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Perfect graphs of arbitrarily large clique-chromatic number

Pierre Charbit∗ Irena Penev † Stéphan Thomassé † Nicolas Trotignon †

Abstract

We prove that there exist perfect graphs of arbitrarily large clique-chromatic number. These
graphs can be obtained from cobipartite graphs by repeatedly gluing along cliques. This neg-
atively answers a question raised by Duffus, Sands, Sauer, and Woodrow in [Two-coloring all
two-element maximal antichains, J. Combinatorial Theory, Ser. A, 57 (1991), 109–116].

1 Introduction

All graphs in this paper are simple, finite, and non-null. A clique of a graph G is a (possibly
empty) set of pairwise adjacent vertices of G. A clique-coloring of a graph G is an assignment
of colors to the vertices of G in such a way that no inclusion-wise maximal clique of size at least
two of G is monochromatic (as usual, a set of vertices is monochromatic if all vertices in the set
received the same color). A k-clique-coloring of G is a clique-coloring ϕ : V (G) → {1, . . . , k} of
G. G is k-clique-colorable if there exists a k-clique-coloring of G. The clique-chromatic number of
G, denoted by χC(G), is the smallest integer k such that G is k-clique-colorable. Note that every
proper coloring of G is also a clique-coloring of G, and so χC(G) ≤ χ(G). Furthermore, if G is
triangle-free, then χC(G) = χ(G) (since there are triangle-free graphs of arbitrarily large chromatic
number [8, 10], this implies that there are triangle-free graphs of arbitrarily large clique-chromatic
number). However, if G contains triangles, χC(G) may be much smaller than χ(G). For instance,
if G contains a dominating vertex, then χC(G) ≤ 2 (we assign the color 1 to the dominating vertex
and the color 2 to all other vertices of G), while χ(G) may be arbitrarily large. Note that this
implies that the clique-chromatic number is not monotone with respect to induced subgraphs, that
is, there exist graphs H and G such that H is an induced subgraph of G, but χC(H) > χC(G). (In
particular, the restriction of a clique-coloring of G to an induced subgraph H of G need not be a
clique-coloring of H.)

It was shown in [6] that for any graph H, the class of graphs that do not contain H as an
induced subgraph has a bounded clique-chromatic number if and only if all components of H are
paths. The clique number of a graph G, denoted by ω(G), is the maximum size of a clique of G. A
graph G is perfect if all its induced subgraphs H satisfy χ(H) = ω(H). It was asked in [5] whether
perfect graphs have a bounded clique-chromatic number. It has since been shown that graphs from
many sublasses of the class of perfect graphs are 2- or 3-clique-colorable [1, 2, 3, 4, 5, 7, 9]. There
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are well-known examples of perfect graphs of clique-chromatic number three (one example is the
graph obtained from the cycle of length nine by choosing three evenly spaced vertices and adding
edges between them), but until now, it was not known whether there were any perfect graphs of
clique-chromatic number greater than three. The main result of the present paper is the following
theorem.

Theorem 1.1. There exist perfect graphs of arbitrarily large clique-chromatic number.

Thus, the question from [5] mentioned above has a negative answer. We prove Theorem 1.1
by exhibiting, for each integer k ≥ 2, a perfect graph Gk of clique-chromatic number k + 1. The
graph Gk is obtained from cobipartite graphs (i.e. complements of bipartite graphs) by repeatedly
applying the operation of gluing graphs along a clique. The fact that Gk is perfect follows from the
fact that cobipartite graphs are perfect, together with the fact that the operation of gluing along a
clique preserves perfection (that is, if two perfect graphs are glued along a clique, then the resulting
graph is also perfect). Note also that it is immediate from the construction that Gk does not contain
any induced cycle of length at least five; furthermore, Gk does not contain the complement of any
odd cycle of length at least five as an induced subgraph.

A hereditary class is a class of graphs that is closed under taking induced subgraphs, and a clique-
cutset of a graph is a (possibly empty) clique whose deletion from the graph yields a disconnected
graph. It was asked in [9] whether, if c is a positive integer and G is a hereditary class such that
every graph in G is either c-clique-colorable or admits a clique-cutset, there must exist a positive
integer d such that every graph in G is d-clique-colorable. Our construction of the family {Gk}∞k=2

implies that this question has a negative answer (even if we restrict our attention to the case when
all graphs in the class G are perfect). Indeed, let G be the class of all induced subgraphs of the
graphs Gk (with k ≥ 2). Then G is a hereditary class (each of whose members is a perfect graph),
and every graph in G is either cobipartite (and therefore 2-clique-colorable [9]) or admits a clique-
cutset. However, G contains graphs of arbitrarily large clique-chromatic number (because Gk ∈ G
and χC(Gk) = k + 1 for each k ≥ 2).

2 Proof of Theorem 1.1

If n is a positive integer, we denote by [n] the set {1, 2, . . . , n}. When X is a set and n a non-
negative integer, we denote by

(X
n

)

the set of all n-element subsets of X. A cobipartite graph is a
graph whose complement is bipartite. A bipartition of a cobipartite graph is a partition (A,B) of
its vertex-set such that A and B are both (possibly empty) cliques. If G is a graph, v ∈ V (G),
and X ⊆ V (G) r {v}, we say that v is complete (resp. anti-complete) to X in G provided that v
is adjacent (resp. non-adjacent) to all vertices of X. For disjoint sets A,B ⊆ V (G), we say that
A is complete (resp. anti-complete) to B in G provided that every vertex of A is complete (resp.
anti-complete) to B in G.

Here is the crucial gadget that we will use in our construction.

Definition 2.1. Let n and k be positive integers such that n ≥ k, let N :=
(n
k

)

, and let G be a
graph.

• Let C be an N -vertex clique of G; say C = {c1, . . . , cN}. (Note that the number of bijections

between C and
([n]
k

)

is N !.) The (n, k)-expansion of G at C, denoted by Gn,k
C , is the graph

obtained from G by adding N ! new cliques (each of size n, and each associated with a bijection

from C to
([n]
k

)

), pairwise anti-complete to each other. The clique associated with the bijection
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φ : C →
([n]
k

)

is denoted by Xφ
C = {xφ1 , . . . , x

φ
n}. There are no edges between Xφ

C and V (G)rC,

and for all i ∈ [N ] and j ∈ [n], ci is adjacent to xφj if and only if j ∈ φ(i). The petal of Gn,k
C

associated with φ is the ordered pair (C,Xφ
C); clearly, Gn,k

C [C ∪Xφ
C ] is a cobipartite graph with

bipartition (C,Xφ
C ).

• The universal (n, k)-expansion of G is the graph obtained from G by performing the (n, k)-
expansion of G at every N -vertex clique of G. A petal of the universal (n, k)-expansion of G
is a petal of an (n, k)-expansion of G at some N -vertex clique of G.

Note that the (n, k)-expansion of a clique C = {c1, . . . , cN} can be understood as the creation
of all possible enumerations of

(X
k

)

(with X = {x1, . . . , xn}), where the vertex ci’s neighborhood in
X is precisely the i-th k-element subset of X. We take all resulting cobipartite graphs, and we glue
them along C; we then glue the resulting graph and the graph G that we started with along the
clique C, and we thus obtain the (n, k)-expansion of G at C.

It is well-known (and easy to prove) that the operation of gluing along a clique preserves perfec-
tion (that is, if two perfect graphs are glued along a clique, then the resulting graph is also perfect).
It is also well-known that cobipartite graphs are perfect. Since the universal (n, k)-expansion of a
graph G can be obtained from G by sequentially gluing cobipartite graphs along cliques of G, it is
easy to see that if G is perfect, then so is its universal (n, k)-expansion. We state this below for
future reference.

Proposition 2.2. Let n and k be positive integers such that n ≥ k. Then universal (n, k)-expansions
preserve perfection, that is, if G is a perfect graph, then the universal (n, k)-expansion of G is also
perfect.

From now on, k ≥ 2 is a fixed integer. To prove Theorem 1.1, we construct a perfect graph Gk

of clique-chromatic number k+1. (Note that for the purposes of proving Theorem 1.1, it is enough
to show that our perfect graph Gk satisfies χC(Gk+1) ≥ k + 1, but for the sake of completeness,
we prove that equality holds.) Our graph Gk is obtained from a large complete graph by applying
universal expansions several times. (Since complete graphs are perfect, Proposition 2.2 guarantees
that the graph Gk that we obtain is also perfect.) Formally, we define a sequence {ni}ki=0 by setting

• nk = (k + 1)!

• ni−1 =
(n2

i
ni

)

for each i ∈ [k]

Since ni−1 =
(n2

i
ni

)

= ni

(n2
i−1

ni−1

)

, we have that ni divides ni−1, and consequently, (k + 1)! divides ni

for all i; this will be of use later in the proof. We also observe that {ni}ki=0 is a strictly decreasing
sequence.

Now, let H0 be a complete graph on (k + 1)n0 vertices, and for each i ∈ [k], let Hi be the
universal (n2

i , ni)-expansion of Hi−1. Finally, let Gk = Hk.

Proposition 2.3. The graph Gk is perfect.

Proof. This is immediate from the construction of Gk and Proposition 2.2.

Our goal is to show that χC(Gk) = k + 1. We first show that χC(Gk) ≤ k + 1 by exhibiting a
(k + 1)-clique-coloring of Gk (see Proposition 2.4). We then show that χC(Gk) = k + 1 by proving
that every (k+1)-clique-coloring of Gk uses all k+1 colors, and consequently, no k-clique-coloring
of Gk exists (see Proposition 2.6).
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Proposition 2.4. Gk is (k + 1)-clique-colorable.

Proof. We proceed as follows: we exhibit a 2-clique-coloring of H0, we then extend that to a 3-
clique-coloring of H1, and then we extend that to a 3-clique-coloring of H2. If k = 2, then we are
done, and otherwise, we show that for each i ∈ {2, . . . , k − 1}, any (i+ 1)-clique-coloring of Hi can
be extended to an (i+ 2)-clique-coloring of Hi+1.

First, assign the color 1 to a single vertex (call it x0) of the complete graph H0, and assign
the color 2 to all other vertices of H0; clearly, this is a 2-clique-coloring of H0. Next, for each
component of H1 r V (H0), choose a vertex that is non-adjacent to x0 and color it 1 (such a vertex
exists because no vertex of H0 has more than n1 neighbors in any component of H1 r V (H0), and
each component of H1 r V (H0) is a clique of size n2

1 > n1), and assign the color 3 to all other
vertices of the component. Clearly, this is a 3-clique-coloring of H1. Furthermore, note that the set
of all vertices of H1 colored 1 is a stable set (and so no clique of H1 contains more than one vertex
colored 1).

We now extend our 3-clique-coloring of H1 to a 3-clique-coloring of H2. Let X be the vertex-set
of a component of H2 r V (H1) (thus, X is a clique of size n2

2 of H2), and let C be the set of all
vertices of H1 that have a neighbor in X; thus, (C,X) is a petal of H2. In particular, C is a clique
of H1, and consequently, at most one vertex of C was assigned the color 1. If exactly one vertex of
C was colored 1, then let x ∈ X be some neighbor of that vertex, and otherwise, let x be any vertex
of X. If all neighbors of x in C were colored 2, assign to x the color 3, and otherwise, assign to x
the color 2. Finally, assign the color 1 to all vertices in X r {x}. We do this for each component of
H2 r V (H1), and the coloring of H2 that we obtain is clearly a 3-clique-coloring of H2. If k = 2,
then we are done. So suppose that k ≥ 3.

Now, fix i ∈ {2, ..., k − 1}, and assume inductively that we have (i + 1)-clique-colored Hi. We
must (i+2)-clique-color Hi+1. Let X be the vertex-set of a component of Hi+1rV (Hi); we color X
as follows. We first pick any vertex x of X, and if all neighbors of x in Hi (note that these vertices
form a clique) were colored 1, then we assign to x the color 2; otherwise, we assign to x the color 1.
To all other vertices of X, we assign the color i+2. We do this for all components of Hi+1rV (Hi),
and we thus obtain an (i+ 2)-clique-coloring of Hi+1. This completes the induction, and it follows
that Gk = Hk is (k + 1)-clique-colorable.

We now need some notation. If v ∈ V (Gk), we denote by N(v) the set of all neighbors of v
in Gk (in particular, v /∈ N(v)). If v ∈ V (Gk) and X ⊆ V (Gk), we denote by NX(v) the set of
all neighbors of v in X, that is, NX(v) = N(v) ∩ X (here, v may or may not belong to X, but
v /∈ NX(v)). The following proposition is easy but crucial for what follows.

Proposition 2.5. Let i ∈ {0, . . . , k−1}, let C be an ni-vertex clique of Hi (recall that ni =
(

n2
i+1

ni+1

)

),

and let c ∈ C. For every petal (C,X) in Hi+1, {c} ∪NX(c) is a maximal clique (of size ni+1 + 1)
of Gk.

Proof. By definition, {c} ∪NX(c) is a clique of size ni+1 + 1 of Hi+1 (and therefore of Gk as well),
and we just need to show that the clique {c} ∪ NX(c) is maximal in Gk. We first show that it is
maximal in Hi+1. We know that no vertex in V (Hi+1)r (C ∪X) has a neighbor in X, and so we
just need to show that no vertex in Cr{c} is complete to NX(c). But this follows immediately from
the fact that vertices in C have pairwise distinct neighborhoods in X, and all these neighborhoods
are of equal size. Thus, {c} ∪NX(c) is a maximal clique of Hi+1.

To show that {c} ∪ NX(c) is a maximal clique of Gk, it now suffices to show that no vertex
in V (Gk) r V (Hi+1) has more than ni+1 neighbors in V (Hi+1) (this is sufficient because {c} ∪
NX(c) ⊆ V (Hi+1) and |{c} ∪ NX(c)| = ni+1 + 1). If i = k − 1, then this is immediate, and so
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we suppose that i ≤ k − 2. Fix v ∈ V (Gk) r V (Hi+1), and let j ∈ {i + 1, . . . , k − 1} be minimal
such that v ∈ V (Hj+1). Fix a petal (C ′,X ′) of Hj+1 such that v ∈ X ′. Since |X ′| = n2

j+1,

the number of nj+1-element subsets of X ′ that contain v is precisely
(n2

j+1
−1

nj+1−1

)

, and consequently,

|NC′(v)| =
(n2

j+1
−1

nj+1−1

)

≤
(

n2
j+1

nj+1

)

= nj ≤ ni+1. Since NV (Hi+1)(v) ⊆ NV (Hj)(v) = NC′(v), it follows
that v has at most ni+1 neighbors in Hi+1, which is what we needed to show.

From now on, we fix a (k + 1)-clique-coloring of Gk. (Note that Proposition 2.4 implies that
at least one such clique-coloring exists.) To show that χC(Gk) = k + 1, it suffices to show that
our (k + 1)-clique-coloring of Gk uses all k + 1 colors, and so no k-clique-coloring of Gk exists.
In fact, we prove something stronger. Given i ∈ {0, . . . , k}, an (i + 1)-uniform clique of Hi is an
ni-vertex clique C of Hi such that our (k + 1)-clique-coloring of Gk uses exactly i + 1 colors on
C, and furthermore, each of those i + 1 colors is used on precisely ni

i+1 vertices of C. (We remind
the reader that (k + 1)! divides ni, and so ni

i+1 is an integer.) Our goal is to prove the following
proposition, which immediately implies that χC(Gk) = k + 1.

Proposition 2.6. For every i ∈ {0, . . . , k}, there is an (i+ 1)-uniform clique of Hi.

The main ingredient of the proof of Proposition 2.6 is the following lemma, whose (probabilistic)
proof we postpone to the end of this section.

Lemma 2.7. Let i and n be positive integers such that i(i + 1) divides n. Let C be a set of size
(n2

n

)

, and let (C1, . . . , Ci) be a partition of C into i equal-sized subsets. Then there exists a bijection

φ : C →
([n2]

n

)

such that:

(1) for any j ∈ [i] and any A ∈
(

[n2]
2n

)

, some member of φ[Cj] is a subset of A.

(2) for any j ∈ [i] and any B ∈
( [n2]
n/(i+1)

)

, B is a subset of at least n
i+1 members of φ[Cj ].

Proof of Proposition 2.6 (using Lemma 2.7). We proceed by induction on i. For i = 0, we observe
that a 1-uniform clique of H0 is any monochromatic n0-vertex clique of H0. Such a clique exists
because H0 is a complete graph on (k + 1)n0 vertices, and our clique-coloring of Gk uses at most
k + 1 colors.

For the induction step, fix i ∈ [k], and suppose that C is an i-uniform clique of Hi−1. In
particular then, |C| = ni−1 =

(n2
i

ni

)

. We also remind the reader that (k + 1)! divides ni, and in
particular, i(i + 1) divides ni. Since C is i-uniform, there is a partition (C1, . . . , Ci) of C into i
equal-sized monochromatic cliques; we may assume without loss of generality that for each j ∈ [i],
vertices of Cj were colored with color j. Let φ : C →

(

[n2
i ]

ni

)

be the bijection whose existence is
guaranteed by Lemma 2.7. Let (C,X) be the petal of Hi associated with φ.

Now, for each j ∈ [k+1], let Aj be the set of all vertices of X that received the color j. Suppose
first that for some j ∈ [i], |Aj | ≥ 2ni. Then by Lemma 2.7 (1), we know that there is some c ∈ Cj

such that NX(c) ⊆ Aj , and so the clique {c} ∪ NX(c) is monochromatic. But by Proposition 2.5,
{c}∪NX(c) is a maximal clique of Gk, and so the fact that this clique is monochromatic contradicts
the fact that Gk was clique-colored. This implies that for all j ∈ [i], |Aj | ≤ 2ni− 1. Since |X| = n2

i ,
and since (A1, . . . , Ak+1) forms a partition of X, it follows that there exists some index j ∈ [k+1]r[i]

such that |Aj | ≥ n2
i−i(2ni−1)
k−i+1 ≥ ni(ni−2i)

k−i+1 ; by symmetry, we may assume that |Ai+1| ≥ ni(ni−2i)
k−i+1 .

Since k ≥ 2, ni ≥ (k + 1)!, and i ∈ [k], we see that ni−2i
k−i+1 ≥ 1

i+1 , and so |Ai+1| ≥ ni
i+1 . Fix

B ⊆ Ai+1 such that |B| = ni
i+1 . By Lemma 2.7 (2), we know that for each j ∈ [i], there are at least
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ni
i+1 members of Cj that are complete to B. For each j ∈ [i], we let Bj be an ni

i+1 -element subset
of Cj such that Bj is complete to B, and we observe that B ∪ B1 ∪ . . . ∪ Bi is an (i + 1)-uniform
clique of Hi. This completes the induction.

It now only remains to prove Lemma 2.7.

Proof of Lemma 2.7. If i = 1, then the result is immediate; so assume that i ≥ 2. (Note that this
implies that either n = 6 or n ≥ 12.) We denote by p1 (resp. p2) the probability that a random
bijection φ : C →

([n2]
n

)

fails to satisfy (1) (resp. (2)) from Lemma 2.7. We need to show that

p1 + p2 < 1. To simplify notation, we set N :=
(n2

n

)

.

We first find an upper bound for p1. Let A ∈
([n2]
2n

)

. The set A has p :=
(2n
n

)

subsets of size n,
and so for each j ∈ [i], the probability that none of these subsets is the image of a vertex of Cj is

(N−N/i
p

)

(

N
p

)

By the union bound over all possible choices of A and all j ∈ [i], we obtain

p1 ≤ i
(

n2

2n

)(N−N/i
p )

(Np)
≤ i

(

n2

2n

)

(1− 1
i )

p

We next find an upper bound for p2. Let B ∈
( [n2]
n/(i+1)

)

. There are q :=
(n2−n/(i+1)
n−n/(i+1)

)

subsets of
size n of [n2] that include B (as a subset). For each j ∈ [i], the probability that fewer than n/(i+1)
of these subsets are the image of a vertex of Cj is

n/(i+1)−1
∑

t=0

(N−N/i
q−t

)(N/i
t

)

(

N
q

)

Again, by the union bound over all possible choices of B and all j ∈ [i], we get

p2 ≤ i
( n2

n/(i+1)

)

n/(i+1)−1
∑

t=0

(N−N/i
q−t )(N/i

t )
(Nq )

≤ iN
n/(i+1)−1

∑

t=0

( N
q−t)(

N
t )

(Nq )
(1− 1

i )
q−t(1i )

t

≤ iN(1 − 1
i )

q
n/(i+1)−1

∑

t=0
(qN)t

≤ iN(1 − 1
i )

q n
i+1N

2( n
i+1

−1)

≤ iNn(1− 1
i )

q

≤
(

i
(n2

2n

)

(1− 1
i )

q/n
)n
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Next, we show that q
n ≥ p. Since i ≥ 2 and i(i+ 1) divides n, we have that 2n

3 ≤ n− n
i+1 ≤ n− 2.

We now obtain the following:

q
n = 1

n

(n2− n
i+1

n− n
i+1

)

≥ 1
n · (n2−n+1)

n− n
i+1

(n− n
i+1

)!

≥ 1
n · (n2−2n+1)

2n
3

(n−2)!

= (n−1)
4n
3

+1

n!

If n = 6, then we see by direct calculation that (n−1)
4n
3

+1

n! ≥ p. Otherwise, we have that n ≥ 12, in
which case

(n− 1)4/3 ≥ (1112n)
4/3 = (11

4

124n)
1/3n ≥ (11

4

123 )
1/3n ≥ 2n

and consequently,
(n−1)

4n
3

+1

n! ≥ (2n)n

n! ≥ p

So in either case, we have that (n−1)
4n
3

+1

n! ≥ p, and it follows that q
n ≥ p. Using the fact that

0 < 1− 1
i < 1, we deduce that

p2 ≤
(

i
(n2

2n

)

(1− 1
i )

p
)n

and consequently,
p1 + p2 ≤ i

(n2

2n

)

(1− 1
i )

p +
(

i
(n2

2n

)

(1− 1
i )

p
)n

Thus, in order to complete the proof, we need only show that i
(

n2

2n

)

(1− 1
i )

p < 1
2 .

Since i(i+1) divides n, we know that i ≤ √
n. Further, it is well known that the central binomial

coefficient
(2n
n

)

satisfies the inequality
(2n
n

)

≥ 22n−1/
√
n; thus p ≥ 22n−1/

√
n. Finally, it follows

from elementary calculus that 0 < (1 − 1
x)

x < 1
e for all real numbers x > 1; in particular then,

0 < (1− 1√
n
)
√
n < 1

2 . Using all this, we obtain the following:

i
(n2

2n

)

(1− 1
i )

p ≤ √
n
(n2

2n

)

(1− 1√
n
)2

2n−1/
√
n

≤ √
n n4n

(2n)! (
1
2)

22n−1/n

≤ n4n(12)
2n

= 24n log2(n)−2n

Since n ≥ 6, we have that 4n log2(n)−2n < −1, and consequently, i
(n2

2n

)

(1− 1
i )

p < 1
2 . This completes

the argument.

7



References

[1] T. Andreae, M. Schughart, and Zs. Tuza, “Clique-transversal sets of line graphs and complements
of line graphs”, Discrete Math., 88 (1991), 11–20.

[2] G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann, and A. Sebő, “Coloring the maximal cliques
of graphs”, SIAM J. Discrete Math., 17–3 (2004), 361–376.

[3] M. Chudnovsky and I. Lo, “Clique-coloring diamond-free perfect graphs”, submitted for publi-
cation.

[4] D. Défossez, “Clique-coloring some classes of odd-hole-free graphs”, J. Graph Theory, 53 (3)
(2006), 233–249.

[5] D. Duffus, B. Sands, N. Sauer, and R. E. Woodrow, “Two-coloring all two-element maximal
antichains”, J. Combinatorial Theory, Ser. A, 57 (1991), 109–116.

[6] S. Gravier, C.T. Hoàng, and F. Maffray, “Coloring the hypergraph of maximal cliques of a graph
with no long path”, Discrete Math. 272 (2003), 285–290.

[7] B. Mohar and R. Škrekovski, “The Grötzsch Theorem for the hypergraph of maximal cliques”,
Electron. J. Combin., 6 (1999), R26.

[8] J. Mycielski, “Sur le coloriage des graphes”, Colloquium Mathematicum, 3 (1955), 161–162.

[9] I. Penev, “Perfect graphs with no balanced skew-partition are 2-clique-colorable”, to appear in
J. Graph Theory.

[10] A.A. Zykov, “On some properties of linear complexes”, Math. Sbornik. (in Russian), 24(66)(2)
(1949), 163–188.

8


	1 Introduction
	2 Proof of Theorem ??

