ. Then
ψv,λ and ψv,−λ can be expanded as the series























ψv,λ (x,y) = y1y2 + xa
∑

n≥1

Ψw,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψv,−λ (x,y) = y1y2 + xa
∑

n≥1

Ψw,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

which are normally convergent in every subset of S±λ × D (0, r) of the form S±λ × D (0, r̃), where
D (0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2) such that

0 < r̃j < rj , j ∈ {1, 2} .
Here Ψw,λ,n and Ψw,−λ,n , for n ∈ N, are the ones appearing in Lemma 4.10. Moreover, for all closed

sub-sector S′ ⊂ S±λ and for all closed poly-disc D ⊂ D (0, r), there exists A,B > 0 such that:

|ψv,±λ (x, y1, y2)− y1y2| ≤ A exp

(

− B

|x|

)

, ∀ (x,y) ∈ S′ ×D .

In particular, ψv,±λ admits y1y2 as Gevrey-1 asymptotic expansion in S±λ ×D (0, r).

Proof. By definition, we have

Ψ±λ ◦ H±λ = H±λ ◦ ψ±λ .

In particular, for all (x,y) ∈ S±λ ×D (0, r):

Ψw,±

(

x,
y1

f1
(

x, y1y2
xa

) ,
y2

f2
(

x, y1y2
xa

)

)

=
ψv,± (x, y1, y2)

xa
.

Thus, according to Lemma 4.10 we have:

(4.4)























ψv,λ (x,y) = xa
∑

n≥0

Ψw,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψv,−λ (x,y) = xa
∑

n≥0

Ψw,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

.

Besides we know that ψv,±λ admits y1y2 as weak Gevrey-1 asymptotic expansion in S±λ ×D (0, r):

ψv,±λ (x, y1, y2) = y1y2 +
∑

k∈N2

ψv,±λ,k (x)y
k ,(4.5)

where for all k = (k1, k2) ∈ N2 the mapping ψv,±λ,k is holomorphic in S±λ and admits 0 as Gevrey-1
asymptotic expansion. Let us compare both expressions of ψv,±λ above. Looking at monomials yk
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with k1 = k2 in (4.5), and at terms corresponding to n = 0 on the right-hand side of (4.4), we must
have for all x ∈ S±λ and v ∈ C with |v| < r1r2:

v +
∑

k≥0

ψv,λ,k(k,k) (x) v
k = xaΨw,λ,0

( v

xa

)

.

Since Ψw,±λ,0 is analytic in C, there exists (α±λ,k)k∈N
⊂ C such that

Ψw,±λ,0

( v

xa

)

=
∑

k≥0

α±λ,k

( v

xa

)k

.

This can only happen if α±λ,k = 0 whenever k 6= 1, for ψv,±λ,k is holomorphic in S±λ and admits 0 as
Gevrey-1 asymptotic expansion. A further immediate identification yields

Ψv,±λ,0 (w) = w .

Thus






















ψv,λ (x,y) = y1y2 + xa
∑

n≥1

Ψw,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψv,−λ (x,y) = y1y2 + xa
∑

n≥1

Ψw,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

.

Let us prove that ψv,±λ admits y1y2 as Gevrey-1 asymptotic expansion in S±λ ×
(

C2, 0
)

. We have
to show that |ψv,±λ (x, y1, y2)− y1y2| is exponentially small with respect to x ∈ S±λ, uniformly in
y ∈ D (0, r). As for the previous lemma, we perform the proof for ψv,λ only (the same proof applies
for ψv,−λ by exchanging y1 and y2).

From the computations above we derive

|ψv,λ (x, y1, y2)− y1y2| ≤
∑

n≥1

∣

∣

∣

∣

∣

xaΨw,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n∣
∣

∣

∣

∣

.

Let us fix r̃1, r̃2, δ > 0 in such a way that

0 < r̃j + δ < rj , j ∈ {1, 2} .

Let us take |x|, |y1| and |y2| small enough so that

2x ∈ Sλ

and

|y1y2| <
r̃1r̃2
|2a| < r1r2 .

According to Lemma 4.10, for all x̃ ∈ Sλ and all w ∈ C:

|wx̃a| ≤ r̃1r̃2 =⇒ |Ψw,λ,n (w)| ≤
r′1r

′
2

|x̃a|

∣

∣

∣

∣

f1 (x̃, w)

r̃1 + δ

∣

∣

∣

∣

n

.

In particular for x̃ = 2x and w = y1y2
xa we derive |wx̃a| < r̃1r̃2, from which we conclude

∣

∣

∣
Ψw,λ,n

(y1y2
xa

)∣

∣

∣
≤ r′1r

′
2

|2axa|

∣

∣

∣

∣

∣

f1
(

2x, y1y2
xa

)

r̃1 + δ

∣

∣

∣

∣

∣

n

.

Consequently, for all (x, y1, y2) ∈ Sλ ×D (0, r̃) with
{

2x ∈ Sλ

|y1y2| < r̃1r̃2
|2a| < r1r2 ,
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we have

|ψv,λ (x, y1, y2)− y1y2| ≤
∑

n≥1

∣

∣

∣

∣

∣

xa
r′1r

′
2

2axa

(

f1
(

2x, y1y2
xa

)

r̃1 + δ

)n(

y1

f1
(

x, y1y2
xa

)

)n∣
∣

∣

∣

∣

≤ r′1r
′
2

|2a|
∑

n≥1

∣

∣

∣

∣

∣

(

y1
r̃1 + δ

)n
(

f1
(

2x, y1y2
xa

)

f1
(

x, y1y2
xa

)

)n∣
∣

∣

∣

∣

.

Since c̃ (v) is the germ of an analytic function near the origin which is null at the origin, we can
take r1,r2 > 0 small enough in order that for all closed sub-sector S′ ⊂ Sλ , for all r̃1 ∈ ]0, r1[ and
r̃2 ∈ ]0, r2[, there exist A,B > 0 satisfying:

(x, y1, y2) ∈ S′ ×D (0, r̃) =⇒ |ψv,λ (x, y1, y2)− y1y2|A exp

(

− B

|x|

)

.

Let us prove this. We need here to estimate the quantity:
∣

∣

∣

∣

∣

f1
(

2x, y1y2
xa

)

f1
(

x, y1y2
xa

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2a1 exp

(

− λ

2x
− cm

(y1y2)
m

x
log (2)− c̃ (y1y22

a)

2x
+
c̃ (y1y2)

x

)∣

∣

∣

∣

.

On only have tot deal with the case where x ∈ S′ is such that 2x ∈ S′ (otherwise, x is “far from the
origin”, and we conclude without difficulty). We have:

(x, y1, y2) ∈ S′ ×D (0, r̃) et 2x ∈ S =⇒
∣

∣

∣

∣

∣

f1
(

2x, y1y2
xa

)

f1
(

x, y1y2
xa

)

∣

∣

∣

∣

∣

≤ |2a1 | exp
(

− B

|x|

)

< 1 .

Hence

|ψv,λ (x, y1, y2)− y1y2| ≤ r′1r
′
2

|2a|
∑

n≥1

∣

∣

∣

∣

2a1y1
r̃1 + δ

exp

(

− B

|x|

)∣

∣

∣

∣

n

≤ r′1r
′
2

|2a|

∣

∣

∣

2a1y1
r̃1+δ

exp
(

− B
|x|

)∣

∣

∣

1−
∣

∣

∣

2a1y1
r̃1+δ

exp
(

− B
|x|

)
∣

∣

∣

≤ A exp

(

− B

|x|

)

,

for a convenient A > 0. �

The latter lemma implies Ψv,±λ,0 (w) = w, having for consequence the next result.

Corollary 4.12. For all closed sub-sector S′ ⊂ S±λ and for all r̃1 ∈ ]0, r1[ and r̃2 ∈ ]0, r2[, there exists
A,B > 0 such that for all x ∈ S′:

|h1| ≤
r̃1

|f1 (x, h1h2)|
|h2| ≤

r̃2
|f2 (x, h1h2)|











=⇒ |Ψw,± (x, h1, h2)− h1h1| ≤
A exp

(

− B
|x|

)

|xa| .

In particular, there exists C > 0 such that:

|h1| ≤
r̃1

|f1 (x, h1h2)|
|h2| ≤

r̃2
|f2 (x, h1h2)|











=⇒

∣

∣

∣
exp

(

cm (h1h2)
m
log (x) + c̃(xa(h1h2)

m)
x

)∣

∣

∣

∣

∣

∣
exp

(

cm (Ψw (x, h1, h2))
m log (x) + c̃(xa(Ψw(x,h1,h2))

m)
x

)∣

∣

∣

< C .
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4.5. Power series expansion of sectorial isotropies in the space of leaves.
Now, we give a power series expansion of Ψ1,±λ and Ψ2,±λ in the space of leaves. Let us introduce

the following notations:
{

N (1,+) := N (2,−) := 1

N (1,−) := N (2,+) := −1 .

Lemma 4.13. With the notations and assumptions above, there exists entire functions ( i.e. analytic
over C) denoted by Ψj,±λ,n, j ∈ {1, 2}, n ≥ N (j,±), such that for j ∈ {1, 2} :















Ψj,λ (h1, h2) =
∑

n≥N(j,+)

Ψj,λ,n (h1h2)h
n
1

Ψj,−λ (h1, h2) =
∑

n≥N(j,−)

Ψj,λ,n (h1h2)h
n
2 .

These series converge normally in every subset of Γ±λ of the form Γ±λ (r̃) with 0 < r̃1 < r1 and
0 < r̃2 < r2 ( cf. Definition 4.8). More precisely, for all r̃1, r̃2, δ > 0 such that

0 < r̃j + δ < rj , j ∈ {1, 2}
there exists C > 0 such that for all x ∈ S±λ and for all w ∈ C, we have:

|wxa| ≤ r̃1r̃2 =⇒



















































|Ψ1,λ,n (w)| < Cr′1
|f1 (x,w)|n−1

(r̃1 + δ)
n , n ≥ 1

|Ψ2,λ,n (w)| <
Cr′2
|xa|

|f1 (x,w)|n+1

(r̃1 + δ)
n , n ≥ −1

|Ψ1,−λ,n (w)| <
Cr′1
|xa|

|f2 (x,w)|n+1

(r̃2 + δ)n
, n ≥ −1

|Ψ2,−λ,n (w)| < Cr′2
|f2 (x,w)|n−1

(r̃2 + δ)
n , n ≥ 1 .

Moreover:

Ψ1,−λ,−1 (0) = Ψ2,λ,−1 (0) = 0 .

Proof. We use the same notations as in the proof of Lemma 4.10, and as usual, we give the proof only
for Ψλ (the proof for Ψ−λ is analogous, by exchanging the role played by h1 and h2). For fixed w ∈ C,
the maps

ϕ1 : h1 7→ Ψ1,λ

(

h1,
w

h1

)

and

ϕ2 : h1 7→ Ψ2,λ

(

h1,
w

h1

)

are analytic in

Mw,1 =
⋃

x∈Sλ

|wxa|<r1r2

Ωx,w

(see the proof of Lemma 4.10). In particular, ϕ1 and ϕ2 admit Laurent expansions


















ϕ1 (h1) = Ψ1,λ

(

h1,
w

h1

)

=
∑

n≥−L1

Ψ1,λ,n (w) h
n
1

ϕ2 (h1) = Ψ2,λ

(

h1,
w

h1

)

=
∑

n≥−L2

Ψ2,λ,n (w) h
n
1

in every annulus Ωx,w, with x ∈ Sλ such that |wxa| < r1r2. Using the same method as in the proof of
Lemma 4.10, we prove without additional difficulties that for all n ∈ Z, Ψ1,λ,n and Ψ2,λ,n are analytic
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in any point w ∈ C, and thus are entire functions (i.e. analytic over C). Moreover, we also show in
the same way as earlier that for all r̃1, r̃2, δ > 0 with

0 < r̃j + δ < rj , j ∈ {1, 2} ,

for all n ∈ Z and for all (x,w) ∈ Sλ × C such that |wxa| ≤ r̃1r̃2, we have:






















|Ψ1,λ,n (w)| <
r′1

∣

∣

∣
f1

(

x,Ψw,λ

(

x, h1,
w
h1

))∣

∣

∣

∣

∣

∣

∣

f1 (x,w)

r̃1 + δ

∣

∣

∣

∣

n

|Ψ2,λ,n (w)| <
r′2

∣

∣

∣
f2

(

x,Ψw,λ

(

x, h1,
w
h1

))∣

∣

∣

∣

∣

∣

∣

f1 (x,w)

r̃1 + δ

∣

∣

∣

∣

n

.

According to Corollary 4.12, there exists C > 0 such that for all (x,w) ∈ Sλ × C with |wxa| ≤ r̃1r̃2,
we have:















|Ψ1,λ,n (w)| < Cr′1
|f1 (x,w)|n−1

(r̃1 + δ)
n

|Ψ2,λ,n (w)| <
Cr′2
|xa|

|f1 (x,w)|n+1

(r̃1 + δ)n
.

According to the statement in Fact 4.7, for a fixed value w ∈ C, if we look at the limit as x tends to 0
in Sλ of the right hand-sides above we deduce that:

{

|Ψ1,λ,n (w)| = 0 , ∀n ≤ 0

|Ψ2,λ,n (w)| = 0 , ∀n ≤ −2 .

Consequently:














Ψ1,λ (h1, h2) =
∑

n≥1

Ψ1,λ,n (h1h2)h
n
1

Ψ2,λ (h1, h2) =
∑

n≥−1

Ψ2,λ,n (h1h2)h
n
1 .

These function series converges normally (and are analytic) in every domain of the formΓλ (r̃) with
r̃ := (r̃1, r̃2) and

0 < r̃j + δ < rj , j ∈ {1, 2}
(cf. Definition 4.8). Moreover, for any fixed value of h2, on the one hand the function series

h1 7→ Ψ2,λ (h1, h2) =
∑

n≥−1

Ψ2,λ,n (h1h2)h
n
1

is analytic in a punctured disc, since

|f2 (x, h1, h2)| −→
x→0
x∈Sλ

0 ,

and on the other hand, we already know that the function h1 7→ Ψ2,λ (h1, h2) is analytic in a neigh-
borhood of the origin. Thus, we must have Ψ2,λ,−1 (0) = 0. �

4.6. Sectorial isotropies: proof of Proposition 3.5.
The following lemma is a more precise version of Proposition 3.5. We recall the notations:

{

N (1,+) = N (2,−) = 1

N (1,−) = N (2,+) = −1 .

Lemma 4.14. With the notations and assumptions above, we consider ψ±λ ∈ Λ
(weak)
±λ (Ynorm), with

ψ±λ (x,y) = (x, ψ1,±λ (x,y) , ψ2,±λ (x,y)) .
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Then, for i ∈ {1, 2}, ψi,λ and ψi,−λ can be written as power series as follows:


























ψi,λ (x,y) = yi + fi

(

x,
ψv,λ (x,y)

xa

)

∑

n≥N(i,+)+1

Ψi,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψi,−λ (x,y) = yi + fi

(

x,
ψv,−λ (x,y)

xa

)

∑

n≥N(i,−)+1

Ψi,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

.

which are normally convergent in every subset of S±λ × D (0, r) of the form S±λ × D (0, r̃), where
D (0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2) such that

0 < r̃j < rj , j ∈ {1, 2} .

Here Ψi,λ,n , Ψi,−λ,n (for i = 1, 2 and n ∈ N) are given in Lemma 4.13. Moreover, for all closed

sub-sector S′ ⊂ S±λ and for all closed poly-disc D ⊂ D (0, r), there exists A,B > 0 such that for
j = 1, 2:

|ψj,±λ (x, y1, y2)− yj| ≤ A exp

(

− B

|x|

)

, ∀ (x,y) ∈ S′ ×D .

As a consequence, ψj,±λ admits yj as Gevrey-1 asymptotic expansion in S±λ ×D (0, r).

Remark 4.15. In particular, Ψ1,λ,1 (w) = Ψ2,−λ,1 (w) = 1 and Ψ1,−λ,−1 (w) = Ψ2,λ,−1 (w) = w.

Proof. By definition, we have
Ψ±λ ◦ H±λ = H±λ ◦ ψ± .

In particular, for j = 1, 2 and all (x,y) ∈ S±λ ×D (0, r):

Ψj,±λ

(

x,
y1

f1
(

x, y1y2
xa

) ,
y2

f2
(

x, y1y2
xa

)

)

=
ψj,±λ (x, y1, y2)

fj

(

x,
ψv,±(x,y1,y2)

xa

) .

Thus, according to Lemma 4.13 we have for i = 1, 2:

(4.6)



























ψi,λ (x,y) = fi

(

x,
ψv,λ (x,y)

xa

)

∑

n≥N(i,+)

Ψi,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψi,− (x,y) = fi

(

x,
ψv,−λ (x,y)

xa

)

∑

n≥N(i,−)

Ψi,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

,

and these series are normally convergent (and then define analytic functions) in any domain of the form
S′ ×D (0, r̃), where S′ is a closed sub-sector of S±λ and D (0, r̃) is a closed poly-disc with r̃ = (r̃1, r̃2)
such that

0 < r̃j < rj , j ∈ {1, 2} .

Let us compare the different expressions of ψj,±λ, j = 1, 2. We know that ψj,±λ (x, y1, y2) admits yj
as weak Gevrey-1 asymptotic expansion in S±λ ×D (0, r). Thus, we can write:

ψj,±λ (x, y1, y2) = yj +
∑

k∈N2

ψj,±λ,k (x)y
k ,

where for all k = (k1, k2) ∈ N2, ψj,±λ,k is analytic in S±λ and admits 0 as Gevrey-1 asymptotic
expansion. As usual, let us deal with the case of ψ1,λ and ψ2,λ (the other one being similar by
exchanging y1 and y2).

According to the expressions given by Lemmas 4.10 and 4.13, we can be more precise on the index
sets in the sums above:

(4.7)



















ψ1,λ (x, y1, y2) = y1 +
∑

k=(k1,k2)∈N
2

k1≥k2+1

ψ1,λ,k (x) y
k1
1 yk22

ψ2,λ (x, y1, y2) = y2 +
∑

k=(k1,k2)∈N
2

k1≥k2

ψ2,λ,k (x) y
k1
1 yk22 .
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Let us deal with ψ1,λ (a similar proof holds for ψ2,λ). Looking at terms for n = 1 in (4.6) and at
monomials terms yk such that k1 ≤ k2 + 1 in (4.7), we must have for all x ∈ Sλ, y1, y2 ∈ C with
|y1| < r1, |y2| < r2:

1 +
∑

k≥0

ψ1,λ,(k+1,k) (x) y
k
1y

k
2 =

f1

(

x,
ψv,λ(x,y)

xa

)

f1
(

x, y1y2
xz

) Ψ1,λ,1

(y1y2
xa

)

.

According to Lemma 4.11 and Corollary4.12, we have:

f1

(

x,
ψv,λ(x,y)

xa

)

f1
(

x, y1y2
xz

) = 1 +
∑

j1≥j2+1≥1

Fj1,j2 (x) y
j1
1 y

j2
2

= 1 + O
(x,y)−→0

(x,y)∈Sλ×D(0,r)

(|y1|) ,

for some analytic and bounded functions Fj1,j2 (x), j1 ≥ j2. As in the proof of Lemma 4.11, using the
fact that ψλ admits the identity as weak Gevrey-1 asymptotic expansion, we deduce that Ψ1,λ,1 (w) = 1,
and then:

ψ1,λ (x,y) = y1 + f1

(

x,
ψv,λ (x,y)

xa

)

∑

n≥2

Ψ1,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

= y1 +
∑

k=(k1,k2)∈N
2

k1≥k2+2

ψ1,λ,k (x) y
k1
1 y

k2
2 .

It remains to show that ψ1,λ admits y1 as Gevrey-1 asymptotic expansion in Sλ ×D (0, r). From the
computations above, we deduce:

|ψ1,λ (x, y1, y2)− y1| ≤
∑

n≥2

∣

∣

∣

∣

∣

∣

Ψ1,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n−1 f1

(

x,
ψv,λ(x,y)

xa

)

f1
(

x, y1y2
xa

) y1

∣

∣

∣

∣

∣

∣

.

Using Lemma 4.13, Corollary 4.12 and the same method as at the end of the proof of Lemma 4.11, we
can show the following: we can take r1, r2 > 0 small enough such that for all closed sub-sector S′ of
Sλ for all r̃1 ∈ ]0, r1[ and r̃2 ∈ ]0, r2[, there exists A,B > 0 satisfying:

(x, y1, y2) ∈ S′ ×D (0, r̃) =⇒ |ψ1,λ (x, y1, y2)− y1| ≤ A exp

(

− B

|x|

)

.

A similar proof holds for ψ2,λ, ψ2,−λ and ψ1,−λ. �

Remark 4.16. It should be noticed that in the expressions






















ψ1,λ (x,y) = y1 + f1

(

x,
ψv,λ (x,y)

xa

)

∑

n≥2

Ψ1,λ,n

(y1y2
xa

)

(

y1

f1
(

x, y1y2
xa

)

)n

ψ1,−λ (x,y) = y1 + f1

(

x,
ψv,−λ (x,y)

xa

)

∑

n≥0

Ψ1,−λ,n

(y1y2
xa

)

(

y2

f2
(

x, y1y2
xa

)

)n

given by Lemma 4.14, the expansion of ψ1,λ with respect to y = (y1, y2) starts with a term of order 1,
namely y1, followed by terms of order at least 2, while in the expansion of ψ1,−λ, the term of lowest
order is a constant, namely Ψ1,−λ,0 (0). Similarly, the expansion of ψ2,−λ (with respect to y = (y1, y2))
starts with y2, while the expansion of ψ1,−λ starts with the constant Ψ2,λ,0 (0).

5. Description of the moduli space and some applications

From Lemmas 4.13 and 4.14, we can give a description of the moduli space Λλ (Ynorm)×Λ−λ (Ynorm)
of a fixed analytic normal form Ynorm.
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5.1. A power series presentation of the moduli space.
We use the notations introduced in section 4. We denote by O (C) the set of entire functions, i.e. of

functions holomorphic in C. We consider the functions f1 and f2 defined in (4.3) and introduce four

subsets of (O (C))
N
, denoted by E1,λ (Ynorm), E2,λ (Ynorm), E1,−λ (Ynorm) and E2,−λ (Ynorm), defined as

follows. On remind the notations
{

N (1,+) = N (2,−) = 1

N (1,−) = N (2,+) = −1 .

Definition 5.1. For j ∈ {1, 2}, a sequence (ψn (w))n≥N(j,±)+1 ∈ (O (C))
N

belongs to Ej,±λ (Ynorm) if

there exists an open polydisc D (0, r) and an open asymptotic sector

S±λ ∈ ASarg(±λ),2π

such that for all r̃1, r̃2, δ > 0 with

0 < r̃i + δ < ri , i ∈ {1, 2}
there exists C > 0 such that for all x ∈ Sλ (resp. x ∈ S−λ) and for all w ∈ C:

|wxa| ≤ r̃1r̃2 =⇒



















































|ψn (w)| < C
|f1 (x,w)|n−1

(r̃1 + δ)
n , ∀n ≥ 2, if (ψn (w))n≥2 ∈ E1,λ (Ynorm)

|ψn (w)| <
C

|xa|
|f1 (x,w)|n+1

(r̃1 + δ)
n , ∀n ≥ 0, if (ψn (w))n≥2 ∈ E2,λ (Ynorm)

|ψn (w)| <
C

|xa|
|f2 (x,w)|n+1

(r̃2 + δ)
n , ∀n ≥ 0, if (ψn (w))n≥2 ∈ E1,−λ (Ynorm)

|ψn (w)| < C
|f2 (x,w)|n−1

(r̃2 + δ)n
, ∀n ≥ 2, if (ψn (w))n≥2 ∈ E2,−λ (Ynorm) .

As explained in section 4, we can associate to any pair

(ψλ, ψ−λ) ∈ Λλ (Ynorm)× Λ−λ (Ynorm)

two germs of sectorial biholomorphisms of the space of leaves corresponding to each “narrow” sector,
which we denote by Ψλ and Ψ−λ, defined by:

(5.1) Ψ±λ := H±λ ◦ ψ±λ ◦ H−1
±λ ,

where H±λ is given by Corollary 4.3. According to Lemmas 4.13 and 4.14, if we write Ψ±λ =
(x,Ψ1,±λ,Ψ2,±λ), then for j = 1, 2 we have:

Ψj,λ (h1, h2) = hj +
∑

n≥N(j,+)+1

Ψj,λ,n (h1h2) h
n
1(5.2)

Ψj,−λ (h1, h2) = hj +
∑

n≥N(j,−)+1

Ψj,−λ,n (h1h2)h
n
2

(Ψj,±λ,n)n ∈ Ej,±λ . Conversely, given (Ψj,±λ)n ∈ Ej,±λ for j = 1, 2, the estimates made in section 4
show that

ψ±λ := H−1
±λ ◦Ψ±λ ◦ H±λ ,

where Ψ±λ (x,h) = (x,Ψ1,±λ (h) ,Ψ2,±λ (h)), belongs to Λ±λ (Ynorm). Consequently, we can state:

Proposition 5.2. We have the following bijections:

Λλ (Ynorm) →̃ E1,λ (Ynorm)× E2,λ (Ynorm)
ψλ 7→ (Ψ1,λ,Ψ2,λ)

and

Λ−λ (Ynorm) →̃ E1,−λ (Ynorm)× E2,−λ (Ynorm)
ψ−λ 7→ (Ψ1,−λ,Ψ2,−λ)
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(

we identify here Ψ±λ (x,h) = (x,Ψ1,±λ (h) ,Ψ2,±λ (h)) with (Ψ1,±λ (h) ,Ψ2,±λ (h))
)

.

5.2. Analytic invariant varieties and two-dimensional saddle-nodes.
We can give a necessary and sufficient condition for the existence of analytic invariant varieties in

terms of the moduli space described above.
We recall that for any vector field Y ∈ [Ynorm] as in (1.1) (cf. Definition 1.13), there always exist

three formal invariant varieties: C = {(y1, y2) = (g1 (x) , g2 (x))}, H1 = {y1 = f1 (x, y2)} and H2 =
{y2 = f2 (x, y1)}, where g1, g2, f1, f2 are formal power series with null constant term. The first one is
classically called the center variety, and we have C = H1 ∩ H2. If Y = Ynorm, then:











C = {y1 = y2 = 0}
H1 = {y1 = 0}
H2 = {y2 = 0} .

Proposition 5.3. Let Y ∈ [Ynorm] and (Φλ,Φ−λ) ∈ Λλ (Ynorm)×Λ−λ (Ynorm) be its Stokes diffeomor-
phisms. We consider Ψ± = H±λ ◦ Φ±λ ◦ H−1

±λ as above. Then:

(1) the center variety C is convergent (analytic in the origin) if and only if Ψ2,λ,0 (0) = Ψ1,−λ,0 (0) =
0;

(2) the invariant hypersurface H1 is convergent (analytic in the origin) if and only if for all n ≥ 0,
we have Ψ1,−λ,n (0) = 0;

(3) the invariant hypersurface H2 is convergent (analytic in the origin) if and only if for all n ≥ 0,
we have Ψ2,λ,n (0) = 0.

Proof. It is a direct consequence of the power series representation (5.2) of the Stokes diffeomorphisms
(Φλ,Φ−λ). Let us explain item 2. (the same arguments hold for 1. and 3. with minor adaptation).
The fact that Ψ1,−λ,n (0) = 0 for all n ≥ 0 means that Ψ1,−λ is divisible by h1. Equivalently, both
Φ1,λ and Φ1,−λ are divisible by y1, so that the analytic hypersurface {y1 = 0} has the same pre-image
by the sectorial normalizing maps Φ+ and Φ−. These pre-images glue together in order to define an
analytic invariant hypersurface H1. �

Notice that if we consider the restriction of a formal normal form Ynorm to one of the formal
invariant hypersurfaces, we obtain precisely the normal form for two-dimensional saddle-nodes as given
in [MR82]. When one of these hypersurfaces is convergent (i.e. analytic), we recover the Martinet-
Ramis invariants by restriction to this hypersurface, as we present below.

Proposition 5.4. Suppose that the formal invariant hypersurface H1 is convergent ( i.e. analytic in
the origin). Then, the Martinet-Ramis invariants for the saddle-node Y|H1

are given by:







Ψ2,λ (0, h2) = h2 +Ψ2,λ,0 (0) ∈ Aff (C)

Ψ2,−λ (0, h2) = h2 +
∑

n≥2

Ψ2,−λ,n (0)h
n
2 ∈ Diff (C, 0).

Similar result holds for the hypersurface H2.

5.3. The transversally symplectic case and quasi-linear Stokes phenomena in the first
Painlevé equation.

Let us now focus on the transversally symplectic case studied in Theorem 1.23. Let Ynorm ∈ SN diag,0

be transversally symplectic (i.e. its residue is res (Ynorm) = 1). Using the notations introduced in
paragraph 5.1, we define the following sets:

(E1,λ (Ynorm)× E2,λ (Ynorm))ω :=

{

Ψλ = (Ψ1,λ,Ψ2,λ) ∈ E1,λ (Ynorm)× E2,λ (Ynorm)
such that: det (DΨλ) = 1

}

(E1,−λ (Ynorm)× E2,−λ (Ynorm))ω :=

{

Ψ−λ = (Ψ1,−λ,Ψ2,−λ) ∈ E1,−λ (Ynorm)× E2,−λ (Ynorm)
such that: det (DΨ−λ) = 1

}

.
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According to Proposition 5.2, the map

Λ±λ (Ynorm) −→ E1,±λ (Ynorm)× E2,±λ (Ynorm)
ψ±λ 7→ Ψ±λ := H±λ ◦ ψ±λ ◦ H−1

±λ

given in (5.1) is a bijection
(

we identify here Ψ±λ (x,h) = (x,Ψ1,±λ (h) ,Ψ2,±λ (h)) with (Ψ1,±λ (h) ,Ψ2,±λ (h))
)

.

An easy computation based on (4.1) gives:

(

H−1
±λ

)∗
(

dy1 ∧ dy2
x

)

= dh1 ∧ dh2 + 〈dx〉 .

This means in particular that ψ±λ is transversally symplectic with respect to ω =
dy1 ∧ dy2

x
, i.e.

(ψ±λ)
∗ (ω) = ω + 〈dx〉 ,

if and only if Ψ±λ = (Ψ1,±λ,Ψ2,±λ) preserves the standard symplectic form dh1 ∧ dh2 in the space of
leaves, i.e. det (DΨ±λ) = 1. In other words:

Proposition 5.5. We have the following bijections:

Λωλ (Ynorm) →̃ (E1,λ (Ynorm)× E2,λ (Ynorm))ω
ψλ 7→ (Ψ1,λ,Ψ2,λ)

and

Λω−λ (Ynorm) →̃ (E1,−λ (Ynorm)× E2,−λ (Ynorm))ω
ψ−λ 7→ (Ψ1,−λ,Ψ2,−λ)

(

we identify here Ψ±λ (x,h) = (x,Ψ1,±λ (h) ,Ψ2,±λ (h)) with (Ψ1,±λ (h) ,Ψ2,±λ (h))
)

.

5.4. Quasi-linear Stokes phenomena in the first Painlevé equation.
In [Bit16a], we link the study of quasi-linear Stokes phenomena (see [Kap04] for the first Painlevé

equation) to our Stokes diffeomorphisms. For instance, in the case of the first Painlevé equation, we
show that the quasi-linear Stokes phenomena formula found by Kapaev in [Kap04] allows to compute
the terms Ψ2,λ,0 (0) and Ψ1,−λ,0 (0) in (5.2). More precisely, elementary computations (using Kapaev’s
connection formula) give:

Ψ2,λ,0 (0) = iΨ1,−λ,0 (0) =
e

iπ
8√
π
2

3
8 3

1
8 .

Moreover, our description of the Stokes diffeomorphisms implies a more precise estimate of the order
of the remaining terms in Kapaev’s formula. In a forthcoming paper, we will use the study of some
non-linear Stokes phenomena for the second Painlevé equations (see e.g. [CM82]) in order to compute
coefficients of the Ψi,±λ’s.
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