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Some results on exponential synchronization of
nonlinear systems (long version)

Vincent Andrieu, Bayu Jayawardhana, Sophie Tarbouriech

Abstract—Based on recent works on transverse exponential
stability, we establish some necessary and sufficient conditions
for the existence of a (locally) exponential synchronizing control
law. We show that the existence of a structured synchronizer
is equivalent to the existence of a stabilizer for the individual
linearized systems (on the synchronization manifold) by a linear
state feedback. This, in turn, is also equivalent to the existence
of a symmetric covariant tensor field, which satisfies a Control
Matrix Function inequality. Based on this result, we provide the
construction of such synchronizer via backstepping approaches.
In some particular cases, we show how global exponential
synchronization may be obtained.

I. INTRODUCTION

Controlled synchronization, as a coordinated control prob-
lem of a group of autonomous systems, has been regarded as
one of important group behaviors. It has found its relevance in
many engineering applications, such as, the distributed control
of (mobile) robotic systems, the control and reconfiguration of
devices in the context of internet-of-things, and the synchro-
nization of autonomous vehicles (see, for example, [15]).

For linear systems, the solvability of this problem and, as
well as, the design of controller, have been thoroughly studied
in literature. To name a few, we refer to the classical work on
the nonlinear Goodwin oscillators [12], to the synchronization
of linear systems in [24], [22] and to the recent works in
nonlinear systems [20], [10], [9], [8], [21]. For linear systems,
the solvability of synchronization problem reduces to the
solvability of stabilization of individual systems by either
an output or state feedback. It has recently been established
in [24] that for linear systems, the solvability of the output
synchronization problem is equivalent to the existence of an
internal model, which is a well-known concept in the output
regulation theory.

The generalization of these results to the nonlinear setting
has appeared in the literature (see, for example, [16], [7],
[17], [14], [20], [10], [9], [8], [21], [13]). In these works,
the synchronization of nonlinear systems with a fixed network
topology can be solved under various different sufficient
conditions.

For instance, the application of passivity theory plays a key
role in [7], [17], [20], [8], [21], [13]. By using the input/output
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passivity property, the synchronization control law in these
works can simply be given by the relative output measurement.
Another approach for synchronizing nonlinear systems is by
using output regulation theory as pursued in [14], [10], [16].
In these papers, the synchronization problem is reformulated
as an output regulation problem where the output of each
system has to track an exogeneous signal driven by a common
exosystem and the resulting synchronization control law is
again given by relative output measurement. Lastly, another
synchronization approach that has gained interest in recent
years is via incremental stability [5] or other related notions,
such as, convergent systems [16]. If we restrict ourselves to the
class of incremental ISS, as discussed in [5], the synchronizer
can again be based on the relative output/state measurement.

Despite assuming a fixed network topology, necessary and
sufficient condition for the solvability of synchronization prob-
lem of nonlinear systems is not yet established. Therefore,
one of our main contributions of this paper is the charac-
terization of controlled synchronization for general nonlinear
systems with fixed network topology. Using recent results
on the transverse exponential contraction, we establish some
necessary and sufficient conditions for the solvability of a
(locally) exponential synchronization. It extends the work in
[2] where only two interconnected systems are discussed. We
show that a necessary condition for achieving synchronization
is the existence of a symmetric covariant tensor field of order
two whose Lie derivative has to satisfy a Control Matrix
Function (CMF) inequality, which is similar to the Control
Lyapunov Function and detailed later in Section III.

This paper extends our preliminary work presented in [4].
In particular, we provide detailed proofs for all main results
(which were exempted from the aforementioned paper) and
additionally, we present the backstepping approach that allows
us to construct a CMF-based synchronizer, as well as, the
extension of the local synchronization result to the global one
for a specific case.

The paper is organized as follows. We present the problem
formulation of synchronization in Section II. In Section III,
we present our first main results on necessary conditions to
the solvability of the synchronization problem. Some sufficient
conditions for local or global synchronization are given in
Section IV. A constructive synchronizer design is presented
in Section V, where a backstepping procedure is given for
designing a CMF-based synchronizing control law.

Notation. The vector of all ones with a dimension N is
denoted by 1N . We denote the identity matrix of dimension n
by In or I when no confusion is possible. Given M1, . . . ,MN
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square matrices, diag{M1, . . . ,MN} is the matrix defined as

diag{M1, . . . ,MN} =

M1

. . .
MN

 .
Given a vector field f on Rn and a covariant two tensor P :
Rn → Rm×m, P is said to have a derivative along f denoted
dfP if the following limit exists

dfP (z) = lim
h→0

P (Z(z, h))− P (z)

h
, (1)

where Z(z, ·) is the flow of the vector field f with an initial
state z in Rn. In that case and, when m = n and f is C1 LfP
is the Lie derivative of the tensor along f which is defined as

LfP (z) = dfP (z) + P (x)
∂f

∂z
(z) +

∂f

∂z
(z)>P (z) . (2)

II. PROBLEM DEFINITION

A. System description and communication topology

In this note, we consider the problem of synchronizing
N identical nonlinear systems with N ≥ 2. For every
i = 1, . . . , N , the i-th system Σi is described by

ẋi = f(xi) + g(xi)ui , i = 1, . . . , N (3)

where xi ∈ Rn, ui ∈ Rp and the functions f and g
are assumed to be C2. In this setting, all systems has the
same drift vector field f and the same control vector field
g : Rn → Rn×p, but not the same controls in Rp. For
simplicity of notation, we denote the complete state variables
by x =

[
x>1 . . . x

>
N

]>
in RNn.

The synchronization manifold D, where the state variables
of different systems agree with each other, is defined by

D = {(x1, . . . , xN ) ∈ RNn | x1 = x2 = · · · = xN}.

For every x in RNn, we denote the Euclidean distance to the
set D by |x|D.

The communication graph G, which is used for synchroniz-
ing the state through distributed control ui, i = 1, . . . , N ,
is assumed to be an undirected graph and is defined by
G = (V, E), where V is the set of N nodes (where the i-
th node is associated to the system Σi) and E ⊂ V×V is a set
of M edges that define the pairs of communicating systems.
Moreover we assume that the graph G is connected.

Let us, for every edge k in G connecting node i to node
j, label one end (e.g., the node i) by a positive sign and the
other end (e.g., the node j) by a negative sign. The incidence
matrix D that corresponds to G is an N ×M matrix such that

di,k =

 +1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k
0 otherwise

Using D, the Laplacian matrix L can be given by L = DD>

whose kernel, by the connectedness of G, is spanned by 1N .
We will need the following lemma on the property of L in
some results.

Lemma 1: Let L =

[
L11 L1,2:N

L>1,2:N L2:N,2:N

]
be a non-zero

balanced Laplacian matrix associated to an undirected graph
G where L11 is a scalar. Then, the eigenvalues of the
(N − 1) × (N − 1) matrix L̄ := L2:N,2:N − 1N−1L1,2:N

are the same as the non-zero eigenvalues of L with the same
multiplicity. Moreover, if the graph is connected then −L̄ is
Hurwitz.
The proof of Lemma 1 can be found in Appendix A.

B. Synchronization problem formulation

Using the description of the interconnected systems via G,
the state synchronization control problem is defined as follows.

Definition 1: The control laws ui = φi(x), i = 1 . . . , N
solve the local uniform exponential synchronization problem
for (3) if the following conditions hold:

1) For all non-communicating pair (i, j) (i.e., (i, j) /∈ E),

∂φi
∂xj

(x) =
∂φj
∂xi

(x) = 0 , ∀x ∈ RNn;

2) For all x ∈ D, φ(x) = 0 (i.e., φ is zero on D); and
3) The manifold D of the closed-loop system

ẋi = f(xi) + g(xi)φi(x), i = 1, . . . , N (4)

is uniformly exponentially stable, i.e., there exist positive
constants r, k and λ > 0 such that for all x in RNn
satisfying |x|D < r,

|X(x, t)|D ≤ k exp(−λt) |x|D, (5)

where X(x, t) denotes the solution initiated from x,
holds for all t in the time domain of existence of
solution.

When r = ∞, it is called the global uniform exponential
synchronization problem. 4

In this definition, the condition 1) implies that the solution
ui is a distributed control law that requires only a local state
measurement from its neighbors in the graph G.

An important feature of our study is that we focus on
exponential stabilization of the synchronizing manifold. This
allows us to rely on the study developed in [2] (or [3]) in
which an infinitesimal characterization of exponential stability
of a transverse manifold is given. As it will be shown in the
following section this allows us to formalize some necessary
and sufficient conditions in terms of matrix functions ensuring
the existence of a synchronizing control law.

III. NECESSARY CONDITIONS

A. Infinitesimal stabilizability conditions

In [2], a first attempt has been made to give necessary
conditions for the existence of an exponentially synchronizing
control law for only two agents. In [3], the same problem has
been addressed for N agents but without any communication
constraints (all agents can communicate with all others). In
both cases, it is shown that assuming some bounds on deriva-
tives of the vector fields and assuming that the synchronizing
control law is invariant by permutation of agents, the following
two properties are necessary conditions.
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IS Infinitesimal stabilizability. The couple (f, g) is such
that the n-dimensional manifold {z̃ = 0} of the transver-
sally linear system

˙̃z =
∂f

∂z
(z)z̃ + g(z)ũ (6a)

ż = f(z) (6b)

with z̃ in Rn and z in Rn is stabilizable by a state
feedback that is linear in z̃ (i.e., ũ = h(z)z̃ for some
function h : Rn → Rp×n).

CMF Control Matrix Function. For all positive definite
matrix Q ∈ Rn×n, there exist a continuous function
P : Rn → Rn×n, which values are symmetric positive
definite matrices and strictly positive real numbers p and
p such that

p In ≤ P (z) ≤ p In (7)

holds for all z ∈ Rn, and the inequality (see (1) and (2))

v>LfP (z)v ≤ −v>Qv (8)

holds for all (v, z) in Rn×Rn satisfying v>P (z)g(z) =
0.

An important feature of properties IS and CMF comes
from the fact that they are properties of each individual
agent, independent of the network topology. The first one is a
local stabilizability property. The second one establishes that
there exists a symmetric covariant tensor field of order two
denoted by P whose Lie derivative satisfies a certain inequality
in some specific directions. This type of condition can be
related to the notion of control Lyapunov function, which is
a characterization of stabilizability as studied by Artstein in
[6] or Sontag in [23]. This property can be regarded as an
Artstein like condition. The dual of the CMF property has
been thoroughly studied in [18] when dealing with an observer
design ([18, Eq. (8)], see also [2] or [1]).

B. Necessity of IS and CMF for exponential synchronization

We show that properties IS and CMF are still necessary
conditions if one considers a network of agents with a com-
munication graph G as given in II-A. Hence, as this is already
the case for linear system, we recover the paradigm, which
establishes that a necessary condition for synchronization is a
stabilizability property for each individual agent.

Theorem 1: Consider the interconnected systems in (3) with
the communication graph G and assume that there exists a con-
trol law u = φ(x) where φ(x) =

[
φ>1 (x) . . . φ>N (x)

]>
in

RNp that solves the local uniform exponential synchronization
for (3). Assume moreover that g is bounded, f , g and the φi’s
have bounded first and second derivatives and the closed-loop
system is complete. Then properties IS and CMF hold.
Note that this theorem is a refinement of the result which is
written in [4] since we have removed an assumption related
to the structure of the control law.

C. Proof of Theorem 1

Proof : The first part of the proof is to show that the syn-
chronizing manifold satisfies a transverse uniform exponential
stability property. This allows us to use tools developed in [3]
and show a stabilizability property for an Nn-dimensional.
Employing some kind of Lyapunov projection, we are able
to obtain the stabilizability properties for the n-dimensional
transversally linear system (6a).

Let e =
[
e>2 e>3 . . . e>N

]>
with ei = xi − x1, i =

2, . . . N , and z = x1. The closed-loop system (3) with the
control law φ is given by

ė = F (e, z) , ż = G(e, z) (9)

with e in R(N−1)n, z in Rn and where

F =
[
F>2 F>3 . . . F>N

]>
(10)

Fi(e, z) = f(z + ei)− f(z) (11)
+ g(z + ei)φ̄i(e, z)− g(x1)φ̄1(e, z) ,

G(e, z) = f(z) + g(z)φ̄1(e, z) , (12)

where we have used the notation

φ̄i(e, z) = φi(z, z + e2, . . . , z + eN ). (13)

Note that we have

|e|2 =

N∑
i=2

|xi − x1|2 ,

≤ (N − 1)|x|2D , (14)

and

|x|2D = min
z∈Rn

N∑
i=1

|z − xi|2

≤ |e|2 + (N − 1)

N∑
i=1

∣∣∣∣x1 − xi
N

∣∣∣∣2 (15)

≤
(

1 +
N − 1

N2

)
|e|2. (16)

Hence, if we denote E(e, z, t) the e components of the
solution to (9), then (5) implies for all (e, z) in R(N−1)n×Rn

|E(e, z, t)|

≤

√
(N − 1)

(
1 +

N − 1

N2

)
k exp(−λt) |e|.

It follows that the manifold e = 0 is locally uniformly (in z)
exponentially stable for (9). In other words, property TULES-
NL (see Section C in the Appendix) is satisfied. Employing the
assumptions on the bounds on f , g, φ and its derivatives, we
conclude with [3, Prop. 1] that the so-called Property ULMTE
is satisfied (see Section C in the Appendix for the definition).
Hence there exists a C1 function with matrix valued PN :
Rn → R(N−1)n×(N−1)n and a positive definite matrix QN in
R(N−1)n×(N−1)n such that for all z in Rn

dfPN (z) + PN (z)
∂F

∂e
(0, z) +

∂F

∂e
(0, z)> ≤ −QN , (17)
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and
p
N

I ≤ PN (z) ≤ pN I . (18)

For each z, let us decompose

PN (z) =

[
S(z) T (z)
T (z)> R(z)

]
,

with S taking value in Rn×n and T and R of appropriate
dimensions.

Consider the C1 matrix function P : Rn → Rn×n defined
as follows.

P (z) =
[
I −T (z)R(z)−1

]
PN (z)

[
I

−R(z)−1T (z)>

]
,

= S(z)− T (z)R(z)−1T (z)> .

We will show that this matrix function P satisfies all assump-
tions of property CMF. First of all, we show that P satisfies
(7). Pre- and post- multiplying equation (18) by the two

matrices
[
I −T (z)R(z)−1

]
and

[
I

−R(z)−1T (z)>

]
, yields

p
N

(I +T (z)R(z)−2T (z)>) ≤ P (z)

≤ pN (I +T (z)R(z)−2T (z)>).

On another hand,

|T (z)T (z)>| =
∣∣∣∣[0 I

]
P (z)

[
I 0
0 0

]
P (z)

[
0
I

]∣∣∣∣ ≤ p2
N .

Moreover,
p
N

I ≤ R(z) ≤ pN I .

Which gives by pre and post multiplying by R(z)−
1
2

R(z)−1p
N
≤ I ≤ pNR(z)−1.

Consequently, it yields equation (7) since we have

p
N

I ≤ P (z) ≤ pN

(
1 +

p2
N

p2
N

)
I .

We now show that (8) holds. Note that we have

dfP (z) = dfS(z)− dfT (z)R(z)−1T (z)>

+ T (z)R(z)−1dfR(z)R(z)−1T (z)>

− T (z)R(z)−1dfT (z)>,

which gives

dfP (z) =
[
I −T (z)R(z)−1

]
dfPN (z)

[
I

−R(z)−1T (z)>

]
.

(19)
Note now that[

I −T (z)R(z)−1
]
PN (z)

∂F

∂ẽ
(0, z)

[
I

−R(z)−1T (z)>

]
=
[
P (z) 0

] ∂F
∂ẽ

(0, z)

[
I

−R(z)−1T (z)>

]
= P (z)

∂F2

∂ẽ
(0, z)

[
I

−R(z)−1T (z)>

] (20)

On another hand, by the definition of φ̄ in (13) and the
second point of Definition 1, it follows that φ̄i(0, z) = 0. This
implies that for every i = 2, . . . , N ,

∂Fi
∂ẽi

(0, z) =
∂f

∂z
(z)

+ g(z)

[
∂φ̄i
∂ẽi

(0, z)− ∂φ̄1

∂ẽi
(0, z)

]
(21)

and for all j 6= i,

∂Fi
∂ẽj

(0, z) = g(z)

[
∂φ̄i
∂ẽj

(0, z)− ∂φ̄1

∂ẽj
(0, z)

]
. (22)

Consequently,

∂F2

∂ẽ
(0, z)

[
I

−R(z)−1T (z)>

]
=
∂f

∂z
(z) + g(z)h(z) (23)

where

h(z) =
[
∂φ̄2

∂ẽ2
(z)− ∂φ̄1

∂ẽ2
(z) . . . ∂φ̄2

∂ẽN
(z)− ∂φ̄1

∂ẽN
(z)
]

×
[

I
−R(z)−1T (z)>

]
. (24)

Consequently, pre- and post- multiplying equation (17) by the

two matrices
[
I −T (z)R(z)−1

]
and

[
I

−R(z)−1T (z)>

]
, and

employing equations (19), (20), (23) and (24) yield a positive
definite matrix Q such that

dfP (z) + P (z)

[
∂f

∂x
(z) + g(z)h(z)

]
+

[
∂f

∂x
(z) + g(z)h(z)

]>
P (z) ≤ −Q. (25)

From this equation, (8) is satisfied and Property CMF holds.
Moreover (25) implies that property ULMTE introduced in

[3] (see Appendix C) is satisfied for the system

ż = F̄ (e, z) , ż = Ḡ(e, z),

where

F̄ (e, z) = f(e+ z)− f(z) + g(z)h(z)e , Ḡ(e, z) = f(z).

Hence, employing Proposition 2 in the appendix, one can con-
clude that property IS is satisfied with the control ũ = h(z)z̃.

2

In the following section, we discuss the possibility to design
an exponential synchronizing control law based on these
necessary conditions.

IV. SUFFICIENT CONDITION

A. Sufficient conditions for local exponential synchronization

The interest of the Property CMF given in Subsection III-A
is to use the symmetric covariant tensor P in the design
of a local synchronizing control law. Indeed, following one
of the main results in [3], we get the following sufficient
condition for the solvability of (local) uniform exponential
synchronization problem. The first assumption is that, up to a
scaling factor, the control vector field g is a gradient field
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with P as a Riemannian metric (see also [11] for similar
integrability assumption). The second one is related to the
CMF property.

Theorem 2 (Local sufficient condition): Assume that g is
bounded and that f and g have bounded first and second
derivatives. Assume that there exists a C2 function P : Rn →
Rn×n which values are symmetric positive definite matrices
and with a bounded derivative that satisfies the following two
conditions.
1. There exist a C2 function U : Rn → R which has bounded

first and second derivatives, and a C1 function α : Rn →
Rp which has bounded first and second derivatives such
that

∂U

∂z
(z)> = P (z)g(z)α(z) , (26)

holds for all z in Rn; and
2. There exist a symmetric positive definite matrix Q and

positive constants p, p and ρ > 0 such that (7) holds and

LfP (z)− ρ∂U
∂z

(z)>
∂U

∂z
(z) ≤ −Q , (27)

hold for all z in Rn.
Then, given a connected graph G with associated Laplacian
matrix L = (Lij), there exists a constant ` such that the control
law u = φ(x) with φ =

[
φ>1 . . . φ>N

]>
given by

φi(x) = −`α(xi)

N∑
j=1

LijU(xj) (28)

with ` ≥ ` solves the local uniform exponential synchroniza-
tion of (3).

Remark 1: Assumption (27) is stronger than the necessary
condition CMF. Note however, that employing some variation
on Finsler Lemma (see [3] for instance) it can be shown that
these assumptions are equivalent when x remains in a compact
set.

Remark 2: Note that for all x = 1N ⊗ z = (z, . . . , z) in D
and for all (i, j) with i 6= j

∂φi
∂xj

(x) = −`α(z)Lij
∂U

∂z
(z). (29)

Hence, for all x = 1N ⊗ z in D, we get

∂φ

∂x
(x) = −`L⊗ α(z)

∂U

∂z
(z) . (30)

Proof : First of all, note that the control law φ satisfies the
condition 1) and 2) in Definition 1. Indeed, for all x and all
(i, j) with i 6= j

∂φi
∂xj

(x) = −`α(xi)Lij
∂U

∂z
(xj) .

If (i, j) /∈ E , it yields Lij = 0 and consequently ∂φi

∂xj
(x) = 0.

Moreover, when x is in D, i.e., x = 1N ⊗ z = (z, . . . , z)
for all i

φi(x) = −`α(z)

 N∑
j=1

Lij

U(z) = 0.

It remains to show that condition 3) of Definition 1 holds.
More precisely, we need to prove that the manifold D is
locally exponentially stable along the solution of the closed-
loop system.

As in the proof of Theorem 1, let us denote e =
(e2, . . . , eN ) with ei = x1 − xi and z = x1. Note that the
closed-loop system may be rewritten as in (9) with the vector
fields F and G as defined in (10)–(12) with φ as the control
law.

The rest of the proof is to apply [3, Proposition 3]. For
this purpose, we need to show that for closed-loop system
(10)–(12) the property ULMTE introduced in [3] and given in
Section C is satisfied.

By the assumption on the graph being connected
and together with Lemma 1, we have that the matrix
A = −(L2:N,2:N − 1N−1L1,2:N ) is Hurwitz. Let S in
R(N−1)×(N−1) be a symmetric positive definite matrix solu-
tion to the Lyapunov equation

SA+A>S ≤ −νS (31)

where ν is a positive real number.
Consider the C1 function PN : Rn → R(N−1)n×(N−1)n

defined as
PN (z) = S ⊗ P (z).

Our aim is to show that the closed loop system satisfies
property ULMTE given in Section C. First of all, note that
S being symmetric positive definite, with (7), it yields the
existence of positive real numbers p

N
, pN such that

p
N

IN−1 ≤ PN (z) ≤ pN IN−1 .

Hence, equation (53) is satisfied.
Note that we have G(0, z) = f(z). Moreover we have

dG(0,z)PN (z) = S ⊗ dfP (z).

Note that with properties (21), (22) and (30), it follows that

∂F

∂ẽ
(0, z) = IN−1⊗

∂f

∂z
(z)

+ `A⊗
(
α(z)g(z)

∂U

∂z
(z)

)
. (32)

Hence,

dG(0,z)PN (z) + PN (z)
∂F

∂ẽ
(0, z) +

∂F

∂ẽ
(0, z)>PN (z)

= S ⊗
(
dfP (z) + P (z)

∂f

∂z
(z) +

∂f

∂z
(z)>P (z)

)
+`(SA+A>S)⊗

(
∂U

∂z
(z)>

∂U

∂z
(z)

)
.

With (31) and (27) this implies that

dfPN (z) + PN (z)
∂F

∂ẽ
(0, z) +

∂F

∂ẽ
(0, z)>PN (z)

≤ S ⊗
(
−Q+ (ρ− `ν)

∂U

∂z
(z)>

∂U

∂z
(z)

)
.

Hence, by choosing ` ≥ ρ
ν , inequality (52) holds and con-

sequently Property ULMTE holds. The last part of the proof
is to make sure that the vector field F has bounded first and
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second derivatives and that the vector field G has bounded first
derivative. Note that by employing the bounds on the functions
P , f , g, α and their derivatives, the result immediately
follows from Proposition 3 in Section C. Indeed, this implies
that Property TULES-NL holds and consequently, e = 0 is
(locally) exponentially stable manifold for system (10)–(12)
in closed loop with the control (28). With inequalities (14)
and (16), it implies that inequality (5) holds for r sufficiently
small. 2

B. Sufficient conditions for global exponential synchronization

Note that in [3] with an extra assumption related to the
metric (the level sets of U are totally geodesic sets with respect
to the Riemannian metric obtained from P ), it is shown that
global synchronization may be achieved when considering
only two agents which are connected. It is still an open
question to know if global synchronization may be achieved
in the general nonlinear context with more than two agents.
However in the particular case in which the matrix P (z) and
the vector field g are constant, then global synchronization
may be achieved as this is shown in the following theorem.

Theorem 3 (Global sufficient condition): Assume that
g(z) = G and there exists a symmetric positive definite matrix
P in Rn×n, a symmetric positive definite matrix Q and ρ > 0
such that

P
∂f

∂z
(z) +

∂f

∂z
(z)>P − ρPGG>P ≤ −Q . (33)

Assume moreover that the graph is connected with Laplacian
matrix L. Then there exist constants ` and positive real
numbers c1, . . . , cN such that the control law u = φ(x) with
φ =

[
φ>1 . . . φ>N

]>
given by

φi(x) = −` ci
N∑
j=1

LijG
>Pxj (34)

with ` ≥ `, solves the global uniform exponential synchro-
nization for (3).

Proof : Let cj = 1 for j = 2, . . . , N . Hence only c1 is different
from 1 and remains to be selected. As in the proof of Theorem
1, let us denote e = (e2, . . . , eN ) with ei = x1 − xi and
z = x1. Note that for i = 2, . . . , N , we have along the solution
of the system (3) with u defined in (34),

ėi = f(z)− ` c1
N∑
j=1

L1jGG
>Pxj

− f(z + ei) + `

N∑
j=1

LijGG
>Pxj .

Note that L being a Laplacian, we have for all i in
[1, N ] the equality

∑N
j=1 Lij = 0. Consequently, we can

add the term `c1
∑N
j=1 L1jGG

>Px1 and substract the term

`
∑N
j=1 LijGG

>Px1 in the preceding equation above so that
for i = 2, . . . , N

ėi = f(z)− ` c1
N∑
j=1

L1jGG
>P (xj − x1)

− f(z + ei) + `

N∑
j=1

LijGG
>P (xj − x1),

= f(z)− f(z + ei)− `
N∑
j=2

(Lij − c1L1j)GG
>Pej .

One can check that these equations can be written compactly
as

ė =

[∫ 1

0

∆(z, e, s)ds+ ` (A(c1)⊗GG>P )

]
e,

with A(c1) is matrix in R(N−1)×(N−1), which depends on the
parameter c1 and is obtained from the Laplacian as :

A(c1) = − [L2:N,2:N − c1L1,2:N1N−1] ,

where L =

[
L11 L1,2:N

L>1,2:N L2:N,2:N

]
and ∆ is the (N − 1)n × n

matrix valued function defined as

∆(z, e, s) = Diag

{
∂f

∂z
(z − se2), . . . ,

∂f

∂z
(z − seN )

}
.

The following Lemma shows that by selecting c1 sufficiently
small the matrix A satisfies the following property. Its proof
is given in the Appendix.

Lemma 2: If the communication graph is connected then
there exist sufficiently small c1 and µ > 0 such that

A(c1) +A(c1)> ≤ −µI

With this lemma in hand, we consider now the candidate
Lyapunov function defined as

V (e) = e>PNe ,

where PN is the (N − 1)n × (N − 1)n symmetric positive
definite matrix defined as :

PN = (IN−1 ⊗ P ) .

Note that along the solution, the time derivative of this
function satisfies :

˙︷ ︷
V (e) = 2e>PN

[∫ 1

0

∆(z, e, s)ds+ ` (A(c1)⊗GG>P )

]
e .

Note that we have

PN∆(z, e, s)

= Diag

{
P
∂f

∂z
(z − se2), . . . , P

∂f

∂z
(z − seN )

}
,

and

2e>(IN−1 ⊗ P )(A(c1)⊗GG>P )e

= 2e>(A(c1)⊗ PGG>P )e

= e>([A(c1) +A(c1)>]⊗ PGG>P )e

≤ −e>(µIN−1 ⊗ PGG>P )e .
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Hence, we get

˙︷ ︷
V (e) ≤

∫ s

0

e>M(e, z, s)e ds ,

where M is the (N − 1)n× (N − 1)n matrix defined as

M(e, z, s) = Diag {M2(e, z, s), . . . ,MN (e, z, s)} ,

with, for i = 2, . . . , N

Mi(e, z, s) = P
∂f

∂z
(z − sei) +

∂f

∂z
(z − sei)>P

− 2`µPGG>P.

Note that by taking ` sufficiently large, with (33) this yields
Mi(e, z, s) ≤ −Q. This immediately implies that

˙︷ ︷
V (e) ≤ −e> (IN−1 ⊗Q) e .

This ensures exponential convergence of e to zero on the time
of existence of the solution. With (14) and (16), this yields
global exponential synchronization of the closed-loop system.

2

In the following section, we show that the property CMF
required to design a distributed synchronizing control law can
be obtained for a large class of nonlinear systems. This is done
via backstepping design.

V. CONSTRUCTION OF AN ADMISSIBLE TENSOR VIA
BACKSTEPPING

A. Adding derivative (or backstepping)

As proposed in Theorem 2, a distributed synchronizing
control law can be designed using a symmetric covariant tensor
field of order 2, which satisfies (8). Given a general nonlinear
system, the construction of such a matrix function P may
be a hard task. In [19], a construction of the function P
for observer based on the integration of a Riccati equation
is introduced. Similar approach could be used in our syn-
chronization problem. Note however that in our context an
integrability condition (i.e. equation (26)) has to be satisfied
by the function P . This constraint may be difficult to address
when considering a Riccati equation approach.

In the following we present a constructive design of such
a matrix P that resembles the backstepping method. This
approach can be related to [26], [25] in which a metric is
also constructed iteratively. We note that one of the difficulty
we have here is that we need to propagate the integrability
property given in equation (26).

For outlining the backstepping steps for designing P , we
consider the case in which the vector fields (f, g) can be
decomposed as follows

f(z) =

[
fa(za) + ga(za)zb

fb(za, zb)

]
,

and,

g(z) =

[
0

gb(z)

]
, 0 < g

b
≤ gb(z) ≤ gb

with z =
[
z>a zb

]>
, za in Rna and zb in R. In other words,

ża = fa(za) + ga(za)zb, żb = fb(z) + gb(z)u. (35)

Let Ca be a compact subset of Rna . As in the standard
backstepping approach, we make the following assumptions
on the za-subsystem where zb is treated as a control input to
this subsystem.

Assumption 1 (za-Synchronizability): Assume that there
exists a C∞ function Pa : Rna → Rna×na that satisfies the
following conditions.
1. There exist a C∞ function Ua : Rna → R and a C∞

function αa : Rna → R such that

∂Ua
∂za

(za)> = αa(za)Pa(za)ga(za) (36)

holds for all za in Ca;
2. There exist a symmetric positive definite matrix Qa and

positive constants p
a
, pa and ρa > 0 such that

p
a

Ina ≤ Pa(za) ≤ pa Ina , ∀za ∈ Rna , (37)

holds and

LfaPa(za)− ρa
∂Ua
∂za

(za)>
∂Ua
∂za

(za) ≤ −Qa , (38)

holds for all za in Ca.
As a comparison to the standard backstepping method

for stabilizing nonlinear systems in the strict-feedback form,
the za-synchronizability conditions above are akin to the
stabilizability condition of the upper subsystem via a control
Lyapunov function. However, for the synchronizer design as
in the present context, we need an additional assumption to
allow the recursive backstepping computation of the tensor P .
Roughly speaking, we need the existence of a mapping qa
such that the metric Pa becomes invariant along the vector
field ga

qa
. In other words, gaqa is a Killing vector field.

Assumption 2: There exists a non-vanishing smooth function
qa : Rna → R such that the metric obtained from Pa on Ca is
invariant along ga(za)

qa(za) . In other words, for all za in Ca

L ga(za)
qa(za)

Pa(za) = 0 . (39)

Similar assumption can be found in [11] in the characteri-
zation of differential passivity.

Based on the Assumptions 1 and 2, we have the follow-
ing theorem on the backstepping method for constructing a
symmetric covariant tensor field Pb of the complete system
(35).

Theorem 4: Assume that the za-subsystem satisfies As-
sumption 1 and Assumption 2 in the compact set Ca with
a na × na symmetric covariant tensor field Pa of order two
and a non-vanishing smooth mapping qa : Rna → R. Then
for all positive real number Mb, the system (35) with the state
variables z = (za, zb) ∈ Rna+1 satisfies the Assumption 1 in
the compact set Ca× [−Mb,Mb] ⊂ Rna+1 with the symmetric
covariant tensor field Pb be given by

Pb(z) =

[
Pa(za) + Sa(z)Sa(z)> Sa(z)qa(za)

Sa(z)>qa(za) qa(za)2

]
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where

Sa(z) =
∂qa
∂za

(za)>zb + ηαa(za)Pa(za)ga(za)

and η is a positive real number. Moreover, there exists a non-
vanishing mapping qb : Rna+1 → R such that Pb is invariant
along g

qb
. In other words, Assumptions 1 and 2 hold for the

complete system (35).
Remark 3: Note that with this theorem, since we propagate

the required property we are able to obtain a synchronizing
control law for any triangular nonlinear system.

Proof : Let Mb be a positive real number and let Cb = Ca ×
[−Mb,Mb]. Let Ub : Rna+1 → R be the function defined by

Ub(za, zb) = ηUa(za) + qa(za)zb .

where η is a positive real number that will be selected later
on. It follows from (36) that for all (za, zb) ∈ Cb, we have

∂Ub
∂z

(z)> =

[
η ∂Ua

∂za
(za)> + ∂qa

∂za
(za)zb

qa(za)

]
=

[
Sa(z)
qa(za)

]
=

1

qa(za)
Pb(z)

[
0
1

]
= αb(z)Pb(z)g(z)

with αb(z) = 1
qa(za)gb(z) . Hence, the first condition in As-

sumption 1 is satisfied.
Consider z in Cb and let v =

[
v>a vb

]>
in Rna+1 be such

that
v>Pb(z)g(z) = 0 . (40)

Note that this implies that

vb = −v>a
Sa(z)

qa(za)
. (41)

In the following, we compute the expression :

v>LfPb(z)v = v>dfPb(z)v + 2v>Pb(z)
∂f

∂z
(z)v .

For the first term, we have

v>dfPb(z)v = v>a dfaPa(za)va + zbv
>
a dgaPa(za)va

+ v>a dfSa(z)Sa(z)>va + 2v>a dfSa(z)qa(za)vb

+ dfa+gazbqa(za)2v2
b

With (41), it yields

v>a dfSa(z)Sa(z)>va + 2v>a dfSa(z)qa(za)vb

+ dfa+gazbqa(za)2v2
b = 0

Hence

v>dfPb(z)v = v>a dfaPa(za)va + zbv
>
a dgaPa(za)va .

On the other hand, for the second term we have

Pb(z) =

[
Pa(za) 0

0 0

]
+
Pb(z)g(z)g(z)>Pb(z)

(qa(za)gb(z))2

Hence, with (40), it yields

v>Pb(z)
∂f

∂z
(z)v =

[
v>a −v>a

Sa(z)
qa(za)

]
P (z)[

∂fa
∂za

(za) + ∂ga
∂za

(za)zb ga(za)
∂fb
∂za

(za, zb)
∂fb
∂zb

(za, zb)

][
va

−Sa(z)>

qa(za) va

]
=
[
v>a Pa(za) 0

][
∂fa
∂za

(za)va + ∂ga
∂za

(za)zbva − ga(za)Sa(z)>

qa(za) va
?

]

= v>a Pa(za)
∂fa
∂za

(za)va + zbv
>
a Pa(za)

∂ga
∂za

(za)va

− v>a Pa(za)ga(za)
Sa(z)>

qa(za)
va

= v>a Pa(za)
∂fa
∂za

(za)va + zbv
>
a Pa(za)

∂ga
∂za

(za)va

− η

αa(za)qa(za)

∣∣∣∣∂Ua∂za
(za)va

∣∣∣∣2
− zb
qa(za)

v>a Pa(za)g(za)
∂qa
∂za

(za)

Hence, we get

v>LfPb(z)v = v>a LfaPa(za)va

− 2η

αa(za)qa(za)

∣∣∣∣∂Ua∂za
(za)va

∣∣∣∣2
+ zbv

>
a

[
dgaPa(za) + Pa(za)

∂ga
∂za

(za)

−2zbv
>
a Pa(za)

g(za)

qa(za)

∂qa
∂za

(za)

]
va .

Let η be a positive real number such that

ρa ≤
2η

αa(za)qa(za)
, ∀za ∈ Ca .

Using (38) in Assumption 1 and (39) in Assumption 2, it
follows that for all z in Cb and all v in Rna+1

v>Pb(za)g(z) = 0

⇒ v>dfPb(z)v + 2v>Pb(z)
∂f

∂x
(z)v ≤ −v>Qav.

Employing Finsler theorem and the fact that Cb is a compact
set, it is possible to show that this implies the existence of a
positive real number ρb such that for all z in Cb

LfP (z)− ρb
∂Ub
∂z

(z)>
∂Ub
∂z

(z) ≤ −Qb . (42)

where Qb is a symmetric positive definite matrix.
To finish the proof it remains to show that the metric is

invariant along g with an appropriate control law. Note that if
we take

qb(z) = qa(za)gb(z)

then it follows that this function is also non-vanishing. More-
over, we have

L g
qb
Pb(z) = d g

qb
Pb(z)−

P (z)

qa(za)2

[
0 0

∂qa
∂za

(za) 0

]
−
[
0 ∂qa

∂za
(za)>

0 0

]
P (z)

qa(za)2
.
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However, since we have

dgPb(z) =[
∂qa
∂za

(za)> Sa(z)
qa(za) + Sa(z)>

qa(za)
∂qa
∂za

(za) ∂qa
∂za

(za)>

∂qa
∂za

(za) 0

]
and

Pb(z)

qa(za)2

[
0 0

∂qa
∂za

(za) 0

]
+

[
0 ∂qa

∂za
(za)>

0 0

]
Pb(z)

qa(za)2
=[

∂qa
∂za

(za)> Sa(z)
qa(za) + Sa(z)>

qa(za)
∂qa
∂za

(za) ∂qa
∂za

(za)>

∂qa
∂za

(za) 0

]
then the claim holds. 2

B. Illustrative example

As an illustrative example, consider the case in which the
vector fields f and g are given by

f(z) =

−za1 + sin(za2) cos(za1) + za2

[2 + sin(za1)]zb
0

 ,

g(z) =

0
0
1

 .

This system may be rewritten with za = (za1, za2) as

ża = fa(za) + ga(za)zb , żb = u

with

fa(za) =

[
−za1 + sin(za2) cos(za1) + za2

0

]
,

ga(za) =

[
0

2 + sin(za1)

]
Consider the matrix Pa given as

Pa =

(
2 1
1 2

)
Note that if we consider

Ua(za) = za1 + 2za2 ,

then equation (36) is satisfied with αa = 1
2+sin(za1) . Moreover,

note that we have

v>
∂Ua
∂za

(za) = 0⇔ v1 + 2v2 = 0.

Moreover, we have[
−2 1

]
Pa
∂fa
∂za

(za)

[
−2
1

]
= −3

[
−2

∂fa1

∂za1
+
∂fa1

∂za2

]
= −3.

[−2(−1 + sin(za2) sin(za1))− cos(za1) cos(za2) + 1]

= −3.

[3− sin(za2) sin(za1)− cos(za1 − za2)]

≤ −3

The function ∂fa
∂za

(za) being periodic in za1 and za2 we can
assume that za1 and za2 are in a compact subset denoted Ca.
This implies employing Finsler Lemma that there exists ρa
and Qa such that inequality (38) holds. Consequently, the za
subsystem satisfies Assumption 1.

Finally note that Assumption 2 is also trivially satisfied by
taking qa(za) = 2 + sin(za1).

From Theorem 4, it implies that there exist positive real
numbers ρb and η such that with the functions

U(z) = η(za1 + 2za2) +
zb

2 + sin(za1)

with α(z) = 2 + sin(za1), equations (26) and (27) are
satisfied. Hence from Theorem 2, the control law given in
(34) solves the local exponential synchronization problem for
the N identical systems that exchange information via any
undirected communication graph G, which is connected.

VI. CONCLUSION

In this paper, based on recent results in [3], we have
presented necessary and sufficient conditions for the solv-
ability of local exponential synchronization of N identical
affine nonlinear systems through a distributed control law.
In particular, we have shown that the necessary condition
is linked to the infinitesimal stabilizability of the individual
system and is independent of the network topology. The
existence of a symmetric covariant tensor of order two, as
a result of the infinitesimal stabilizability, has allowed us
to design a distributed synchronizing control law. When the
tensor and when the controlled vector field g are both constant
it is shown that global exponential synchronization may be
achieved. Finally, a recursive computation of the tensor has
been also discussed.

APPENDIX

A. Proof of Lemma 1

From the property of Laplacian matrix, the eigenvalues of
L are real and satisfy 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Let us take
the non-zero eigenvalue ν > 0 of L and its corresponding
eigenvector v in RN . Note that we can decompose

v =

[
va
vb

]
, L =

[
L11 L1,2:N

L>1,2:N L2:N,2:N

]
with va and L11 in R. It follows that

L11va + L1,2:Nvb = νva (43)

L>1,2:Nva + L2:N,2:Nvb = νvb. (44)

Moreover, since 1N is an eigenvector associated to the eigen-
value 0,

L11 + L1,2:N1N−1 = 0 (45)

L>1,2:N + L2:N,2:N1N−1 = 0 (46)

Consider now a vector in RN−1 defined by

ṽ = vb − 1N−1va

Note that ṽ is non zero since v is not colinear to 1N . By
a routine algebraic computation, it follows that this vector
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satisfies

[L2:N,2:N − 1N−1L1,2:N ]ṽ = L2:N,2:Nvb − 1N−1L1,2:Nvb

+[1N−1L1,2:N1N−1 − L2:N,2:N1N−1]va

= νvb − L>1,2:Nva

−1N−1L1,2:Nvb + [−1N−1L11 + L1,2:N ]va

= νṽ.

This shows that ṽ is an eigenvector with the same non-zero
eigenvalue of L. It proves the first claim of the lemma.

Note that the multiplicity of the eigenvalue ν is the same
for both matrices. Also, if the graph is connected, then the
0 eigenvalue of the Laplacian matrix L is of multiplicity 1
and the other eigenvalues are positive and distinct. Hence the
matrix −L̄ is Hurwitz. 2

B. Proof of Lemma 2

The matrix L being a balanced Laplacian matrix is pos-
itive semi-definite and its eigenvalues are real and satisfy
0 = λ1 ≤ λ2 ≤ . . . ≤ λN . Consequently, the principal
sub-matrix L2:N,2:N of L is also symmetric positive semi-
definite (by the Cauchy’s interlacing theorem). Moreover, by
Kirchhoff’s theorem, the matrix L2:N,2:N , which is a minor
of the Laplacian, has a determinant strictly larger than 0 since
the graph is connected. Hence, L2:N,2:N is positive definite.
Consequently, there exists c1 sufficiently small such that A(c1)
is negative definite.

C. Some results from [3]

Throughout this section, we give some of the results of [3].
Hence, we consider a system in the form

ė = F (e, z) , ż = G(e, z) (47)

where e is in Rne , z is in Rnz and the functions F : Rne ×
Rnz → Rne and G : Rne × Rnz → Rnz are C2. We denote
by (E(e0, x0, t), X(e, z, t)) the (unique) solution which goes
through (e, z) in Rne ×Rnz at t = 0. We assume it is defined
for all positive times, i.e. the system is forward complete.

In the following, to simplify our notations, we denote by
Be(a) the open ball of radius a centered at the origin in Rne .

In [3], the following three notions are introduced.

TULES-NL (Transversal uniform local exponential stability)
There exist strictly positive real numbers r, k and λ such
that we have, for all (e, x, t) in Rne × Rnz × R≥0 with
|e| ≤ r,

|E(e, x, t)| ≤ k|e| exp(−λt) . (48)

UES-TL (Uniform exponential stability for the transversally
linear system)
The system

ż = Ḡ(z) := G(0, z) (49)

is forward complete and there exist strictly posi-
tive real numbers k̃ and λ̃ such that any solution
(Ẽ(ẽ, z, t), Z(z, t)) of the transversally linear system

˙̃e =
∂F

∂e
(0, z)ẽ , ż = Ḡ(z) (50)

satisfies, for all (ẽ, z, t) in Rne × Rnz × R≥0,

|Ẽ(ẽ, z, t)| ≤ k̃ exp(−λ̃t)|ẽ| . (51)

ULMTE (Uniform Lyapunov matrix transversal equation)
For all positive definite matrix Q, there exists a contin-
uous function P : Rnz → Rne×ne and strictly positive
real numbers p and p such that for all z in Rnz ,

dḠP (z) + P (z)
∂F

∂e
(0, z) +

∂F

∂e
(0, z)′P (z) ≤ −Q (52)

p I ≤ P (z) ≤ p I . (53)

From these definitions and in the same spirit as Lyapunov
second method, the following relationships have been estab-
lished in [3].

Proposition 1 ([3], TULES-NL “⇒” UES-TL ): If Property
TULES-NL holds and there exist positive real number c such
that, for all z in Rnz ,∣∣∣∣∂F∂e (0, z)

∣∣∣∣ ≤ c , ∣∣∣∣∂G∂x (0, x)

∣∣∣∣ ≤ c (54)

and, for all (e, x) in Be(kr)× Rnz ,∣∣∣∣ ∂2F

∂e∂e
(e, z)

∣∣∣∣ ≤ c , ∣∣∣∣ ∂2F

∂z∂e
(e, z)

∣∣∣∣ ≤ c , ∣∣∣∣∂G∂e (e, z)

∣∣∣∣ ≤ c ,
(55)

then Property UES-TL holds.

Proposition 2 (UES-TL “⇒” ULMTE): If Property UES-
TL holds, P is C1 and there exists a positive real number c
such that ∣∣∣∣∂F∂e (0, z)

∣∣∣∣ ≤ c ∀z ∈ Rnz , (56)

then Property ULMTE holds.

Proposition 3 (ULMTE “⇒” TULES-NL): If Property
ULMTE holds and there exist positive real numbers η and
c such that, for all (e, x) in Be(η)× Rnx ,∣∣∣∣∂P∂x (x)

∣∣∣∣ ≤ c , (57)∣∣∣∣ ∂2F

∂e∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣ ∂2F

∂x∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣∂G∂e (e, x)

∣∣∣∣ ≤ c , (58)

then Property TULES-NL holds.
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