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Space-aware modeling of two-phase electric
charging stations

Fabio Antonio V. Pinto, Luı́s Henrique M. K. Costa, Daniel S. Menasché, and Marcelo Dias de Amorim

Abstract—In order to match the energy demand of electric
vehicles to the capacity of the power grid, it is fundamental
to understand the occupancy of charging stations and react
accordingly. A Markov model of a fast charging station for
Lithium-ion batteries, the most prevalent type today, is proposed.
Li-Ion batteries present a two-step charging profile, which makes
energy management particularly challenging. A wide range of
situations is covered by considering three types of scenarios
with and without waiting lines. The analytical results obtained
from the steady state solution of the Markov model reveal the
behavior of multiple variables of interest: availability of the
charging station to accept new customers (in terms of space and
energy), number of customers, energy consumption, and power
utilization. From the results, indicators for assessing the quality
of service (QoS) of the charging station are derived. Based on
these indicators, customers may decide to wait or head toward
another station. The owners of stations, in turn, can predict the
impact of investments in space and energy provisioning, when
devising capacity planning strategies.

I. INTRODUCTION

SMART CITIES will have to properly plan the geographic
distribution of their electric charging stations in a way

that drivers do not run out of battery and the power grid does
not get overloaded. Determining facility locations for battery
loading stations is an NP-hard problem and approximation
algorithms require real-world indicators to achieve acceptable
results [1]. This imposes a fundamental understanding of the
behavior of charging stations.

Modeling charging stations requires taking into account a
number of benchmark elements such as available physical
space, number of sockets, parking spaces, and their dispo-
sition, promoting best uses of the power grid and of charging
stations. Existing models consider only a subset of these
elements; as a consequence, they provide designers with,
at best, a partial view of the system. To circumvent these
limitations, a Markov model that captures the key features
of fast charging stations is proposed and used to analyze
different metrics of interest such as the blocking probability
of newcomers as well as the expected waiting time. Such
metrics are the most relevant to express the level of Quality of
Service (QoS) in charging stations [2]. The particularity of the
proposed model is that it considers both the battery charging
profile and the physical space of the charging station.
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Fig. 1: Lithium-ion charging profile. The pre-charge occurs to
prepare the battery to CC-phase with a constant current (ICH)
until it reaches the nominal voltage (VBAT). During the CV-
phase, the current decays exponentially down to the current
termination (ITERM) when the process ends.

Broad availability of fast charging stations is required to
avoid the well-known problem of range anxiety, i.e., when
drivers worry about batteries running out of power before
reaching the destination or a charging station. According
to [3], 40% of users exceed the energy capacity storage of EV
batteries in their daily trips. Once a station is reached, charging
times may vary widely. Charging times of slow charging
stations range from 8 to 16 hours. Fast charging stations, in
contrast, ensure an average charging time of 30 minutes. This
paper considers fast charging stations for lithium-ion (Li-ion)
batteries, which are the most prevalent batteries nowadays.

The first challenge in modeling such a system is to consider
the charging profile of the battery. The charging profile of Li-
ion batteries is composed of two phases, namely CC (constant
current) and CV (constant voltage) [4], [5]. The charging
procedure is illustrated in Fig. 1. According to Kester et
al. [6] and Linden et al. [7], around 65% of the total charge
is accomplished at CC-phase, whereas the other 35% occurs
during the CV-phase. The proposed model is flexible enough
to accommodate these two phases. The second challenge is to
take into account the physical space of the charging station.
Indeed, whether the station includes or not parking slots has
a direct impact on the satisfaction experienced by customers.

This paper proposes a continuous time and discrete state
space Markov chain to explain the behavior of a charging
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station, accounting for the charging profile of Li-ion batteries.1

The numerical results obtained from the steady state solution
of the proposed model reveal properties of several metrics of
interest, such as the unavailability of the charging station to
accept new customers due to space and energy constraints,
the expected number of customers in the station (including
the waiting customers) and the power utilization.

As a summary, the contributions of this paper are:
• Analytical model. Our model scrutinizes the charging

profile of the Li-ion battery and, with necessary simplifi-
cations, suggests a charging station model more detailed
than those existing in the literature. Multiple scenarios
that vary in terms of parking capacity and expected
waiting time are explored.

• Station design. From the viewpoint of the station owners,
our analysis assist the design of charging stations, con-
sidering the rational use of energy, the size of the station
and customer waiting time. Through the knowledge of
the average vehicle flow in the region where the station
is planned, it is possible to choose the number of sockets
to serve the EVs and define the power consumption of
the station.

• Support for charging profiles. The charging profile
affects the efficient use of available space and energy,
impacting customers waiting times and the station power
utilization. This work considers the charging profile of
Li-ion batteries, but the proposed model can be easily
adapted to assess the impact of different charging profiles
of future EVs equipped with novel batteries.

This paper is organized as follows. Section II describes
related work. Section III formulates the problem and describes
the scenarios under consideration. The proposed model is
introduced in Section IV, followed by numerical results
which are presented in Section V. Section VI discusses the
conclusions and possible avenues for future research.

II. RELATED WORK

There is a growing literature on the impact of EV charging
on the electrical grid, accounting for the smart routing of EVs
to available stations. Ban et al. propose a charging station that
uses the multi-queue system concept [9]. They investigate how
energy consumption reacts when the behavior of EV owners is
controlled. The incentive to feed the batteries at lower prices
or a penalty to pay more at peak times would influence the
behavior of arrivals of vehicles to charging stations.

The use of vehicular communication has also been investi-
gated in the design of electric vehicle charging systems [10].
Vehicles may adopt wireless technology systems that sup-
port communication vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) based on 3G and 4G cellular networks
and the IEEE 802.11p protocol. The locations of the charg-
ing stations and their availability can be published using
vehicular communications, together with the average waiting
times towards the stations. In addition, information about the

1This paper is a significant extension of a companion paper [8]. It now
introduces models of much more realistic scenarios that include both a“waiting
plugged” mode and parking spaces.

current state of the batteries can be used to determine which
stations are reachable. The authors assume that each station
can provide up to a pre-determined amount of power, which
is uniformly split between its sockets.

Bayram et al. account for charging times [11]. They con-
sider an average charging time of 30 minutes in fast charging
stations and assume that incoming customers would not be
willing to wait. Using a Markov model, they compute the
customer blocking probability for different system parameters.
Wang et al. extend this idea by foreseeing a widespread adop-
tion of fast charging stations [12]. They consider a charging
station in a public parking campus, where the behavior of
customers is highly erratic. In order to relieve the stress to the
power grid due to such a non conventional load and provide
satisfactory quality of service levels, they propose an auxiliary
battery storage to supply customers demand at peak hours. The
authors tackle this problem a stochastic control problem based
on a continuous-time Markov chain to determine the amount
of auxiliary battery storage to be used.

Wang et al. propose a charging plan for EVs to prevent
overloading the power grid [13]. They consider a smart
grid architecture with real-time communication capabilities.
This architecture focuses on mobility aspects by exploring
resources of vehicular ad hoc networks for real-time commu-
nications between roadside units (RSUs) and electric vehicles.
The network disseminates two kinds of information, namely
energy conditions of the charging stations and charging state
of batteries. The charging scheduling problem is formulated
as a time-coupled mixed-integer linear programming (MILP).

III. TARGET SCENARIOS, CHARGING PROFILES, AND
ASSUMPTIONS

In this paper, a charging station has s sockets with total
energy capacity to support up to m concomitant vehicles
charging at CC-phase. The exact capacity of the station
logically depends on the contract its owner has with the
electricity utility, which is an input variable in the proposed
model. Moreover, charging stations rely only on the energy
they receive from the grid: energy storage systems, such as
batteries or ultracapacitors, are outside the scope of this paper.
Each socket is associated to a parking spot, i.e., in front of each
socket there is space for a single car. As an approximation,
and without loss of generality, this work assumes that the CV-
phase consumes half the energy of the CC-phase. The next
assumption is that a vehicle always starts at the CC-phase,
switches to the CV-phase, then leaves the station. Together,
the two latter assumptions imply that the station has at most
2m− 1 vehicles at any point in time at CV-phase. Therefore,
except otherwise noted, in the reference setup the station has
s = 2m− 1 sockets.

A. Charging profile

Two aspects of the charging procedure form a baseline of
our analysis. The first one is related to the time and power
requirements to fill the batteries. This work considers fast
chargers at public charging stations. Those consume significant
power from the grid but take less time to charge the vehicles
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Fig. 2: Immediate Service Scenario. An EV is only admitted
into the charging station if there is enough energy to immedi-
ately serve it. In the illustrated scenario, the charging station
has 2m − 1 sockets and energy capacity to serve up to m
concomitant vehicles at CC-phase.

compared, for instance, to residential charging counterparts.
Fast charging mode favors mobility allowing the vehicles to
continue their journeys after brief stops at charging stations.
The second aspect is related to the particular charging profile
of Li-ion batteries as depicted in Fig. 1. In the present analyses,
the pre-charge phase is neglected, because it is only triggered
when the battery is totally depleted, which only occurs in case
of infrequent utilization.

The charging procedure starts at CC-phase. When the nom-
inal voltage at the battery terminals is reached, the CV-phase
starts and the current decays exponentially (see again Fig. 1).
The CV-phase eliminates voltage drops in resistive elements.
In this paper a 24 kWh battery is considered, as used for
example by Nissan Leaf, a 100% electric vehicle. This is also
the average battery size of most electric vehicles in market
today. The fast charging procedure lasts about half an hour. For
security reasons, when the battery reaches 80% of its capacity,
the fast charging process stops and the stored energy is around
19 kWh. Approximately 51.2 kW of power is consumed during
the CC-phase (in a period of 15 minutes) and 25.6 kW during
the remaining 15 minutes (CV-phase).

B. Target scenarios

Three charging station scenarios are considered here. In the
first one, the vehicle will only be admitted into the system if
it can be immediately served. In the other two scenarios, it is
assumed that the driver may wait before the station is able to
supply energy to the EV. These scenarios are detailed next.

Immediate Service Scenario. Fig. 2 illustrates the structure
of the charging station in the Immediate Service Scenario. In
the Immediate Service Scenario, a vehicle enters the station
if it can immediately plug into a socket and start charging.
Vehicles are admitted when the station has free sockets and
available energy to supply to new EVs. Otherwise, vehicles
are blocked. In this scenario there is no queuing.

Plugged Wait Scenario. In this scenario, vehicles may wait
in case there is not enough energy by the time they arrive

level 1: CC-phase
level 2: CV-phase

m
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CC
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no energy but vehicles 
can wait plugged

Fig. 3: Plugged Wait Scenario. In this scenario, an EV is
admitted into the charging station if it is willing to wait until
there is enough energy to start its service. Some cars waiting
can be seen in charging spots with a “prohibited parking” sign.
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Fig. 4: Queuing Spots Scenario. Besides being able to wait
plugged (as in the Plugged Wait Scenario), vehicles also have
additional parking spaces at their disposal.

at a station. In the Plugged Wait Scenario, illustrated in
Fig. 3, when a vehicle arrives at the charging station and
some charging socket is empty, the vehicle is admitted even
if the available energy is not sufficient to immediately serve
the newcomer. In this case, the vehicle enters a “plugged wait
mode” until it can be served. In other words, idle sockets can
be used as waiting spots. From the station owner point of view,
this system is more profitable than the first one because less
customers are declined.

Queuing Spots Scenario. In the Queuing Spots Scenario
(Fig. 4), a parking lot is considered where vehicles can wait
before plugging into a charging socket. The charging station
has more physical space than in the previous two scenarios;
such extra space is made available through a number of
“queuing spots”. As soon as a socket becomes free, the first
vehicle that arrived at the parking space can plug and wait to
be charged. This scenario admits more vehicles than the two
previous scenarios but is associated to longer delays.
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IV. MARKOV MODEL

The charging station is modeled as a continuous-time
Markov chain with discrete state space. Vehicles arrive to
the station according to a Poisson process with rate λ ve-
hicles/hour. The model assumes that vehicles arrive at the
charging station with the battery almost depleted, but not
empty. Under this assumption, vehicles which are admitted
into the station go through the CC and CV phases, but not
through the pre-charge phase (Fig. 1). The time to fill the
battery in a fast charging station is around 30 minutes [14].
The analytic model assumes that the service times at CC and
CV phases are exponentially distributed with rates µ1 and
µ2, respectively. Except otherwise noted, it also assumes that
1/µ1 = 1/µ2 = 15 minutes. Table I summarizes the notation
used throughout this paper.

Recall that the three scenarios described in Section III are
associated to different queuing strategies. While the Immediate
Service Scenario admits no waiting before service, the Plugged
Wait Scenario may have vehicles waiting in idle sockets and
in the Queuing Spots Scenario there might be vehicles in a
parking courtyard. Let K be the number of parking spaces in
the parking courtyard. In the Immediate Service Scenario and
in the Plugged Wait Scenario, K = 0.

The energy that a charging station is capable to supply
normalized by the energy consumed by each car at the CV-
phase is referred to as the Normalized Total Energy Capacity
(NTEC), and denoted by C. In our reference setup, C equals
the capacity of the station divided by 25.6 kW. For example,
a station where C = 8 may have up to 4 vehicles charging
at the CC-phase or 7 vehicles charging at the CV-phase. Note
that although the station has energy capacity to support up
to 8 vehicles at the CV-phase, such state is not reachable, as
vehicles always start charging at the CC-phase, and only leave
the system after going through the two phases.

A. State Space Description

This section presents the Markov model to characterize the
behavior of the charging station. Let Ncc, Ncv and Nw be
random variables characterizing the number of vehicles in
the CC-phase, CV-phase and waiting line, respectively. The
realizations of the random variables are denoted by the respec-
tive lower case letters. Let σ = (ncc, ncv, nw) be the system
state. The admitted vehicles are divided between plugged and
unplugged. Let np and nu be the number of plugged and
unplugged vehicles, respectively. Thus, ncc + ncv + nw =
np+nu. While all vehicles in CC and CV phases are plugged
to sockets, some of the waiting vehicles might be plugged
whereas others wait in parking spots (if the scenario allows).
Let P be the normalized power consumed by the system,
P = 2ncc + ncv .

First, consider the Immediate Service and the Plugged Wait
Scenarios, depicted in Fig. 5 (remembering that C = 2m
and s = 2m − 1). The Immediate Service Scenario is fully
represented by plane 0, comprising light-green and light red
states, for which nw = 0. In plane 0, the light-green states
have available energy and space to admit new vehicles. The

TABLE I: Table of Notation

Variable Description Observation
Ncc Number of cars at CC-phase.
Ncv Number of cars at CV-phase.
Nw Number of cars waiting.
N Number of cars. N = Np +Nu

Np Number of cars plugged.
Nu Number of cars unplugged. Np +Nu = Ncc +Ncv +Nw

P Normalized power consumed. P = 2Ncc +Ncv

Parameter Description Default value
s Number of sockets. 2m− 1
K Number of parking spaces. m− 1
C Normalized power capacity 2m

(also referred to as NTEC).
Metric Description Observation
pb Blocking probability.
pc1 Probability of being admitted

with immediate service.
pc2 Probability of being admitted

and waiting. pc1 + pc2 = 1− pb
Tw Waiting time. E[Tw] = E[Nw]/(λ(1− pb))

light-red states in plane 0, in contrast, have no available energy
to admit new vehicles – these states are energy constrained.

In the Plugged Wait Scenario, vehicles can wait plugged
into sockets (nw ≥ 0 and nu = 0). Thus, the Plugged Wait
Scenario is represented by plane 0 together with higher order
planes in Fig. 5. Let h be the index of the highest plane, i.e.,
h is the maximum number of vehicles waiting to be served at
any point in time. As the number of sockets is s = 2m−1, and
that the station has capacity to serve m vehicles at CC-phase,
the maximum number of vehicles that could wait plugged is
h = m − 1. Vehicles that arrive at the energy constrained
scenarios plug in a socket and wait. That is represented in
Fig. 5 by blue, violet, orange, and green states, for nw equal
to 1, h− 2, h− 1 and h, respectively.

Consider the states at the right edge of Fig. 5, that is, states
(m−i, 2i, h−i) and (m−i−1, 1+2i, h−i), for i = 0, . . . , h.
These states are blocking states which means that no vehicles
can be admitted into the system.

Table II fully characterizes the state transitions for the
Queuing Spots Scenario, which generalizes the other two
scenarios. When the conditions presented in the first column
are satisfied, arrivals and services occur at the rates specified in
the second column, leading to a transition to the state described
in the third column. After the transition, variables np, nu and
P are updated according to the rules specified in the fourth,
fifth and sixth columns, respectively.

Let π be the system steady state solution vector, π =
(π0,0,0, π0,0,1, . . . , πm,0,h+K). Let Ω be the system state space.
When distinguishing between the Immediate Service, Plugged
Wait and Queuing Spot Scenarios, the state spaces are noted
as ΩIS , ΩPW and ΩQS , respectively.

Let Q be the infinitesimal generator matrix. Then, πQ = 0
and

∑
(i,j,k)∈Ω πi,j,k = 1.

B. Metrics of Interest

The metrics used to measure the behavior of the charging
station in the three scenarios are:
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Fig. 5: Markov chain of a fast charging station. States in the chain are represented by the tuple (ncc, ncv, nw).

TABLE II: State transitions of the Markov chain from state (ncc, ncv, nw).

Condition Rate Next State Additional State Update
np nu P

Service at CC-phase not followed by start of CC service:
(ncc > 0) && ((nw = 0)‖!((P + 1) ≤ C)) nccµ1 (ncc − 1, ncv + 1, nw) np nu P − 1
Service at CC-phase followed by start of CC service:
(ncc > 0) && (nw > 0) && (P + 1) ≤ C nccµ1 (ncc, ncv + 1, nw − 1) np nu P + 1
Service at CV-phase followed by neither start of CC service nor new vehicle socket plugin:
(ncv > 0) && !(nw > 0 && P + 1 ≤ C) && !(nu > 0) ncvµ2 (ncc, ncv − 1, nw) np − 1 nu P − 1
Service at CV-phase followed by new vehicle socket plugin but no new CC service:
(ncv > 0) && !(nw > 0 && P + 1 ≤ C) && (nu > 0) ncvµ2 (ncc, ncv − 1, nw) np nu − 1 P − 1
Service at CV-phase followed by start of CC service but no new vehicle socket plugin:
(ncv > 0) && (nw > 0 && P + 1 ≤ C) && !(nu > 0) ncvµ2 (ncc + 1, ncv − 1, nw − 1) np − 1 nu P + 1
Service at CV-phase followed by start of CC service and new vehicle socket plugin:
(ncv > 0) && (nw > 0 && P + 1 ≤ C) && (nu > 0) ncvµ2 (ncc + 1, ncv − 1, nw − 1) np nu − 1 P + 1
Arrival and immediate service:
(np < s) && (P + 2) ≤ C λ (ncc + 1, ncv, nw) np + 1 nu P + 2
Arrival being plugged without immediate service:
(np < s) && (P + 2) > C λ (ncc, ncv, nw + 1) np + 1 nu P
Arrival without being plugged:
(s ≤ np) && (np + nu < s+K) λ (ncc, ncv, nw + 1) np nu + 1 P

Blocking probability (pb). The probability of a vehicle being
rejected because the system has reached its maximum capacity.
It is split in three blocking probabilities:
• Due to lack of space (pb1). There is no empty socket or

parking space for the arriving vehicle.
• Due to lack of energy (pb2). There is no available energy

to start charging the arriving vehicle.
• Due to lack of space and of energy (pb3). There is neither

space nor energy available for the arriving vehicle.
Note that pb = pb1 + pb2 + pb3. Let Sb be the set of states

for which the system is blocked. Let Sb1, Sb2 and Sb3 be the
sets of states for which the system is blocked due to space,
due to energy, and due to space and energy, respectively.
We use superscripts IS, PW , and QS to refer to the sets
in the Immediate Service, Plugged Wait, and Queuing Spot
Scenarios, respectively. Then, pb` =

∑
(i,j,k)∈Sb` πi,j,k, for

` = 1, 2, 3.

The numerical evaluations consider the special case, where
s = 2m − 1. For such setting, in the Immediate Service
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Scenario, S(IS)
b1 = ∅, and

S(IS)
b2 = {σ ∈ ΩIS : nσp < s and (Pσ + 2) > C}.

S(IS)
b3 = {σ ∈ ΩIS : nσp = s and (Pσ + 2) > C}

= {(0, 2m− 1, 0), (1, 2m− 2, 0)}. (1)

In the Plugged Wait Scenario, for s = 2m − 1 the subset
S(PW )
b1 = S(PW )

b2 = ∅, p(PW )
b = p

(PW )
b3 , and

S(PW )
b3 ={σ ∈ ΩPW : nσp = s and (Pσ + 2) > C}.

In the Queueing Spot Scenario, for s = 2m−1 and K = m−1,
the subset S(QS)

b1 = S(QS)
b2 = ∅, p(QS)

b = p
(QS)
b3 , and

S(QS)
b3 = {σ ∈ ΩQS : (nσp + nσu ) = (s+K) and

(Pσ + 2) > C}.

Note also that S(IS)
b3 ⊂ S(PW )

b3 and |S(PW )
b3 | = |S(QS)

b3 |.

Probability of being immediately served (pc1). The proba-
bility that the charging station has space and available energy
to immediately charge the arriving vehicle. In the Immediate
Service Scenario, pc1 = 1 − pb , i.e., if the system is not
blocked, it receives the vehicle and immediately charges its
battery. Thus, 1 − pb is the probability of accepting vehicles
in the system. In the other two scenarios, the EV can be
admitted in idle sockets and parking spaces and can thus wait
before being served. In the Immediate Service scenario, once
a vehicle is accepted, it starts charging immediately; thus, in
the other scenarios, pc1 ≤ 1− pb.

Probability of being admitted and waiting (pc2). The proba-
bility that the charging station has available space to admit the
arriving vehicle, but no energy to immediately charge it. Note
that pc1+pc2 = 1−pb. This equation means that the probability
of being admitted or served is equal to the probability of not
being rejected by the system.

Expected number of vehicles in the system (E[N ]). The
expected number of vehicles in the station is a reward obtained
from the Markov model. A reward of a given state is the value
of the state times the stationary probability of the state. Thus,
the total reward of a charging station is the sum of the product
over (i, j, k, `) of the probability of each state by the number of
vehicles at CC-phase (i) plus the number of vehicles at CV-
phase (j) plus the number of vehicles waiting plugged and
in the parking spaces (k,`). For Immediate Service scenario,
k = 0 and ` = 0; for the Plugged Wait scenario, ` = 0. Thus,
the general equation is given by

E[N ] =
∑

(i,j,k,`)∈Ω

πi,j,k,`(i+ j + k + `). (2)

Let E[Nw] be the expected number of EVs that wait for
available energy, plugged to a socket or in parking spaces.
Similarly to the previous equation, the number of vehicles
waiting is given by

E[Nw] =
∑

(i,j,k,`)∈Ω

πi,j,k,` · (k + `). (3)

Expected normalized power consumption (E[P ]). The ex-
pected normalized power consumption is the sum of twice the
number of vehicles at CC-phase plus the number of vehicles
at CV-phase (reflecting the double energy demand of the CC-
phase) times the probability of each state. Thus, it is given
by

E[P ] =
∑

(i,j,k,`)∈Ω

(2i+ j) · πi,j,k,`. (4)

Power utilization (E[P%]). The ratio between the expected
normalized power consumption and the normalized power
capacity of the station, E[P%] = E[P ]/C.

Expected waiting time (E[Tw]). The expected waiting time
before service is obtained using Little’s law, E[Tw] =
E[Nw]/(λ(1− pb)).

V. EVALUATION RESULTS

In this section, the numerical results are reported. The
goal is to perform sensitivity analysis of different system
metrics, such as expected waiting time and power utilization,
with respect to the three model parameters: a) vehicle arrival
rate, b) station energy capacity, and c) number of sockets.
This analysis can assist the owner of the charging station to
decide whether to invest in energy or space improvements.
In our numerical evaluations, the Tangram-II tool is used to
automatically generate and solve the proposed Markov chain,
and to obtain the metrics of interest [15]. The results of some
important variables, such as blocking probability, number of
vehicles, and power utilization were generated by Tangram.
To confirm the validity of the exponential variables assumed
for the CC and CV service times in the analytical model,
simulation in Tangram-II [15] was used with deterministic
service times for both CC and CV. The analytical and sim-
ulation results obtained with Tangram are plotted in the same
graph. The simulation results are an average over 12 simulation
runs, with 106 events each. Confidence intervals of 95% are
represented by vertical errorbars in the graph (often in the
graphs small errorbar collapses to an horizontal trace). The
bars with the light-blue edge contour represent analytical
results. As one can see, the behavior of the simulation results
corroborate the analytical results.

A. Reference Setup

Table III summarizes the input parameters used in the
evaluation, which are motivated by [16], [17]. The vehicle
arrival rate λ varies from 5 to 50 vehicles/hour. The number
of sockets s varies from 3 to 17, in steps of 2. Finally, except
otherwise noted, the capacity C = s+ 1.

B. Numerical Results

1) Blocking probability (pb): Fig. 6 shows how the blocking
probability varies as a function of the vehicle arrival rate,
for different values of s. The blocking probability sharply
increases for λ varying between 5 and 20 vehicles/hour. For
λ > 20 vehicles/hour, the increase is smoother. Note also that
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TABLE III: Parameters used in the evaluation of charging
stations.

Parameter Description Values
λ Vehicle Arrival Rate (vehicles/hour) 5 to 50
µ Total Service Rate (vehicles/hour) 2
µ1 Service Rate at CC-phase (vehicles/hour) 4
µ2 Service Rate at CV-phase (vehicles/hour) 4
s Number of sockets 3 to 17
K Number of parking spaces 0 to 8
C Normalized power capacity 4 to 18

for λ = 5 vehicles/hour, the differences between the Imme-
diate Service, Plugged Wait and Queuing Spots Scenarios are
most significant. For λ = 50 vehicles/hour, in contrast, the
three scenarios behave very similarly. For instance, if λ = 50
and s = 3, pb equals 0.9120, 0.9089 and 0.9077 in the three
scenarios, respectively.

Fig. 6: Blocking probability (pb).

1.a) Blocking probability due to lack of space (pb1): Given
that the station has s = 2m−1 sockets and C = 2m capacity,
the probability that a vehicle arrives at the station and finds an
empty socket but no energy available is pb1 = 0. Note that the
model can also be used to evaluate scenarios where s < C−1,
and in those cases pb1 ≥ 0.
1.b) Blocking probability due to lack of energy (pb2): The
probability, pb2, is plotted as a function of λ for the Immediate
Service Scenario in Fig. 7 (in Plugged Wait and Queuing Spots
Scenarios, pb2 = 0 for the parameters of the reference setup).
As the arrival rate increases, pb2 increases.

Note that pb2 increases with respect to s and decreases

with respect to C. Recall that the reference setup assumes
that the energy grows linearly with respect to the number
of sockets, i.e., C = s + 1. For arrival rates smaller than
20 vehicles/hour, as s and C are concomitantly increased,
the impact of C dominates and pb2 decreases. However, for
λ ≥ 20 vehicles/hour note that pb2 first increases and then
decreases. The joint increase of the number of sockets, s, from
3 to 5 sockets and of the normalized total energy capacity
(NTEC), C, from 4 to 6 units causes an increase in pb2 and a
decrease in pb3. The net effect is a reduction in pb = pb2 +pb3
(see Fig. 6).
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Fig. 7: Blocking probability due to lack of energy in Immediate
Service Scenario (pb2).

1.c) Blocking probability due to lack of space and energy (pb3):
Fig. 8 shows how pb3 varies as a function of the number
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Fig. 8: Blocking probability due to lack of space and energy
(pb3).

of sockets, arrival rate and available energy. Note that in the
Immediate Service Scenario pb3 is small compared to the other
two scenarios. This is because in this scenario there are only
two states for which vehicles are blocked due to space and
energy, i.e., |S(IS)

b3 | = 2 and p(IS)
b3 = π(0,2m−1,0)+π(1,2m−2,0)

(see Eq. (1)). It is interesting to remember that, in Plugged
Wait and Queuing Spots scenarios, Sb1 = Sb2 = ∅, thus, pb =
pb3. Thus, the Fig. 8 only shows the pb3 for Immediate Service
scenario. In the Plugged Wait and Queuing Spots Scenarios,
pb3 (shown as pb in Fig. 6) is roughly the same when λ ≥ 20.
This occurs because parking spots rapidly fill up for large
values of λ, and |S(PW )

b3 | = |S(QS)
b3 | (see Section IV-B).

2) Probability of being immediately served (pc1): Fig. 9
shows how pc1 varies as a function of different system param-
eters. Note that pc1 assumes larger values in the Immediate
Service Scenario, at the expense of more vehicles being
rejected compared against the other two scenarios. In the
Plugged Wait Scenario, for λ ≥ 25 vehicles/hour, as the
number of sockets s increases and the relationship C = s+ 1
is maintained, pc1 first decreases and then increases. This is
because the initial increase in s reduces pb, but increases the
chance that vehicles have to wait before being charged (i.e.,
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Fig. 9: Probability of being immediately served (pc1).

Fig. 10: Number of vehicles in the charging station (E[N ]).

pc2 increases). Recall that pc1 + pc2 = 1− pb. This indicates
that even though the increase of s always causes a beneficial
decrease in pb, it might also lead to a detrimental decrease in
pc1 at the cost of an increase in pc2.

3) Expected number of vehicles (E[N ]): Fig. 10 shows how
the expected number of vehicles varies a function of different
system parameters. The longer the vehicles are allowed to wait,
the larger the expected number of vehicles in the system. In
particular, the Queuing Spots Scenario is associated to the
largest expected occupancy.

Next, the Plugged Wait Scenario is considered, with s = 17
sockets. For λ ≥ 35 vehicles/hour the graph shows that
E[N ] ≥ 15. When λ = 50 vehicles/hour, E[N ] = 16.17. In
this case, the 17 sockets are almost always full. To overcome
the high utilization of the station, switching to the Queuing
Spots Scenario with additional 8 queuing spots (K = 8)
is considered. As Fig. 10 shows, for λ = 50 vehicles/hour,
s = 17 sockets and K = 8 additional queuing spots, the
expected number of vehicles in the station under the Queuing
Spots Scenario is 24.17 vehicles, again very close to the station
capacity. This indicates that to reduce the blocking probability
of the station under high arrival rates, the investments in
energy and space provisioning must be carefully studied.

Consider now the Queuing Spots Scenario with λ varying
between 5 and 20 vehicles/hour. As the number of sockets and
the energy capacity increase the expected number of vehicles
in the station first increases and then decreases. This is due
to the balance between space and energy availability. Note
that the expected number of clients in the system, E[N ],
increases with respect to the number of sockets s (space)
and decreases with respect to the station power capacity C
(energy). Therefore, concomitantly increasing s and C yields
a growth followed by a decay in E[N ], for λ varying between
5 and 20 vehicles/hour (Fig. 10).

Fig. 11 shows the expected number of vehicles in the
station as a function of the number of sockets (s) and of the
normalized total energy capacity (NTEC), C. For any given
value of s (respectively, C), E[N ] decreases (respectively,
increases) monotonically with respect to C (respectively, s).
The white dotted line indicates the points for which the relation
C = s+ 1 holds, and can be used to analyze the scenario in
which s and C increase concomitantly, as in Fig. 10. Next,
consider only the points over the white dotted line, each point
corresponds to a bar in Fig. 10. The initial increase in s from
2 to 3 yields a significant increase in the occupancy of the
station, which means that at this region the space constraint
plays a significant role. However, as space and energy are
further increased, the expected number of vehicles eventually
starts to decrease. This is because the increase in energy
capacity favors a reduction in the expected number of vehicles
in the system, and in the expected number of vehicles waiting
in line, as shown in Table IV.

Table IV shows the expected number of vehicles in the
waiting line, for the Plugged Wait and Queuing Spots Sce-
narios, respectively. Consider, for instance, the setup where
λ = 20 vehicles/hour. As the number of sockets increases
the expected number of waiting vehicles first increases and
then decreases. As pointed out in the previous paragraphs,
this occurs because the energy capacity of the station increases
linearly with respect to the number of sockets. Note that if the
charging time is reduced due to future technological advances,
the number of sockets that maximizes the expected number
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Fig. 11: Expected number of vehicles E[N ] in the Queuing
Spots Scenario for λ = 15 vehicles/hour, varying the number
of sockets and NTEC.

TABLE IV: Expected number of waiting vehicles (E[Nw]).

Scenarios λ s = 5 s = 9 s = 13 s = 17

Plugged Wait
10 0.6 0.4 0.1 0.0
15 0.8 1.1 0.7 0.2
20 1.0 1.6 1.6 0.9

Queuing Spots
10 1.9 1.0 0.1 0.0
15 2.6 3.8 1.5 0.2
20 2.8 5.2 5.6 2.0

of waiting vehicles will change. Table IV indicates that the
proposed model can be used by a station planner to decide how
to invest the available budget in energy and space expansions,
accounting for the impact of its decisions on the expected
number of customers waiting in line and, consequently, on the
expected waiting times.

4) Power utilization (E[P%]): Fig. 12 shows how the power
utilization varies as a function of different system parameters.
For λ ≥ 45 vehicles/hour, the maximum power utilization for
the three scenarios occurs when the number of sockets equals
17. For lower arrivals rates, the power utilization first increases
and then decreases as a function of the number of sockets
and the energy capacity of the station. The initial increase is
due to the larger number of expected vehicles in the station.
The final decrease is due to the fact that after a certain point,
the utilization of the station is more sensible to the increase
in energy capacity. Note also that for smaller arrival rates
the three scenarios are more distinguished. When the arrival
rate increases, the differences in the fraction of power used
between the three scenarios are very subtle.

5) Expected waiting time in line (E[Tw]): The expected
waiting time in line is an important metric from the point of
view of the customers. After being admitted into the station,
it can be used by the clients to decide if they must stay inside
the car or if they have time for a coffee, or to make a cash
withdrawal. Fig. 13 shows that for small stations (few number
of sockets) and low arrival rates, clients should not leave their
vehicles.

Consider the Plugged Wait Scenario, with λ = 50 vehi-
cles/hour and s = 17. Then, E[Tw] = 11.65, i.e. clients might
consider stretching their legs before being served. In contrast,
when λ = 5 vehicles/hour and s = 5 sockets, the waiting time
is 3.92 minutes, i.e. drivers must stay inside the car under
penalty of losing their turn. Similar behavior occurs in the
Queuing Spots Scenario. For λ = 50 vehicles/hour and s = 17,
E[Tw] = 32.20 minutes. For λ = 5 vehicles/hour and s = 5,

Fig. 12: Percentage power used in the charging stations
(E[P%]).
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Fig. 13: Expected Waiting time in the System ([Tw]).

E[Tw] = 9.66 minutes – tight time to take a coffee.
6) Expected number of vehicles with utilization: Fig. 14

plots the expected number of vehicles as a function of the
utilization of the station (ρ). The plot considers the Queuing
Spots scenario and three charging station sizes: 3, 9 and
15 sockets, with 1, 4, and 7 parking spaces, respectively.
As the arrival rate increases, the utilization of the station
also increases and the number of vehicles tends to the space
capacity of the station. For a Queuing Spots station with 3
sockets, when ρ = 0.77, E[N ] = 3.9. For a station with
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Fig. 14: Number of vehicles versus utilization (ρ).

9 sockets, when ρ = 0.70, E[N ] = 12.71. Finally, for a
station with 15 sockets, when ρ = 0.61, E[N ] = 21.33. The
results show that the simulated range of arrival rates covers the
maximum capacity of the station, as the number of vehicles
almost reach the physical maximum of 4, 13, and 22 vehicles,
for all three station sizes, respectively. The utilization of the
system (ρ) never reaches 1 because some sockets cannot be
used due to energy capacity constraints.

VI. CONCLUSION

This paper pointed out the peculiar charging profile of
lithium-ion batteries as a paramount element to assist in the
capacity planning of charging stations. To this goal, a Markov
chain model was proposed which, given the workload model
and the space and energy capacity of a station, provides
important metrics, such as its availability, number of users,
power utilization and customers expected waiting time. Such
metrics are helpful to the owners of the stations, to the drivers,
and to the utilities. Different scenarios in terms of the space
available to park electrical vehicles and the expected time that
drivers are willing to wait before charging was considered. In
the first scenario, no spaces other than the charging spots are
available. The EV starts charging as soon as it arrives at the
station or it is rejected. In the other two scenarios, drivers may
wait. The number of drivers that wait depends on the number
of queuing spots in the station, which in turn is a function of
the available physical space. Finally, with the results, one can
conclude that the design of a fast station must account for the
available physical space, the target expected waiting times, and
the aimed QoS perceived by the customers. In all scenarios, a
smartphone application may assist drivers to find the closest
stations which are more likely to admit a vehicle. Devising
algorithms to issue routing recommendations making use of
the proposed model to predict the state of a station given its
current conditions is subject for future work.

The wide adoption of electric vehicles depends on govern-
mental actions to encourage the installation of fast charging
stations. The widespread deployment of stations indicate to
citizens that electric vehicles are a viable option for short daily
trips. The Norwegian Electric Vehicle Association (NEVA), for
instance, is pushing the investment on fast charging stations
with at least 6 sockets each [16], [17]. The models proposed
in this paper are intended as a first step towards a better
understanding of the dynamics of vehicles in fast charging sta-
tions. Future work consists of parameterizing the fast charging
station models proposed in this work using real data, such as
from the Netherlands, in order to infer the number and the
size of the charging stations needed to serve the fleet.
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