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Abstract

In geophysics, the shallow water model is a good approximation of the incompressible Navier-Stokes
system with free surface and it is widely used for its mathematical structure and its computational ef-
ficiency. However, applications of this model are restricted by two approximations under which it was
derived, namely the hydrostatic pressure and the vertical averaging. Each approximation has been ad-
dressed separately in the literature: the first one was overcome by taking into account the hydrodynamic
pressure (e.g. the non-hydrostatic or the Green-Naghdi models); the second one by proposing a multilayer
version of the shallow water model.

In the present paper, a hierarchy of new models is derived with a layerwise approach incorporating
non-hydrostatic effects to model the Euler equations. To assess these models, we use a rigorous derivation
process based on a Galerkin-type approximation along the vertical axis of the velocity field and the
pressure, it is also proven that all of them satisfy an energy equality. In addition, we analyse the linear
dispersion relation of these models and prove that the latter relations converge to the dispersion relation
for the Euler equations when the number of layers goes to infinity.

1 Introduction

Water is present all around the world and as such it is of major interest for societies whether it be in the
purpose of producing energy (tides, swell, currents, ...) or in order to protect people from hazardous flows.
That is why the management of water resources is extensively investigated in the literature. To predict
the evolution of lakes, rivers or oceans, scientists derive simplified models with a balance between physical
relevance (matching with experimental or actual results) and computational efficiency (running costs).

Despite the outstanding enhancement of computer performance, it is still a great issue to simulate the
complete set of equations governing fluid flows, namely in the present case the free-surface compressible
Navier-Stokes (NS) equations. Both theoretical and numerical issues related to the modelling of free-surface
flows by means of these equations may be prohibitive (in particular because the surface is an unknown itself)
so that models of reduced complexity were derived relying on simplifying assumptions (incompressible,
inviscid, irrotational, shallow, ...). Such simplifications — which allowed to neglect some terms in the
equations — may arise at the expense of physics since some phenomena are not taken into account anymore.
However, the influence of the simplifying process is sometimes hard to determine if no exact solution is
available.



Among the simplifying assumptions justifying the approximation of the NS system by the Shallow Water
equations [22,27], two of them seem restrictive in several situations, typically the propagation of waves in
coastal areas. The first consists in focusing on the so-called hydrostatic pressure which implies to neglect
the vertical acceleration of the fluid and hence some of the dispersive effects. The second one is the vertical
averaging which amounts to only considering the main current, i.e. the vertical average of the current. Several
works are aimed at circumventing one or the other of these hypotheses (a brief state of art is proposed in
§ 2.2 but to our knowledge, there is no derivation of reduced complexity models in the literature that gets
rid of both of them at the same time. This is the main objective of this work.

The shape of water waves results from the competition between nonlinear effects (that make waves steepen)
and dispersion effects (that tend to stabilise). The perfect balance between the two corresponds to solitary
waves. Waves thus evolve in a given regime corresponding to different orders of magnitude for parameters
and ¢ that respectively characterised (frequency) dispersion and amplitude dispersion (nonlinearity). These
regimes depend mainly on spatial scales: the shallowness parameter u describes the ratio of the water depth
to the wavelength while € is the ratio of the wave amplitude to the water depth. Hence, there seems to
have no ultimate model capable of modelling flows from deep water to nearshore areas and at the same time
amenable from the computational point of view. Models are thus simplified to match specific spatial scales.
The range of regimes then induced in the literature a hierarchy of models derived by means of asymptotic
expansions with respect to u and e. We mention a few examples below but readers may refer e.g. to [34,35]
for a more exhaustive review of nonlinear/dispersive models for water flows.

In order to model stratified flows i.e. flows where the horizontal velocity significantly differs from its vertical
mean and can be hardly approximated by it, two approaches can be considered. In the shear model [46,47], a
new variable is introduced and may be interpreted as the vertical vorticity. A version with dispersive effects
can also be obtained [16]. In the other strategy, the vertical averaging is performed over the whole water
column but between intermediate interfaces. This approach is generally referred to as multilayer models.
Several versions were introduced depending on the definition of the interfaces. The main advantage of this
strategy is to allow any shape of vertical profile of the horizontal velocity over the water column. In the
current paper, we proceed similarly to [5] where a multilayer model with mass exchange was derived. This
seems to be a robust method. From now on, we refer to the multilayer model with mass exchange as the

layerwise dicretisation in order to differ from other multilayer models.

The main objective of this work is to properly derive a reduced complexity model for free surface flows which
circumvents the main assumptions usually imposed in geophysics modelling. Different approximations for
the hydrodynamic pressure can be contemplated which leads to a hierarchy of models obtained by means of
a layerwise discretisation (LDNH in the sequel). The optimal choice between complexity and accuracy is not
clear at this stage. Deeper analyses together with numerical experiments are required to confront them but
it will be the aim of further works. Nevertheless, it is proven that each model derived in this paper satisfies
an exact energy balance. An explicit linear dispersion relation is also provided for each one no matter what
the number of layers. In addition we prove that for the three proposed models, the corresponding celerity
converges to the exact one for the Euler equations in Airy’s theory when the number of layers tends to
infinity.

The models derived in this work have the form of a system of conservation laws with source terms coupled
with divergence free constraints. Compared to the Euler or Navier-Stokes systems, the proposed models
allow the easy handling of the free surface since it does not require moving meshes. Moreover, the structure
of the models allows to take advantage of robust and accurate numerical techniques developed extensively in
the literature for conservation laws. Even if this aspect is not addressed in this paper, the proposed models
are well suited for numerical treatments.

The paper is organised as follows: in § 2 we recall the parent model we aim at approximating, namely the
free-surface Euler equations. In particular, we describe the state of art of reduced complexity models. Then
the models are formulated in § 3. The main advantage of this hierarchy of models lies into the degrees
of freedom by layer. A preliminary analysis, including properties such as energy estimates, hydrodynamic
balances and linear dispersion relations, is carried out in § 4. We finally specify in § 5 the link between all
models to legitimate the notion of hierarchy.



2 State of art for incompressible free surface flows

2.1 Euler model

To model a free surface flow with constant density, we consider the 2D (x, z) Euler system which reads

Oxu+ 0w = 0,
Ou+ 0z (u? + p) + 0 (uw) = 0, (2.1)
dw + 0z (uw) + 9. (w? + p) = —g.

The equations are set in a moving domain'

Qt) = {(z,2) € R? \ (@) <z <t}

where g > 0 is the gravity acceleration and 7 is the unknown water elevation. z; is the topography whose
evolution is prescribed by data or another model (erosion, ... ). The simplest case corresponds to a topogra-
phy which does not depend on time but for the sake of generality, we keep both dependencies in the sequel.
H =1 — 2 is then the water height. In the sequel, underlined variables refer to the solutions to the Euler
systerﬁ while bare variables denote numerical solutions. In System (2.1), the unknowns are the velocity field
u = (u,w) and the pressure p in addition to the water elevation 7.

The model is supplemented with boundary conditions at the free surface z = n(t, )

ot x) +u(t, z,n(t, ) den(t, x) — w(t, x,n(t,z)) =0, (2.2a)

sx,n(t,x)) = p ™ (t, x), (2.2b)

for a given atmospheric pressure p®™. The kinematic condition (2.2a) expresses the fact that no fluid particle
crosses the free surface. At the bottom of the domain we impose the no-penetration boundary condition

Orzp(t, ) + u(t, x, zp(t, ) Opzp(t, ) — w(t, z, 2zp(t, x)) = 0. (2.2¢)
We consider well-prepared initial conditions insofar as the steady equation in (2.1) must hold initially:

{ u(t=0,) = 0, with 9,u’ 4 0,w® = 0, (2.3)

t=0,)=

As we focus on the influence of the non-hydrostatic component of the pressure field, we introduce the
hydrodynamic pressure g as in [17] defined by

p(t,x, z) = p ™M (t, x) + g(n(t,z) — z) +q(t, z, 2), (2.4)

so that System (2.1) also reads

Ogu + O,w =0, (2.5a)
Oru+ 0p(u® + q) + - (uw) = —0,(gn + p™™), (2.5b)
Ow + 9 (uw) + 9. (w® + q) = 0. (2.5¢)

Given this focus, other phenomena such as erosion, surface tension or wind effects are not taken into account.

We underline that even if all the statements are given for the 2D Euler equations (which results in a 1D
averaged model), they extend directly to the 3D Euler equations.

'It can also be set in a fixed domain R® x [0, L.] with 0 < 2, < 5 < L. introducing a color function ¢ such that ¢(¢,z,z) = 1
if z € [2(t,x),n(t,z)] and ¢(t,x, z) = 0 otherwise. This function is transported by the flow.



2.2 Reduced complexity models in the literature

We recall that 1 and € are respectively the dispersion and nonlinearity parameters.

2.2.1 Dispersive models

The first element of the hierarchy is the nonlinear shallow water equations (NLSW) which correspond to
the asymptotics u — 0 without regard to e. This non-dispersive model (like weakly dispersive others)
benefit from the reduction of space dimension: the low p-regime — which transcribes the fact that the water
depth is negligible compared to horizontal characteristic lengths — comes down to considering a homogeneous
horizontal velocity along the vertical axis so that vertical unknowns are left apart. Under this assumption,
3D problems (resp. 2D) are then approximated by 2D models (resp. 1D) which has a strong impact upon
the computational time: this legitimates the major interest of the hydrodynamics community for this model.

The NLSW equations were introduced for one space dimension by Saint-Venant [22] and derived more
recently in [27] including viscous effects. Two dimensional extensions of NLSW equations with viscosity
terms were proposed by Ferrari and Saleri [26] and Marche [40]. Bouchut and Westdickenberg [11] proposed
a NLSW-type model valid for an arbitrary topography. Although extensively studied from the numerical
point of view (see for instance [4,29,44,51] and references therein) and implemented in industrial codes
(HEC-RAS [33], MIKE [21], Telemac [31], Iber [20], ...), the NLSW equations turn out to be irrelevant
for some real applications in particular for an arbitrary topography (especially with large variations), when
considering stratified flows or when wave breaking is about to occur. These restrictions are mainly due to
the fact that ;1 = 0 means the system is non-dispersive or equivalently the pressure field is hydrostatic.

To account for those dispersive effects, a common strategy consists in performing an asymptotic expansion
with respect to p and/or to € into the nondimensionalised version of the Navier-Stokes equations. Resulting
models can somehow be considered perturbations of the NLSW equations. When smallness assumptions
upon y are imposed, such weakly dispersive models are generally called Boussinesq-type models (BTM) after
Boussinesq pioneering works [13]. It comprises weakly nonlinear models like [43] when € is also assumed to be
small (together with e = O(p?)) and fully nonlinear models when the expansion is carried out without regard
to € (see [49] in dimension 1 and [28] in dimension 2 with topography). More recently, a large amount of papers
were dedicated to the derivation of dispersive models with different orders of accuracy (e.g. [8,9,34,36,52,53])
but mainly under the irrotational hypothesis (potential flows). Compared to the NLSW equations, BTM
models involve higher order derivatives which complicates numerical treatments [10, 19].

To assess these models, one usually relies on the linear wave theory. Indeed, the weakly dispersive assumption
is related to the shallow water property and it is crucial to determine the range of applications of models at
stake. The associated dispersion relation is derived and compared to the Airy theory (or 1%*-order Stokes
theory) which enables to determine bounds of validity in terms of parameter kHy (where k is the wavenumber
and Hj the constant water height in which the wave propagates) so that some models are relevant rather
in shallow water conditions or up to intermediate water. Comparisons helped modify the original system to
improve the match with the Airy’s formula; see [38,39,42] for such procedures. While Peregrine [43] used
the vertical average of the horizontal velocity, Nwogu [42] based his work on a horizontal velocity at an
arbitrary altitude which is left as a degree of freedom in the optimisation process of the dispersion relation.
However we must underline three facts to bear in mind: first, models are usually used beyond their domain of
validity [37]; second, the “exact formula” used as a reference (Airy) has its own limitations; third, numerical
schemes dedicated to dispersive models must be used with mesh sizes which are small enough to correctly
catch dispersive effects [32].

There exists another procedure to derive models for fluid flows. Based on the same procedure as the NLSW
equations, non-hydrostatic models (NH) were introduced [15,17,18,50,54] by means of averaging processes
over the water depth. Unlike BTM models where high order derivatives are involved, NH systems have
additional unknowns and equations with 15¢ order derivatives, namely the non-hydrostatic pressure (also
called hydrodynamic pressure [17]) and the evolution equation for the vertical velocity. In addition to the



reduction of differential orders, boundary conditions may be simpler to deal with. Such systems were for
instance applied to the modelling of the swash zone [55]. The numerical algorithm is split into two steps: on
the one hand, a standard resolution of the hydrostatic (hyperbolic) part and on the other hand, a projection
method to solve the elliptic equation for the dispersive part.

2.2.2 Multilayer models

Several models attempt to better reproduce the vertical profile of the horizontal velocity. This approach
is based on a splitting of the water column into an arbitrary number of layers which can be interpreted as
a semi-discretisation along the vertical axis. In addition, this allows to deal with stratified fluids. Several
definitions of the layers can be considered.

First attempts [17,41] relied on (horizontal) layers of fixed thicknesses. In these cases, the free surface motion
implied that the fluid domain does not coincide with the grid: some control volumes are then partially filled by
the fluid. A similar problem occurs for control volumes crossing the bathymetry and which are also partially
filled. Alternatively the bathymetry can be approximated by the lowest layer of the volume. To circumvent
this issue, another possibility consists in considering the well-known o-coordinates [45]. Nevertheless, o-
coordinates present some drawbacks mainly in areas with high gradients of the bathymetry and in wet/dry
fronts. Let us remark that an interpretation of o-coordinates as an ALE formulation has been proposed
in [23], where authors also introduced an improvement of the o-coordinates transformation.

Another technique was introduced in [3] under the assumption of hydrostatic pressures. The author intro-
duced a piecewise vertical integration of Euler/Navier-Stokes equations by assuming a specific vertical profile
of the velocity field inside each layer (a constant profile for the horizontal velocity and a linear profile of
the vertical component). The thickness of the layers is proportional to the total height of the fluid, which
is equivalent to considering a moving grid varying in space and time. The multilayer method has been
improved in [5] with the incorporation of mass transfer terms between layers. Our approach is a improve-
ment of this work to take into account the dispersive effect. The overall technique can be interpreted as
a splitting technique where the vertical discretisation is performed by means of a discontinuous approach.
From this point of view, the transfer terms are related to the jump conditions across interfaces that defined
the “vertical” boundaries of layers [24].

This vertical discretisation was also considered in several papers in the literature [6,37,48] for the case of
hydrodynamic pressure. In [48] the author adapted the technique proposed in [5] to the non-hydrostatic
case. The corresponding derivation amounts to supposing within each layer a constant vertical profile of
both horizontal and vertical components of the velocity fields, a parabolic profile for the pressure and a
linear vertical velocity for the integration of the incompressibility condition. In [6] the authors proposed a
vertical integration that corresponds to a constant profile of the horizontal velocity, a linear profile of the
vertical velocity and a linear profile of the pressure. The common hypothesis in these references is thus that
the horizontal velocity has a constant vertical profile in each layer and is discontinuous at the interfaces. A
different assumption holds in [37] where, under the irrotational hypothesis, a multilayer model is derived by
using a global continuous profile of the horizontal velocity which is quadratic within each layer. Nevertheless
to our knowledge, aforementioned models do not satisfy an exact energy balance which is an important
feature in addition to linear wave properties.

3 Description of the hierarchy of models

Before giving the formulation of the three models comprising the hierarchy, we first introduce the multilayer
framework as well as the approximation procedure we shall consider in the derivation.



z=n(t,x) = zL41/2(t, )

. - 2= Zag1/2(t, )
H(t,z) ho(t,z) ~ T T TTme-----7

-t 2= Za—1/2(t713)

z=z(t,x) = 21/2(t, @)

Figure 1: Interpretation of the layerwise discretisation in the vertical plan.

3.1 Setting of the multilayer framework and notations

Given a positive water height H(t,x), a number of layers L > 1 and a convex combination ({n);<,<; such

that
L

lo € (0,1], Yl =1, (3.1)

a=1
we set
L
ho(t, @) =l H(t,x) = H= hq.
a=1

As depicted on Figure 1, the flow is split along the vertical axis into L > 1 layers denoted by
(0%
Lo(t,x) = {za_lm(t,x),za+1/2(t,:v)} for a€{l,...,L}, where z,1i/0=2+ Z hg.
p=1
So that 2z, = 2z1/9 < 23/9 < ... < zp412 =1 = 2o + H, and hq(t,2) = 2441/2(t, ) — 24-1/2(t, 7).

Layers are not physically based except when focusing on immiscible layers. For the sake of clarity, middle
points of layer L, are denoted by

L Pt + 2a-1/2
(0% 2 .
We shall note in the sequel the mean value of a function (t,x, z) — f(t,x, z) over Ly,
1 Zat1/2(t:x)
t = — t dz.
Naltn) = 5y | f(t,,2) de

ozfl/?(tﬂj)

As we describe bellow the unknowns of the multilayer approach may be discontinuous across layer interfaces.
Then, for a general function f, we introduce the classical notations

ft;:_l/g(ta :L‘) = lim f\£a+1(t,x)(t7$7 Z), f;_i_l/z(ta l‘) = lim f\ﬁa(t,z)(tvxuz)'

Z_>za+l/2(t7x) Z_>Za+l/2(t7x)
Z>Za+l/2(tvm) z<za+1/2(t,m)

As a consequence, jumps across z = z,4 1/ correspond to
B
[[f]]oHrl/Z - fa+1/2 fa_:,_l/g-

Let us introduce a normal vector to the interface z = 2,1 /2(t, ) which points upward and defined by

_aw « ta
na—l—l/Q(tvx) = < z +11/2( .I)) )



As in [24], we assume that both the normal velocity and the pressure effects are continuous across the layer
interfaces, i.e.

[ufas1/2 - Mati1/2 =0, that is [w]ar1/2 = [ulas1/2052ar1/2; (3.2a)

[a]at1/2 = 0. (3.2b)

Hypothesis (3.2a) implies that layers remain adjoining and no void appears within the flow. Let us remark
that both are somehow related to the divergence free constraint (2.5a). In fact, the continuity of the
normal component of the velocity field naturally arises from the jump condition associated to an isolated
discontinuity (see [24]). On the other hand in the incompressible framework, the pressure field may be
identified as the Lagrange multiplier associated to (2.5a).

We also denote by

fa—i—l/? = (1 - ’7a+1/2)f;r+1/2 + 7a+1/2f07+1/2a Ya+1/2 € [Oa 1]7 (33)

any convex combination providing a mean value at the interface. The convex coefficient might be different
from one unknown to another but we decide to take the same throughout the article. When f is continuous
across the interface i.e. [f]aoq1/2 =0, (3.3) reduces to foi1/2 = fat1/2-

The main assumption in the multilayer approach consists in considering that u is approximated with respect
to the vertical variable z by a layerwise constant function:

L
u(t, z, z) Z (t,2) L, (t2)}(2) + €L, (3.4)

where u, is an approximation of (u), and £, is the truncation error assumed to be at least of order L™1.
The classical Saint-Venant model [22] corresponds to L = 1 which is a coarse mesh with a single vertical
cell. Any L > 1 is thus expected to provide more accurate results.

This decomposition is relevant for small layer thicknesses (see (3.1) for notations) where
max{, = €.
[e%

It is the case in particular for homogeneous grids when L = ¢~!. The asymptotics L — 400 enables to study
the consistency between semi-discrete models LDNH, and the Euler system (2.5).

If we assume that
u(t,z,z) = (u), (¢, x) + eul, (t, z, 2), z € Lo(t, ), (3.5)

with (uy,), = 0 and uj, = O.(1), then the integration of Eq. (2.5a) over [z,_1 /5, 2] yields
WL, (tx) (t7 €, 2) = w:_1/2<t7 .%') - (Z - éafl/Z(tv w))az(@a(t, JJ) - 2’5/ &UQ;(LL? T, C) dg¢.
Za+1/2
In particular this implies
hOL Za+1/ o —
(w), = 73:_1/2 — —0z(u), — 5/ 12 M@&/(.7 ., z) dz.
2 Za—1/2 hOé

Hence the combination of the two last equalities yields

w|ﬁa(t,x)(t7x7z) - <M>a(t,$) - (Z - Za(t, x>)8$<y>a(t7 x) + 0(5)

Consequently, the vertical component w of the velocity field may be approximated by a layerwise affine
discontinuous function, i.e.

L
w(t,x, 2) [wa(t,2) — (2 = za(t, ) Opua(t, )] Tiz, (1)) (2) + O(e) (3.7)

a=1



which allows for discontinuities across layer interfaces z = 2z,41/2(¢,z). This is incorporated in LDNH;
(§ 3.2) and LDNH; (§ 3.3). But an alternative to (3.7) consists in approximating w by a layerwise constant
function, namely

L
w(t,z,z) = Y wa(t, z) iz, 1.0} (2) + Oe). (3.8)
a=1

This choice leads to Model LDNHj (§ 3.4).

For the hydrodynamic counterpart pressure field g, we choose a continuous approximation (see equation
(3.2b)). The degree of the approximation polynomial is then prescribed by Eq. (2.5¢): ¢l (. € P2 if
w|5a(t7z) € Pl and q|£a(t7$) S Pl if w|5a(t7z) c Po.

As it will be shown in the sequel, the discretisation procedure carried out in this paper leads to a hierarchy of
models (LDNH,), . (01,2} corresponding to different orders of approximation for each unknown. We present
in the following subsection the most complete model LDNH, and then lower-order counterparts LDNH;
and LDNHy. The derivations of these models are detailed respectively in Section 4.1 (LDNHy), Appendices B
(LDNH;) and C (LDNHj). The main differences between models will be investigated in Section 5.

3.2 Model LDNH,

The main dispersive multilayer model (3.9)-(3.10) is named LDNH,. This model relies on a multilayer
approach based on a discontinuous Pg-approximation for u, discontinous IP; for w and continuous piecewise
Py for q. It reads

L
OH+0,(Hu) =0, u=)» lola, (3.92)
a=1

and for a € {1,...,L}

O¢(hata) + O (haui + haQa) + Uat1/20a41/2 — OrZat1/2d0+1/2

—Ug—1/2L 012 + OrZa—1/20a—1/2 = —haOe(gn + p™™), (3.9b)
Ot(hawa) + O (hatiaWa) + Wat1/2lav1/2 + Gati1/2 — Wa—1/2la—1/2 = da-1/2 = 0, (3.9¢)
q + Qo
Bi(hate) + Op(hatatia) = 2/3 {qa  Gat1/2 e 1/2
haOr i {Da—&-l/2 — Wy haOztq =~ Wa — wa—1/2
_Fa+1/2 ( 12 + 2 ) F0171/2 ( 12 + 9 )] ) (39d)
under some diagnostic equations that transcribe the free divergence constraint (2.5a)
Wyi1/g ~ Wa
833'&@ + % = 0, (396)
e
w;rH/Q — Ot2p — Uat+10xZa41/2 + Z Ox(hgug) =0, (3.9f)
p=1
ha Oz
0q + ——— =0. 3.9
It is supplemented with discrete jump conditions (3.2a) which become, for o € {1,...,L — 1},
w;t—i-l/2 - w;+1/2 = a:102044—1/2(Ua+1 — Uq), (3.10a)



and boundary conditions

ar+1/2 =0, (3.10b)
wZ+1/2 = O + ur0ym. (3.10¢)
Lo41/2 terms involved in (3.9) account for mass transfer? across interfaces and are defined by
L
Cotip= Y Ox(hs(us—1)). (3.11)
B=a+1

The derivation of Equations (3.9-3.10) is described in Section 4.1.

Let us mention that the unknown o, is an approximation of the signed standard deviation ¢, verifying

of = ((w—(w),)?) .

with the same sign as 0,w. Taking into account (3.7), we have

h(0x(w),)?
2 _ Na\Yr\Z2/ o
0o = D + O(e).
that is consistent with equation (3.9g) verified by o,. Moreover we obtain
w;.u/z =(w), + ‘/gga +O(e) and wz_yg = (W), — \/gga + O(e). (3.12)
Remark 1 Eq. (3.9b) also reads
9 h? _
I (haua) + Oy <haua + gj + haQa) + Uaq1/2lar1/2 = Orzag1/2qa+1/2

- aa—l/QFa—l/Q + 3:1:%—1/2%—1/2 = —gha0Oyzp — haaxpatm

or equivalently
Ot (hatia) + Oz (haui + hapa) + Uay1/2lar1/2 = Ozzag1/2Pat1/2 — Ua—1/20a—1/2 + 022a—1/2Pa—172 = 0

where po, and pa+1 /2 are inferred from (2.4). Hence dispersive terms are not only related to spatial derivatives
but also to coupling terms between layers. If we impose the hydrostatic assumption by setting qo, = 0 and
Gat1/2 = 0, we recover the multilayer model from [5] made only of (5.9a-5.9b) as fewer unknowns are
involved.?

Multilayer Serre—Green-Naghdi model. We can see LDNH3 model as a generalization of the Serre-
Green-Naghdi model. Firstly, because when a single layer is considered (L = 1), the LDNH, model reduces to
the so-called Serre-Green-Naghdi model [28,36,49] (also referred to as nonlinear Boussinesq equations [52]).
The proof consists of simple calculations: for the sake of simplicity, let us consider that p®™ = 0 and
Orzp = 0. Indices b and s refer to bottom and surface data. For L = 1, due to I', =T’y = 0, Egs. (3.9)-(3.10)
read

O H + 0,(Hu) =0, (3.13a)

H(Opu + udyu) + 0, (Hq) = —quOzzp — gH O, (3.13b)

@ = H(Omw + udzw), (3.13¢c)

-%_ %[&(H&xu) + udy (HO,u)), (3.13q)
H

w = ws + 58xu, (3.13e)

ws = uOgzp — HOpu. (3.13f)

’In some works (see for instance [3,12]), transfer terms are set to 0 in particular when layers correspond to non-miscible
fluids. In many articles [5,24], the mass flux is denoted by G, 11,2 and is such that G 41,2 = —T'q41/2. In [56], the mass transfer
term 'y 412 is denoted by wq1/2 and in [6] by Awaqq/2.

3The vertical component of the velocity field is computed a posteriori using (3.9f).



Straightforward calculations show that this system is equivalent to

O + 0z(Hu) = 0,

H (Opu + udzpu + gOzn) + Oy (H2 (€+%)> + HOpz (%—FQ) =0
P = —H (03u+ ud?u— (0,u)?),

Q = 0,2 (Opu + udpu) + u202, 2,

We recover the Serre-Green-Naghdi model under the form of [19].

More generally, this dispersive model with arbitrary number of layers can be expressed as a Boussinesq type
model with high order derivatives. For instance, the standard deviation o characterised by (3.9g) — used
like in mixed formulations for finite-element methods — could have been incorporated in (3.9d) which would
have resulted in second order derivatives for u. Similarly, the formulation (3.9)-(3.10) can be expressed with
a lower number of unknowns by inserting (3.9e-3.9g) into (3.9b-3.9d). Then g, can be extracted from (3.9d)
and inserted into (3.9b).

Third of all, it is well known that if we assume that u, =@ for all « € {1,..., L} in the inviscid multilayer
shallow water model presented in [5], we recover the classical shallow water model. In what follows we prove
that under this assumption LDNHy models recover the Serre-Green-Naghdi model.

If we assume that u, = @ for all « € {1,...,L} by (3.11), we directly obtain I'y;;/ = 0. Then sum-
ming (3.9b) and (3.9¢) over v and using the same definition for w and g as in (3.9a) for u, we obtain

O (HT) + 0, (H(@ +7q)) + qpOz2p = —Hp(gn + p*™),
0,(H®) + 0, (HT ) g =0,

Then (3.13b) and (3.13c) are recovered. Due to uat1 = Uqa, (3.10a) yields Wqq1/0 = w:+1/2 = Oz +
UOrZat1/2 — 21<p<a Lp0z(HTU). We deduce that woy/2 = Wa—1/2 — LoHOu which, together with (3.9e),
shows that all points (zq1 /25 Way1 /2) belong to the same straight line. Therefore the linear function
W(t,x,2) = ws(t,z) + ((t, x) — 2)0,u(t, x) satisfies b, = Wa41/2- Moreover (), = w,. Hence (3.13e)
and (3.13f) also hold. We deduce that (3.9¢) reads

a+1/2

an/g — qa,1/2 = —EQH(@(H@;Z{,) + ﬂ@x (ﬂabe)) — EQAQH(8t(H8xU) + ﬂax (H@mﬂ))

with Ay = % — >-3=1!p- Let us introduce the polynomial ¢

(j(ta Zz, Z) = (77(75, l‘) - Z)ng(t,.'l}) + (U(t@ - Z)k’l(t,(ﬂ),
1
ko(t,x) = ———(0:(HO,u) + ud,(HI)),
k1(t,x) = 0y(U0y2p) + WO, (U0 2p) — 2H (t, x)ka(t, ).
We verify that §(t, z, 2a41/2(t, 7)) = qat1/2(t, 7). In particular §(t, x, zp(z)) = qu(t, ).
As for any 2nd-order polynomial, the following property holds for §

Lo q(t,z,0) + 4tz a) (b—a)?
b—a/a q(t,z,z)dz — 5 = —ko(t,x) e

Using (3.9d), the latter equality leads to (§), = ¢o and finally to (3.13d).

3.3 Model LDNH;
This case is restricted to homogeneous tessellations of intervals [z,(t, z), H (¢, x)], i.e.

1
Vae{l,...,L}, Zazz with L > 1.
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Truncating quadratic terms in the approximation process leads to an intermediate model, named LDNH;,,
and consists of

o The mass conservation law (3.9a);
o The momentum conservation equations (3.9b-3.9¢);

o Eq. (3.9d) is replaced by

Gat+1/2 + da—1/2 H Wot1/2 — W
Qo = &4 / 5 [e? / +FO¢+1/2 (Uj(amu)oﬁ_l/z—i—aga)

H Wq — Uja—l )
- Fa71/2 (4L<8xu>a_1/2 + 2/> s (314)

P

where mean values (0yu), /o are computed by means of (3.3);
o Divergence constraints (3.9e-3.9{-3.9g);

e Jump conditions (3.10a) and boundary conditions (3.10b-3.10c¢)

Main unknowns of the resulting system are (H,uq,Wa; Qa1 /2) as other unknowns are directly computed
from algebraic relations (3.9¢), (3.9f), (3.9g) and (3.14). This corresponds to a staggered grid where velocity
and pressure fields are located at different places in the same spirit as in the MAC method [30].

The derivation of this model is detailed in Section B.

Link with single-layer models. Similarly to the LDNHs model, the LDNH; system is related to another
one studied in the literature as stated in the following remark. When a single layer is considered (L = 1),
the LDNH; model reduces to the dispersive depth-averaged model studied in [1,2,15]. See also [54] for a
similar model.

To prove it, we keep notations from the previous section. For L = 1, the LDNH; model reads

O:H + 8, (Hu) = 0,

O (Hu) + 0, (Hu® + Hq) = —q0zzp — gH I,
Oi(Hw) + 0 (Huw) = gy,

=%,

w = ws + %&Eu,

ws = ulyzp — HOpu.
We then recover the aforementioned model

O+ 0z (Hu) =0,

On(Hu) + 0, (Hu? + g2 + Hq) = —(gH + 29)0,2,
O(Hw) + 0z (Hu w) = 2q,

Op(Hu) — udy(H + 22p) + 2w = 0.

3.4 Model LDNH,

The simplest model named LDNH( corresponds to a Pg-approximation for u and w and P for gq.

The model consists of
e The mass conservation law (3.9a);

11



o The momentum conservation equations (3.9b-3.9¢) but we underline that the mean value W, /2 used
in (3.9¢) reduces to

Way1/2 = Yat1/2Wa + (1 = Yag1/2)Wa+1
as w is layerwise constant in LDNH;
o Divergence constraints (3.9f) and (3.9d) are substituted by

a—1

1
Wo — Op2p — UaOzZa + Z Oz (hgug) + iax(haua) =0, (3.15a)
=1
(6% + a—
o = da+1/2 : 4 1/27 (3.15b)

» Boundary condition (3.10b).

The derivation of the LDNH( model is given in Section C.

Link with single-layer models. When a single layer is considered (L = 1), the LDNH( model coincides
with the LDNH; model and thus also reduces to the dispersive depth-averaged model studied in [1,2,15].

4 Analysis of the LDNH,;-model

The models stated in Section 3 are analysed in the sequel. We focus on the LDNHs-model and transfer the
analysis of other models in the appendix. However we specify when results hold for the three of them and
refer to specific appendices when it is not the case. In particular, we prove that LDNHjy satisfies an energy
inequality. We also provide an explicit linear dispersion relation no matter what the number of layers L
which turns out to converge towards Airy’s formula when L — +o0.

4.1 Derivation
4.1.1 Layer averaging

Let us propose a general way to discretise in a single direction conservative equations with source terms.
The toy model is
R+ 0,(uR+P)+ 0, (wR+Q) =S8, (4.1)

where R, P, Q and S take values in RP. If X, denotes an approximation of (X),, an integration in the
z-direction leads to the semi-discrete formulation

Oi(haRa) + Oz(ha[uRa + Pal) + F11 o — Fab 1 /g = haSa, (4.2a)
where N _ _
9&1/2 =Tot12Raq1/2 — Pay1/2022041/2 + Qav1/2- (4.2b)

The average ﬁa+1/2 is defined by the definition (3.3) and T'q41/5 by (3.11).

Proof: The jump condition associated to Equation (4.1) across a potential isolated discontinuity located at z = Z (¢, x)
reads
(9tZ[[R]]z:g + awZ[[uR + P]]z:Z — [[wR + Qﬂzzg =0

or equivalently
I'[R] - 8. Z[P] +[Q] = 0 (4.3)

where I' = w|.—z — 0;Z — u|,—z0, Z. Integrating Eq. (4.1) over a layer L, yields

hOt<S>a = 8t(ha<R>a) - R;+1/28t2a+1/2 + Rz_l/gatzafl/Q

12



+ Op(ha(uR + P),) — (u a+1/2R;+1/2 + Pa+1/2)a Fat1/2 + (ug a— 1/2Ra 12T Pa 1/2)6 fa—1/2
T Wiy oRe 10+ Quiryo — a71/2Ra71/2 + Qa71/2
= Oi(ha(R),) + O0z(ha(uR +P),) + (R;+1/2Fa+1/2 =P 1000212 + Q;+1/2)

- (R::—l/Qra—l/2 - P:—l/za”ﬂza—l/? + QI—1/2> :

Upper and lower limits between brackets can be replaced by mean values using (4.3). This leads to (4.2).

4.1.2 Application to the Euler equations

To derive Egs. (3.9a), (3.9b) and (3.9¢) we rewrite the Euler equations (2.5) under the system of conservation
laws (4.1), which corresponds to

1 0 0 0
R=|[u|,P=|¢|,Q=[0]| and S= [ —8.(gn+p™™) | . (4.4)
w 0 q 0

Given the Py-approximation (3.4) for u, the second and third equations of the numerical scheme (4.2a)
applied to (4.4) yield directly Egs. (3.9b) and (3.9¢). As for the first equation of (4.2a), it reads in the
present case

Otha + 8x(ho<ua) = Fa¢—1/2 - Fcy—i—1/2~ (4'5)

This equation models the evolution of the mass of fluid within layer £,: on the one hand, the fluid is
transported at velocity u,; on the other hand, mass is gained/lost through interfaces, i.e. from layers £,_1
and Lo4+1. Let us recall that ', 1/ is a transfer term, that describes the amount of fluid that moves from
Lo to Loy1. At the continuous level, the mass flux is defined by

£a+1/2 = @a+1/2 "Nyy1/2 — at§a+1/2 = @aﬂ/z - (at§a+1/2 + @a+1/2am§a+1/2)- (4.6)
Jump condition (3.2a) enables to rewrite equally (4.6) as?

r

at1/2 = Woy1 /g — (OZagrjz + Uy j90nZatiy2) = W — (Brzayrje + Uly 90220 t1/2)- (4.7)

Boundary conditions (2.2a) and (2.2¢) imply respectively
21/2 =0 and £L+1/2 = 0. (48)

Then, the summation of (4.5) for o from 1 to L leads to Eq. (3.9a). A summation for 5 from 1 to « or from
a + 1 to L provides

L «
Fa+1/2 = Z [(9,5]15 + 0 ( hﬁU@ Z ath5 + 0 ( hﬁUﬁ)] (4.9)
B=a+1 p=1

This derivation only uses the Py approximation (3.4) for w.

In the approximation framework (3.7), w is a 1st-order polynomial with respect to z within each layer. Let
us focus on interface values for w. (3.9e) is the discrete counterpart to the left hand side of (3.12). As for
the right hand side, it is deduced from

Wot1/2 ~ w;r_l/Q = Otzay1/2 t UaO22a41/2 + Dag1/2 — Otza—1/2 — UaOzza—172 — Ta—1/2

) Diha + tadsha — [Biha + Ou(hatia)] = —hadyia.

“If coefficients specific to each unknown were used in (3.3), then (4.7) would hold provided Yot1/2 = Vot1/2-
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We come to the conclusion combining this result with (3.9¢). We thus have

_ haOrtia " haOptig
Wiy jg = Wa — 5 and wa_1/2:wa+T.

(4.10)
To fully determine this velocity component, an additional equation is required, for instance by projecting
the momentum equation (2.5¢) onto the basis (1, z). More precisely, multiplying (2.5¢) by z, we obtain

O (zw) + 0y (zuw) + 0 (2(w® + q)) = w? +q. (4.11)

We then apply the semi-discrete approximation (4.2). Lower and upper limits Wy /2 and wz_l /o are

prescribed by (4.10). As w is layerwise affine, the averaging process requires to compute mean values of
quadratic polynomials, namely zw and w?. In view of (3.5), we have

261‘ «
(zw)y = 2ot — "2 1 O(e),

(2W) 441 /2 = Zat1/2Wat1/2 + O(€), (4.12)
(w?), =wi + ‘ha(%ua)g +O(e).

Using the definition (3.9g) for o,, the application of (4.2a) to (4.11) combined with (4.12) reads

h2o h2oau
8 haa o +8a:haaa o +a ol +ax -
i (haZaWa) (haZalaWey) t<2\/§) <2\/§>

+ 2a+1/2(75a+1/2ra+1/2 + Qa+1/2) - Za71/2(@a—1/21ﬂa71/2 + Qa71/2) = hq (wi + Ui + Qa) - (4.13)
According to (4.7) and (4.10), we notice that

Poyi2 +la 12
5 )

Orza + 10 Op2a = Wo —

Hence, thanks to (4.5) and (3.9¢), we conclude that smooth solutions to Eq. (4.13) also satisfy Eq. (3.9d).

4.2 Energy

Let us show that the dispersive models presented in Section 3.2 satisfy an energy estimate. We first recall
the energy equality at the continuous level. The kinetic energy is denoted by

u? + w?

K==

Then for (u,w, p) smooth solutions to the Euler equations (2.1), we have

n + z n
Oy (/ <’C+g772b —l—patm> dz> + Oy </ u(&-l—g%—gg—f—p“tm) dz>
2p 2p
= Hop™™ + (9H +q|,_, )02 (4.14)

Let us now turn to the semi-discrete level and set

2 2 2
Ko = ot tatfe (4.15)
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Proposition 1

Let us assume that )
(’Ya+1/2 - 2) Poy12 2 0. (4.16)

If (H, ug, Wy, go) are smooth solutions to (3.9), we have

O ( L B (EX +9gza + patm)> + 0y (f: hatia (Ka + go + g0+ p‘”m)>

=1 a=1
< HOowp™™ + (9H + q12)0c2- (4.17)

Moreover, if we take vo11/2 = %, then (4.17) is an equality.

Remark 2 Due to the identity

L L ;2 — 22 22 — 22 n
> haza = 3 2 Foun_ Thep p Pt (1)
a=1 b

a=1

we notice that (4.17) is the exact discrete counterpart of the continuous estimate (4.14) in the case Yoy1/2 =
%. Otherwise, the system turns out to dissipate energy.

Remark 3 Constraint (4.16) is equivalent to taking’

1 .
Yat1/2 =5 (1 + 7 Slgn(Fa+1/2)) (4.19)
for any T > 0. Consequently, for ﬁa+1/2 defined by (3.3), we have

~ R +R_ T
+1/2 +1/2 _
Rat1/2lat1/2 = — 2 e Loti2 = §|Fa+1/2| (Rzﬂ/z - Ra+1/2) :

We recover the standard Rusanov flux type for finite volume schemes. (4.16) is satisfied in particular for
Yat12 =5 (Y =0in (4.19)) [24, 25] and for Yay172 = Lir,, ,20p (T =1 in (4.19)) [5].

Remark 4 The statement of Prop. 1 stands for the LDNHs-model. Energy inequalities for Models LDNH;
and LDNHy are put in Appendices B and C where the kinetic enerqy Ko reduces to

2 2
Ko = WT% (4.20)

due to the approximation made in the latter models.

Proof of Prop. 1: Multiplying respectively (3.9b) by ua, (3.9¢) by w, and (3.9d) by o, leads to

2

u? Ug, ~ ~
Oy (ha2> + 0, (haua (2 +qo + 97 +p“tm)> + ta (Uat1/2las1/2 — Ua—1/2Ta—1/2)

2
a

U m
—Uq (aazza+1/ZQ(x+1/2 - 8xza71/2(JO¢71/2) = haQaawua + 7 (Fa+1/2 - F(J¢71/2) + (977 +pat )aw<h0tua)7

w2 w2 B N w2
Oy (ha;> + 0y (haua2a> + wa (Wat1/2Tat1/2 + Gat1/2 — Wa—1/2la—1/2 — Ga—1/2) = 7@4 (Cag1/2 —Taziy2)
o2 o2 o2 - + Ga—
0 (ha22) + 0, (hatia 22 ) = 22 (Toy12 — Tai1y2) + 2300 g — Jot1/2 T da-1/2
2 2 2 2
haOzuq ’waJrl/Q — Wq haOzuq Wao — wafl/Q
—Layi1y2 < o T 5 +Ta1/2 o T 5 )

5The function sign is such that xsign(z) = ||.
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Let us sum the three equalities
9t (haKa) + 0z (hatia [Ka + qa + gn+ ™)) = (gn + p™")0z (hatia)
+ Ga+1/2 (uaamza+1/2 - Wo — \/§Ua> —qa-1/2 (uaaxza—l/Q — Wq + \/§0a>

~ ~ Wy, — Wq o _
_ FQH/Q (uauaH/Q + WaWaqt1/2 + ( +1/2 _ 2\/§> 2\/§O‘a - /Ca)

2
~ ~ Weo — ﬂ)'ozfl/Q O —
+ T\ Ualg_1/2 + WalWe_1/2 + - 2v30, — Ko ) . 4.21
1/2( 1/2 1/2 ( B Qﬁ) ) ( )

On the one hand, we focus on pressure terms. We notice that

(3.9¢) _
uaa:vza+l/2 — Wqo — \/30-04 - uaawzaJrl/Q - wa+1/2 = _Fa+1/2 - atzoz+1/2-

Hence the sum over all layers is equal to
L
- Z [Qa+1/2 (Fa+1/2 + atza+1/2) — Ga—-1/2 (Fa—1/2 + 8tza—1/2)] = fh/zatzb

a=1

according to boundary conditions (3.10b) and (4.8). On the other hand, we consider terms involving 'y 11 /5 in (4.21).
We have

B o w? —l—O’i _ w;+1/2 i
v 2\[0a = .
2[ 2 2

If we sum (4.21) for a from 1 to L, we obtain thanks to (3.9a)

L L
8t (Z hozICa> + aa: (Z haua (Ea + Go +gn+ patm)) = 7(977 +patm)atH + QI/Qath
a=1

a=1
Ug ~ Wei1)2
Uey (ua+1/2 ) =+ wa+1/2 Wa+1/2 — T

- Z I‘lo¢+1/2
+
~ U, - w,_
—Ta_iy2 [ua (Ua—l/Q - 7) + “’;1/2 (wa—1/2 - 21/2>] . (4.22)

On the one hand, we notice that

2 2 L
n0:H = ndyn — n0szy = Oy (77 5 Zb) — HOiz (4.18) O (Z haza> — HOqzp.

On the other hand we get by a change of indices

L
~ ua ua
Z |:Po¢+1/2uoz (Ua+1/2 - 7) - Fa—1/2ua (Ua 1/2 — 7)]

a=1
L—1
- Uq + Ug (3.3) 1
= — Z | (ua+1/2 — 2“) [[U]]a+1/2 = Z | (’7a+1/2 - ) [[U]]iﬂ/r
a=1 a=1
Likewise
L _ + L—1
~ Wot1/2 ~ Wy_1/2 1
QZZI [Fa+1/2wa <wa+1/2 — 2 / — Fafl/Zwa U}a—l/Q — 2 / = azzjl Fa+1/2 7044»1/2 — 5 [[U}Hi_,’_l/2.
In conclusion, given the latter equalities, (4.22) reduces to
L B L B
0y (Z ha (Ko + 924 —|—patm)> + 0, (Z hota (Ko + o + gn +patm)>
a=1 a=1
L—1 1
= HOp™™ + (9H + q1/2)02 — Z Toti/2 (’Ya+1/2 - ) [1+ (0r2a+1/2)°] [[U]]?Hl/z’ (4.23)
a=1

where we used jump conditions (3.10a). Then (4.23) implies Estimate (4.17) provided that (4.16) holds which ensures
the negativity of the sum in the right hand side. In the particular case where v,41/2 = %, this sum vanishes and (4.17)
holds as an equality.
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4.3 Hydrodynamic balances

Classically, the integration over the whole domain Q(t) of the three Euler equations (2.1) ensures the following
equalities, provided solutions are smooth and integrable:

e The conservation of global volume:
Oy (/ H(t,z) d:z:) =0; (4.24a)
R

e The balance of horizontal momentum:

n(t,x)
O (/ </ u(t,z, z) dz) dx)
R Zb(t)m)

= —/R (ﬂ(tw)@xp“tm(t,:v) + (gﬂ(tﬂv) +g(t,x,Zb(t,x))) axzb(t,:r)> dz; (4.24D)

e The balance of vertical momentum:

(t.z)
O </R </z:)(t,z) w(t,z,2) dz) dac) = /Rg(t,x,zb(t,x)) dz. (4.24c)

At the discrete level, smooth solutions to the LDNHs model satisfy similar balance equations.
Proposition 2
Let (H,uq,Wq,qa) be smooth solutions to (3.9) and (3.10). Then the following equalities hold:

e The conservation of global volume:
) ( / H(t,z) dx) —0; (4.25a)
R

e The balance of horizontal momentum:

o ( | Ht.zyatt.a) dg;) — - [ (@205 (t.2) + (gH(t.2) + 412(t,))Dr(2)) da
(4.25D)

e The balance of vertical momentum:

O (/R H(t,x)w(t,x) dac) = —/qu/Q(t,:c) dz. (4.25¢)

Proof: The conservation law (4.25a) results from the direct integration of Eq. (3.9a). We also notice that according
to boundary conditions (3.10b) and (4.8) we have

L ~ ~
Ug+1/2 Un—1/2 —
Z Fa+1/2 (~ * ) + Gat1/2Ma+t1/2 — Fa—1/2 <~ ) - qa—l/Qna—1/2> = —q1/2M1/2.
ot < Wat1/2 Wo—1/2

Hence summing Eq. (3.9b) over a leads to

L L
o < / Hu> - [a (Z haua> — [ a0 = 3 [0 lhati + ho) + had(gn + 9]
R R a=1 R a=1
H2
= —/ <Q1/231-Zb + HOp™™ + g0, (2> + gHabe>
R
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which proves (4.25b). Similarly the integration of (2.5¢) gives

L L
0, /Hw) 2/6 hawe z/q - Op (haUuaqWe z/q
t<R Rt(; ) R1/2 ; ( ) R1/2

and (4.25¢) is proven.
The same balances — which are the discrete counterparts of (4.24) — hold for Models LDNH; and LDNHj.

4.4 Dispersion relations

We first mention that the so-called lake-at-rest state is a steady solution for all the models described in the
present paper.

Remark 5 For a given constant ¢ such that ¢ > gz, + p™™, then

(z) _ patm

<H0:_2b+ 7u04:07w0é:()7qa:0>

is a steady state for Models LDNHo, LDNH; and LDNHy.

4.4.1 Main statement

For the sake of simplicity, this section is restricted to the case where z, and p®™ are constant in time and
space.

Let us linearise the LDNH, model around the steady state described in Lemma 5 (Hy, ug = 0, wo = 0, g9 = 0)
for any Hy > 0. It comes down to considering asymptotic expansions

* =+ e 1O(2),  for e < 1 and +? = x,

that are substituted into Egs. (3.9)-(3.10). The resulting model at order 1 reads

L
OHY + Hy Y £e0pul)) =0, (4.26a)
a=1
o) + 0xql) + g0, HY =0, (4.26b)
loHodw i) + q(()zl-i)-l/Q - qS—)1/2 =0, (4.26¢)
1) 1)
Qoiqso 4,
EiH@&fqu) +12 (q&l) _ Hdat1/2 . 1/2) ~0, (4.26d)
wl) = %Hoaxug) — Hy Z gﬁaa:u(ﬁl)- (4.26e)

B=1

Such a procedure can apply similarly to Models LDNH; and LDNH. The dispersion relations associated to
those linearised systems are given in the following statement.
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Lemma 1

There exists a plane wave solution (H,fa, Wa, (ja> elkz=wt) to the linearised version of (LDNHy), 10,19}
provided the following dispersion relation holds

w? = k2L, (Aghe.t), (4.27)

where ¢ = /gHo, £ = ({1,...,01) € RE e =(1,...,1) € RV and

2 [— L
Ao =T +2°B. with Bag = —50as+ L (2{5} + % ey) , (4.28)
y=max{a,B}+1

3,ifv =2,

ith A= 24 |2] =
i L] {Q,jfue{(),l}.

The proof is detailed in Appendix A.1.

Remark 6 For characteristic numbers kHy small enough, matriz Agp, is invertible as a perturbation of
the identity matriz. In fact for any x, det Axm, # 0 can be deduced from the same procedure as in the proof
given in Appendiz A.2.

Relation (4.27) is implicit and it is not of particular interest as such. When all layers have the same thickness
(the choice of (£,) is left to the scientist), this can be improved by means of an explicit formula.

Theorem 1

For a given number of layers L > 4, the dispersion relation (4.27) can be made explicit in the homogeneous
case (lo = 1
w2 PL(kHo)

k‘ngo QL(]{:H())

L—1 2
1 x2 x2 22—-1=x
Prlx) =4 [(1_ 2)\L2> + &L (1_ 2)\L2) — - <1+ 22 L2)]
2 \"! A—122 2 \° 221y 2\ — 322\ 22613
=12 1+ -2 1— - Sl
Qr(z) < 2AL2> Tzt oNL2 ) 2I? St oN 12) arz
E_E - 1'2 k+2 _ Z L 1+>\_1£2 k—2mx2m71 1+)\_2£2m
k=2 INL2 —e = \am N L2 2m—1 AN L2

- k 1 A—122 k_2m_1m2m+1 1 A—222\"
TE D om + 1 o 12 e (U T 12

0<2m+1<k

2 (kHy) = (4.29)

5 2
= 1-3X 3)\ —14+62—4)2 ZHBA=2X7 4
where Ee = —1 + L+ SOV and g, = 34+ AL 2 2

Moreover, when the number L of layers increases, the celerity cy converges to the celerity associated to
the Euler equations obtained from the Airy wave theory:

tanh(kHp)

4.30
o (4.30)

C?‘liry(kHO) =

The proof is given in Appendix A.2.
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Remark 7 As &, = —W + O(2?), we check that Pr, and Qy, are actually polynomials (w.r.t. x2) of
the form 1+ O(x?).

For L < 3, dispersion relations are also expressed by (4.29) with:

L PrL or, L Pr or,
1 1 142 1 1 142
2 14z 1+ 41 2 142 1+ % 4 2
12 Iy 576 16 256
4 19 13 5 26
3 1+% +2916 1+%+97:):2+7879032 3 1+54+1296 1+1902+432+46656
(a) LDNH, (A = 3) (b) LDNH; o (A = 2)

Table 1: Dispersion relations for small numbers of layers

For L =1 in Table 1(a), we recover the classical dispersion relation for Green-Nagdhi [28] and Peregrine [43]
models. We mention that data in Table 1(b) were given in [6,7].

Remark 8 To our knowledge, there is no such explicit formula as (4.29) in the literature. In [7], a qualitative
result is given with determinants of extracted matrices and an asymptotic behaviour for deep water flows. In
the present case, not only does the formula enable to compute an explicit quantity but it also provides a hint
of convergence to the Euler equations.

Remark 9 Ratios (4.29) can be interpreted as Padé’s approximants for the exact celerity (4.30). Previous
works (e.g. [6,38]) are based on such approximants that guided the procedure to incorporate new terms into
the model in order to improve the accuracy of the approximation.

4.4.2 Comparison of dispersion relations

We observe on Figure 2 the celerity associated to the Euler equations, the shallow water equations as well
as the LDNHy and LDNH( models for L layers (L € {1,3,10,30}). In accordance with the literature, the
shallow water equations are more legitimate for large wavelengths (small wave numbers k).

As expected, the larger L, the more accurate the multilayer models. Multiplying the number of layers by
3 induces a gain of one order of magnitude of error. For a given magnitude of error, we can thus choose a
relevant number of layers depending on the range of wave numbers for the associated physical phenomenon.

It is difficult to discriminate the LDNHs and the LDNHgy models since they have distinct monotonicities.
For small wave numbers, the N7 model looks more accurate while for large wave numbers the Ny model
seems to provide better results. Anyway, as stated in Theorem 1, dispersion relations converge to the one
of the Euler equations.

5 Design of the hierarchy

We shall specify in this last section the link between the three models (LDNH, ), {0,1,2} derived in the current
paper. More precisely we shall underline how they are related to each other within the same hierarchy and
how they can be distinguished.

First of all, let us mention that the three of them have a common core made of conservation laws for
water volume (3.9a) and momentum (3.9b-3.9¢). Discrepancies arise for other equations especially those
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E) Euler
SW) Shallow Water

BE o 82 6o
RRRN

S
5
5

kH,

Figure 2: Dispersion relations for Euler (red thick solid line), Shallow Water (gray thin solid line), LDNHy
model (green dashed line) and LDNHy/LDNH; models (blue dotted line)

characterising the hydrodynamic component of the pressure field. Indeed, interfacial and mean values of the
hydrodynamic pressure are related by Eq. (3.9d) which can be written

haaxua i mo&+1/2 - wa>

o + o 1
_dar2 o ~ (O1(ha0a) + O, (hatata) +ra+1/2( & :

(:ZOL 2 2\/*

haOztia,  Wa — {Dafl/Z
— Lo 12 ( 2 —+ 5 )

in LDNH;. Its counterpart in LDNH; — namely (3.14) — comprises fewer differential terms accounting for
the lower order of approximation. Finally in LDNHy, it reduces to the simple average (3.15b).

To go further, let us focus on the very difference between LDNHs and LDNH{ by considering the approxima-
tion of each unknown. The LDNHs,-model corresponds to a (Pg, Py, P)-discretisation for (u,w, q) while it is
(P, Py, Py) for the LDNHp-model. This implies more degrees of freedom in the LDNHy-model and explains
why the kinetic energy is expressed differently — see (4.15) and (4.20). Despite these different expressions,
both systems satisfy an energy inequality (Prop. 1 which transcribes the fact that models are dissipative.
Likewise, both systems have different linear dispersion relations (Th. 1) which make them more accurate (in
accordance with Airy’s formula) in different ranges of wave numbers.

Model LDNH; is an intermediate system between LDNHs and LDNH, insofar as it shares properties with
both of them. First of all, primary variables (u,w, q) are discretised the same way as for LDNHy, namely in
a (Po, Py, P2) approximation but the truncation made in LDNH; amounts to assuming the energy variable
in Py rather than in Py. That is why we consider the same kinetic energy K, as in LDNH rather than K,
as in LDNHj. The choice for 7,41/, induces an exact energy equality (Prop. 3). Second of all, the linear
dispersion relation satisfied by LDNH; is the same as LDNH( as mass transfer terms (which are the very
difference between LDNH; and LDNH) vanish in the linearisation procedure.

6 Conclusion

A hierarchy of layerwise discretisation models with hydrodynamic pressure has been proposed in this paper.
They can be seen as a splitting method which improves the vertical accuracy of NLSW equations. The
number of layers defines the vertical partition of the moving domain, whose bottom and free surface can vary
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in time and to include wet/dry fronts. When the number of layers is set to 1, the proposed models LDNH|
and LDNH; coincide with the model proposed in [2] (which can also seen as a generalisation of the model
proposed in [54]) while model LDNHs with a single layer coincides with the Serre-Green-Naghdi model [28,
36,49, 52].

The hierarchy of models corresponds to the level of vertical accuracy that is considered during its derivation.
In all cases the only requirement that we considered is to obtain a model with a hydrodynamic pressure
and verifying an exact energy balance. In particular, the horizontal velocity has a constant vertical profile
within each layer and a linear vertical profile of the vertical velocity is considered in the discretisation of the
incompressibility condition equation. The differences between the three models appear in the hypotheses
upon the vertical velocity in the discretisation of the vertical momentum equation and upon the pressure
profile.

In addition to energy estimates, the main result of the paper is an explicit formula for the dispersion relation
for an arbitrary number of layers no matter what the models in the hierarchy. As a consequence, we notice
that when the number of layers increases, the celerity converges to the celerity associated to the Euler
equations.

In a forthcoming paper we will address the numerical approximation of the three proposed models, compar-
ison with experimental data, and comparison from an efficiency point of view of the models.

Acknowledgments

The authors do thank Emmanuel Audusse (Univ. Paris 13) and Tomas Morales de Luna (Univ. Cérdoba)
for fruitful discussions about multilayer models. Y. Penel is grateful to IMUS (Univ. Sevilla) and Inria
Project Lab. Algae in Silico for partially funding a 3-month stay at Sevilla. This research has been partially
supported by the Spanish Government and FEDER. through the research project MTM2015-70490-C2-2-R.

A Dispersion relation

A.1 Proof of Lemma 1

LDNH; case. Inserting the plane wave form into (4.26) provides

wH = kH, XL: lolia, (A.1a)
a=1
wiiq = ko + kgH, (A.1Db)
—iwloHoWa + Goy1/2 — da—1/2 = 0, (A.lc)
Wkl Hi i + 12 [ go — ot 1/2 ; q‘“/ﬂ —0, (A.1d)
/ a—1
We = —ikHy [;ua + ﬁzleﬁag : (A.le)

Summing (A.1lc) from L to a + 1 yields given the boundary condition g7/ =0

L

Qot1y2 = —iwHy Y Lgig.
B=a+1

Equality (A.1d) then reads
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. wk(2HZ L ol
Go = TO —iwHy [ Z lglg + ana
B=a+1

Ade)  wk(2H? Lo L L 2
(Ade) w1720 — wkH? [ > 5%5 +> > by | Lotis + e + Z lgiig] .
B=a+1 B=1

~y=max{a+1,8+1}
Finally (A.1b) becomes

2 L a—1
wua—kgHOZE/Bu/g—i—wzkHo{ Ue + Z —ﬁ Z( Z €)€5U5+€Z£,3ulg

B=1 B=a+1 B=1 \y=max{a,8}+1 pA=1

=0.

The L equations for 4 = (@a); <4<y, form a homogeneous linear system At = 0 where A(w, k) = w2 A, —
k*gHpe ® £ and A defined by (4.28).

The existence of a non-trivial solution to Aé = 0 requires that det A(w k) = 0 which provides the dispersion
relation. It can also be recovered by noticing that A& = 0 is equivalent to w2 Ag, @ = k*gHo(a,L)e.
Provided that Agp, is invertible, then necessarily (@, £) # 0 and we recover (4.27) for A = 3.

LDNH; o case. Insofar as terms involving I', /o disappear in the linearising process, Models LDNH; and
LDNHj share the same linearised formulation. They admit a plane wave solution if the following equations
are satisfied

L

wH =kHy Y Llofla, (A.2a)
a=1
wila = kda + kgH, (A.2b)
—iwlo Hoto + da+1/2 - (jafl/2 =0, (AQC)
. L

G = da+1/2 ; da 1/2, (A.2d)

/ a—1
o = —ikHo | <o + > tgag| . (A.2¢)

B=1

Similarly to the LDNH, case, pressure terms can be expressed by
L
Got1y2 = —iwHy Y Lgibg,
B=a+1
Qo= —wkH§ | > Sag+ > ly zﬂuﬂ+4ua+—§:£gug :
B=a+1 =1 \y=max{a+1,4+1} p=1

Finally (A.2b) becomes

2 L a-1
Wiy — k gHOZ€5u5+w2k2HO { g + Z ﬁ Z( > €)£5u5+6266u5] =0.

p=1 B=a+1 B=1 \y=max{a,B8}+1 BA=1

The existence of a non-trivial solution to this homogeneous linear system leads to the dispersion rela-
tion (4.27) for A = 2.

A.2 Proof of Theorem 1

We focus on the homogeneous case. Let us introduce the symmetric matrix

~ 2
B(z,y) =TI + 2°B — yfe@)e,
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Figure 3: Profile of Matrix D

where B is defined by (4.28), which reduces to

1 Oa 1
Bog = — <_65 + 5 +L - max{a,ﬂ}) .

B is then such that W
1 ~ ~
EA(w, k) =B(z,y) for x=kHy, y= 9770,

The existence of a non-trivial vector @ # 0 such that At =0 is equivalent to showing that det B (z,y) = 0.
Let us also set

x2

EINER

A—122

3 — 2\ z2
o) L2 L2

ST (A.3)

x=1 ¢:—2<1—|— ), and (=-3+

The following procedures®

:fori=2toL—-1do

R, + R;— Ry

:for j=1to L—2do

Cj = Cj =2Cj11 + Cjpz

: Cp_1 < Cr_1 — k(Cp, for a suitable k such that the first coefficient vanishes

lead to det B = det D, where D = T + 7By, (see the profile on Fig. 3 and (A.3) for notations) and

22

2
s T=s52

e 7T is a sparse lower triangular matrix whose non-zero coefficients are:

« Toa=xforie{l,....L—1}and Tpp = —% — &
*x To1=C Tiio1 =1 fori€ {3,...,L—1},

To,o-1=— (1 +

*x T31 =0, Tijo=xforic{4,...,L};
* Tin=—xforie{4,...,.L -1}, Tp1 =0.

A cofactor expansion (with respect to the last column) of det D yields
L

detD =[] Tii + (-1 7 det T
i=1

where J is the sub-matrix extracted from 7 (rows 2 to L and columns 1 to L — 1). Its determinant is
computed by means of a descent algorithm to keep a single non-zero coefficient in the first column.

SR, and C; denote respectively the i row and the j*" column of the matrix.
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1: fork=1to L —-2do
(k—1)
. (k) — pk=1) _ Jk ;
2: =
f f jk,k+1jk+1

where f(o) = 4, and j is the k' column vector of 7, i.e.

¢ 0 0
0
—X X .
jlz . ajk: ¢ <_kforkj€{2"'-7L_2}’j[/fl: 0
) X
X 7-L>J§—1
0 0 ’

Finally, vector f (L=2) ig proportional to e;_1 and can be computed explicitly. Indeed, introducing sequences
(ap = f,g’i)l) and (bg = f,iﬁ;_)Q), i.e. such that

f(k): ap |« k+ 15
b |« k+2

where * are original coefficients of j;, then we have
@ ap=CandVke{l,...,L—3} a;=bp_1 +2yap_; with v = ;%;
To,L—1
X
® bp=0andVke{l,...,L —4}, b = —x — a_1;

@ ap_o="br_3— ar—3

@ br_3 = —ar_4.

® corresponds to the (k + 1) row of Step k € {1,..., L — 3} in the algorithm above, @ for k = L — 2, ® to
the (k + 2)" row for Step k € {1,...,L — 4} and @ for k = L — 3.
Hence, for all £ € {0,...,L — 5}, the sequence satisfies the second-order linear induction relation

Q4o — 2’70k+1 +ap = —Xx. (A4)

Let us set a; = aj, + ﬁ such that (ay) is the solution of the homogeneous counterpart of (A.4). We also
introduce

A—122 x2 A — 222 dor_ —arx
=1+—" =1+ —= =n+V d §=—— 2, A.
T=EE N T L2<+ ngE) TS nEVE R (A-5)
Then the solution to (A.4) satisfies
- L2
o = Gri + (@ — O)r* + ﬁka' (A.6)

By means of a cofactor expansion (with respect to the first column whose coefficients are 0 except the last
one) of det J, we finally obtain

L L—1
detD =[] Tii + ()" 7 x (D' ar— [] Tis
i=1 =2
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A—122  y? 2 y?

L—2

= JENEARE I A = 2.

X X<+2/\L2 L) 2oz L

We mention that a is independent from y for k € {0,...,L —3} but ap_o = —ap_4 — %%,3 does as

71,11 is a function of y. Hence, we isolate y in the equation det D = 0 which provides the following relation
L X P e - (14 ”le &) b Bans) A

2 _ —1 22 2 _
Xt (1 + %%) + 25 (XF e} — 5 (3 + 2)ﬁ>\3f2> {x'~%ar-s}
Expressions x*a; between braces are computed thanks to (A.6).

We can infer the limit of y? as L — +o0o. Indeed, Taylor expansions with respect to L™! read

ey B4 L4+0(L7%) = ri=exp(ta)+0O(LY);

~ 4 ~
chg=-L (14 BL L L) L 0(1) = G =-L+L+00);
~ 2 ~ 2
ca=-1 5] = ax=-L+ou);
A5
e =210 = 0% L o)

We deduce that the numerator in (A.7) verifies

L2 2\ — 1 22 2
14,2 (gL L—2 L-3 | (% L-3 -1
X <0T+ + (o — O x2X ) N (1 " 2)\L2> <9T+ (o = )r= 22X )
0

2\ — 1 22 ag — 2)\ — 1 22
2 e A 0 L 2 o
X (H 2X L2>”]+ R lx <1+ 2X L2>T]

0
_T4 +
+

—+ £2 L—-1 1132 + 1 + %7_1:1:72
2% ;T 2 L2
L
= —sinhz + O(1).
x
Likewise, the denominator in (A.7) satisfies
P x2X2 ~ 2
L1 L—4 L—4 L2
X (14—2)\[12) + 972 91”+ —|—(Clo—0)7“_ +?X

z? 2\ — 3 22 ~ L?
~ 572 3+ o\ 12 97“_]—;_3 + (dp — O)rt =3 + ?XL_l = coshz + O(L™").

Combining the two last results shows that (A.7) implies

1 tanh
~ an x' (AS)
Yy* L—+oo €T
To conclude, we notice that given (A.5), (A.6) expands as
L2y2 A .
(o 2 <3 (B vt o)
§=0
- k
L e
0<2m<k \“"" 0<2m+1<k
. k .
= Z (2 >nk—2m5m+(xalna0 ( ) k—2m— 15m
0<2m<k \“"" 0<2m+1<k
2
which shows that no square root is involved. As ya; — nag = —5 + ( ~ fQ + # Li, we obtain

(4.29).
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B Some properties of the LDNH; model

B.1 Derivation of LDNH;

This paragraph is restricted to the case of homogeneous layers: h, = %, a € {1,...,L}. As explained
in § 4.1.2, we have to deal with integrals of quadratic polynomials and we used in the LDNHs case exact
quadrature formulae. If we rather use a 1st-order Hermitte interpolation polynomial, i.e.

2W)z, R ZaWo + (z — za) (W — 2002uq) and M?EQ R wi —2(z — zq)wa Oz g,

the application of (4.2a) to (4.11) yields

2

8t(ha25ach) + am(haZoﬂLaWa) + Fa+1/2 (za+1/2@a+1/2 + 4L2(ag;u)a+1/2> + Za+1/2qa+1/2

H? —~— )
—Lac12 | Za—1/2Wa-1/2 T 55 102 (Ozu)g_1/2 | = 2a-1/20a-1/2 = ha <wa + Qa) . (B.1)

We then verify similarly to the LDNH;y case that smooth solutions to (B.1) are also solutions to (3.14).
Notice that the Hermitte interpolation process makes sense for z in the vicinity of z,, which holds when
L>1.

B.2 Energy

In accordance with the approximation made above, the kinetic energy for the LDNH;-model reduces to (4.20)
replacing the corresponding kinetic energy (4.15) for the LDNHy-model. The result reads:

Proposition 3

Let us take vo41/2 = % If (uq, wa, qo) are smooth solutions to LDNH;, we have

(Zh (K a+gz°‘+patm)> (Zha“a( a+qa+gn+p‘”m)>

= H&gpatm + (QH + ql/z)ath. (BQ)

Proof: The proof is quite similar to that of Prop. 1. We have
O (haK o) + 0y (hatia [Ka + o +gn+0""]) = (gn+ p™"™) 0 (hata
+ ha0rqatia + Gat1/2 (Uaa Za+1/2 — wa) Go—1/2 (uaamza—l/Q - wa)
Ug
—TLati1y2 [Ua <Ua+1/2 - 7) + wa (wa+1/2 - *)}

Wey

~ U
+ L0 12 [Ua (Ua—1/2 - 7) + wq ( Wa—1/2 — 7)] .

If we replace ¢, in the right hand side thanks to (3.14), we recover (4.22) up to the term

H? TAT 81”04 a9y axua
4L2 8 U |: a+1/2 ((8zu)a+1/2 — 72 ) - Fa—l/Q ((azu)a—l/Q - D) >:| .

This term turns out to be equal to

H? 1
4L2 Z Foz+1/2 <7a+1/2 - ) (axuoz+1 - amua)z . (B3a>
It is added to the classical term
L 1
- Z Patiy2 (’Ya+1/2 - 2> (14 |0220]%) [[U]]iﬂ/z- (B.3b)
a=1
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As previously, the constraint (4.16) upon 7,1 /2 is necessary to ensure that (B.3b) is actually negative. Consequently,
(B.3a) is positive. In order to prevent the energy from increasing, we take vy,41/2 = % so that both terms vanish and
(B.2) holds. |

C Some properties of the LDNH; model

C.1 Derivation of LDNH,

Under (3.4)-(3.8), there is no need for an additional equation like (4.11) as w is layerwise constant. The
conservative equations with source terms (3.9a-3.9c) are derived similarly to § 4.1.2.

As for the dynamic pressure ¢, Equation (3.15b) expresses the hypothesis of continuity for a P; function and
looks like a simplification of (3.14).

We mention that Equation (3.15a) which is the counterpart of (3.9f) in the Py framework also holds in the
hydrostatic context [14].

C.2 Energy

If we replace K, by K, as for the LDNH; model — see (4.20), the statement of Prop. 1 stands for the LDNHq
model. Let us multiply (3.9b) by u, and (3.9¢) by w, and sum the resulting equalities:

8t(hafa) + O (haua {Fa + o+ gn+ patmD = (gn + patm)a’r(haua) + haqaOzta
+ Ga+1/2 (uozazzaJrl/Z - wa) — qa—1/2 (uozazzafl/Z - wa)
— Fa+1/2 (uaﬂa+1/2 + wa@a+1/2 — ?a) + Fa71/2 (uaﬂa,l/g + wa@a,1/2 — fa) . (Cl)

Given (3.15a) and (3.15b), the terms involving ¢ become

o4 a—1
Qas1/2 Y Ox(hpug) — qa—1/2 Y Oz(hgug)
B=1 B=1

whose sum over « vanishes. Then summing (C.1) leads to

L L
at (Z haKa> =+ a:l? <Z haua (foz + Ga + g0 +patm>> = *(977 +patm>atH + Q1/28tzb
a=1 a=1

~ Uq, ~ Wq,
Uq (Ua+1/2 - 2) + Wa (wa+1/2 - 2)}
~ U, ~ Wq,
- 110471/2 [Ua (Ua1/2 - 2) + Wq (wa1/2 - 2)} . (C.2)

We conclude as previously by showing that the last terms are negative under (4.16).

L
- Z Lotiy2

a=1
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