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Lattices of sound tubes with harmonically related eigenfrequencies

J.-P. Dalmont and J. Kergomard

Laboratoire d’Acoustique de I’Université du Maine, URA 1101 CNRS, Av. Olivier Messiaen, B.P. 535, 72017 Le Mans
Cedex, France

(Received 11 August 1993; revised 24 May 1954; accepted 23 August 1994)

Abstract. — The only continuous acoustic horns (in plane wave approximation) known for having harmonic
eigenfrequencies are conical and cylindrical. Because of this, these shapes have been widely used for woodwind
musical instruments, Other, non continuous, shapes are shown here to have the same property: they consist of a
succession of truncated comes {or cylinders) of equal length, which are defined by three initial values for the radii
(e.g. the input and output radii of the first cone and the input radius of the second one). The recurrence relations
are obtained in the frequency domain, the principle being to impose the existence of travelling waves at the nodes of
the lattice: the successive refleciions at discontinuities are cancelled at the nodes (but only there). Several kinds of
boundary conditions are studied. For the “closed-open” conditions, the unique solation is based upon cylinders and
the input impedance curves and its inverse Fourier Transform are shown to have interesting properties. Measurements

have been made for this case and the agreement between experiment and theory is satisfactory.

Pacs numbers: 43.20Mv — 43.75Ef

1. Introduction

It is well known, since Bouasse (1929) and Benade (1976),
that a very important requirement for musical wind in-
struments is the harmonicity of the resonance frequencies:
this requirement is demanded by both the definition of
musical scales and the necessity of easy intonation (see
e.g. Gilbert & Dalmont (1992)). Cylindrical tubes have
harmonically related resonance frequencies, when disper-
sion due to visco-thermal effects or radiation is not too
important. Similarly, “open”-open truncated cones (i.e.
truncated cones open at one end and excited by a flute-
like mechanism) have the same property. On the con-
trary, “closed”-open truncated cones (excited by reeds),
have approximately harmonic resonance frequencies only
if the distance from the apex to the input is small com-
pared to the wavelength. For wind instruments, with a
more complicated shape and including toneholes, it is
an important task for the designer to reduce the anhar-
monicity of the resonance frequencies.

An interesting theoretical question is therefore posed:
is it possible to find shapes of horns, defined as tubes
with variable cross-section, including discontinuities in
cross section and/or taper, having harmonically related
eigenfrequencies (or resonance frequencies), different from
a simple cylinder or truncated cone ?

In this context Dalmont (1992), one of the present au-
thors, obtained the following result: a succession of cylin-
drical tubes of the same length and with an appropriate
relation between their cross sections may be considered
as a lattice with harmonically related eigenfrequencies
(see Figure 1). As a consequence, it is possible to find

intermediate shapes of horns between the cylinder and
the cone for which the eigenfrequencies are harmonically
related.
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Figure 1. Lattice of cylindrical tubes having harmonically
related eigenfrequencies {closed-open case). S is the cross sec-
tion of the first cylinder and N the number of cylinders.

This result was obtained when the approximation of
matched plane waves is valid, the condition of validity
being that the transverse dimensions are much smaller
than the wavelength. The approximate modelling ignores
losses, inductances of step discontinuities and radiation
impedances for open tubes, but a more realistic model, as
will be shown in the present paper, confirms the result.

The aim of this paper is first to extend the investi-
gation to other possible shapes of lattices of tubes hav-
ing harmonically related eigenfrequencies, and second to
discuss in detail some properties of lattices of cylindri-
cal tubes. In Sections 2 and 3, horns with harmonically
related eigenfrequencies corresponding to boundary con-
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ditions of zero pressure at the extremities are considered.
The discussion of Section 2 is limited to continnous horns,
and in Section 3, it is extended to the case of horns with
discontinuities {in cross section and its first derivative),
We have found a very wide class of horns with the re-
quired property, although we have not proved that we
have covered all possibilities.

Section 4 deals with the geometrical analysis of the
lattices obtained in Section 3, and Section 5 with the
calculation of characteristic impedances and transfer ma-
trices. In Section 6 we consider the eigenfrequencies coi-
responding to other boundary conditions, especially zero
volume velocity at the input: for musical wind instru-
ments, zero volume velocity corresponds to reed instru-
ments, whereas zero pressure at the input corresponds
approximately to flute like instruments.

Finally, in Section 7, the input impedance and the
envelope curves for the peaks and dips are caleulated and
measured for the simplest case of a lattice built with only
cylindrical tubes. In Section 8 interesting time domain
properties are discussed.

2. Horns with harmonically related
eigenfrequencies for continuous values of the
axial coordinate

Consider the classical plane wave horn equation (without
losses}, due to Lagrange, in the frequency domain {see
e.g. Hisner (1967), Benade & Jansson (1974)):

(dp)" + (* — d"/d) (dp} = 0 (1)

where p = p(z) is the acoustic pressure, d = d(z) the
diameter of the horn, k = w/c, w the angular frequency,
¢ the speed of sound in free space. The double prime here
indicates the second derivative with respect to the space
coordinate, x, corresponding to a wavefront assumed to
be planar, and the single prime later indicates the first
derivative. In the entire paper, except in Section 8, the
time dependence e/t of the acoustic quantities is omit-
ted. We search for the eigenfrequencies of a horn, with
the following, simple boundary conditions:

p=0forz=0and r = X,
where X is the length of the horn.

Only one profile d(z} allows harmonically related fre-
quencies for every value of X: it is satisfied by & = 0,
i.e. it is a conical horn. So the eigenfrequencies series is
the complete series w; = imc/X, where 7 is an integer,
and the eigenfunctions are as follows:

pi(z) = sin irz/X-

Obviously, the condition of zero pressure at an end
is seldom encountered for gases: nevertheless a radiation
impedance, or more precisely a radiation reactance, which
has an influence on the resonance frequencies, can be
classically taken into account as a “length correction”
nearly independent on frequency. As a consequence, even
for cones, one could deduce this correction from the total
length, and assume a zero impedance at the end. In the

case for which experiment have been made, we discuss
this question in Section 7.

3. Horns with harmenically related frequencies
for discrete values of X

In the previous Section, we have considered a very re-
strictive condition: the eigenfrequencies are harmonically
related for every value of X. We now search for shapes of
horns, which may include discontinuities for the functions
d(zx} and d'(z), for which the eigenfrequencies are har-
monically related for particular values of X ) £n , where n
is an integer, i.e. for the following boundary conditions:

p:Oform:Oandx:xnforagivenn

The abscissae values z,, are called the nodes of the
lattice. In order to generalize the previous case, the horn
is assumed to be continuous and conical between T 1
and x,, (there are probably no other soletions than cones,
but this may be disputed). So, using classical results for
the transfer matrix of conical horns {see e.g. Benade
(1988) or Ayers et al. (1985)), we obtain an expression
for the acoustic flow U, as a function of quantities and
dimensions of the horn between z,_; and z,,:

JUn dpcfm = ~ ,:dﬁL cot kfy, + ot (d"I}cg_Ldﬂ—i,R) Pn

d’nwl RdnL

TS kR, Prel
(2L)

where U, is the flow at x,, p,_; and Py, the pressure
at Tn—y and ,, respectively, {1, = z,, — Zpn_ 1, and d,p,
and dnr the values of the diameter at the left and at
the right of x,,, respectively (sce Figure 2). The use of
the quantities p and U is convenient because they are
continuous, even when discontinuities in d{z) or ¢’ (x)
occur.

In the same way we can obtain an expression for the
truncated cone at the right hand side of z,,:

dzR eot keR - an (dﬂ.—i—l,L — an)

JUndpefn = 7

7L

n+1 LdﬂR

d
T Tsin kg Pri1

where E’R = Zn41 — &y,

(2R)

By eliminating U, between equations (2L) and (2R),
one obtains a relation, between the nodes Pr—1s Pny Prtl-

Now we can search for a solution of equation (1),
extended by writing the continuity of pressure and flow
at discontinuities, in the following form, valid at z,:

Prn = G (p+e“jk9u +p“e+jkgn) (3)

where a,, and g, are real quantities, independent of the
frequency, and pt and p~ are complex coefficients. The
eigenfrequencies for the portion (Zn, Tnt1) are given
by: sin k(gnt1 —gn) = 0, and are the complete series:
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Figure 2. Notations for the lattice of truncated cones.

w; = ime/ (gnt1 — gn), Where ¢ is an integer. A neces-
sary condition for the existence of a solution as given by
equation (3) is that a travelling wave p, = ¢, g ikgn
is a solution of this equation obtained from equations
(2L) and (2R). After dividing by the factor e 7%9= this
equation can be written in the form:

an |dip cot kg + d2y cot ki

_dnr {drnja1 — dar) 4 Gt (dnr — dn1,1)
kfgr kig (4)
d d,, —j -
= _WE L RR Any1 © Jk[gw&—i gn]
dn—1nd —3 -
+TI11L%?;_L Gn—1 © 3k[gn-1 = gn].
The imaginary part of this equation (corresponding
to the energy flow conservation equation) is:

sin k(9n+1 - gn) _

sin kfp -

sin k (gn — gn—1)
sin kéy,

dn+1 ,LanG"n,+ 1

= dn-—l,RdnLan—l
Because it is valid at every frequency , one has:
Ontl — n = ER = Tn+1 — Tn

gn — gn-1 = &, = Ty — Tn1
dn+1anan+1 =dn—1dnLBn_1-

The energy flow, I, is:

ldnapdnr ™

I n—1Pn
2 sin kf;, 4pe m (pn—197)

1
I'=2Re (p Up) =
oo I= S%dnwl,RdnLanAlan

(8)

and I = B%dn+l,Lananan+l'

The * indicates the complex conjugate.
From the real part of equations (4) and (5), one
obtaing:

a T
ju' Bpc

cot kfg4cot ki, (6)
dflR cot k£R+diL cot ka—d“R(dn"l’;’l'{L_d"R)+d“L(d“1*'::Ld"—1\R)

This eguation is valid for every value of the frequency.
So one deduces a first geometrical condition:

dur (dn+1,L - an) /BR =dgy, (dnL - dn—l,R) /EL (73')

An elementary calculation leads to the following, equiva-
lent result:
Spn = 5o (7b)

where S = nd? /4 is the cross section, and S its derivative
with respect to z.

The other condition obtained from equation (6) is the
independence with respect to frequency of the following
quantity:

K = (cot kég -+ cot kéy,) / (d2g cot klr + day, cot kéy) -

Two cases should be considered:
i) if dor = dnr, (0r Spp = SnaL), the condition is valid for
any length: it is the case of a continuous conical horn, as
treated in Section 2.
it} if d,p # dar, the lengths fg and £, are equal because
of the independence of K with respect to frequency, and
it follows from equations (6) and (7a):

aim 1
I8pc — d2, +d2%

(8a)

or
a2 = dIrc/ (Sar + Sar)- (8b)

If this result is used for a,,_1, one abtains, after some
algebra, from equations (5) and (8):

4d2 ) gdi, = (2 +dig) (d2 1 +dop) (%)
or
(SnL + Sni) (Sn—1,R + Sa-1,1) = 4521 5n-1,k  (9D)

For a semi-infinite lattice (n > 0), equations (7) and
(9) define recurrence relationships, the lattice being de-
fined by three initial dimensions: dog, di1, dir. These
recurrence relationships can be transformed as explained
in Section 4.

These developments correspond to a lattice made with
truncated cones, as it has been shown, of equal length
and with appropriate step discontinuities between them.
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Another possible line of development would be to use
the equivalent electrical circuits of conical tubes (see e.g.
Benade (1988)). An equivalent circuit for a conical tube
is the classical circuit for a cylindrical tube with shunt
inductances at both ends. The basic idea of our treatment
is to compensate the effect of the shunt inductance at
the input of a conical tube with the effect of the shunt
inductance at the output of the previous tube.

4. Geometry of the lattice

From equations (7) and (9), one obtains the following,
general formulae:

dip = d2[1+ B/(1 +nB)]

&2y = & [1 - B/(1+np)] o

where
D d?
2= ZOnTL () ey (2 1) 2 (1)
dlL + le

and
o= (d%L + d%R) /ZdoRdg_L - 1;

B = (de - dgL) /2d%L'

The analysis of equations (10) and (11) can be made
by considering successively 3 parameters: o, 8, and a—§,
which are related to the “generating cone”, the rate of
step discontinuities, and the conicity of a cell, respec-
tively, as follows (see Figure 3):
i) Equation (11) defines a “generating” cone, with a
conicity proportional to a. If a is positive, the cone is
divergent, If o is negative, the generating cone is con-
vergent. So in that case it is finite because the quantity
1+ ne must remain positive in equation (11) (we notice
that a cone convergent then divergent - i.e. (14 na) at
first positive then negative - can be solution of equation
{10}, but it can be shown that these equations are not
valid in this case). Finally, if « is infinite, the generating
cone has its apex at n = 0 (dp = 0) and equation (11)
becomes d% = din?. In the general case, when n — o0,
the lattice tends to the generating cone.
ii) The rate of step discontinuity, d2,/d?,, is given by
the equation obtained from equation (10):

@_31_11 _ 1+ (n+1)3
dy,  1+(n-1)8

and depends on one parameter only, 8. The sign of
(d25/d2;, —1) is independent of n. For 3 = 0 the rate is
equal to unity and the lattice is a cone without discon-
tinuities, i.e. it is equal to the generating cone (Figure
3b).

If 3 is negative (dig < dir.), the ratio d,r/dny, is less
than unity and increases with n. The conicity of a cell
is larger than the conicity of the generating cone (Figure
3a). On the contrary, if 3 is positive (dig > dyy,), the ratio
dnr/dyg 15 larger than unity and decreases with n. The
conicity, then, is less than the conicity of the generating
cone (Figures 3¢, 3d and 3e).

B<{

B=0

a>B>0

a=p

B>a

Figure 3. The different cases of lattices having harmonically
related eigenfrequencies for positive @ and increasing values
of f. For each case N = 5 and @ = 1. # is equal to —0.1837,
0., 0.3333, 1. and 9., respectively for Figures a), b), c), d), e).
Dotted lines: generating cone.

If 3 is negative, the lattice is finite, because finite and

positive values of d2; imply n < —1/3. Becaunse 28 + 1
must be positive, the maximum value N of n is greater
or equal to 2.
iii) The conicity of a cell, equal to (dny1,1 — dur) /4,
is proportional to the quantity (o — ), and its sign is
independent of n and equal to the sign of the conicity
of the first cell. For a — 8 = 0 (dor = dy.), all cells are
cylindrical (Figure 3d).

5. Characteristic impedances and transfer
matrices of the lattice

We consider. a travelling wave: Pn = aneTitnt  Thig
wave travels like a lattice wave, i.e. a wave existing
only for discrete abscissae. But, between two abscissae
ZTn and Tnyq, it is easy to show that the step dis-
coutinnities produce reflections: if p, = a,e” 7" and
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D1 = Anpie ¥ PTIE 52} is a superposition of two
waves, e ~75% and et75* We discuss this fact in Section 8.

From equations (2L) (or 2R) and (8}, we obtain
the characteristic admittance ¥, of this travelling wave
(¥t = Uy /pn):

YEpc= —j5 (San — Sar) cot ke

+J%7§" + % (Sar + Sni)

for
Prtl _ Gntl Fjke,

Pn L
Without discontinuities (Snr = Sn1), this formula is
the classical formula for the characteristic admittance of
a spherical wave in a cone. Thus, the general solution can
be written (from equation (3)):

P = ap (pre IFnE 4 pmedknt)
U = a, (ptYje it 4 p=¥,melknt)
Eliminating p¥ and p~, we can deduce that a formula

for the transfer matrix between two different nodes z,
and z,, can be written as follows:

Pn — Zen 0 1 0
U, Vo 23t YnZen 1

[ cos k{Zm —%n) 780 k(Tm —24)
7 8in k(Tm —Tn) €08 k{Zm — Zn)

1 0\ (z,. © Pm
(e 1) (5 0) (B2) 09

where 2z,, = 3,42, Zren = pcfSn, and
.SnR - SnL 1 . Sl
nFoom = —J —em—= ot kKl + —J —
¥ 18 8 Tt 3 Es,

and similar definitions hold for the subscript m.

6. Lattices with harmeonically related
eigenfrequencies  for  various  boundary
conditions

In the previous sections lattices with harmonically related
eigenfrequencies were found with the boundary condi-
tions of zero pressure at both ends of the lattice. By
analogy with the closed-open cylinder (reed instruments)
for which the eigenfrequencies are in the ratios 1, 3, 5,...,
we now try to study the problem of mixed boundary
conditions: p = 0 for m = N, and a different condition
for n = 0.

If p =0 for m = N, from equation (13), one obtains
the input admittance:

ipcYy d?

ipchh (1,‘:%%) cot ke
1 /(d ds

+H(£§ﬁg+é?mﬂm

where L = N{.

(14)

If p =0 for n = 0, the admittance ¥ == oo, and we
find as expected cot kI = co. We notice that cot &£ = oo
is a second solution, but it i3 included in the first solution.
If the first cone is complete, i.e. dgg = 0, we obtain the
same solution in order to have a finite pressure (Y, /Sor is
the ratio pressure/velocity). This case is similar to that
of the complete cone {see for a discussion Ayers et al.
(1985)).

We are now interested in lattices closed at = = 0
(Yo = 0), with dor # 0. It is well known that for conical
reed woodwind instruments (see e.g. Nederveen (1969))
consisting approximately of truncated cones, the reso-
nance frequencies are close to the frequencies of a com-
plete cone. This approximation is valid when the distance
from the apex to the input of the truncated cone is small
compared to the wavelength. We can then search for a
generalization, using equation (14).

If k¢ < 1, equation (14) can be rewritten as follows:

jocYy 1 fdi,  di\ | di
S Kl (duR 2 )t a ok

So the eigenfrequencies for Yy = 0 are given by:
cot kL + afkl = 0

If £/« is small compared to the wavelength, one obtains:

ne
Ty

This formula is valid if both £ and ¢/o are small com-
pared to the wavelength. The first condition is satisfied
for the first eigenfrequencies if V is sufficiently large. The
second condition implies that the distance from the apex
of the generating cone to its input is sufficiently small
compared to the wavelength,

Equation {14) suggests other cases with harmonically
related eigenfrequencies for zero admittance and without
the low frequency condition. If the lattice is built with
cylindrical cells (dy;, = dor), and if the coefficients of the
terms cot kf and cot kL are equal (d} = 2d7,), then
equation {14} becomes:

cot kf+cot kL. =0

or
sin k(€ + L)/(sin k€ sin kL) =0 {15)

The eigenfrequencies are given by: f; = ic/2L’, where
I! = L+ ¢, axcept if 4 is a multiple of I'/# = 1 + N.
In this case, & = # = 1, and equations (10) and (11)

become:
d? = di(n + 1)%,

d2p =dig(n+ 1)(n +2)/2, (16)

3y, = dign(n +1)/2:

Notice that d2 = d2g/2, and dup = dnq1,L- In this
case, dor. = 0, i.e. if the lattice is extended on the left,
the first value is zero: the boundary condition is in ac-
cordance with the formulae defining the lattice. Another
interpretation is the following: the lattice has a length L',
and includes a zero diameter cylinder (d_; r = dor. = 0).
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For every design, the series of harmonic frequencies
is incomplete. For N = 1 (L = £), the lattice is a single
cylinder, and the eigenfrequencies ratio series is 1, 3,5,
7... For N = 2, the series is 1, 2, 4, 5, 7, 8, 10, 11 ... For
N =3, theseriesis 1,2, 3,5,6,7,9,10, 11, ... If N tends
to infinity, the series tends to become complete, and the
lattice tends to be to a complete cone.

As a conclusion, we have found the intermediate cases
between a closed cylinder and a complete cone, as ex-
plained by Dalmont (1992).

7. Input impedance of a finite lattice of
cylindrical tubes

It is interesting to study the input impedance curves
of lattices of cylindrical tubes satisfying equation (16)
{with zero end impedance), i.e. to consider their response
to forced oscillations instead of their free oscillation be-
haviour. In these calculation, it is necessary o take invo
account. losses due to visco-thermal effects and radia-
tion. It is possible to use a rather precise model as did
Kergomard (1981) for the calculation of resonances in
horns, but we prefer to simplify the model: we assume
that the visco-thermal losses are independent of the ra-
dius, the wavenumber & being replaced by kv, = k — jouy,
(we neglect the visco-thermal effects in the characteristic
impedances), and we use the low frequency value for the
radiation impedance Z (see Levine & Schwinger (1948)):

pel 2

ZR = g 4(kT)

For this calculation, our model ignores the step dis-
continuities (see e.g. Kergomard & Garcia (1987) and
Kergomard (1991)) and, for coherence, the radiation in-
ductance {these quantities will be taken into account later
for comparison with experiments, their influence being
discussed further). We use equation (13), with n = 0 and
m = N, to calculate the input impedance Z; as a func-
tion of the radiation impedance, and obtain, after some
algebra:

ZoB — j sin ki
(17)
ZME0 (N4 1)[(N+1) cos kyL— sin kyeL cot kyef]+j sin kgL

ZNE0 (N4 1)[(N+1) cos kyyL'— sin koL’ cot kugf] 17 sin kel

where

L=Nt, L'=(N+1){, Sy =nd2/4 = nd2g /8,

and ]
N 2
V=g (kraw)
o IS 11
N2 2
= =k
g - MW ak)
with

Tr=ryNL-

The calculation of the extrema of Z;, is made at the
first order of (kr)? and a,f. The values of the resonance

and antiresonance frequencies are obtained from the cal-
culation when losses are neglected (see equation (15)),

viz.: )
ZpSy _ .sin k€ sin kL
pe 7 sin kI

(18)

Three cases need to be considered, one for the reso-
nances and two for the antiresonances:

i) Resonances: sin kL' = 0, sin k¢ # 0.
The quantities sin &€ and sin k. L are of the zeroth
order of the losses, and sin k., L' of the first order:

sin (kwL') =sin ((k - jow) L)) = —jawl’ cos kL
The result is:

2050 = j sin ke
j sin &L
5
cos kL' [éf;rc—o(N +1)% + avtL’j

X

or, because sin &L = sin (k(L' — #)) = ~ cos kL' sin k¢,
_pe sin 2k¢

Zy= £ : .
S0 N Llkry2 4 oy (V + 1)¢

(19i)

The numerator sin® k¢ is equal to:

— sinir/2 =1 if N =1 (single cylinder, i # 2n)
- sin®ix /3 = 3/4 if N =2 (i # 3n)
—sin®im/d=1/20r1 if N=3 (i #4n)
(¢ and n being integers).

For m infinite and for a given total length L, the result
is consistent with that for a truncated cone where the

length £ tends to zero, so sin®kf ~ k¢2. For a truncated
cone (see Kergomard (1981)), the equivalent factor is:

1\ 1
12,2
(1 + l—éz—mg) ~ k*xg,
where zp is the distance from the apex to the input of
the truncated cone.

ii) Antiresonance of the first kind: sin kL = 0,
gsin k£ £0

The quantities sin k,.f and sin k., L’ are of the zeroth
order, and sin k., L of the first order:

sin kywL = —joe L cos kL-
The result is:

250 (N 4172 ¢ vy L cos kL

ZySo . . 0C
= ¢ |
pe jsink j sin KL/ |
or
_pc [N +1 1 9 "
Zﬂ = SU I 4(167') “+ Cltvth? (1911)

This result is consistent with that for a truncated
cone: there is no “reactive” factor, and the envelope
curve for the minima has a shape similar to cylinders.
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iii) Antiresonances of the second kind: sin k{ =0
All quantities sin k£, sin by L, and sin kL' are of
the first order:

£€08 kf cos kL
cos kL

ZNS”(N+ D[N+ 1= L/ + anl

Zpg = Oyt

A N
pc

(N+DIN+1—-(L+0/8+ aw(l+9£)

or
1, » N
g (&) +mavt‘?}'

This case does not correspond to any case of a trun-
cated cone. We notice that for these antiresonances,
the input impedance is very small compared with the
impedances of the antiresonances of the first case, and is
very small compared with the antiresonances of a cylinder
of the same length.

o= £

& (19iii)

- 30'{ ~
or A A NN
Py t t t } t } 4 = q
R y V1 ~J[fllf\71_\L_\L Syau
& -20 Ay e
-30 ,i// L
-1e "?/, iz
g Frequency 2500
n’ "/Z_ITT N A A A 7\7\“5
ERR S | 1 AU S/ U VA SRS\ AW RS AN

Figure 4. Calculated input impedance of a lattice of 3 cylin-
ders with a total length 1 meter and radii 8 mm, 13,86 mm
and 19.6 mm, respectively (full lines). Dotted lines give the en-
velope curves calculated with the simplified theory (equations

(19)).

Figure 4 shows the mmput impedance curve calculated
with a “complete” model (i.e. a model taking into ac-
count losses - see Keefe (1984) or Bruneau et al. (1989) -,
step discontinuity inductances - see Kergomard & Garcia
(1987) and Kergomard (1991) - and radiation impedance
-see Levine & Schwinger (1948) -} for a lattice of 3 cylin-
ders with the following parameters: diameters 8 mm,
13.86 mm, 19.8 mm, total length L = 1 m., The approx-
imate formulae (19} predict the heights of the extrema
with a satisfying accuracy at low frequencies.

It is interesting to examine how the model calculated
without dissipation and without discontinuities and radi-
ation indnctances remains valid when these phenomena
are taken into account,

If, as an example, we calculate, with a “complete”
model, a lattice made with four cylinders of length
155 mm and of input diameter 14 mm, the four first

resonance frequencies are equal to 211.7 Hz, 429.8 Hz,
645.8 Hz and 863.3 Hz respectively at 20 °C. This leads
to an anharmonicity of 0.1%, 0.3% and 0.5% between the
first resonance frequency and respectively the second,
third and fourth resonance frequency. Anharmonicity is
more important at higher frequencies: 0.3%, 0.5%, 0.6%
and 0.8% between the first resonance frequency and re-
spectively resonances number 5, 6, 7, 8.

It can also be shown that if the last tube is longer or
shorter than the others, or if one added a short tube to the
last one, the anharmonicity of the first (V — 1) peaks (N
number of cylinders) remains very small. As an example,
if the previous lattice is extended by a short tube of
length 20 mm and diameter 60 min, the anharmonicity
between the first eight peaks remains less than 1%.
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Figure 5. Input impedance of a lattice of four cylinders with
length 0.155 m and radii 7 mm, 12.4 mm, 174 mm and 22.4

mm, respectively, ended in a cylinder of length 18 mm and
radius 29 mm. a) Calculation. b) Measurement.

A comparison with experiment has been made for this
Iast horn made with 4 cylinders of length 155 mm and
of diameter 14 mm, 24.8 mm, 34.7 mm and 44.7 mm,
respectively, terminated in a short cylinder of 18 mm
length and 58 mm diameter. A sensor using an electro-
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static transducer as a source (Dalmont & Bruneau, 1992)
and calibrated with the method described by Dalmont
& Herzog (1993) has been used. “Complete” theory (in-
cluding discontinuities inductance) and experiment are
in good agreement, as shown in Figure 5. Accuracies of
both measured and theoretical resonance frequency are
estimated to about 0.2%. The anharmonicity, even with
the added cylinder of length 18 mm, is weak (less than
1%} and well predicted by the theory. Notice that experi-
mental amplitudes are about 2 dB weaker than predicted
by the theory. This can be explained by the difficulties in
modelling losses, especially at discontinuities.

8. Time domain responses of a lattice of
cylindrical tubes

8.1. Travelling pressure waves in an infinite lattice

‘The property of the lattices obtained in Section 3 is very
particular: the solution is in the form of travelling waves
Dn = 0ne" 5% with free space sound speed. Nevertheless,
for such a “travelling” wave, between two nodes of the
lattice, the solution is not a single travelling wave, but
the superposition of ordinary plane waves travelling in the
two opposite directions. (For simplicity, we restrict the
following considerations to lattices of cylindrical tubes).
For z, < = < z,41, p(z) is the superposition of two
ordinary travelling waves, e %% and /%7 thys:

e——jk(m—zn)

Zwm ke [Pre™ — o]

ejk(:c-—:z:n+1 )

Srsm ke [Pr ~ Parre?]

p(z) = (20)

or
p(x} = [prt1 sin k(2 — 2,) — py sin k (z — 2n41)] /sin k£

It appears that the single travelling wave form exists
only for + = 3, or £ = 2,4;. This fact suggests an
interpretation, based on the time domain response, for
the conditions defining the lattices found in Section 3. Let
us consider an infinite lattice, and the pressure impulse
response in #n4y for a pulse at z = x,: p, = a.d(t).
A physical interpretation of this excitation is as follows:
after a pulse at ¢ = 0, the pressure is zero at z = z,, for
t > 0. So all waves are reflected with a change of sign at
* = &,. The question is why the response at # =z, is
Pnt1 = 8n316(f — £/c), i.e. a single pulse,

At all step discontinuities, an incoming pulse is di-
vided into two parts: a reflected one, the reflection coefi-
cient being B~ = (51, — Sg}/ (91, + Sr), and a transmit-
ted one, the transmission coefficient being 7t = 1 R—.
Similarly, an outgoing pulse is divided into two parts, the
coefficients being Rt = —R~ and T~ = 1 + R*. At time
t = 3¢/c and position = z,,,, the amplitude of the
pulse is (after elementary considerations on the travel of
the initial pulse):

ROy (-1 Th + T - Ry Ty

A condition for having zero pressure at t = 3é/c and
% = Tpyy is therefore:

R =Ry .00, (21}
or

(Snt1,0/Snt1,R — 1) (Sniz,L/Sntar + 1)
=2 (Sn+2,L/Sn+2,R —-1)-

This equation is identical to equation (9b), and is
satisfied in particular for cylindrical tubes defined by
equation (16). As a consequence, using a recursive rea-
soning, we deduce that for znym, puym(mé/c + 2¢ /e) is
zero. Then, by a simple {but rather extended) reasoning,
it can be deduced that the pressure Pnim I8 zero at any
time after ¢ = (m + 2)}f/c. So the response is a single
pulse.

As a consequence, we have explained that equation
(21) is the basic condition for the production of a trav-
elling wave in the lattice, the successive reflected pulses
vanishing only at the nodes of the lattice,

8.2. Green function of an infinite lattice

Another interesting property of an infinite lattice of cylin-
drical tubes can be deduced from the value of the input
impedance, obtained from equation (12), using equation
(16) and setting Sy = wd3 /4:

Yope = So(1 — 7 cot k),

or

Zy = g,—zj sin k¢ e k¢, (22)

‘T'wo remarkable consequences of this result are as follows:

i) the inverse FT of the input impedance, h(t), pro-
portional to the time derivative of the Green function at
x =0, is finite:

h(t) = L [6(1) - 6(t — 2¢/c))-
_ 250

This function is the pressure response to a volume
velocity pulse. Using the previous result concerning the
travelling wave, one deduces that the pressure responge
at any node x, to a volume velocity pulse at = = 0 is
finite too.

ii) Using both equations (20) and (22), we see that
the factor j sin (k€) in the denominator of equation (20)
is compensated for the same factor in the numerator of
equation (22) in the calculation of the transfer impedance
p/Uy at any position z:

I% - _2%% [ﬁﬂf (7%= — eile3(nt1)))

”n-lk (e—jkme-—2jk£ _ ejk(a:—2(-n.+1)£))
(23}
forz, <z <x,+£

So the pressure response at any position z to a volume
velocity pulse Uy = é(t) at = = 0 is finite, even between
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Figure 6. Schematic representation of the propagation on an impulse & in a lattice of cylinders with harmonically related
eigenfrequencies (see Figure 1). The arrows indicate the direction of propagation and the location of the pulses at the considered
time. The values above the arrows give the amplitudes of each pulse. a) Evolution from the initial time. b} Reflection at the

end,

two nodes. More precisely from rewriting equation (23),
this response appears to involve three different pulses:

- Al
TnFDR+2)

1 e—ijE]

2ik(z—{n+1)¢]

i+ 2

or

FT ! {55] = [7dpott —=/c)
—mﬁﬁmm ~[2(n + 1)¢ - a]/c)

— kbt = (2 + 20) /c]] -

(24)

At the nodes of the lattice, the response is reduced

to two pulses. This result is illustrated by the schemes
of Figure 6a: the evolution from initial time is shown
at every time as a function of space. The relation with
equation (24) is elementary, by fixing ¢ in equation (24),
and searching for the values of z for which the delta func-
tions are not zero (it is of course necessary to replace n by

E(z/£), where E is the function integer part). The arrows
indicate the directions of propagation of the pulses.

iti) When the lattice is finite (and open at the end,
with the condition p == 0), the pulses are simply reflected
at the end with a change in sign, but the addition of the
different pulses leads to the remarkable following resuls:
for a given time, the three incident pulses seem to have
been reflected without change in sign, i.e. the location
and the amplitude of the three pulses for a time t =7
is the same as for a time t' = 2(n + 1)¢/c — 7. Only
the direction of the propagation differs. This result is
illustrated in Figure 6b. In a similar way, the reflection
at the input (closed because the source is a pulse of
velocity) is consequently identical to the departure after
the initial time (Figure 6a).

9, Discussion and conclusion

We have found a general family of horns having harmon-
ically related eigenfrequencies. For the open-open case,
the horns are made of a succession of truncated cones
of equal length and can be defined from the choice of
three initial values for the diameters, dor, di1, dir, Le.
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the dimensions of the first cone and the input diameter
of the second one. In this case, the series of the eigenfre-
quencies is complete. For the closed-open case, we find
a generalization of the classical results concerning trun-
cated cones and cylinders. For horns built with truncated
cones with sufficiently steep taper, the series is approx-
imately the same as the series for the open-open case.
For horns built with NV cylinders, however, the series is
incomplete: w; = ix/L where ¢ is any integer except a
multiple of N + 1. :

In this last case, the input impedance and its inverse
Fourier Transform have original properties: the peaks
envelope of the input impedance is the sine function
sin®(kf), and the FT—! of the transfer impedance p(z) /U
of an infinite lattice is finite at every position of  in the
lattice, even between nodes.

Our first treatment of the problem is in the frequency
domain, because of the research of eigenfrequencies. In
the time domain, we deduced from the form of the solu-
tions a second possible method of derivation of the result,
based on the existence of travelling lattice waves. We lim-
ited the time domain discussion to lattices of cylindrical
tubes, but an extension to lattices of conical tubes could
be possible, using reflection functions at step and /or ta-
per discontinuities between cones (see Agulld et al, (1988)
and (1992), Martinez & Agullé (1988) and Gilbert et al.
(1990)). Probably we could obtain the same explanation
as for cylindrical tubes, i.e. the destructive superposition
of successive reflected waves at the nodes of the lattice.

Two kinds of generalization of our results could be
studied. On the one hand, the closed-closed case can
be studied by simply using the property of duality, as
explained by Pyle (1975), pressure and volume velocity
being inverted, and the cross section function 5(z) being
replaced by 1/8(z). So the truncated cones should be
replaced by parabolic horns.

On the other hand, it is possible to use branched tubes
of length £ at the nodes of lattices found in Section 3: if
they are open (i.e. terminated by a zero impedance), the
coefficient (dZ2g + d2,) of the quantity cot (k€) appearing
in equation (4) is modified. Thus a wider class of lattices
can be found, but the study presented in this paper
is concerned only with lattices built with comical tubes
but without branched tubes. Finally, it remains to be
demonstrated rigorously that no other shapes of korn
lattices have harmonically related eigenfrequencies.
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