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Some results on exponential synchronization of nonlinear systems

Based on recent works on transverse exponential stability, we establish some necessary and sufficient conditions for the existence of a (locally) exponential synchronizing control law. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual linearized systems (on the synchronization manifold) by a linear state feedback. This, in turn, is also equivalent to the existence of a symmetric covariant tensor field, which satisfies a Control Matrix Function inequality. Based on this result, we provide the construction of such synchronizer via backstepping approaches. In some particular cases, we show how global exponential synchronization may be obtained.

I. INTRODUCTION

Controlled synchronization, as a coordinated control problem of a group of autonomous systems, has been regarded as one of important group behaviors. It has found its relevance in many engineering applications, such as, the distributed control of (mobile) robotic systems, the control and reconfiguration of devices in the context of internet-of-things, and the synchronization of autonomous vehicles (see, for example, [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF]).

For linear systems, the solvability of this problem and, as well as, the design of controller, have been thoroughly studied in literature. To name a few, we refer to the classical work on the nonlinear Goodwin oscillators [START_REF] Goodwin | Oscillatory behaviour in enzymatic control processes[END_REF], to the synchronization of linear systems in [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF], [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF] and to the recent works in nonlinear systems [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF], [START_REF] De Persis | On the internal model principle in the coordination of nonlinear systems[END_REF], [START_REF] De Persis | On the internal model principle in formation control and in output synchronization of nonlinear systems[END_REF], [START_REF] De Persis | Coordination of passive systems under quantized measurements[END_REF], [START_REF] Scardovi | Synchronization of interconnected systems with applications to biochemical networks: An inputoutput approach[END_REF]. For linear systems, the solvability of synchronization problem reduces to the solvability of stabilization of individual systems by either an output or state feedback. It has recently been established in [START_REF] Wieland | An internal model principle is necessary and sufficient for linear output synchronization[END_REF] that for linear systems, the solvability of the output synchronization problem is equivalent to the existence of an internal model, which is a well-known concept in the output regulation theory.

The generalization of these results to the nonlinear setting has appeared in the literature (see, for example, [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A convergent Dynamics Approach[END_REF], [START_REF] Chopra | Output synchronization on strongly connected graphs[END_REF], [START_REF] Pogromsky | Cooperative oscillatory behavior of mutually coupled dynamical systems[END_REF], [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF], [START_REF] De Persis | On the internal model principle in the coordination of nonlinear systems[END_REF], [START_REF] De Persis | On the internal model principle in formation control and in output synchronization of nonlinear systems[END_REF], [START_REF] De Persis | Coordination of passive systems under quantized measurements[END_REF], [START_REF] Scardovi | Synchronization of interconnected systems with applications to biochemical networks: An inputoutput approach[END_REF], [START_REF] Hamadeh | Global state synchronization in networks of cyclic feedback systems[END_REF]). In these works, the synchronization of nonlinear systems with a fixed network topology can be solved under various different sufficient conditions.

For instance, the application of passivity theory plays a key role in [START_REF] Chopra | Output synchronization on strongly connected graphs[END_REF], [START_REF] Pogromsky | Cooperative oscillatory behavior of mutually coupled dynamical systems[END_REF], [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF], [START_REF] De Persis | Coordination of passive systems under quantized measurements[END_REF], [START_REF] Scardovi | Synchronization of interconnected systems with applications to biochemical networks: An inputoutput approach[END_REF], [START_REF] Hamadeh | Global state synchronization in networks of cyclic feedback systems[END_REF]. By using the input/output passivity property, the synchronization control law in these works can simply be given by the relative output measurement. Another approach for synchronizing nonlinear systems is by using output regulation theory as pursued in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF], [START_REF] De Persis | On the internal model principle in the coordination of nonlinear systems[END_REF], [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A convergent Dynamics Approach[END_REF]. In these papers, the synchronization problem is reformulated as an output regulation problem where the output of each system has to track an exogeneous signal driven by a common exosystem and the resulting synchronization control law is again given by relative output measurement. Lastly, another synchronization approach that has gained interest in recent years is via incremental stability [START_REF] Angeli | Further results on incremental input-to-state stability. Automatic Control[END_REF] or other related notions, such as, convergent systems [START_REF] Pavlov | Uniform Output Regulation of Nonlinear Systems: A convergent Dynamics Approach[END_REF]. If we restrict ourselves to the class of incremental ISS, as discussed in [START_REF] Angeli | Further results on incremental input-to-state stability. Automatic Control[END_REF], the synchronizer can again be based on the relative output/state measurement.

Despite assuming a fixed network topology, necessary and sufficient condition for the solvability of synchronization problem of nonlinear systems is not yet established. Therefore, one of our main contributions of this paper is the characterization of controlled synchronization for general nonlinear systems with fixed network topology. Using recent results on the transverse exponential contraction, we establish some necessary and sufficient conditions for the solvability of a (locally) exponential synchronization. It extends the work in [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF] where only two interconnected systems are discussed. We show that a necessary condition for achieving synchronization is the existence of a symmetric covariant tensor field of order two whose Lie derivative has to satisfy a Control Matrix Function (CMF) inequality, which is similar to the Control Lyapunov Function and detailed later in Section III.

This paper extends our preliminary work presented in [START_REF] Andrieu | Necessary and sufficient condition for local exponential synchronization of nonlinear systems[END_REF]. In particular we improve some results by relaxing some conditions (see the necessary condition section). Additionally, we present the backstepping approach that allows us to construct a CMF-based synchronizer, as well as, the extension of the local synchronization result to the global one for a specific case. Note that all proofs are given in the long version of this paper in [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF].

The paper is organized as follows. We present the problem formulation of synchronization in Section II. In Section III, we present our first main results on necessary conditions to the solvability of the synchronization problem. Some sufficient conditions for local or global synchronization are given in Section IV. A constructive synchronizer design is presented in Section V, where a backstepping procedure is given for designing a CMF-based synchronizing control law.

Notation. The vector of all ones with a dimension N is denoted by 1 N . We denote the identity matrix of dimension n by I n or I when no confusion is possible. Given M 1 , . . . , M N square matrices, diag{M 1 , . . . , M N } is the matrix defined as

diag{M 1 , . . . , M N } =    M 1 . . . M N    .
Given a vector field f on R n and a covariant two tensor P : R n → R m×m , P is said to have a derivative along f denoted d f P if the following limit exists

d f P (z) = lim h→0 P (Z(z, h)) -P (z) h , (1) 
where Z(z, •) is the flow of the vector field f with an initial state z in R n . In that case and, when m = n and f is C 1 L f P is the Lie derivative of the tensor along f which is defined as

L f P (z) = d f P (z) + P (z) ∂f ∂z (z) + ∂f ∂z (z) P (z) . (2) 

II. PROBLEM DEFINITION

A. System description and communication topology

In this note, we consider the problem of synchronizing N identical nonlinear systems with N ≥ 2. For every i = 1, . . . , N , the i-th system Σ i is described by

ẋi = f (x i ) + g(x i )u i , i = 1, . . . , N (3) 
where x i ∈ R n , u i ∈ R p and the functions f and g are assumed to be C 2 . In this setting, all systems has the same drift vector field f and the same control vector field g : R n → R n×p , but not the same controls in R p . For simplicity of notation, we denote the complete state variables by x = x 1 . . . x N in R N n . The synchronization manifold D, where the state variables of different systems agree with each other, is defined by

D = {(x 1 , . . . , x N ) ∈ R N n | x 1 = x 2 = • • • = x N }.
For every x in R N n , we denote the Euclidean distance to the set D by |x| D .

The communication graph G, which is used for synchronizing the state through distributed control u i , i = 1, . . . , N , is assumed to be an undirected graph and is defined by G = (V, E), where V is the set of N nodes (where the ith node is associated to the system Σ i ) and E ⊂ V × V is a set of M edges that define the pairs of communicating systems. Moreover we assume that the graph G is connected.

Let us, for every edge k in G connecting node i to node j, label one end (e.g., the node i) by a positive sign and the other end (e.g., the node j) by a negative sign. The incidence matrix D that corresponds to G is an N × M matrix such that

d i,k =    +1 if node i is the positive end of edge k -1 if node i is the negative end of edge k 0 otherwise
Using D, the Laplacian matrix L can be given by L = DD whose kernel, by the connectedness of G, is spanned by 1 N .

B. Synchronization problem formulation

Using the description of the interconnected systems via G, the state synchronization control problem is defined as follows.

Definition 1: The control laws u i = φ i (x), i = 1 . . . , N solve the local uniform exponential synchronization problem for (3) if the following conditions hold:

1) For all non-communicating pair (i, j) (i.e., (i, j) / ∈ E),

∂φ i ∂x j (x) = ∂φ j ∂x i (x) = 0 , ∀x ∈ R N n ;
2) For all x ∈ D, φ(x) = 0 (i.e., φ is zero on D); and

3) The manifold D of the closed-loop system

ẋi = f (x i ) + g(x i )φ i (x), i = 1, . . . , N (4) 
is uniformly exponentially stable, i.e., there exist positive constants r, k and λ > 0 such that for all

x in R N n satisfying |x| D < r, |X(x, t)| D ≤ k exp(-λt) |x| D , (5) 
where X(x, t) denotes the solution initiated from x, holds for all t in the time domain of existence of solution. When r = ∞, it is called the global uniform exponential synchronization problem.

In this definition, the condition 1) implies that the solution u i is a distributed control law that requires only a local state measurement from its neighbors in the graph G.

An important feature of our study is that we focus on exponential stabilization of the synchronizing manifold. This allows us to rely on the study developed in [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF] (or [START_REF] Andrieu | Transverse exponential stability and applications[END_REF]) in which an infinitesimal characterization of exponential stability of a transverse manifold is given. As it will be shown in the following section this allows us to formalize some necessary and sufficient conditions in terms of matrix functions ensuring the existence of a synchronizing control law.

III. NECESSARY CONDITIONS A. Infinitesimal stabilizability conditions

In [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF], a first attempt has been made to give necessary conditions for the existence of an exponentially synchronizing control law for only two agents. In [START_REF] Andrieu | Transverse exponential stability and applications[END_REF], the same problem has been addressed for N agents but without any communication constraints (all agents can communicate with all others). In both cases, it is shown that assuming some bounds on derivatives of the vector fields and assuming that the synchronizing control law is invariant by permutation of agents, the following two properties are necessary conditions.

IS Infinitesimal stabilizability. The couple (f, g) is such that the n-dimensional manifold {z = 0} of the transversally linear system

ż = ∂f ∂z (z)z + g(z)ũ (6a) ż = f (z) (6b)
with z in R n and z in R n is stabilizable by a state feedback that is linear in z (i.e., ũ = h(z)z for some function h : R n → R p×n ).

CMF Control Matrix Function. For all positive definite matrix Q ∈ R n×n , there exist a continuous function P : R n → R n×n , which values are symmetric positive definite matrices and strictly positive real numbers p and p such that p I n ≤ P (z) ≤ p I n [START_REF] Arststein | Stabilization with relaxed controls[END_REF] holds for all z ∈ R n , and the inequality (see ( 1) and ( 2)

) v L f P (z)v ≤ -v Qv (8) 
holds for all (v, z) in R n ×R n satisfying v P (z)g(z) = 0. An important feature of properties IS and CMF comes from the fact that they are properties of each individual agent, independent of the network topology. The first one is a local stabilizability property. The second one establishes that there exists a symmetric covariant tensor field of order two denoted by P whose Lie derivative satisfies a certain inequality in some specific directions. This type of condition can be related to the notion of control Lyapunov function, which is a characterization of stabilizability as studied by Artstein in [START_REF] Arststein | Stabilization with relaxed controls[END_REF] or Sontag in [START_REF] Sontag | A Lyapunov-Like characterization of asymptotic controllability[END_REF]. This property can be regarded as an Artstein like condition. The dual of the CMF property has been thoroughly studied in [START_REF] Sanfelice | Convergence of nonlinear observers on R n with a riemannian metric (part i). Automatic Control[END_REF] when dealing with an observer design ([19, Eq. ( 8)], see also [START_REF] Andrieu | On transverse exponential stability and its use in incremental stability, observer and synchronization[END_REF] or [START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF]).

B. Necessity of IS and CMF for exponential synchronization

We show that properties IS and CMF are still necessary conditions if one considers a network of agents with a communication graph G as given in II-A. Hence, as this is already the case for linear system, we recover the paradigm, which establishes that a necessary condition for synchronization is a stabilizability property for each individual agent.

Theorem 1: Consider the interconnected systems in (3) with the communication graph G and assume that there exists a control law u = φ(x) where φ(x) = φ 1 (x) . . . φ N (x) in R N p that solves the local uniform exponential synchronization for [START_REF] Andrieu | Transverse exponential stability and applications[END_REF]. Assume moreover that g is bounded, f , g and the φ i 's have bounded first and second derivatives and the closed-loop system is complete. Then properties IS and CMF hold. Note that this theorem is a refinement of the result which is written in [START_REF] Andrieu | Necessary and sufficient condition for local exponential synchronization of nonlinear systems[END_REF] since we have removed an assumption related to the structure of the control law.

The proof of this result can be found in [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF].

In the following section, we discuss the possibility to design an exponential synchronizing control law based on these necessary conditions.

IV. SUFFICIENT CONDITION A. Sufficient conditions for local exponential synchronization

The interest of the Property CMF given in Subsection III-A is to use the symmetric covariant tensor P in the design of a local synchronizing control law. Indeed, following one of the main results in [START_REF] Andrieu | Transverse exponential stability and applications[END_REF], we get the following sufficient condition for the solvability of (local) uniform exponential synchronization problem. The first assumption is that, up to a scaling factor, the control vector field g is a gradient field with P as a Riemannian metric (see also [START_REF] Forni | On differential passivity of physical systems[END_REF] for similar integrability assumption). The second one is related to the CMF property.

Theorem 2 (Local sufficient condition): Assume that g is bounded and that f and g have bounded first and second derivatives. Assume that there exists a C 2 function P : R n → R n×n which values are symmetric positive definite matrices and with a bounded derivative that satisfies the following two conditions. 1. There exist a C 2 function U : R n → R which has bounded first and second derivatives, and a C 1 function α : R n → R p which has bounded first and second derivatives such that ∂U ∂z

(z) = P (z)g(z)α(z) , (9) 
holds for all z in R n ; and 2. There exist a symmetric positive definite matrix Q and positive constants p, p and ρ > 0 such that (7) holds and

L f P (z) -ρ ∂U ∂z (z) ∂U ∂z (z) ≤ -Q , ( 10 
)
hold for all z in R n . Then, given a connected graph G with associated Laplacian matrix L = (L ij ), there exists a constant such that the control law u = φ(x) with φ = φ 1 . . . φ N given by

φ i (x) = -α(x i ) N j=1 L ij U (x j ) (11) 
with ≥ solves the local uniform exponential synchronization of (3). The proof of this result can be found in [START_REF] Andrieu | Necessary and sufficient condition for local exponential synchronization of nonlinear systems[END_REF] or in [START_REF] Andrieu | Some results on exponential synchronization of nonlinear systems[END_REF].

Remark 1: Assumption (10) is stronger than the necessary condition CMF. Note however, that employing some variation on Finsler Lemma (see [START_REF] Andrieu | Transverse exponential stability and applications[END_REF] for instance) it can be shown that these assumptions are equivalent when x remains in a compact set.

Remark 2: Note that for all x = 1 N ⊗ z = (z, . . . , z) in D and for all (i, j)

with i = j ∂φ i ∂x j (x) = -α(z)L ij ∂U ∂z (z). (12) 
Hence, for all x = 1 N ⊗ z in D, we get

∂φ ∂x (x) = -L ⊗ α(z) ∂U ∂z (z) . (13) 

B. Sufficient conditions for global exponential synchronization

Note that in [START_REF] Andrieu | Transverse exponential stability and applications[END_REF] with an extra assumption related to the metric (the level sets of U are totally geodesic sets with respect to the Riemannian metric obtained from P ), it is shown that global synchronization may be achieved when considering only two agents which are connected. It is still an open question to know if global synchronization may be achieved in the general nonlinear context with more than two agents. However in the particular case in which the matrix P (z) and the vector field g are constant, then global synchronization may be achieved as this is shown in the following theorem.

Theorem 3 (Global sufficient condition): Assume that g(z) = G and there exists a symmetric positive definite matrix P in R n×n , a symmetric positive definite matrix Q and ρ > 0 such that

P ∂f ∂z (z) + ∂f ∂z (z) P -ρP GG P ≤ -Q . ( 14 
)
Assume moreover that the graph is connected with Laplacian matrix L. Then there exist constants and positive real numbers c 1 , . . . , c N such that the control law u = φ(x) with φ = φ 1 . . . φ N given by

φ i (x) = -c i N j=1 L ij G P x j (15) 
with ≥ , solves the global uniform exponential synchronization for (3).

Proof : Let c j = 1 for j = 2, . . . , N . Hence only c 1 is different from 1 and remains to be selected. Let us denote e = (e 2 , . . . , e N ) with e i = x 1 -x i and z = x 1 . Note that for i = 2, . . . , N , we have along the solution of the system (3) with u defined in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF],

ėi = f (z) -c 1 N j=1 L 1j GG P x j -f (z + e i ) + N j=1 L ij GG P x j .
Note that L being a Laplacian, we have for all i in [1, N ] the equality N j=1 L ij = 0. Consequently, we can add the term c 1 N j=1 L 1j GG P x 1 and substract the term N j=1 L ij GG P x 1 in the preceding equation above so that for i = 2, . . . , N

ėi = f (z) -c 1 N j=1 L 1j GG P (x j -x 1 ) -f (z + e i ) + N j=1 L ij GG P (x j -x 1 ), = f (z) -f (z + e i ) - N j=2 (L ij -c 1 L 1j ) GG P e j .
One can check that these equations can be written compactly as 1) , which depends on the parameter c 1 and is obtained from the Laplacian as :

ė = 1 0 ∆(z, e, s)ds + (A(c 1 ) ⊗ GG P ) e, with A(c 1 ) is matrix in R (N -1)×(N -
A(c 1 ) = -[L 2:N,2:N -c 1 L 1,2:N 1 N -1 ] , where L = L 11 L 1,2:N L 1,2:N L 2:N,2:N
and ∆ is the (N -1)n × n matrix valued function defined as

∆(z, e, s) = Diag ∂f ∂z (z -se 2 ), . . . , ∂f ∂z (z -se N ) .
The following Lemma shows that by selecting c 1 sufficiently small the matrix A satisfies the following property. Its proof is given in the Appendix. Note that by taking sufficiently large, with [START_REF] Hamadeh | Global state synchronization in networks of cyclic feedback systems[END_REF] this yields M i (e, z, s) ≤ -Q. This immediately implies that ˙ V (e) ≤ -e (I N -1 ⊗ Q) e. This ensures exponential convergence of e to zero on the time of existence of the solution. Let x = argmin z∈R n N i=1 |z -x i | 2 . Note that we have

|e| 2 ≤ 2 N i=2 |x i -x| 2 + 2(N -1)|x -x 1 | 2 ≤ 2(N -1)|x| 2 D , (16) 
|x| 2 D = min z∈R n N i=1 |z -x i | 2 ≤ N i=1 |x 1 -x i | 2 = |e| 2 . ( 17 
)
This yields global exponential synchronization of the closedloop system. 2

In the following section, we show that the property CMF required to design a distributed synchronizing control law can be obtained for a large class of nonlinear systems. This is done via backstepping design.

V. CONSTRUCTION OF AN ADMISSIBLE TENSOR VIA BACKSTEPPING

A. Adding derivative (or backstepping)

As proposed in Theorem 2, a distributed synchronizing control law can be designed using a symmetric covariant tensor field of order 2, which satisfies [START_REF] Chopra | Output synchronization on strongly connected graphs[END_REF]. Given a general nonlinear system, the construction of such a matrix function P may be a hard task. In [START_REF] Sanfelice | Solution of a riccati equation for the design of an observer contracting a riemannian distance[END_REF], a construction of the function P for observer based on the integration of a Riccati equation is introduced. Similar approach could be used in our synchronization problem. Note however that in our context an integrability condition (i.e. equation ( 9)) has to be satisfied by the function P . This constraint may be difficult to address when considering a Riccati equation approach.

In the following we present a constructive design of such a matrix P that resembles the backstepping method. This approach can be related to [START_REF] Zamani | Backstepping controller synthesis and characterizations of incremental stability[END_REF], [START_REF] Zamani | Backstepping design for incremental stability[END_REF] in which a metric is also constructed iteratively. We note that one of the difficulty we have here is that we need to propagate the integrability property given in equation [START_REF] De Persis | Coordination of passive systems under quantized measurements[END_REF].

For outlining the backstepping steps for designing P , we consider the case in which the vector fields (f, g) can be decomposed as follows

f (z) = f a (z a ) + g a (z a )z b f b (z a , z b ) , and, g(z) 
= 0 g b (z) , 0 < g b ≤ g b (z) ≤ g b with z = z a z b , z a in R na and z b in R. In other words, ża = f a (z a ) + g a (z a )z b , żb = f b (z) + g b (z)u. (18) 
Let C a be a compact subset of R na . As in the standard backstepping approach, we make the following assumptions on the z a -subsystem where z b is treated as a control input to this subsystem. Assumption 1 (z a -Synchronizability): Assume that there exists a C ∞ function P a : R na → R na×na that satisfies the following conditions. 1. There exist a C ∞ function U a : R na → R and a C ∞ function α a : R na → R such that

∂U a ∂z a (z a ) = α a (z a )P a (z a )g a (z a ) (19) 
holds for all z a in C a ; 2. There exist a symmetric positive definite matrix Q a and positive constants p a , p a and ρ a > 0 such that

p a I na ≤ P a (z a ) ≤ p a I na , ∀z a ∈ R na , (20) 
holds and

L fa P a (z a ) -ρ a ∂U a ∂z a (z a ) ∂U a ∂z a (z a ) ≤ -Q a , (21) 
holds for all z a in C a . As a comparison to the standard backstepping method for stabilizing nonlinear systems in the strict-feedback form, the z a -synchronizability conditions above are akin to the stabilizability condition of the upper subsystem via a control Lyapunov function. However, for the synchronizer design as in the present context, we need an additional assumption to allow the recursive backstepping computation of the tensor P . Roughly speaking, we need the existence of a mapping q a such that the metric P a becomes invariant along the vector field ga qa . In other words, ga qa is a Killing vector field. Assumption 2: There exists a non-vanishing smooth function q a : R na → R such that the metric obtained from P a on C a is invariant along ga(za) qa(za) . In other words, for all z a in C a L ga (za )

qa(za ) P a (z a ) = 0 . (22) 
Similar assumption can be found in [START_REF] Forni | On differential passivity of physical systems[END_REF] in the characterization of differential passivity.

Based on the Assumptions 1 and 2, we have the following theorem on the backstepping method for constructing a symmetric covariant tensor field P b of the complete system [START_REF] Pogromsky | Cooperative oscillatory behavior of mutually coupled dynamical systems[END_REF].

Theorem 4: Assume that the z a -subsystem satisfies Assumption 1 and Assumption 2 in the compact set C a with a n a × n a symmetric covariant tensor field P a of order two and a non-vanishing smooth mapping q a : R na → R. Then for all positive real number M b , the system [START_REF] Pogromsky | Cooperative oscillatory behavior of mutually coupled dynamical systems[END_REF] with the state variables z = (z a , z b ) ∈ R na+1 satisfies the Assumption 1 in the compact set C a ×[-M b , M b ] ⊂ R na+1 with the symmetric covariant tensor field P b be given by

P b (z) = P a (z a ) + S a (z)S a (z) S a (z)q a (z a ) S a (z) q a (z a ) q a (z a ) 2
where S a (z) = ∂qa ∂za (z a ) z b + ηα a (z a )P a (z a )g a (z a ) and η is a positive real number. Moreover, there exists a non-vanishing mapping q b : R na+1 → R such that P b is invariant along g q b . In other words, Assumptions 1 and 2 hold for the complete system [START_REF] Pogromsky | Cooperative oscillatory behavior of mutually coupled dynamical systems[END_REF].

Remark 3: Note that with this theorem, since we propagate the required property we are able to obtain a synchronizing control law for any triangular nonlinear system.

Proof : Let M b be a positive real number and let

C b = C a × [-M b , M b ]. Let U b : R na+1 → R be the function defined by U b (z a , z b ) = ηU a (z a ) + q a (z a )z b .
where η is a positive real number that will be selected later on. It follows from ( 19) that for all (z a , z b ) ∈ C b , we have

∂U b ∂z (z) = η ∂Ua ∂za (z a ) + ∂qa ∂za (z a )z b q a (z a ) = 1 q a (z a ) P b (z) 0 1 = α b (z)P b (z)g(z)
with α b (z) = 1 qa(za)g b (z) . Hence, the first condition in Assumption 1 is satisfied.

Consider

z in C b and let v = v a v b in R na+1 be such that v P b (z)g(z) = 0 . ( 23 
)
Note that this implies that

v b = -v a S a (z) q a (z a ) . (24) 
In the following, we compute the expression :

v L f P b (z)v = v d f P b (z)v + 2v P b (z) ∂f ∂z (z)v .
For the first term, we have

v d f P b (z)v = v a d fa P a (z a )v a + z b v a d ga P a (z a )v a + v a d f S a (z)S a (z) v a + 2v a d f S a (z)q a (z a )v b + d fa+gaz b q a (z a ) 2 v 2 b With (24), it yields v a d f S a (z)S a (z) v a + 2v a d f S a (z)q a (z a )v b + d fa+gaz b q a (z a ) 2 v 2 b = 0 Hence v d f P b (z)v = v a d fa P a (z a )v a + z b v a d ga P a (z a )v a .
On the other hand, for the second term we have

P b (z) = P a (z a ) 0 0 0 + P b (z)g(z)g(z) P b (z) (q a (z a )g b (z)) 2
Hence, with [START_REF] Scardovi | Synchronization in networks of identical linear systems[END_REF], it yields

v P b (z) ∂f ∂z (z)v = v a -v a Sa(z) qa(za) P (z) ∂fa ∂za (z a ) + ∂ga ∂za (z a )z b g a (z a ) ∂f b ∂za (z a , z b ) ∂f b ∂z b (z a , z b ) v a -Sa(z) qa(za) v a = v a P a (z a ) ∂f a ∂z a (z a )v a + z b v a P a (z a ) ∂g a ∂z a (z a )v a - η α a (z a )q a (z a ) ∂U a ∂z a (z a )v a 2 - z b q a (z a ) v a P a (z a )g(z a ) ∂q a ∂z a (z a )
Hence, we get Let η be a positive real number such that ρ a ≤ 2η α a (z a )q a (z a )

v L f P b (z)v = v a L fa P a (z a )v a - 2η α a (z a )q a (z a ) ∂U a ∂z a ( z 
, ∀z a ∈ C a .

Using [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] in Assumption 1 and (22) in Assumption 2, it follows that for all z in C b and all v in R na+1 v P b (z a )g(z) = 0

⇒ v d f P b (z)v + 2v P b (z) ∂f ∂x (z)v ≤ -v Q a v.
Employing Finsler theorem and the fact that C b is a compact set, it is possible to show that this implies the existence of a positive real number ρ b such that for all z in C b

L f P (z) -ρ b ∂U b ∂z (z) ∂U b ∂z (z) ≤ -Q b . ( 25 
)
where Q b is a symmetric positive definite matrix.

To finish the proof it remains to show that the metric is invariant along g with an appropriate control law. Note that if q b (z) = q a (z a )g b (z) then it follows that this function is also non-vanishing. Moreover, we have 

Lemma 1 : 1 0∆

 11 If the communication graph is connected then there exist sufficiently small c 1 and µ > 0 such that A(c 1 ) + A(c 1 ) ≤ -µI With this lemma in hand, we consider now the candidate Lyapunov function V (e) = e P N e , where P N = (I N -1 ⊗P ). Note that along the solution, the time derivative of this function satisfies : ˙ V (e) = 2e P N (z, e, s)ds + (A(c 1 ) ⊗ GG P ) e . Note that we have P N ∆(z, e, s) = Diag P ∂f ∂z (z -se 2 ), . . . , P ∂f ∂z (z -se N ) , and 2e (I N -1 ⊗ P )(A(c 1 ) ⊗ GG P )e = e ([A(c 1 ) + A(c 1 ) ] ⊗ P GG P )e ≤ -e (µI N -1 ⊗ P GG P )e . Hence, we get ˙ V (e) ≤ s 0 e M (e, z, s)e ds, where M is the (N -1)n × (N -1)n matrix defined as M (e, z, s) = Diag {M 2 (e, z, s), . . . , M N (e, z, s)} , with, for i = 2, . . . , N M i (e, z, s) = P ∂f ∂z (z -se i ) + ∂f ∂z (z -se i ) P -2 µP GG P.

a )v a 2 +

 2 z b v a d ga P a (z a ) + P a (z a ) ∂g a ∂z a (z a ) -2z b v a P a (z a ) g(z a ) q a (z a )∂q a ∂z a (z a ) v a .

PP 2 B1 1 2 .

 22 (z) q a (z a ) 2 .However, since we haved g P b (z) = ∂qa ∂za (z a ) Sa(z) qa(za) + Sa(z) qa(za) ∂qa ∂za (z a ) ∂qa ∂za (z a ) ∂qa ∂za (z a ) 0 and P b (z) q a (z a ) b (z) q a (z a ) 2 = ∂qa ∂za (z a ) Sa(z) qa(za) + Sa(z) qa(za) ∂qa ∂za (z a ) ∂qa ∂za (z a ) ∂qa ∂za (z a ) 0then the claim holds. . Illustrative exampleAs an illustrative example, consider the case in which the vector fields f and g are given byf (z) =   -z a1 + sin(z a2 ) cos(z a1 ) + z a2 [2 + sin(z a1 )]z b 0This system may be rewritten with z a = (z a1 , z a2 ) asża = f a (z a ) + g a (z a )z b , żb = u with f a (z a ) = -z a1 + sin(z a2 ) cos(z a1 ) + z a2 0 , g a (z a ) = 0 2 + sin(z a1 )Consider the matrix P a = 2 Note that if we consider U a (z a ) = z a1 + 2z a2 , then equation (19) is satisfied with α a = 1 2+sin(za1) . Moreover, note that we have v ∂Ua ∂za (z a ) = 0 ⇔ v 1 + 2v 2 = 0. Moreover, we have -2 1 P a ∂f a ∂z a (z a ) -2 1 = -3 -2 ∂f a1 ∂z a1 + ∂f a1 ∂z a2 = -3.
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[-2(-1 + sin(z a2 ) sin(z a1 )) -cos(z a1 ) cos(z a2 ) + 1] = -3.

[3 -sin(z a2 ) sin(z a1 ) -cos(z a1 -z a2 )]

≤ -3

The function ∂fa ∂za (z a ) being periodic in z a1 and z a2 we can assume that z a1 and z a2 are in a compact subset denoted C a . This implies employing Finsler Lemma that there exists ρ a and Q a such that inequality [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] holds. Consequently, the z a subsystem satisfies Assumption 1. Finally note that Assumption 2 is also trivially satisfied by taking q a (z a ) = 2+sin(z a1 ). From Theorem 4, it implies that there exist positive real numbers ρ b and η such that with

with α(z) = 2 + sin(z a1 ), equations ( 9) and ( 10) are satisfied. Hence from Theorem 2, the control law given in [START_REF] Isidori | Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory[END_REF] solves the local exponential synchronization problem for the N identical systems that exchange information via any undirected communication graph G, which is connected.

VI. CONCLUSION

In this paper, based on recent results in [START_REF] Andrieu | Transverse exponential stability and applications[END_REF], we have presented necessary and sufficient conditions for the solvability of local exponential synchronization of N identical affine nonlinear systems through a distributed control law. In particular, we have shown that the necessary condition is linked to the infinitesimal stabilizability of the individual system and is independent of the network topology. The existence of a symmetric covariant tensor of order two, as a result of the infinitesimal stabilizability, has allowed us to design a distributed synchronizing control law. When the tensor and when the controlled vector field g are both constant it is shown that global exponential synchronization may be achieved. Finally, a recursive computation of the tensor has been also discussed.

APPENDIX

A. Proof of Lemma 1

The matrix L being a balanced Laplacian matrix is positive semi-definite and its eigenvalues are real and satisfy 0 = λ 1 ≤ λ 2 ≤ . . . ≤ λ N . Consequently, the principal sub-matrix L 2:N,2:N of L is also symmetric positive semidefinite (by the Cauchy's interlacing theorem). Moreover, by Kirchhoff's theorem, the matrix L 2:N,2:N , which is a minor of the Laplacian, has a determinant strictly larger than 0 since the graph is connected. Hence, L 2:N,2:N is positive definite. Consequently, there exists c 1 sufficiently small such that A(c 1 ) is negative definite.