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ON THE STABILITY OF TYPE I BLOW UP FOR THE ENERGY
SUPER CRITICAL HEAT EQUATION

CHARLES COLLOT, PIERRE RAPHAEL, AND JEREMIE SZEFTEL

ABsTRACT. We consider the energy super critical semilinear heat equation
du=Au+uP, zeR? p>5.

We first revisit the construction of radially symmetric self similar solutions per-
formed through an ode approach in [51], [2], and propose a bifurcation type
argument suggested in [3] which allows for a sharp control of the spectrum of
the corresponding linearized operator in suitable weighted spaces. We then show
how the sole knowledge of this spectral gap in weighted spaces implies the finite
codimensional non radial stability of these solutions for smooth well localized
initial data using energy bounds. The whole scheme draws a route map for the
derivation of the existence and stability of self similar blow up in non radial
energy super critical settings.

1. Introduction

1.1. Setting of the problem. We consider the focusing nonlinear heat equation
{ Ou = Au + [ulP~lu, (t,z) € R x RY, (11)
U)o = U0,
where p > 1. This model dissipates the total energy
B(u) = %/|Vu|2 - ]ﬁ /UPH, %‘g—f _ —/(&gu)? <0 (1.2)
and admits a scaling invariance: if u(t,x) is a solution, then so is

2
uy(t, x) = \e—Tu(A\%t, \x), A > 0. (1.3)
This transformation is an isometry on the homogeneous Sobolev space

d 2
Juntt, Ve =t for se = § = —=.
We address in this paper the question of the existence and stability of blow up
dynamics in the energy super critical range s. > 1 emerging from well localized

initial data.

1.2. Type I and type II blow up. There is a large litterature devoted to the
question of the description of blow up solutions for (ILT)) and we recall some key
facts related to our analysis.

Type I blow-up. The universal scaling lower bound on blow up rate
1

”u(t?')HLoo 2 1
(T — 1)
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is saturated by Type I singularities:
1
1
(T —t)r1

These solutions concentrate to leading order a blow up profile

>, At) = VT —t,

[u(t, )|z ~

1 x
MO (W

which solves the non linear elliptic equation

u(t, ) ~

1 2
Av—iAv—i—vp:O, Av = 1v+y-Vv. (1.4)

There are three known classes of radial solutions to (L4):

1

1 p—1
K=|——
p—1

which generates the stable ODE type blow up [20] 21, 22] 23] 139, [40];
e the singular at the origin homogeneous self similar solution

1
2 2 -1
bm (e 2T g
‘x’pfl p_l p_l

1 4 [ 4o for d <10,
+d_2<p<pJL_ 1+d—4f4\/dT1 for lel,

where pyr, is the so called Joseph-Lundgren exponent, there exists a quan-
tized sequence of smooth radially symmetric solutions ®,, to (L.4) which
behave like

e the constant solution

e for

(1.6)

D, (r) ~ CZ as 1 — —+00.
rp=1
These solutions have been constructed using global Lyapounov functionals
based ODE methods, [30} 51} [1} 2], and a sharp condition for their existence
in the radial positive class is given in [44].

Note that all these profiles have infinite energy and it is not clear how they may
participate in singularity formation emerging from smooth well localized initial data.
In the radially symmetric setting, the series of breakthrough works [35] [36] gives
partial answers showing the universality of the ODE blow up, and the possiblity
of threshold dynamics with ®* or ®,, regimes depending on the value of p. The
analysis however is strongly restricted to the radial setting and uses the intersection
number Lyapounov functionals based on the maximum principle. In particular this
approach does not provide any insight into the direct construction of these blow up
profiles and their dynamical stability in the non radial setting.

Type II blow-up. For p > pjr, there exist type II blow-up solutions
1
limy_7 |Ju(t)||pe (T — t)P~1 = +o00.

They appear in the radial setting as threshold dynamics again at the boundary of the
ODE blow up set, [37], and dynamical proofs were proposed in [25, 43 [45]. Their
construction has been revisited in [42] 6] in the setting of dispersive Schrodinger
and wave equations, and in [7] for the non radial heat equation, to produce the full
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quantized sequence of smooth type II blow up bubbles. The blow-up profile near
the singularity is a stationary profile:

u(t,x) ~

1 X
A(t) 71 @ (A(t)> . M) < VT —t

where @) solves the soliton equation:
AQ+ QP =0. (1.7)

The heart of the analysis is to control the flow near ) using suitable energy es-
timates, hence avoiding maximum principle tools or spectral arguments. Type 11
is intimately connected to the singular self similar profile (LHl), see [25] [42] for a
discussion on this fundamental matter.

1.3. Statement of the result. Our aim in this paper is to propose a robust ap-
proach for both the existence and stability of self similar blow up with smooth self
similar ®,, like profile. For the sake of simplicity, we restrict ourselves to

d=3, p>5, pjL=+oc. (1.8)

We first revisit the construction of self similar blow up solutions of [51) 2] and
implement an abstract bifurcation argument which relies on the sole existence of
the stationary profile @ given by (7). Note that this kind of argument is classical
in the ODE literature, see for example [I} 11} [9], and relies on the oscillatory nature
of the eigenfunctions of the linearized operator close to ®* for p < psr.

Proposition 1.1 (Existence and asymptotic of excited self similar solutions). As-
sume (LY). For all n > N large enough, there exist 4l smooth radially symmetric
solution to the self similar equation (L4) such that

A®,, wanishes exactly n times on (0,400).

Moreover, there exists a small enough constant ro > 0 independent of n such that:
1. Behavior at infinity:

lim sup (1 n m%l) 1B, (r) — ®.(r)| = 0. (1.9)

n—-+4o0o r>ro

2. Behaviour at the origin: there exists a sequence p, > 0 with p, — 0 as n — 400
such that

1
lim sup |®,(r) — —Q <L> = 0. (1.10)
N—>+00 p <Ly p—1 Hn
Hn
Hence these solutions realize a connection between the ground state behavior @
at the origin, and the homogeneous self similar decay ®, at infinity. We now claim
that these solutions are the blow up profile of a class of finite energy initial data

leaving on a non radial n codimensional manifold.

Theorem 1.2 (Finite codimensional stability of ®,). Assume (L8). Let n > N
large enough. There exists a Lipschitz codimension n mam'folcg of non radial initial
data with finite energy

U = XA Pn + wo
where Ay > 1 is large enough and wg is small enoung

lwollzz + | Awoll L2 + llwoll e <1, (1.11)
1locadly unique in some suitable space

2see Proposition [£9] for a precise statement of the Lipschitz regularity.
3See (LIR) and below for the definition of the weighted Sobolev space H 2.
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such that the corresponding solution to (LI)) blows up in finite time 0 < T < +o0
with a decomposition

wlt ) — 1 y x — xz(t)
o= S (557

where:
1. Control of the geometrical parameters: the blow up speed is self similar

AXt)=vV2+o)(T —1t) as t =T
and the blow up point converges
z(t) = x(T) as t —T. (1.12)

2. Behaviour of Sobolev norms: there holds the asymptotic stability of the self
similar profile above scaling

li ) s = <2, 1.1
lim [lo(®)| g =0 for se<s < (1.13)
the boundedness of norms below scaling
limsup ||u(t)|| . < +00 for 1<s < s, (1.14)
t—=T

and the logarithmic growth of the critical norm

[l e = en(1 + 0 (1) v/ [log(T = 1), cn # 0. (1.15)

Comments on the results.

1. On the construction of self similar solutions. The construction of self similar
solutions has been performed in [511 2] using a global Lyapounov functional ode ap-
proach. A very interesting variational approach has also been developed in [5, 19] in
the setting of the related wave map problem. But there are many classical problems
which lack both the variational structure and the monotonicity formulas, hence the
need for a more systematic approach typically connected in a way or another to a
bifurcation argument, which is the method we are implementing here. This proce-
dure has been applied in various settings, see for example [Il [[T]. One advantage
is that the proof further allows for a control of the linearized operator near the bi-
furcated object. The prize to pay however is that we only get the bifurcated family
locally near the bifurcation point, and not the whole branchﬁ, in particular not the
fundamental mode. A closely related theorem is the construction [29] for the KdV
equation near the critical exponent.

2. Stability of self similar blow up. There is an important literature devoted to the
stability of self similar solutions for both parabolic and dispersive problems. We aim
at developing a robust approach which will extend to more complicated systems.
Hence we avoid on purpose maximum principle like tools. In [13] 14} 15l [16], this
kind of question has also been addressed for the radially symmetric supercritical
wave map problem, Yang-Mills, wave equation and Yang-Mills heat flow. In those
works, the analysis requires a detailed description of the complex spectrum of the
linearized operator in suitable spaces which is a delicate matter, and seems to rely
heavily on the fact that in the cases under consideration, the self similar solution
has an explicit formula. Our approach is different: once we know the spectral gap
estimate with exponential weight which is an elementary consequence of either the

4unless one works for psr. —€ < p < pyr in which case the whole family could be bifurcated

along the same lines as for the supercritical gKdV equation performed in [29].
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variational characterization of the self similar solution as in [5], or the construction
of the solution by bifurcation as in the setting of Proposition [T} then the control of
the nonlinear flow follows by adapting the general strategy based on energy bounds
of [48, 42]. In fact, the exponential decay bounds behind (ILI3]) considerably simplify
the analysis with respect to the study of type II blow up. The connexion with type
IT blow up has been made in [26] using exponential weights again, and the analysis
is indeed intrinsically more involved. This energy method in weighted spaces also
draws a natural connexion with the analysis of ODE type I blow up for both the heat
and the wave equation [21], [39, 41]. Note also that we assume (L8] for the sake of
simplicity onlyﬁ. The solutions of Theorem will be obtained using first a by now
classical Brouwer like topological argument [10, 42], which is then complemented by
a local uniqueness statement to construct the Lipschitz manifold as in [6] 33} 28], [17].

3. The flow near the ground state. The question of the classification of the flow
near the special class of stationary solutions () has attracted a considerable at-
tention in the past ten years in connection with the construction of the unstable
manifold [46], or the complete classification of the flow near @ in energy subcritical
[46] 34] and critical settings [8]. The corresponding instabilities are central in the
derivation of unstable type II blow up bubbles, [42]. From (LI0), the self similar
solution ressembles the solitary wave () up to scaling near the origin, and hence
the stability Theorem can be viewed as describing one instability of the soli-
tary wave solution in a suitable function space. Here a fundamental issue is that
the linearized operator H = —A — pQP~! is unbounded from below in the sense of
quadratic forms for p < pyr. This is a major difference with respect to the case
p > pyr where H > 0. Our analysis in this paper shows how the nonlinear bi-
furcated solution ®,, precisely allows for the suitable modification of the linearized
operator which fixes this unboundedness from below of H. One also observes the
same behaviour of Sobolev norms (LI3)), (LI4) as in [42] which illustrates the deep
non trivial structure in space of the associated blow up scenaridd. Let us also stress
that the nature of our energy like non linear estimates goes far beyond the stability
issues of specific dynamics, and has allowed in [34] in a dispersive setting and [§]
in the parabolic setting for a complete description of the flow near the ground states.

This paper and [48] [42] [0 [7] hence display a deep unity and design a route map
based on robust energy estimates for the proof of the existence and stability of type
I or type II blow up bubbles in both radial and non radial settings.

Acknowledgements. All three authors are supported by the ERC-2014-CoG 646650
SingWave. P.R. is a junior member of the Institut Universitaire de France.

Notations. From now on and for the rest of this paper we fix
d=3, p>5.

The ground state expansion. We let @, given by (L5l be the unique radial homoge-
nous self similar solution to (L4]). We let Q(r) denote the unique radially symmetric

solution to
{ Q"+ 2Q +Qr =0,
Q(0) =1, Q'(0)=0,

5Raising dimensions causes the nonlinearity to become non smooth since limg_, 4o psr. = 1 and
hence would lead to additional but manageable technical difficulties.

6and hence its relevance in particular for more geometric problems like the harmonic heat flow
of surfaces.
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which asymptotic behavior at infinity is from standard ODE argumentﬂ given by
Q(r) = (14 0y400(1)) P (r).

The next term is this expansion relates to the p;r exponent (L€) which is infinite
in dimension d = 3. Hence the quadratic polynomial

V= y+pdt =0

has complex roots

1 VATAN
Y=g W, A:=1—4pcPt <0, wi= S (1.16)
and the asymptotic behavior of ) may be precisedﬁ:
in (wl 1
Q(r) = ®u(r) + c1 sin (w o§(7") +c2) +o (—1> as r — 400 (1.17)
r2 r2
where ¢; # 0 and ¢ € R. Note that
! 2 1>0
e R
2 p—1 °°

so that the second term in the expansion of () is indeed a correction term.

Weighted spaces. We define the derivation operator
Dk A™  for m =2k,
VAF for m =2k +1.
We define the scalar product

x\2

(Fa) = || F@a@ipds, p=eF (1.15)

and let Lf) be the corresponded weighted L? space. We let H ;f be the completion of
C3°(R?) for the norm

el s =

k
> IDiul3,.
n P
Jj=0
Linearized operators. The scaling semi-group on functions v : R — R:

up(z) = )\%u()\x) (1.19)

has for infinitesimal generator the linear operator

2 0
Au = 5 u+xz.Vu = 5(u>‘)|k=1'

We define the linearized operator corresponding to (IL4)) around respectively @, and
®,, by

Cpfl
Looi=—A+A-T2 0 f e A+ A —pap !
and their projection onto spherical harmonics:

2 2 1

Loom = =0 — =0p + —— + 710, + m(mi;—) —p®Pl meN,
T p— 1 r
2 2 m(m +1 _

£n,m = =0 — ;87’ + ﬁ + 70 + % —pCI)Z 17 m € N.

Tsee [12} 27, [31].
8see [121 27, 31].
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Note that L., is formally self adjoint for the L2 scalar product but (ILI6]) implies
that the associated quadratic form is not bounded from below] on H,. | We similarly
define the linearized operator corresponding to (7)) around Q:

H:=—-A—pQr!

H,, == =0 — 3+7(m+1)

—pQP Y, meN.
and again H is not bounded from below on H

General notation. We let x(x) denote a smooth radially symmetric function with

(@) 1 for |z <1
x(x) =
0 for |z|> 3,

and for A > 0 (note the difference with (LI9)),
x
= (3)

Organization of the paper. This paper is organized as follows. In section 2 we
construct the family of self similar solutions ®,, using a nonlinear matching argu-
ment. The argument is classical, but requires a careful track of various estimates to
obtain the sharp bounds (L9)), (LI0). In section Bl we show how these bounds cou-
pled with Sturm-Liouville like arguments allow for a sharp counting of the number
of instabilities of the linearized operator close to ®,, which is self adjoint against
the confining measure p(y)dy, Proposition Bl In section @, we turn to the heart of
the dynamical argument and show how the spectral estimates in the weighted space
coupled with the control of the super critical H2 norm design a stability zone for
well localized initial data.

2. Construction of self-similar profiles

Our aim in this section is to construct radially symmetric solutions to the self
similar equation

Av—Av 40P =0, (2.1)

by using the classical strategy of gluing solutions which behave like @, at infinity,
and like @ at the origin. As in [3, 11} [I], the matching is made possible by the
oscillatory behaviour (LIT) for p < pyr. The strength of this approach it that it
relies on the implicit function theorem and not on fine monotonicity properties, and
in this sense it goes far beyond the scalar parabolic setting, see for example [29]
for a deeply related approach. The sharp control of the obtained solution (L9,
(LI0) will allow us to control the eigenvalues of the associated linearized operator
in suitable exponentially weighted spaces, see Proposition [3.11

2.1. Exterior solutions. Recall that ®, given by (L3 is a solution to (1)) on
(0,400). Our aim in this section is to construct the full family of solutions to (2.))
on [rg,+o00) for some small g > 0 with the suitable behaviour at infinity. The
argument is a simple application of the implicit function theorem and continuity
properties of the resolvent of L., in suitable weighted spaces.

9this is a limit point circle case as r — 0, [49).
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Given 0 < rg < 1, we define X, as the space of functions on (79, +00) such that
the following norm is finite

1 242
|wlx,, = sup rZ[w|+supre=1""[w].
O pp<r<i r>1

Lemma 2.1 (Outer resolvent of L£). 1. Basis of fundamental solutions: there
exists two solutions 1 and o of

Loo(1j) =0 for j=1,2 on (0,+00) (2.2)

with the following asymptotic behavior:

1 1 5 g 2 1
Y1=—(14+0(=5 ), ba=rr1 7ez (1+0( ]|, asT— +oo (2.3)

and
i 1 i 1
by = 5 (w o§(r) + ¢4) ) <r%) gy = 50 (w o§(r) + c6) L0 (r%) s o 0
r2 r2
(2.4)
where c3,c5 # 0 and ¢y, cg € R. Moreover, there exists ¢ # 0 such that
c 1
Ay = 707%7 <1 +0 <ﬁ>> as r — +o00. (2.5)
2. Continuity of the resolvent: let the inverse
“+oo 9 'r/2 +o0 9 'r/2
T(f) = (/ fapar’ GTdT'> Y1 — ( fapar! GTdT'> P,
then
Loo(T(f)) =1
and
! 13 —2_42
1Ty S [ Uflrdar s suprss2)y). (2:6)
70 >

Proof. The proof is classical and we sketch the details for the reader’s convenience.

step 1 Basis of homogeneous solutions. Recall (LI6). Let the change of variable
and unknown

then
Op = 2rdy, 0F =4rdy(rd,) = 4r*0; + 4r0,(r)0, = 4yd + 20y, 10, = 2yd,.
This yields

2 2 pcio?t 1
Loo(¥p) = | —4y0, — 20, — 40, + p— + 2y0, — Y (—wb(zﬂ) :




we infer

Loo(¥) = {_4y<yi3‘f’"(y)‘ OO 5 (3+1)

7
2
-1
+ (—6+2y)<y;¢( ul > <2 pc}jo )y%qb(y)}

— #{ — dy¢" (y) + (47 — 6+ 2y)>¢’(y)
y2
+ <L1 —7+Brv=r(r+2) - p) 5) ¢(y)}-

Since v satisfies
V= +pdt =0,
we infer
4 3y 1 2
tutr) = —fut)+ (-4 3-D) s+ (25 +0) s}
yQ
We change again variable by setting
o(y) = w(z), z=1%.

We have

and obtain

tat) = =5 ()4 (4 5= 2) v - (1 - 7))

y2
Thus, Loo(10) = 0 if and only if
d?w d
ZW_F(I) z)— —aw =0 (2.7)
where we have used the notations
1 vy 3
=—— — = b= —. 2.
o= 1y 7+ 3 (2.8)

[270) is known as Kummer’s equation. As long as a is not a negative integer - which
holds in particular for our choice of a in (28] -, a basis of solutions to Kummer’s
equation consists of the Kummer’s function M (a,b,z) and the Tricomi function
U(a,b, z). These special functions have the following asymptotic behavior for z > 0
(see for example [47])

M(a,b, z) = wz“_bez(l +0(zY), Ua,b,2) = 27%(1 + Oz 1)) as z — +o0,

I'(a)
(2.9)
M(a,b,z) =14 0O(z) as z — 0, (2.10)
and for 1 < R(b) < 2 with b # 1,
U(a,b,z) = Mzkb + _ra=b + 022 %) as z — 0. (2.11)

I'(a) Fla—b+1)

ONote that our choice of b in (ZJ) is such that R(b) = 1 and b # 1.
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Since w is a linear combination of M (a,b,z) and U(a,b, z), we immediately infer

from (29), 2I0) and (2II) the asymptotic of w both as z — 400 and z — 0.

Finally, since
1 r?
w(r) = T_’yw (5) )

we infer from the asymptotic of w the claimed asymptotic for ¢ both as r — +oo
and r — 04. This concludes the proof of (23)), ([2.4).

step 2 Estimate on the resolvent. The Wronskian
W= Pis — i
satisfies
W' = <——+T>W W=
where we may without loss of generality assume C' = 1. We then solve
Loo(w) = f

using the variation of constants which yields

+oo /2 +oo 2
w = <a1 —i—/ f?,Z)gr'2e_TTdr'> U1+ <a2 - / f¢1rl26_7dr'> e, (2.12)

In particular, 7(f) corresponds to the choice a; = as = 0 and thus satisfies

Loo(T(f) = [-

Next, we estimate 7 (f) using the asymptotic behavior (23] and (24]) of ¢; and
o as r — 04 and r — +o0. For r > 1, we have

7o 1+2]7'

2 +oo 9 12
</ far?e Td?”’) Y1 — < finr! G_Tdrl> (0>
T
400 2 4 g .2 +o0 2
< </ |flr' =T dr/> +re1 e2 </ | fl—" e 2dr')
T T r/p—1
+0o0 d ! 4 r2 +0o0 _ 4 2
< {sup <r2 </ —T3> +ro-1teT </ P Te T dr')) } suprpfl+2]f]
r>1 r r! r r>1

2
< suprTY
r>1

7"1’1

Also, for rg < r <1, we have
+00 9 2 +o00 ) 2
< | e e‘Tdr') o — ( [ s e_Tdr’> "
r r
1 3 +oo 2 1 3
/ |f|7"/2d7"/+/ ’I“/ﬁ71|f|d’l“/§ / |f|7“/§d7“/+supr%+2|f|
r 1 0 r>1

and (2.0)) is proved.

=

r

step 3 Refined control of 1)1. We now turn to the proof of (Z5]). We decompose

b= 4. (2.13)

rp-1
Since Loo(11) = 0, we infer
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where f is given by

1 1 2 1 A1
[ = _£OO<—2>:33<—2>+_87’< 2>+p05 >
rp-1 rp-1 r rp-1 ™opp1

2(p—3) 1
b= 1) r%+2 .
In view of ([2I2), we infer

12 12
- 2p—3) [T e = 2p—3) [+° ez
P = |ar+ (p—3) Yo—5—dr' | Y1+ | az — 2p=3) Yy ——dr’
p— 1) r r!/p—1 p—1 r r/p-1

On the other hand, we deduce from the asymptotic behavior of

~ 1
1/)1:0< 3 ) as r — —+oo.

rr-1

In view of the asymptotic behavior of 1 and ¥, as r — +o0, this forces a1 = as =0
and hence
/2 12
s 2p—-3 too T 2(p—3 oo o=ty
wl — (p ) wQ —— dr/ wl _ (p ) 1/}1 —— d?“l 1/}2.

p—1 r r!/p—1 p—1 r r/p—1

Then, applying A to both sides, and using the asymptotic behavior of ¥ and 5 as

r — 400 yields
~ c 1
Ay = — <1+O<ﬁ>> as r — 400

re-1
for some constantl] ¢ = 0. Injecting this into 2I13) yields
~ c 1
Ay :A%:M%7 <1+O<ﬁ>> as r — +oo
for some constant ¢ # 0 and concludes the proof of Lemma [2.1] O

We are now in position to construct the family of outer self similar solutions as
a classical consequence of the implicit function theorem.

Proposition 2.2 (Exterior solutions). Let 0 < rg < 1 a small enough universal
constant. For all

0<e<re, (2.14)
there exists a solution u to
Au—Au+uP =0 on (rg,+0o0) (2.15)
of the form
u = P, + e + ew
with the bounds:
lwlix,, Serg™™, [lAwllx,, Serg™™. (2.16)
Furthermore,

1—
w,_y =0 and 0w _y|lx,, S .

HActually, c is explicitly given by

p—1



12 C. COLLOT, P. RAPHAEL, AND J. SZEFTEL

Proof. This a classical consequence of Lemma 211

step 1. Setting up the Banach fixed point. Let v such that
u=®P, +cv,
then u solves (ZI5) iff:

-1
Loo(v) = 5%@: 202 4 eF(®,,v,e) on T > 1y,
where

1 —1
F(®,v,6) = <((I>* + ev)P — BF — pdP Loy — %@2452@2) .
5

Furthermore, we decompose
v=11t+w
and hence, using in particular the fact that L£o,(11) = 0, w is a solution to

Loo(w) =p(p — 1)eG[Py, 1, e]lw on 7 > ry
where we defined the map:

610t = ([ (=)0 + v+ ) 2ds) (i + 0

We claim the non linear bounds: assume that

lwllx,, <1,
then
/ Gl g, el Fdr’ +supr 7T 2GR o] ST (217)
r>1
and
1 3
[ 16E v, = G, B
ro
2 _ 49
+supre-t |G[‘1>*,7/)1a5]w1 - G[(I)*ﬂ/)lﬁ]wﬂ
r>1
S g flwr = wallx,, - (2.18)
Assume (2.17)), (2.I8]), then we look for w as the solution of the following fixed point
w=¢ep(p— 1)T(G[<I>*,¢1,5]w>, w € Xp,. (2.19)

In view of the assumption erj ™ * < 1, the continuity estimate on the resolvent (ZB)

and the nonlinear estimates (2Z17), ([2.I8), the Banach fixed point theorem applies
and yields a unique solution w to (2.I9) with
lwllx,, S erg*e.
Differentiating (2.19]) in space, we immediately infer
1Awllx,, S erp*
Finally, we compute w__, and d:w)__,. In view of (ZI9)), we have
wy_, =0.

Also, we have

Ocw =p(p — DT (Cl@. 61, elw) + eplp = VT (961001, elw)
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and hence

O,y = plp = VT (Gl 1, )

‘E:O

We have
! 1
Cl®s vyl = ( / (1—s)<1>£z—2ds) 93 = S
0

which yields

P(pQ— 1) T<‘1>§72¢%> ‘

a€w\s:0 =

The continuity estimate (2.6) and the asymptotic behavior of ¢y (23] (2.4]) yield

1—
10wyl x, S0

step 2 Proof of the nonlinear estimates (2.17)), (2.I8]). Note first that in view of
Lemma 2Tl and the definition of | - || x, , we have for ro <7 <1,

1 2 —Sc ] —Sc
w(r)] + [ ()] S 772 =TT SRR, ()] < g @ (1)
while for » > 1, we have
[w(r)| + [¢1(r)] S |®s(r)],
and hence, our choice of ¢ yields for all 7 > rg
el (r) + elw(r)| < [@«(r)]-
Next, we estimate G[®,, 1, e|w. For rg < r <1, we have
|G[®., 1, elw] < (@ ()] + (|1 (r)] + Jw(r))P 2 (91 ()] + [w(r)])?
~ 1 \"2/1)\? 2
S 1P O+ P s () () 0,2 s

1
rpr—1 7"5

and hence

! 3 1
[ 16 v el i < (/ d> S
70 o

Also, for r > 1, we have

Gl@y, vr,elwl < (19u(r)] + (9 (r)] + fw(r) )P (1% ()] + Jw(r)])?

< 1 \?* 2 - 1
~ 2 (1+ ||w||X’I‘0) ~ o4 2
rp—1 r- p-1

and hence

242
sup TGl iy, cju| < 1
r>1
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and (2.I7) is proved. We now prove the contraction estimate:
G[‘I)*, Ibl, 8]71)1 - G[‘I)*, 1/11, 8]71)2
1
=)@ setwn w2 ) (o + w?
0

(1 — 8)(Ps + se(vh1 +ws))P2ds ) (¥ + wo)?

| )
/01(1 — 8)(Py + se(y + wl))p2d5> <(7/)1 +wi)® — (Y1 + w2)2>

1

+ /0 (1 — 8)(®y + se(if + wy))P~2ds

1
- /0 (1= s)(Pu + se(v1 + w2))p_2d5) (Y1 + wa)?
- (/1(1 — 8)( Py + se(yh + wl))pzds> <2¢1 + w1 + wg) (w1 — wa)

0

1 1
+ (p—2) </0 s(1— s)/o (Py + se(Y1 + wy) + ose(ws — wl))p?’dads)
X (i1 + wa)?e(wy —ws)
and hence

|G[®s, 1, elwy — G[Py, Y1, €|ws]
S (|‘I)*(7“)|+6(|¢1(T)|+|w1(7“)|))p72(|¢1(7“)|+|w1(7“)|+|w2(7“)|)|w1(7“)—w2(7“)|

(| ()] + (w1 ()] + [wi (r)])P 72 (11 (r)] + [w2(r)])?elwi (r) — wa(r)
|

|
S e P2 (l0a ()] + fwr ()] + w2 (r)]) + el @u ()P ([ (r)] + [wa(r)])?} lwi () = wa(r)].

For ro <r <1, we have

‘G[Cb*,wl,a]wl — G[@*,wl,a]wz‘

1 \P2/1\?
< ( L) (—) A+ llwrllxs, + el )lwn — wallx,,
rr—1 T2
1 p—3 1 3 )
; ( L) (—) A+ ol + ezl 2llwr — welx,
rpr—1 T2
2 4 4 7
< <rp—1 terv 2)|]w1—w2|]Xm
and hence
1 3
/ G, v, wr — G[Ba, b1, eluwn|r'E dr
o
1 1 1-2
< (/ T’scdrl—}—e/ r' scdr') [lw1 —wg||XTO
T0 To

S g (U erg ) lwr — walx,, S g lwr — w2 x,,-
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Similarly, for » > 1,
|G[‘1)*, (e 6]’(1)1 - G[(I)*a 1, 6]w2|

1 p
S (=) @t lunls, + el Pl - uallx,
7P

1
2
7"2+E

N

w1 — w2 x,,

and hence
2
supr71 |Gy, Uy, elwy — G[@, P, elwa| S fwy — w2 x,, -
r>1

This concludes the proof of [21I7)), (2.I8) and of Proposition 2.2 O

2.2. Constructing interior self-similar solutions. We now construct the family
of inner solutions to (2.I)) in [0, ro] which after renormalization bifurcate from the
stationary equation and the ground state solution Q.

We start with the continuity of the resolvent of the linearized operator H close to
Q in suitable weighted spaces. Given r; > 1, we define Y, as the space of functions
on (0,71) such that the following norm is finite

_3
[wlly,, = sup (1 +7)72 (jw] + r[dw).
0<r<r;
Lemma 2.3 (Interior resolvent of H). 1. Basis of fundamental solutions: we have
H(AQ)=0, Hp=0

with the following asymptotic behavior as r — 400

c7 sin (wlog(r) + ¢g) < 1 > ¢g sin (wlog(r) + ¢19) < 1
A = +O0 | — ), = +0
Q(r) . ot ) et) 3 o

where c7,c9 # 0, cg,c19 € R.
2. Continuity of the resolvent: let the inverse

S(f) = ( /0 ' fpr'er'> AQ — ( /0 ' fAQr’Zdr’> p

IS(N)llv., S sup (1+7)2|f]. (2.20)

0<r<r;

then

Proof. step 1 Fundamental solutions. Define

QA(r) = A 1Q(Ar), A >0,
then
AQy\+ QY =0 for all A > 0

and differentiating w.r.t. A and evaluating at A = 1 yields
H(AQ) =0.
Let p be another solution to H(p) = 0 which does not depend linearly on AQ, we
aim at deriving the asymptotic of both AQ and p as r — +oo.
Limiting problem We first solve
pcks!

2
92,2 — = f. 2.21
0%y Tarcp o I ( )
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The homogeneous problem admits the explicit basis of solutions

_ sin(wlog(r)) - _ cos(wlog(r)) (2.22)

T ) T
r2 r2

and the corresponding Wronskian is given by
w
W(r) = ¢1(r)ea(r) — ea(r)ei(r) = .
Using the variation of constants, the solutions to (2.21]) are given by
+oo 74/2 , +oo 74/2 .
e(r) = { a0+ foo—dr | o1+ | az0 — for—dr' | pa.
T w r w

Inverting H. We now claim that all solutions to H(¢) = 0 admit an expansion

o(r) = ar0p1 + az0p2 + O < — ) as r — +o00. (2.23)
roeT2

Indeed, we rewrite the equation

2 At - s
36— "00 -0 =f f=» <Q” ') - T—2> o(r).
and hence
6= aropr +asop2 + 6. &= F (9) (2.24)
where
& e ngl e / 2 /
F <¢> (r) = - </ D <Qpl(r') > ) <a1,0901 + azop2 + gb) (r )gpg%dr) 01
+o00 ngl " 12 ,
+ </ P <Qp1(7“l) o ) <a1,0901 + ag0p2 + gb) ()1 %dr) 2.

Recall that

1
Q(r) = 0020 +O<—1> as r — +o0o
ro-T ra
so that
_ &t
p(Qp L) — ‘:’2 ) STHSC for r > 1.

We infer for r > 1

7(9) )

N

+00
U
1 1 oo 1
res i s </r 5e=3
FE) @) o] £ L ([T m - s,

Thus, for R > 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

N

and

s.—1
supr°c 2
r>R

3 ()
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and yields a unique solution 5 to (2:24) with

¢

(r) <1,

So—1
supr°c 2
r>R

and (2.23)) is proved.
In particular, in view of the explicit formula ([222]) for ¢1 and @9, and in view of

the fact that H(AQ) = 0 and H(p) = 0, we infer as r — 400
cg sin (wlog(r) + ¢ 1
1>,p:9 ( 1() 10)—1—0( >

1
2 r2 T2

(2.25)

1
r2

AQ(r) = c7 sin (wlog(r) + 08)+O <

pde”

where ¢7,cq # 0, cg,c19 € R.

step 2 Continuity of the resolvent. We compute

-1

W= AQp— fAQ. W= =2, W=

without loss of generality. Still without loss of generality for Ry > 0 small enough
such that AQ > 0 on [0, Ry] the integration of the Wronskian law yields

Ro 1 ,
p= ‘AQ/T aqQee ™

P S 7 10,p(r)| S g 85 7 0. (226)

on (0, Rg] which ensures

[

We now solve
H(w) = f,

using the variation of constants which yields

w = <a1 + /Or fpr'er'> AQ + <a2 — /Or fAQr'zdr'> P

In particular, S(f) corresponds to the choice a3 = as = 0 and thus

H(S(f)) = f.
Finally, using the estimates (220, ([2.20]), we estimate for 0 <r < 1:

</r fpr/er’> AQ — </T fAQr’er/> p‘
0
< (/ 'dr—i— r! dr) sup |f| < sup (1+r)%\f\,
0 0<r<1 0<r<r;
lro.S(f)| = '(/ fpr dr ) roAQ — </T fAQT'2d7“I> rOpp
0
)

< (/ var' + 2 [1a) sup (f1S s (14l
0 0<r<1 0<r<r;

IS =




18 C. COLLOT, P. RAPHAEL, AND J. SZEFTEL

</ fpr'2dr>AQ (/ FAQr dr) '

(147r)” (/ f+ 2dr>§(1+r)2 </T(1+r’)dr'> sup (1+r)%\f\
0 0<r<r;

sup (1+7)3|f]
0<r<r;

and for 1 <r <rq:

(1+7)72S(f) = (1 +7)"2

N

N

l\.')\w

A +7) " 2r0.S(f)| = (1 +7)"

</ for’ 2 dr ) rd.AQ — </r fAQr/Zdr/> rO-p
0

< a2 ([Lraemter) o ([aerar) swaenils
0 <r<ri

< sup (1+7n)3f],
0<r<r;

which concludes the proof of (2.20) and Lemma 23] O
We are now in position to build the family of interior solutions:

Proposition 2.4 (Construction of the interior solution). Let ro > 0 small enough
and let 0 < XA < rg. Then, there exists a solution u to

Au—Au+uP=00n0<r<rg

of the form
1
U = 2 (Q+)‘2T1) <Z>
AP-1 A
with
T3 lysy + ATy + ATy S 1. (2.27)
A A A

Proof. This is again a classical consequence of Lemma 2.3l

step 1 Setting up the Banach fixed point. We look for u of the form
r
T (~
—Q+X11)(5)
so that u solves Au — Au + uP = 0 on [0, 7] if and only if
H(Ty) = JQ, Ty on 0 <7 <7

u =

where
To
T = X Z 1
so that
Mri=rd <1
and with
1
JQ,NTT = —AQ — NATy + p(p — 1)\? < / (1-8)(Q+ 5A2T1)p2ds> T?.
0
We claim the nonlinear estimates: assume [|wl|y, <1, then
sup (14 7)21J[Q, Jul £ 1. (2:28)
0<r<r;

[ Sup (1+7)2|7[Q, NJwn — J[Q Nwa| S riN*wn — wally,, . (2:29)
STRT1
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Assume ([2.28), ([2:29]), we then look for T} as the solution to the fixed point
Ty = S(J[Q,\]Th). (2.30)

In view of the bound A*r? < 1, the resolvent estimate ([220) and the nonlinear
estimates (2.28)), (2.29), the Banach fixed point theorem applies and yields a unique
solution 73 to (Z30) which furthermore satisfies:

IT1llyr, <1

p
step 2 Proof of (228), (229). Note first that for 0 <r <, we have
w(r)] £ L+ 7)7 =1L +7) 72 S rlQr)]
Thus, we infer for all 0 < r <rq
Nlw(r)] S X*rilQ(r)]
and hence, our choice of A yields for all 0 < r <7
Nlw(r)| £1Q(r)!.

Next, we estimate J[Q, A?Jw. For 0 < r < 71, we have

1
[7[Q: Al < [AQI+ p(p — DAX(IQ] + Nw)P|w]* + X* |Sw + rdrw
1
< AQ| + N2 QP w]? + )\zliw + rdyw|
~1 2 = 31,112 2 3002
S 42N+ (L) wlf,, + N+ ) 2w,
~1 2 243 2 2
S )T (14220405 1221 4 )?)
S (42 (L2047 ) S (1 +7)72 (1422 S (1+7) 2
and hence

sup (1+7)2|J[Q, \Jw| <1.
0<r<r;
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Next, we estimate |J[Q, \2]w; — J[Q, \2Jwz|. We have
J[Q’ )\2]1111 - J[Q’ )\2]1112

= po-102( [ -9+ s\t 2ds ) wt — (- 102 [ 1os@+ NP 2s ) u3

+ A2 <%(w1 —wa) + r(drwy — 8rw2)> w
1
— p(p — 1))\2 (/0 (1 - 3)(Q + S)\2w1)p2d8> (w% — w%)
1 1
+ plp—1)A\? </0 (1 —8)(Q + s)\?wp)P%ds — /0 (1-s5)(Q+ s)\ng)p2ds> w3
+A? <%(w1 —wa) + r(drwy — 8rw2)> w
1
= plp— 1N </0 (1-s)(@Q+ SAzwl)p_2d8> (w1 + wo) (w1 — w2)
1 1
+ plp—1)(p—2)\ (/0 s(1— s)/o (Q + s\2wy + o5\ (wy — wl))p_?’dads) w3 (wy — wo)

1
+22 <§(w1 —wy) + r(Orwy — 8rw2)> w

and hence

/1@, /\2]w1 J[Q N Jwa| £ X(1Q(r)] + N Jwi(r) )P (Jwi (r)| + [w2(r) ) wi (r) — wa(r)]

FAQ)] + N wi(r)] + N2 |wa(r) )P~ [wa (r) P wi (r) — wa(r)]

<§ wy — wa) + r(Orwy — O w2)> w
Q(r)[P~2(Jwi(r)] + lwa(r))[wi (r) — wa(r)| + X Q)P [wa (r) | |wi (r) — wa(r)]
< wy — wa) + r(Orwy — 6w2)>w

This yields

A

27, 2 < \2 —2e-2) 3 _
| J[Q, A*wy [Q Mwa| SA (L +7) 21 (L+7)°(willy,, + llwz2lly,, ) w1 — w2y,

2(p—3) 3
N1 47) 5T (1478 Hw2H%1 [wi = wally,, + A*(1+7)% [[wi — wally,,

S R+ A+ R4 (1410 fr — wlly,,
S A+ TH(( )T L X2 )T 4 (1 7)) g — willy,
S IR )T (1 X3y — waly,, S IR+ 1) R = wally,,
which concludes the proof of (2.29) and Proposition 2.4 O

2.3. The matching. We now construct a solution to (2.1I]) by matching the exterior
solution to (Z2.I)) constructed in section 2] on [rg,4+00) to the interior solution to
21 constructed in section on [0,79]. The oscillations (LI7) allow to perform
the matching at rg for a quantized sequence of the small parameter ¢ introduced in
Proposition
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Proposition 2.5 (Existence of a countable number of smooth selfsimilar profiles).
There exists N € N large enough so that for all n > N, there exists a smooth
solution ®,, to (2] such that A®,, vanishes exactly n times.

Proof. step 1 Initialization. Since
in(wl
Pi(r) = 3 sin(w 0%(7“) +ca) +0 (7"%> asrT —0, c3#0

r2

we compute
1 — s.)sin(wlog(r) + ¢4) + w cos(wlog(r) + ¢
M (1) — ey 1 ) S108(0) + ) e cos(vlon(r) +c4)
r2

We may therefore choose 0 < ry < 1 such that

c 3 c3(l—s E

Y1(ro) = = + O (7“02) » Ai(rg) = 3(710) +0 <r02> : (2.31)
’I“g rg

and Proposition and Proposition 2.4] apply. We therefore choose ¢ and A such

that

+O<r%> as r — 0.

0<e<ree™ 0< <,
and have from Proposition an exterior solution ez to
—AUegt + Mgzt — ule)gjt’ T2>T0

such that
Ueztle] = Py + €1 + ew
and
lwllx., Serg e, [Aw]x,, S erg (2.32)
We also have from Proposition [Z4] an interior solution u;,; to

—Aing + Ajny — ufnta 0<r<mg

such that
1 T
in A - )\QT — .
wnl = @+ VT (5)
with
1T [lyz, ST (2.33)
A

We now would like to match the two solutions at r = ry which is equivalent to
requiring that
Uert(10) = Wint(r0) = 0 and ugy(ro) — Ujpny(r0)-

step 2 Matching the functions. We introduce the map
Flrol(e; A) == teat[e](r0) — thine[A](ro)-
We compute
O-Flrol(e, A) = Octient|[e](ro) = 1(ro) + w(rg) + d-w(rp).

In particular, since w|,_, = 0 and [|0:w__,[/x,, < 7o~ in view of Proposition 2.2}
we have

8€f[TO](0’O) = 7,111(7“0) 7£ 0
since we assumed that (rg) # 0. Also, in view of the asymptotic behavior of @

at infinity, we have as A — 04

1 1 /1 %2 AZTRT pserl
T r T 2 p-l T
2 (Q_q)*+>‘2T1) <_O)‘ 5 <_+ > <_0) 5 1 5 1

2 2 1 1 1 1
Ap—1 A Ap—1 r2 r2 A 7,5 7“02
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and hence, since s, > 1, we infer

. 1 TQ
1 — P, + N7 (=2) =0.
Jim —(Q - @+ X1 () =0

Since .
70
)\p—%l‘l)* <X) = 0, (ro),
this yields
.7:[7“0](0,0) = (I)*(T‘()) — ‘1)*(7“0) = 0.
We may thus apply the implicit function theorem] which yields the existence of
Ao > 0 and a ¢ (se=1)-) function e(\) defined on [0, Ag) such that F(e(A), ) = 0

and hence

Uezt[E(N)](T0) = wine[A](ro) on [0, Ag).

step 3 Control of €(A). We claim for A € [0, A\g)

(N = @ -2) (D) +O N (239)

Ur(ro)Ae= A
Indeed, by construction
teat[(N)](0) = wine[A](r0)

which is equivalent to

(o) +eulr) = —- (@~ @, + 21 (1) (239)

b=

We infer from (2.31)), ([2.32)), (2.33) and the asymptotic of Q:
=N (o) +(Ww(ro) = =) (1+0(r8) + O(e(N)ry~™))

3
1 2 TO sCil 2
|Q -2+ 071 (D) S S+ 06)).
Ap—1 r2
0
This first yields using (2.14)
le(\)] < AL, (2.36)

which reinjected into (2.35) yields (2:34]).

step 4 Computation of the spatial derivatives. We consider the difference of spatial
derivatives at ro for A € [0, \o)

Glro](A) = teat[e(N)] (r0) — wint[A]' (ro)

and claim the leading order expansion:
A 5 sin (—wlog(A) + c2 — c4) (2.37)

— sc—1
+ O (rO_SC_%ASC—l - ré)] .

12ye actually apply the implicit function theorem to
~ 1
Flrol(e, ) i= Fle,u7=1)

for any 0 < § < s. — 1 so that F € C'. This yields the existence of € € C' and we choose
£(A) = &(A**717%) 50 that & belongs indeed to ¢ (se=D-)



Indeed,

1

Glrol(A) = e(MN¥i(ro) +e(Mw'(ro) — ——(Q' — ®, + X*T7) (%) _

V=5t
From (234]), (2.16):
e (ro)| S AU (rg)| < A2 D T
and from (2.27))

‘;)\2T{ (2] = rg A1

PV=ha! )\

and hence using (2.34)), (237):

23

Glral() = (o) = A 1@ =) () +0 (g aee et
R (szll(ro) @-2) () (o) ~ (@ - ) (%))

Recall that

i 1
() = c3 sin(w ogl(r) +ca) L0 <r%> as 75 0,
r2

WL (r) = G sin(wlogg(r) +cq) L 6w cos(wl(zg(r) +cq) L0 (r%> a5 0,

2r2 r2

<31 1 1
Q(r) — ®.(r) = c1 sin (w O§(T)+C2) +O< 1> as r — 400,

r2 'rs‘ifﬁ

3 3
2r2 r2

Q'(r) — & (r) = _a sin (wlog(r) + ¢2) n ciw cos (wlog(r) + ¢2) Lo < :
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and hence:
(2)} @-00 (2) i - (2)' @00 () 2
= clg?’ (sin (wlog(rg) — wlog(\) + ¢2) <_sin(wlog(27°0) i) + w cos(wlog(ro) + C4)> )

_ sin (wlog(rg) — wlog(A) + ¢2)
2

1 | —se—l
+0 <T§ + A% 2>

/—\Ow

+ w cos (wlog(rg) — wlog(A) + 02)> sin(wlog(rg) + ¢4)

— C1c§,w (sin (wlog(rg) — wlog(A) + ¢2) cos(wlog(rg) + ¢4)
3

1 el
— cos (wlog(rg) — wlog(A) + ¢2) sin(wlog(rg) + 04)> +0 <r§ 4 AL 2>

3 |
= 01c§w Sin (—WIOg()\) —|— Cco — C4) _|_ O <T§ + )\Sc_lT‘O Sc 2) .
s

The collection of above bounds and (2.31]) yields (2.37).

step 5 Discrete matching. For dg > 0 a small enough universal constant such that
do > 1o to be chosen later, we consider

—km —cq4+ o+ &g —km —cq4 + o — &g
Ak 4+ = €xp ; Ak,— = e€xp

w w
From

> . (2.38)

lim A\p4 =0,
k—4o00

there holds for k > kg large enough:
0< - <A < Apm <o < gk < Akg— < Ao
With the above definition of Ay 4+, we have for all k > ko
sin (—wlog(Ap, 1) 4 c2 — c1) = (=1)%sin(dy), sin (—wlog(Mp,_) + ¢z — ca) = —(—=1)" sin(dy),

and hence

—se—l o 1
Glro](Aps) = i(—l)k)\Zfi1< 0103“2s1n(50)+0<r0 QAkfi1+r§>>.

Y1(ro)rg
Since g > 1o, this yields for rg small enough and for any k > kg large enough:
Glrol(Ar,~)Glrol(Ae4) < 0.

Since the function A — G[ro](A) is continuous, we infer from the mean value theorem
applied to the intervals [\ y, A; ] the existence of p, such that

Mt < i < Ag,— and G[ro|(pr) = 0 for all k& > k.
Finally, for k& > kg, we have

Flrol(e(pr), i) = 0 and G[ro(ux) = 0
which yields

Ueat[e (1t )] (ro) = tint[pa](ro) and ueqt[e(1x)]' (r0) = winelpr] (o).
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and hence the function
) ine[p](r) for 0 <r <rg,
Uk(r) o { uext[g(ﬂk)](r) for r > 70

is smooth and satisfies (Z.I]).

The rest of the proof is devoted to counting the number of zeroes of Auy and show-
ing that this number is an unambiguous way of counting the number of self similar
solutions u; as k — +o0.

step 6 Zeroes of Aue,i[e]. We claim that
Aueg[e] has as many zeros as AYy on 7 > 1. (2.39)

Indeed, Ay + Aw does not vanish on [Ry, +00) for Ry large enough from (23] and
the uniform bound (2I6]). Moreover, Ay (rg) # 0 from the normalization (231),

and the absolute derivative of Ay at any of its zeroes is uniformly lower bounded

using (2.2)), (24), and hence the uniform smallness (2.16])
IAwllx,, Serg™™ <1

yields the claim.

step 7 Zeroes of Aunt[pg]. We now claim that

Atjnt[pg] has as many zeros as AQ on 0 <r < ry/uy. (2.40)
Indeed, recall that
1 9 r
Aine[p](r) = —(AQ + piATy) | — ).
,LLI€71 /’[/k

We now claim

) o)
1k 1k

Assume (247]), then since the zeros of AQ are simple, since we have

AQ(r) = 5 (WIO%(T) + c8) +0 (—s 171 > as r — +00,
/rn c

rz 2
since s
HAT1HYﬂl = sup (1+7r)2|ATy| <1
HE o<r<io
<r<ie
so that

sup (14 7)2 [dATy| S 72,
OSTS;—Z

and similarily for A%7T}, and since
2
A = —
QO) = =5 #0

we conclude that AQ + p3 ATy has as many zeros as AQ on 0 < r < ro/u,. We
deduce that on 0 < 7 < rg, Aujne[pr] has as many zeros as AQ on 0 < r < ro/pg.

Proof of 241)): Recall that
Uegt[e(pr)](T0) = Wine [k (ro) and vege[e(ur)] (ro) = wine|px]’ (r0),

which implies
Aueat[e(pr)](r0) = Atting|pa] (ro).-
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This yields using (2.34):

1
W) - (2) o )
M Y1(ro)pg Hi
and differentiating (2.35)):
1
- g (E) O (g )
Ky Awl(ro)ﬂﬁ 273
We infer
1 r 1 r sl s.—
—(Q - 2.) <M_O> = —AQ <,U_O> + O<ukc Lpse=l 4 r%).
1 (ro)pf k Ay (ro) k

In view of ([2.31)) which we recall below
c 3 c3(l—s 3
atra) =5 +0(r] ) vt =2 0 (o).
rg ¢
this yields

1 1
o\ 2 To 2 (7“0>5 <7°0> Se—1 | 2
— P )l — || £ — ] A — ||+ O0(pu;c " +r5). (2.42
<Mk> @ )<,Uk> Se— 1|\ pk @ Ik (Mk 0) (242)
On the other hand,
in (wl 1
Q(r) — ®.(r) = cisin (w oig(r) ) +0 < : ) as r — +00 (2.43)
r2 ]
and hence as 1 — +o00
AQ() = o (1 — s.) sin(wlog(r) + 021) + w cos(wlog(r) + ¢2) Lo ( 1 1 )
r2 réeT2
in(wl 1
N e sin(w Og(T)l-i- c2 + ) +0 < - _1> (2.44)
r2 ree 2
where
1— s, . w ™
cos(ag) = , sin(ag) = , ag € (=,7m).
() (s¢ —1)2 4+ w? () V(se—1)2 +w? ’ (2 >

Thus there exists ro > 0 sufficiently small and a constant ¢; > 0 sufficiently small
only depending on w and s. — 1 such that for 0 < r < ry, we have

dist(wlog(?")—i-cQ—i—ao,wZ) <6 = r%]Q(r)—CI)*(r)\ > 174%’/\@(70)’_’_%(@0)
Se —
In view of ([2:42]), we infer for k > ki large enough
dist <w10g <T—O> + 2+ Oéo,?TZ) > 6 (2.45)
Kk

and (2.41) is proved.

step 8 Counting. We have so far obtained
#{r > 0 such that Aug(r) = 0}

= # {0 <r< ;—0 such that AQ(r) = 0} + #{r > 7o such that A (r) = 0}
k
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which implies
#{r > 0 such that Aug1(r) =0} = F{r > 0 such that Aug(r) =0} + #A,
with

Ap = {Q <r< "0 such that AQ(r) = O}.
Mk Hk+1
We claim for k > kg large enough:
#A, =1 (2.46)

which by possibly shifting the numerotation by a fixed amount ensures that Aug
vanishes exactly k times.

Upper bound. We first claim
#A, <1 (2.47)

Recall that
AQ(T) = 1

r2

(64 sin (Wlog('r) + CS) +0 < 1 > as r — +oo (2 48)
1 ’ '

Sc—35

so that there exists R > 1 large enough such that

{r>R/AQ(r) =0} ={rq, ¢>aq1}, wlog(ry) +cs =qm+ 0O <7,33_1> . (2.49)

In view of ([2.44]) and (2.48), we have
Cc2 +ag =cg
and hence, together with (2.45]) and (2.49]), we infer

. ro 01
f |l — -1 > —. 2.
i, [log (Mk> 0g(rg)| = 5 (2.50)
This implies for k > k;
A = {q > q1 such that r, € <T—O, ro )} (2.51)
K Hk+1
7o 01 To 5
C 449 > q1 such that log | — | + == <log(rq) < log - — .
Hi 2w Hk+1 2w

Since A\, 4+ < pg < Ap,— with Ay 4 given by (238)), we have for k& > ky

) 01 o 51 ) 5
fo — 5, \log|— ]+ =)=l —lo _a
g <Mk+1> 2w ( g (Nk) 5 g(ur) —log(pk+1) — —

0 +20)— 0
< log(A,) — log(Apsn) = = < T

Also, we have for ¢ > ¢1

m 1
log(rg+1) —log(rg) = w +0 <Tsc——1> :
q

w

We now choose dg such that

5
0<dp < Zl' (2.52)

Then, we infer for k > kq

0 0 0
() () ) <5
Hk+1 w Mk 2w w 2w
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and hence for k > k1 and ¢ > ¢, we have

0 01 0 01 >
log(r — log(r > lo —— —llog| — ) + —
g(rg+1) — log(rg) g (MM) 5 ( g (%) 50
which in view of ([2.51) implies (2.47).

Lower bound. We now prove (2.46) and assume by contradiction:

#Ap, =0.
Then, let go > ¢ such that
o o
Ty < ;U’—k‘g < P < Tgotl-
We infer from (2.50):
log(74,) < log (T—O) _a < log ( 1o ) + o < log(rge+1)- (2.53)
Mo 2w Mheg+1 2w

However, we have for k > ky

7o 01 70 01 5
©8 (,U,k;2+1) * 2w < ©8 <,uk2> 2w> 0g (k) — log(pky41) + o

01 T — 200 + 01 s 01
2 log()‘k%—) - log()‘k2+17+) + ; > T > ; + %

in view of our choice (Z52]). Hence, we infer

To (51 ) 51
lo +__<10 <—)——> > log(r — log(r
: <Mk2+1> 2w & 15 20 g( q2+1) g( qz)

which contradicts (2.53]).
This concludes the proof of Proposition O

We now collect final estimates on the constructed solution ®,, which conclude the
proof of Proposition [Tl

Corollary 2.6. Let ®,, the solution to (2.1)) constructed in Proposition [2.5. Then
there exists a small enough constant ro > 0 independent of n such that:
1. Convergence to ®, as n — 4oo:

lim sup (1 + r%> |D, (1) — @u(r)] = 0. (2.54)

n—-+oo r>10

2. Convergence to @) at the origin: there holds for some p, — 0 as n — +oo:

r<rg p—1

Un

3. Last zeroes: let ro, < ro denote the last zero of A®,, before ro. Then, forn > N
large enough, we have

lim  sup |@n(r) — —o <i> = 0. (2.55)

n—-+4o0o Mn

_2m
e «1rg <Ton <710

Let rag.n < 1o/ denote the last zero of AQ before ro/ iy, then

Ton = MnrAQ,n(l + 0(7"8))
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Proof. We choose g > 0 small enough as in the proof of Proposition We start
with the proof of the first claim. Recall from the proof of Proposition that we
have for r > rg

On(r) = Pulr) +e(pn)r(r) + &(un)w(r)

where we have in particular

1 2
sup 72 (1] + w]) +supre=T (i | + |w]) $1
r>1

ro<r<1
and
iy oo Elhim) =0
We infer
_2
sup (14771 ) [@,(r) = B, (1)
r>ro
_2
< o) (90 (a0 + 10 + 51pr 7 (1 (0)] + o))
270 r=
_1
S 6(Nn)ro ?
and hence

lim sup (1 + Tﬁ) | (r) — u(r)| = 0.

n—-+oo r>r0

Next, recall from the proof of Proposition that we have for r < rg

0 = @+ um) (L)

p—1 n
Hn

with

sup (1+7)" 2|71 < 1.
ogrg;%

We infer for r < rg

,U'F Hn n
and hence
1 T _
Sup (I)n(r) T 27 Q <_> g :U'fzc 1' (2'56)
r<ro n

!
and since p,, — 0 as n — +o0, ([2.55) is proved.
We now estimate the localization of the last zeroes of ®,, and AQ before ry. Recall

that

in(wl
AQ(r) ~ crsin(w O%(T) + c8) as r — +o00.

r2
Since sin(wlog(r) + cg) changes sign on the interval

67% To <r< T—O,
Hn Hn,
and since 7 > 1 on this interval, we infer by the mean value theorem that AQ(r)
has a zero on this interval. In particular, this yields

_31 70 70
e 2w — S TAQJL < —,

n Hn
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Also, recall from the proof of Proposition that we have for r < rg

1 T
M) = (0@ AT (1)),
p—1 n
Hn
Since
i 1
AQ(r) ~ cr sin(w o%(r) +cs) as r — +oo,
r2
and ,
sup (1+7r)2|ATy| <1,
0<r< o
Mn
and since

o
e wrg <71 <,

we have r/u, ~ ro/p, > 1 for n > N large enough, we infer

AB(r) ~ 7 sin(wlog(r) — wlog(uy) + cg) + O(r%).

2

1
()
Hn Lim

log(ro,n) — wlog(tin) + cs — (wlog(raqn) + cs)| S 78

This yields

and hence
2
Tom = ﬂnTAQ,neO(TO)
= pnraQn(1+O(r3)).

Furthermore, since we have

Bl < TAQun < E?
n n
we deduce
ef%ro <rgn <710
This concludes the proof of the corollary. O

3. Spectral gap in weighted norms

Our aim in this section is to produce a spectral gap for the linearized operator
corresponding to (L4) around ®,,:

L, = —A+A—pdPt, (3.1)

Recall (LI8)), then L, is self adjoint for the Lz scalar product. Moreover, from ((A.Tl)
and the local compactness of the Sobolev embeddings H'(|z| < R) — L%(|z| < R),
and the fact that ®, € L°, the selfadjoint operator £, + M, for the measure
pdz is for M,, > 1 large enough invertible with compact resolvent. Hence L, is
diagonalizable in a Hilbert basis of L%, and we claim the following sharp spectral
gap estimate:

Proposition 3.1 (Spectral gap for £,). Let n > N with N > 1 large enough, then
the following holds:
1. Eigenvalues. The spectrum of L, is given by

— Hn+1n << —H2n < —Hin = —-2< —H—-1n = -1<0< >\O,n < >\1,n <...
(3.2)
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with
Ajn >0 forall j >0 and lim A, = +oo. (3.3)

j—4o0
The eigenvalues (—pijn)i<j<n+1 are simple and associated to spherically symmetric
etgenvectors

AD,
. ) =1 __-"n
T;Z)],na ||11Z)],n||L% 9 wl,n HA(I)an’
and the eigenspace for p_1 p is spanned by
Oy,
W= 1<k <3, 3.4
b= o, &4
Moreover, there holds as r — 400
2 . —
Ok ()] S (L4 7)1 1< j<n4 1, k20 (3.5)
2. Spectral gap. There holds for some constant ¢, > 0:
1 n+1 3
Ve € H;, (Lne,e)p > an&“H%{; - Z &, Yjn)y +Z € wOn ol - (3.6)
=1 k=1

In other words, £,, admits n+1 instability directions when A®,, vanishes n times,
and 0 is never in the spectrum. Moreover, there are no additional non radial insta-
bilities apart from the trivial translation invariance (B.4)).

The rest of this section is devoted to preparing the proof of Proposition 3.1 which
is completed in section [3.41

3.1. Decomposition in spherical harmonics. We first recall some basic facts
about spherical harmonics. Spherical harmonics are the eigenfunctions of the Laplace-
Beltrami operator on the sphere S?. The spectrum of this self-adjoint operator with
compact resolvent is

{—=m(m+1), m € N}.
For each m € N the eigenvalue m(m+1) has geometric multiplicity 2m+1. We then
denote the associated orthonormal family of eigenfunctions by (Y(m’k) ImeN, —m<k<m
so that we have

L}(S?) = +€§O Span <Y(m’k), —m < k< m>
m=0
and

— A2 YR = (4 1)Y 7R / YRy (k) docs = S py mr iy (3.7)
SQ

In particular, u € H ; is decomposed as

+o0 m
u = Z Z um,kY(m’k)

m=0k=—m

where u,, 1, are radial functions satisfying the Parseval formula

+o0 m
lully =7 D> lum il

m=0k=—m

This allows us to write

(»cn Z Z n,m umk um,k)p (3-8)

m=0k=—m



32 C. COLLOT, P. RAPHAEL, AND J. SZEFTEL

where we recall

2 2 m(m +1 _
Lym = —0p — =0p + —— + 710, + % — pdP—L,
T D — 1 r
We also recall for further use the definition of the operators:
2 2 m(m + 1 _
ﬁoo,m = —0Opp — =0p + —— + 710, + % —p{)g 1’
T D — 1 r
2 m(m +1 _
H,, = -0, — ;({97» + % —pr 1.

3.2. Linear ODE analysis. We compute in this section the fundamental solutions
of Ly m, Hp, and we recall the behavior of the eigenvalues of L. The claims are
standard and follow from a classical ODE perturbation analysis using in an essential

way the uniform bound (LI0).

Lemma 3.2 (Fundamental solution for L, ,, Hp,). Let m > 1. Let Ay, > 0 be

gien by (CIl).
1. Basis for Ly, . Let ¢ m be the solution to Ly, y¢dnm = 0 with the behaviour at
the origin

Onm =11 +0(?)] as r—0, (3.9)
then
5] 2 g 72
Pnym ~ —5— +carr=1 e asr — 400, (c1,¢2) # (0,0). (3.10)
re-1
2. Basis for Hy: let m = 1, then there exists a fundamental basis (v1, ¢1) with
2
Q| = r[1+0(r*)] as r—0
I/l(r) - Q”(O) ~ lili’jrl as r — +oo (311)
ro 2
and
L1+00)] as r—0
— T c1
o1(r) =1 ~ A @5 T +o0, c1,— #0. (3.12)
r 2

2. Basis for Hy,: let m > 2, then there ezists a fundamental basis (Vyy, ¢m) with

=7r"[14+0(?)] as r—0
Um | ~ lc_@;—m asr — 400, ¢y >0 (3.13)
T 2
and
1 2
=1+ 0(r?)] as =0
$m(r) = ' ~ f{”*ﬁ—m as v — 400, cm4+ # 0. (3.14)
r— 2
4. Positivity:
Um(r) >0 on (0,400). (3.15)

5. Uniform closeness: Fixz m > 1. There exists a sequenc tn — 0 asn — 400
such that for n > N large enough

" Pnan(r) = vm ()]
+ sup

Ui (ﬁ)‘ 0<r<ro

pn " () — vy
o ()|

tn)n>nN 1S the same sequence of scales as in (ILI0) in Proposition [[.J] and Corollary

(“_”M <rg. (3.16)

sup
0<r<ro

13(
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The uniform in 7 bound (B.I6) follows from the uniform control (LI0) using a
standard ODE analysis. We provide a detailed proof of Lemma in Appendix
for the sake of completeness.

We now detail the structure of the smooth zero of £, o which is the key to the
counting of non positive eigenvalues. Let ¢, ¢ be the solution to

Ln0(en0) =0, ©no(0) =1, ¢, (0)=0. (3.17)
We recall that r(, < rg denotes the last zero of A®,, before ry, and we let ry,, <19
denote the last zero of ¢, o before rg. We claim:

Lemma 3.3 (Zeroes of ®, ). There holds

1
r 2 -1 T
swp (145" |onat) - L5700 (—)' <12 (3.18)
0<r<rg Hn 2 L
and )
Tinm = Ton + O(rg’), e wrg <riy <ro. (3.19)

This is again a simple perturbative analysis which proof is detailed in Appendix[Dl

We now claim the following classical result which relies on the standard analysis
of explicit special functions:

Lemma 3.4 (Special functions lemma). Let A € R. The solutions to
Loo($) =M, € Hy(1,+00)

behaves for r — +o0 as
2
Wb~ pT T

and for r — 04 as

1

1 = — cos(wlog(r) — ®(N\)) + O (r%) (3.20)

r2

where

O(\) = arg

Proof. We consider the solution ¢ to

The change of variable and unknown

leads to
1 Ay

Lat) =3 = 2 ('@ ¢ (4 g W= (15 -5 5 )we)
and thus Loo() = A if and only if

d*w dw
zW—F(b—z)%—aw:O
with
1 Ay 3
_ ALY 2 21
a o1 2 b ’y—l—z (3.21)
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Hence w is a linear combination of the special functions M (a,b,z) and U(a,b, z)
whose asymptotic at infinity is given by (2.9):
'
M(a,b,z) ~ %z“_bez, U(a,b,z) ~ 2% as z — 400,
a

In particular, a non zero contribution of M(a,b,z) to w would yield for ¥(r) the
following asymptotic

P(r) ~ r%_g eé as r — +o0.
which contradicts ¢ € H;(l, +00). Hence

w(z) =Ul(a,b, z).
In view of the asymptotic of U recalled in (2.9]), we have

w(z) ~ 2" % as z = 400.

Since

this yields
— 24+
Y~ P17 ag r — 4-00.

Also, in view of the asymptotic of U recalled in (2.I1]), we have

CT(h-1) ., T(1-b)
wz) = —pay T(a—b+1)

which in view of (B.2I)) and the fact that v = 1/2 + iw yields

+ 02270 a5 2 — 0,

I'(—1 ~ I'(z
w(z) = - ()\ZW)l 2+ - ()\zw) - +O(z) as z — 0.
F(pTl_E_Z_Z;> P(;ﬁ‘i‘ff%)
Since
1 r2
w(r) - T_’yw <E> )
this yields
’l/)(?") — K 2_7];(_26‘)) 1w + QTS(ZC‘? r—iw

+0 <’I“%> as r — 0,

and since v is real valued, we infex]

o) = Cos(wlog(rl) —®(N)) Lo (Tg> as 1 0,
ra
where
B()) = arg 22T (iw) ‘
P31+ %)
This concludes the proof of the lemma. O

MNote in particular that T satisfies I'(z) = I'(z) for all z € C.
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3.3. Perturbative spectral analysis. We now prove elementary spectral analysis
perturbation results based on the uniform bounds (L9, (LI0) which allow us to
precisely count the number of instabilities of £, .

Lemma 3.5 (Control of the outside spectrum). Let 19 > 0 and let ry, 2 such that

27
Tn2 > € wrg. Let us define the operators

An[rn,2](f) — En,O(f) onr > Tn,2, f(rn,Q) = 0, (3 22)
Aoo[rn,2](f) = »Coo(f) on T >Tp2, f(rn,2) =0, -
then
sup inf A — pu| + sup inf IA—ul—0
AeSpec(An[rn,2]) neSpec(Acs|rn,2]) nESpec(Aco|rn,2]) AESpec(An|rn,2])
(3.23)

as n — +00.
Proof. In view of (A1), the local compactness of the Sobolev embeddings
H'(|z] < R) < L*(Jz| < R) for all 1 < R < o0,

and the fact that ®,, € L> and , the selfadjoint operators A, [ry 2]+ M, for the mea-
sure pdx are for M,, > 1 large enough invertible with compact resolvent, and A,,[r, 2]
is diagonalizable. Since ®, € L*>(r > r(), we deduce similarly that A [ry ] is di-
agonalizable. Let then X, be an eigenvalue of A,[r;, 2] with normalized eigenvector
Wy

Lp(wp) =0o0n7>r,9, wp(rps2) =0, HwnHLg(Drn,g) =1.
Since Aoo[rp 2] is diagonalizable in a Hilbert basis of L%, we have
[Aso[rn2l(wn) = Anwall2(rsr, ) = dist(An, spec(Aoo[rn2]))l[wnll L2 (rsr, )
= dist(\,, spec(Ass[rn,2]))-
On the other hand,
[Aco[rn2l(wn) = AnwnllL2(rsr, ) = [(Asc[rn2] = Anl[rn2)(wn)ll 225 0)

from which:

T>Tn 2 T>Tn,2

1
3
< ( sup (pla(r) - <1>*<r>|p1)> [all 3y < ( sup (plba(r) - <1>*<r>|p1)>
— 0 as n— 400
from ([L9). (3:23) follows by exchanging the role A, [ry, 2] and A[ry 2] O

Lemma 3.6 (Local continuity of the spectrum). Let ro > 0 and let 1 and ro such
that
e Srg <11, <7
and
r =171y + 0(7“8’).

Then, for any eigenvalue \1 of Ax[r1] such that \y € [—3,1], we have

3
dist(A1, Spec(Axs[ra])) S 7§ - (3.24)

NI
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Proof. Recall from the proof of Lemma B.5] that both A [ri] and A[ra] are diag-
onalizable. Furthermore, by Sturm-Liouville, their eigenvalues are simple. Let Ay
be an eigenvalue of A [r1]. We claim the existence of a nearby eigenvalue Ay of
Axo[r2] using a classical Lyapunov Schmidt procedure.

Let ¢1 the normalized eigenfunction of Ay [r1] associated to A; so that

Asolr](e1) = M1, lnll, = 1.
The eigenvalue equation
Aco[r2](p2) = A2ip2
is equivalent to
Aso[r1](g) = A2g + hg + (ro — 11)0rg (3.25)

where . )
Pt _ pcbs
(r+mro —mp)2 r2

g(r) = @a(r +r2 —11), h(r) =

We decompose

g=p1+710g, A=A +cro
where the constant ¢ will be chosen later. Then, g satisfies (320 if and only if g
satisfies
ro —T1

- _ h -
(Aso[r1] = A1)(9) = ep1 + crog + — (1 + 10g) + Org. (3.26)

7o
We choose ¢ such that
—7r

5 1 h B r 5
c(p1,70,9) == —————— (—(s01+rog)+ 2 18r(s01+rog),901>

_1+7’0(§h<ﬂ1)p 0 p
Then, the right-hand side of ([3.26)) is orthogonal to ¢; and hence to the kernel of
Aso[r1] — A1 since \p is a simple eigenvalue. Thus, we infer
g=7F(9) (3.27)
where
ro — 1

F(§) == Boo[r1, ]! <C(901,7“o,§)(901 +70g) + h (o1 +7109) + Or (1 + 7“0?]))

To 7o

with the operator Boo[r1, A\1] being the restriction of Ax[r1] — A1 to the orthogonal
complement of the kernel of Ay [r1] — Ag, i.e.

Buo[ri, M) = (Aso[r1] — Al)‘w

E
1
Since A; is an eigenvalue of A [r1], from the explicit behavior (8:20) of the eigen-

functions of Lo and the boundary condition ([3.22]) at r; one deduces that there
exists k € Z such that

wlog(ry) — ®(A\y) = kr + g +O(rd).
Let ] be the smallest eigenvalue of A [r1] greater than A;. It then satisfies:
wlog(r) — (X)) = kr + g + 7+ O(rd)

and so -

(M)~ S| =7+ 0(F) > =
As ® is a continuous function we deduce that there exists ¢ > 0 independent of rg
such that \] > A1 + ¢ and we infer

inf{|A — A\1], A € Spec(Ax[r1]), A > M} >c.
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Similarly
inf{|X — |, A € Spec(Ax[r1]), A< i} >, ¢ >0
and we conclude that
1Boolri, M Hlgrz.mz) S 1

with a bound that does not depend on ry. Also, note that

g:pc’;?( 1 _1):h1<r>

70 7“07“2 (1 + 7’2;T1 )2 7,2
where
2(7‘1—7"2) (7‘1—7‘2)2)
+ p)
hm>=—my(”r 3
—T1\2
T+ =)
Since
67%7“0 <ri<rgand ry =79+ O(TS’),
we infer
illiesry S Inllyaq 2, ST
Moreover,

1
1 1
_ dr\? 1 1
HT 2HL2(r1<r<1) S (/ T2> 5 1 S 1
g 2 g

Collecting the previous estimates, we infer

IF @) rz(r>r)

_ _ _ h - Ta—T1 _
S Boo[r, M)l ggrz a2 clp1,70,9)(p1 +10g) + (91 + 709) + O (1 + 109)
L
S lelerro, 9 +rollgllzz) + rollgllmy
Iz oy (4 70llgll 2z + o1 +r0dlleee - IIF M2z <rcny)
T mlglig) ol
< —O0 (1 470lgllz2) + rollgll
1= ro[1g]22 giey) T rolglm;
and
%
.
FG) - F( < — 0 (14 rglllze)ld — g 31 — Gollan-
IF (1) = F@)luzesr) < 1—?‘0H§HL§( +rollgll2)llgr — gallrz + rollgr — gallmy

Thus, for ry > 0 small enough, the Banach fixed point theorem applies in the space
Hg(r > r1) and yields a unique solution ¢ to ([B.27) with

‘|§‘|H%(r>r1) rg Ty -

N[

Hence, oo with
@a(r) =g(r+ri—r2), g=¢1+70g
satisfies
Aco[r2](p2) = A2z
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where
A2 = A+ cle1,70,9)70
To h ~ T — T .
== )\1_—~<_ 1+TO + 0 1+7"0 ) 1>
5100520, ro(cp 9) (¢ 9),¢ )

Thus, Ag belongs to the spectrum of Ay [rs] and hence
dist(A1, Spec(Ax[r2])) < A2 — A

To h - To —T1 -
7 | —(¥1+T10g) + 0 <P1+7°097(P1>
L+10(g,¢1)p <7“0( ) 2 ) 0
In view of the previous estimates, we infer
3
. rg N 3
dist(A1, Spec(Aos[r2])) . roOIFH (L +rollglirz) S 7g
and ([3.24) is proved. O

3.4. Proof of Proposition B3l Recall that £, is diagonalizable in a Hilbertian
basis of L%, and hence the spectral gap estimate (3.0) follows from the explicit
distribution of eigenvalues (3.2]) which we now prove. Observe that the symmetry
group of dilations and translations generates the explicit eigenmodes

LoAD, = 20D, LV, =—Vd,. (3.28)

Using the decomposition into spherical harmonics (B.8]), the further study of the
quadratic form (L, (u),u), reduces to the study of the quadratic form (L, m(u),u),
for m > 0 for which classical Strum Liouville arguments are now at hand.

step 1 The case m = 1. Let ¢, be defined in Lemma In particular, ¢, 1
satisfies

Ln1(pn1) =0, ©n1(0) =0, ¢,,(0)=1.

Then from standard Sturm Liouville oscillation argument for central potentials, [49],
the number of zeros of ¢, 1 in 7 > 0 correspond to the number of strictly negative
eigenvalues of L,, 1.

Since we have

€ _
Vb, (2) = @))% = @), () (v 1D, y ),y 10)
and hence
L,(V®,) ==V, implies L,1(P))=—).
Thus, £,,,1 has at least one strictly negative eigenvalue, and hence ¢, 1 has at least

one zero which we denote by 7, 1 > 0. On [0, 7], we have by (B.16):

i tena (1) =0 ()|
sup

2L
Hn

Since v1(r) > 0 for all » > 0, we infer that ¢, ; can not vanish on [0,79]. Hence,
Tn,1 > 70

g




39
No other zero. Assume by contradiction that there exists a second zero ry, o > 1y, 1.
Let fn1 being given as

PYn1 ONTp1 <T < Th2,
fn1 = 0 onr <rTp1,
0 on r > 1rpo.

Then, we have f,, 1 € Hg and

(Ln1(fn1), fa1)p = 0. (3.29)
On the other hand, using (L3):

+oo 2 _ Cpfl
R
0
= |l + 20+ 1) /+°° u—2T2 dr ) > HEH2 (3.30)
We now estimate from (LI0)
sup 12081 — (2,771 = 0040 (1) (3.31)
r>ro

and hence for u supported in (rg, +00):

—+00
|(Looi(u),u)y — (Lni(u),u)p] < / ‘@ffl — <I>§:*1| w?r?p(r)dr

0

w12

< On—>+oo(1) H ;

. 3.32
p (332

Since fy,1 is supported in (ry, 1,75.2) C (10, +00), B30), ([3:32) applied to f, 1 and
(B29) yield a contradiction for n > N large enough. Thus, r, 2 can not exist, and
hence ¢, 1 vanishes only once.

©n,1 15 not an eigenstate. Since ¢, 1 vanishes only once, £, 1 has exactly one strictly
negative eigenvalue. It remains to check the ¢, 1 ¢ L%, i.e. 5, 11s not an eigenvector
associated to the eigenvalue 0. To this end, note that ¢, 1 is strictly positive on
(0,7p,1) from (B3) and strictly negative on (ry 1,+00). In particular, we have

8041,1(7%,1) <0.
Since Ly,1(¢n,1) = 0, we have

2 . (2 — pr2abh)

(rPpen1) =1°p o > Pn,1
and from (332) for r > r, 1 > r¢:
2 1
2 — r2pdP 1 =2 — pcPol 4 pPsl — p2pprl > ﬁ +o(1) > 0. (3.33)

Since ¢, 1 is strictly negative on (7, 1, +00), we deduce

7"2P<P;L,1(7”) < Tigp(rn,l)@z,l(rn,l) =c1 <0 on (7,1, +00)

which implies
oo oo dr
/ |opa (F)[Ppridr Z / 3, = T
Tn,1 Tn,1 rep

and hence ¢, 1 ¢ H ; and is therefore not an eigenvector.
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Conclusion. We conclude that —1 is the only negative eigenvalue of £, 1, and is
associated to the single eigenvector ®/,. Hence, there exists a constant ¢, > 0 such
that for all u € H;:

1

(Lna(w), u)p = callull?y — —(u, )2 (334)

step 2 The case m > 2. Let ¢, ,, be defined in Lemma In particular, ¢, m,
satisfies

Loy (Pnm) =0 and @ =r"(1+ O(r?)) as r — 0.
Then, the number of zeros of ¢, ,, in 7 > 0 corresponds to the number of strictly
negative eigenvalues of £, ,,. On [0,7], we have by Lemma

" onm(T) — Vi <ML,L) ‘

v ()

and vy, (r) > 0 for all » > 0, and hence ¢,, ,, cannot vanish on [0, r]:

G

sup
0<r<ro

~

©n.m(r) >0 on [0,7g].
Next, we investigate the sign of ¢, ,,,(ro). Recall (B.I3):

Crn,—

Um(r) ~ ——z= asr = +0 ¢p- >0
r— 2
and hence
Cm— (VAR —1
vh(r) ~ =2 (37\/% ) as r — +00.
r-— 2

We infer for n > N large enough

m
‘Pn,m(ro) = —/Am

and

(P;L,m (ro) = 3— B

Thus, taking also into account that ¢, m,(r) > 0 on [0, 7], we infer from the identity
for ¢y m(ro) that

Cm,— > 0.
Since VA, > VA1 = Z%:{’ > 1, we conclude:
¢n,m(T0) > 0, ¢In,m(’r0) > 0. (335)

Since Ly, m(¢n,m) = 0, we have

2 1) — pr2eh !
(7,2[)()0;1 m)l _ 7“2p 1 + (m(m + ) - pr n )
9 p_ T

Pn,m (3.36)

which together with ([B35), ([B.33]) and the fact that m > 2, and an elementary
continuity argument ensures

Oran (1) >0, S (1) = drm(ro) >0 for r > ry.
Hence ¢y, ,, does not vanish on (0, +00) and using (B.30):

120, mp(r) > 18 p(ro) = co > 0
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which implies
Foo oo dr
/ (Grm)prdr 2 / - =+
0 ’ 0 rep
and hence ¢y, ,, is not eigenvector. We finally conclude that for m = 2 and all
n > N large enough, £, 2 has a spectral gap and there exists a constant ¢, > 0
such that we have for all u € H/}

(Laa(u), 1)y > callul2s.

Since we have for all m > 2
(Emm(u), u)p Z (ﬁn,2(u)a u)p,

we infer for all m > 2 and for all u € H;

(Lnm(w),w)p > enllulZs. (3.37)

step 3. The case m = 0. We now focus onto £,, o which is the most delicate case,
and we claim that £, o has exactly n + 1 strictly negative eigenvalues, and that 0
is not in the spectrum. The key is to combine the uniform bounds (L9) with the
explicit knowledge of the limiting outer spectrum, Lemma B4 as nicely suggested
at the formal level in [3].

Let ¢y, 0 be the solution to (BI7) so that the number of strictly negative eigenvalues
of L, coincides with the numbers of zeroes of ¢, g. We count the number of zeros
of ¢, 0 by comparing them with the number of zeros of A®,,.

Lower bound. First, since A®,, is an eigenvector of L,, o corresponding to the eigen-
value —2 and since A®,, vanishes n times from Proposition 2.5l we infer from Sturm
Liouville

#Spec(Ly0+2) N (—00,0] =n+ 1.
In particular, since the number of strictly negative eigenvalues of £,, o coincides with
the number of zeroes of ¢, o, we infer

#{r > 0 such that ¢, o(r) =0} > n+1.
Upper bound. Recall (B.I8)):

r\ 2
sup <1 + —>
0<r<rg Hn

Also, we have AQ(0) # 0 and from (2.41)):

(2) (@) oo

—1
enat) - 25000 ()| < b

Hn

for some constant ¢ > 0 independent of n. Hence ¢, and AQ vanish the same
number of times on [0,7]. Since on the other hand AQ and A®,, vanish the same
number of times on [0,7¢] from (2.40), ¢, 0 and A®,, vanish the same number of
times of [0, 7.

Let now 7, o to be the last zero of A®,, before 7. In view of Corollary 2.6, we have

o2
e wrg<rpo <710

Let us now consider the operators (3.22]):

An[rn,O](f) = ﬁn,O(f) onr> To,n, f(rn,O) = O,
A [Tn,O](f) = Eoo(f) onr > ryo, f(rn,O) =0,
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then
Ly o(A®,) = —2A®P,, and AP, (7,0) =0,
implies
Aplrnol(A®,) = —2A®,,.
In particular, —2 belongs to the spectrum of A, [ry]. In view of Lemma [3.5] we

deduce for n > N large enough that the exists an eigenvalue \g of A[ry,0] such
that Ag = —2 + o(1). On the other hand, in view of Lemma [3.4] the solutions to

with f € H; are completely explicit and behave for r — 0 as
1
[~ — cos(wlog(r) — ®(X))
r2

with

1 1, i
r <m — 571 %)
In order for f to be an eigenfunction of Au[ry 0], we need f(r,o) = 0 and hence
there should exists k € Z such that

wlog(rp ) — () ~ % + k.

Recall that A\g = —2+0(1) is an eigenvalue of Ay[ry, 0], and let A\; > Ag be the next
eigenvalue of Ax[ryn ). Then, there exists ky € R such that

wlog(ra0) = ®(Ao) ~ 5 + ko, wlog(rno) = D(M1) ~ 2 + (ko = 1)m
and hence
D(A) =P(-2)+7+o(1). (3.38)
Now, by numerical check, we havd']

sup sup  (P(A) — ®(—2) —7) ~ —0.5945 < 0,
5<p<+o00 —2<A<0.5

and hence, the solution \; to (B.38) satisfies

inf A >0.5>0.
5<p<+oo

We infer that A [rp o] has no eigenvalue between A\g = —2 4 o(1) and A; > 0.5.
Hence, using again Lemma B35 A,[r, 0] has no eigenvalue between —2 and A; +
o(1) > 0.25. Thus, we have
#5Spec(An[rn,0]) N (=00, 0] = #Spec(Ap[rn,o] + 2) N (—o0, 0].
On the other hand, we have
#Spec(Ap[rno] +2) N (—o00,0] = #{r > ry o such that A®,(r) =0} +1

I5Notice that ®(A) has a well defined limit as p — 400 given by

Do (A) = arg (%) .

Our numerics are carried out using Matlab and indicate that ®,()) is increasing on [—2, 0.5] for all
p > 5 so that the maximum on [—2,0.5] is achieved at A = 0.5. Also, this maximum appears to be
a growing function of p so that the maximum in p is given by ®«(0.5) — Poo(—2) — m ~ —0.5945.
See 3] for a similar numerical computation.
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since A®,, is in the kernel of A,[r, 0] + 2, and hence
#Spec(A;,) N (—00,0] = #{r > ry, o such that AP, (r) =0} + 1.
Also, since ¢, 0 can not be an eigenvector of AE, we have
#Spec(Ay[rn0]) N (—00,0] = #{r > ry, o such that ¢, o(r) = 0}.
We infer
#{r > rp o such that ¢, o(r) = 0} = #{r > r, 0 such that A®,(r) =0} + 1.
But since r,, o has been chosen to be the last zero of A®,, before ry, we have
#{r > rp o such that A®,(r) =0} = #{r > rg such that AP, (r) =0}
and hence
#{r > ryp o such that ¢, o(r) = 0} = #{r > ro such that A®,(r) =0} + 1.
Next, together with the fact that ¢, o and A®,, vanish the same number of times
of [0,79], we infer
#{r > 0 such that ¢, o(r) = 0}
#{0 < r < rg such that ¢, o(r) = 0} + #{r > 7,0 such that ¢, o(r) = 0}
= #{0 <r <ry such that A®,,(r) = 0} + #{r > ro such that A®,(r) =0} +1
= #{r > 0 such that A®,(r) =0} +1
= n+1
and since
#{r > 0 such that ¢, o(r) =0} > n+ 1.

®n,0 15 not an eigenstate. We conclude that
#{r > 0 such that ¢, o(r) =0} =n+ 1.

Assume now by contradiction that ¢, ¢ is in the kernel of £,, 9. Recall that ro, < rg
is the last 0 of A®,, and let 71, < ¢ be the last 0 of ¢, . In particular, we have
from Lemma 3.3t

_on
e w1y < Ton,T1n < 1o and 71, = 1o, + O(r).

Also, since ¢, o is in the kernel of £,, o and ¢, o(r1,,) = 0, we infer that 0 is in the
spectrum of Ay[ry ], and hence applying Lemma twice as well as Lemma [3.6]
we obtain that

3
dist(Spec(A,[r0,n]),0) S 75 + o(1)

as n — —+o0o. In particular, we have for ro > 0 small enough and n > N large
enough

dist(Spec(A4,[ro.n]),0) < 0.2.

On the other hand, we have proved above that A, [r, o] has no eigenvalue between
—2 and A + o(1) > 0.25 so that

dist(Spec(Ay[ron]),0) > 0.25

which is a contradiction. Hence ¢, is not in the kernel of £, .

16Indeed7 n,0 would be an eigenvector for the eigenvalue 0, but 0 is not in the spectrum of A,
as seen above.



44 C. COLLOT, P. RAPHAEL, AND J. SZEFTEL

Conclusion. We conclude that £, has exactly n + 1 strictly negative eigenval-
ues. On the other hand, since A®,, is an eigenvector of L,, o corresponding to the
eigenvalue —2 and since A®,, vanishes n times, we infer

#Spec(Lno +2) N (—00,0 =n + 1,

and hence £, has exactly n + 1 negative eigenvalues and the largest negative
eigenvalue is —2. We denote these eigenvalues by

_,U'n-i-l,n <0 < _,U'2,n < _,U'Ln = -2

By Sturm Liouville, these eigenvalues are simple and associated to eigenvectors

AD
bjns Nbjnllz =1 Y1 = W'
nllp

Also, there holds for some constant ¢, > 0 and for all u € Hf‘}

1 n+1

(Lno(u),uw)p > cnllullgs - o > (wvin)s] (3.39)

The behavior as r — 400 of the eigenstates (3.3 follows from the asymptotic in
Lemma [3.4and a standard ODE argument using the variation of constants formula,
this is left to the reader.

step 4 Conclusion. We decompose u € H; as

“+o0o m
=3 ™

m=0k=—m

where u,, ; are radial functions satisfying

lull = Z Z [

m=0k=—m

We have

(‘cn Z Z n,m umk um,k)p-

m=0k=—m

Together with ([3.34)), (8.37) and (3.39), we infer for all u € H,, !

(Ln(u),u)p = (Lno(uoo),uo0) +Z n,1(U1k), Uk) +Z Z L (Um k) s Um,k) p

k=-—1 m=2k=—m
1 n+1 3
> CnHuHZ - (UO,Oaw]n + ul k:a
Poc
moli=1 k=1

Since 1;, are all radial, we have
(10,0, ¥jn)p = (U Vi) p-
Also, since

) )

Vo, (z) = <I>’n(r)§ = (I)il(r)(y(l,fl)7y(1,1) Y(LO))

we infer

(ua 8]6@71)

NE

3
E U1 k7
k=1

k=1
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Finally, there holds for some constant ¢, > 0 and for all u € H ;

1 n 3
(L) = enllullfyy = — | D (wyn)y + 3, 06
j=0 k=1

This concludes the proof of Proposition B.11

4. Dynamical control of the flow

We now turn to the question of the stability of the self similar solution, and more
precisely the construction of a manifold of finite energy initial data such that the
corresponding solution to (LI blows up in finite time with ®,, profile in the self
similar regime described by Theorem n is now fixed.

4.1. Setting of the bootstrap. We set up in this section the bootstrap analysis
of the flow for a suitable set of finite energy initial data. The solution will be
decomposed in a suitable way with standard technique, see [32] 38].

Geometrical decomposition. We start by showing the existence of the suitable
decomposition. Recall the spectral Proposition B.Il To ease notations we now omit
the n subscript and write 1);, p; and A; instead.

Define the L° tube around the renormalized versions of ®,,:

1 —_
ng{u: (P +0) <u> yeRY A>0, HvHLoo<5}
= A

Lemma 4.1 (Geometrical decomposition). There exists § > 0 and C' > 0 such that
any u € X5 has a unique decomposition

1 s rT—T
U= +Zaj1/1]+a< 3 >,

)\Pl =2

where ¢ satisfies the orthogonality conditions
(vaj)p = (€7akq)n)p =0, 1<j<n+1, 1< k<3,

the parameters A\, T and a; being Fréchet differentiable on Xs, and with

lellze + > laj| < C. (4.1)
Proof. 1t is a classical consequence of the implicit function theorem.

step 1 Decomposition near A = 1, T = 0. We introduce the smooth maps

n+1
2
F(v,p,x,b1,...,by) = pur=1 (P, + v)(uy + x) — ijl/}]

and
G = ((F,A®y), (F,01Qyp), (F,020n), (F,030), (F\1b2), .. (F, ¥nt1))-
We immediately check that G(®,,1,0,...,0) = 0 and that
oG
O,z b, ... byy1)

is invertible. In view of the implicit function theorem, for x > 0 small enough, for
any

|(<1>n,1,0,m,0)

[0l <
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there exists (u, z, a2, ...,an4+1) and

6:F(v,,u,z,a2,...,an+1)

such that

1 AR, Tr—z
U=, +v=— (I>n+2aj1/1j+€ ( >,
pr-1 =2 H
(e,¢)) = (6,0,Pn) =0, 1<j<n, 1<k<3,
and there exist two universal constants K, K > 0 such that
n+1
lellzee + > laj| + | = 1] + |2] < Kl[v]lz
j=2
and such that the decomposition is unique under the bound
n+1 ~
lellzoe + D lagl + |n— 1] + ]2 < K. (4.2)
j=2
step 2 Decomposition near any A, Z. For any § > 0, we take C' = C'(0) := K. Let
u € X then for some X > 0 and y one has

(@) = — Lo (@, +v) <¥> o]l < 6.
Al

The first step then provides the decomposition claimed in the lemma for § small
enough via the formulas A = Nu(v), T = y — N2(v), aj = a;(v) and € = £(v).
We will show in the next step that the decomposition is unique, implying that the
parameters are Fréchet differentiable on X for those of step 1 are.

step 3 Uniqueness of the decomposition. First, from a continuity argument, for
any € > 0, there exists 6 > 0 such that if

1 r—y
(@0t 0)0) = — (@0t o) () foll + Wi < 6
pr—1 H
then
=1+ ]yl <e.

Now recall that C' = K¢ and assume that we are given a second decomposition for
u € Xg. In view of step 2, performing a change of variable, this amount to say that
®,, + v admits another decomposition:

(B = 0+ 3 9 (=)

ﬁp—l j=2 M
and the bound (1)) gives
n+1
> [aj] + [l < K.
j=2

Using the above continuity estimate, one obtains that for § small enough
Iz +p -1 < K.

Therefore, for ¢ small enough the second decomposition associated with 71, z, @;
and Z satisfies ({.2]), and is therefore the one given by step 2 by uniqueness. O
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Description of the initial datum. We will now focus on solutions of (ILI]) that are
a suitable perturbation of ®,, at initial time:

wo=— (@ +w) (1) (43)

AT Ao
with
n+1
Vg = Zajlbj + €o, (80,¢j)p = (80,3kq)n)p =0, 1<57<n+1, 1<k<3. (4.4)
=2

For so > 1 and u, Ko > 0 three constants to be defined later on, the parameters
Ao, aj and the profile g satisfy the bounds

e rescaled solution:

)\0 = 6_80; (45)
e initial control of the unstable modes:
n+1
Z |la;|? < em2Hs0; (4.6)
=2

e smallness of suitable initial norms:
ol 2 + 1Avoll L2 + [Jwol| frse < Koe™"*; (4.7)
where wyq is given by
wo = <1_XL> D, + vg.
Ao
Note that in view of the L* bound ([.23)), the decomposition ([43]) is precisely the
one given by Lemma 411

Renormalized flow. As long as the solution u(t) starting from (A3]) belongs to Xs,
Lemma [4.1] applies and it can be written

1 x—x(t)
u(t’x) - )\(t)% (q)n + ¢ + 6)(5’Z)a Yy = )\(t) (48)
with
n+1
b= ay, (6,95), = (,00Pn), =0, 1<j<n+1, 1<k<3  (49)
j=2

Moreover, as the parameters are Fréchet differentiable in L, and as u € C*((0,T'), L™)
from parabolic regularizing effects, the above decomposition is differentiable with
respect to time. We also introduce a further decomposition

v=1+e¢, <1>n+v:X%<1>n+w. (4.10)

Consider the renormalized time

s(t) = td_7+5
o A2(r)

Injecting (A8 into (1)) yields the renormalized equation
0se + L6 = F — Mod (4.11)
with the modulation term

Ts

n+1 A
Mod = 3 [fag) — oy — (3 +1) (42,4 40) - 2 (98, + V0) (412
=2
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and the force terms

F=1L(E)+NL, L) = <% + 1> Ae + % - Ve (4.13)
NL = g(e +9), g(v) = (@ +0)" = ) — p@L 0. (4.14)

We claim the following bootstrap proposition.

Proposition 4.2 (Bootstrap). There exist universal constants 0 < p,n < 1, K > 1
such that for all sg > so(K, pu,n) > 1 large enough the following holds. For any Ao

and go satisfying ([AL3), (@4) and
11 =X L)@+ ollgac + lleoll iz + 14012 < 7%, (4.15)

there exist (a2(0),...,an+1(0)) satisfying [LG) such that the solution starting from
ug given by [@3)), decomposed according to (L) satisfies for all s > s¢:

e control of the scaling:

0< A(s) <e ™ (4.16)
e control of the unstable modes:

n+1

Z |aj|2 < 6—2MS; (4.17)

j=2

e control of the exponentially weighted norm:
el < Ke v (4.18)
e control of a Sobolev norm above scaling:
|[Av|[2 < Ke ", (4.19)
e control of the critical norm:
[wll e < - (4.20)

Proposition is the heart of the analysis, and the corresponding solutions are
easily shown to satisfy the conclusions of Theorem The strategy of the proof
follows [10}, [42]: we prove Proposition by contradiction using a topological argu-
ment & la Brouwer: given (gg, Ag) satisfying ({3, ([AI5]) and (4.4]), we assume that
for all (a2(0),...,a,+1(0)) satisfying (A.6)), the exit time

s* = sup{s > s¢ such that (£I0), (EI7), EI]), EI9), (E20) holds on [sg, s)}
(4.21)
is finite
s" < 400 (4.22)
and look for a contradiction for 0 < u, 7, % small enough and sy > so(K, ) large
enough. From now on, we therefore study the flow on [sg, s*] where (410, (£I7),
(£18), (£19) and (4.20) hold. Using a bootstrap method we show that the bounds
(£16), (£18), (£19) and (£20) can be improved, implying that at time s* neces-
sarily the unstable modes have grown and (£I7) is violated. Since 0 is a linear
repulsive equilibrium for these modes, this would contradict Brouwer fixed point
theorem.

From the asymptotic (B3] of ¢; for 2 < j < n + 1, {0) and (I3), one can fix
the constant K independently of (sg, u, ) such that (47 holds. Also, note that the

bootstrap bounds (£17), (£I]]), ({I9) and [@20) imply the L> bound (23], and
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therefore the decomposition used in the Proposition is well defined since Lemma [A.]]
applies.

4.2. L*° bound. We start with the derivations of unweighted L*° and Sobolev
bounds on v, w which will be essential to control nonlinear terms in the sequel and

follow from (419)), (£.20).
Lemma 4.3 (L smallness). There holds

[vllzoe + [[w]re < e™H << 1 (4.23)
for some universal constants ¢ >0, 0 < n < 1.
Proof. We compute from (£.10):

w=(1- X%)(I)n + 0. (4.24)
The self similar decay (L9) and (£I9)) yield:
lwllz2 S lollg + 1= x2)®nll o S K [e7° + A(s)* 7] < em.

Hence by interpolation using s. = % — p%l < % < 2
1 5~ sc
e S Nl S loll2 ol o= 2=
C

which together with (4.20) ensures:
[w]| Lo S €7

The decay (L9) and (£16]), (424]) yield the L* smallness for v and conclude the
proof. O

4.3. Modulation equations. We now compute the modulation equations which
describe the time evolution of the parameters. They are computed in the self-similar
zone, and involve the p weighted norm.

Lemma 4.4 (Modulation equations). There holds the bounds

A " n+1 n+l

S S

\7 - 1\ + |52+ Do @) = myasl S Ny + IAvIEe + D las (4:25)
j=2 J=2

Proof. This lemma is a classical consequence of the choice of orthogonality condi-
tions (4.9]), but the control of the nonlinear term relies in an essential way on the

L™ smallness (£23)).

step 1 Law for a;. Take the Lz scalar product of (A1) with ¢; for 2 <j <n+1,
then using (£.9) and the orthogonality

AD,

(T/Jjawk)p =0k, Y1 = m, (4.26)

we obtain \
(@)= ges = (5 +1) (.0, + (F5)
First, from (4I7) one has

[(Ah, 5)p| S €7 <.
We now estimate the F-term given by (£I3]) . We use the bound from p > 5:
14 2P =1 =P S 2P + |2
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to estimate from the L bound (€.23):
INL| S [e + ¥ + @2 2(e + ¥)* S (e +¥)* = 0% (4.27)
We estimate from the Hardy inequality (A.5):

[Vul? [v[? < 2 2 < 2 2 - 2
- A2+ oll3 S [ 1802 + el + 3 lasl? (4.28)
j=2

T4+Jy[2 14yt~

and hence using the polynomial bound (3.5):

(NL ), < / o l51p < /

o]

< A 2 2
o [ 1o + ol

n+1

S el + A0z + D Lol
j=2

Next, we integrate by parts and use Cauchy Schwarz and ([B.5]) to estimate:

As Ts A
(5 rr)aestvem) |5 | el

=+ 1‘ +
and hence the first bound
n+1
JERCED S INTA
j=2

Ts

A

Ts

A

As
=4
A+'+

A
[(aj)s — pjaz] S (

step 2 Law for scaling and translation. We scalarize (LI1]) with ¢, = ”A{\b% and
n Lp

%%n_ and obtain in a completely similar way

10k Pl 2
A x A x asy
s s s s 2 2 2
‘7 - 1‘ +3] 5 (‘T + 1‘ + |5 ) 0+ lel + ]Z; Jaj 2 + | Av] 2.
Summing the above estimates and using the smallness of 7 yields (£25]). O

4.4. Energy estimates with exponential weights. We now turn to the proof of
exponential decay which is an elementary consequence of the spectral gap estimate
[B:4), the dissipative structure of the flow and the L> bound (£23)) to control the
non linear term.

Lemma 4.5 (Lyapounov control of exponentially weighed norms). There holds the
differential bound

n+1 n+1

d
£||eu%g+cnue||%{;52;|aj|4+umuia+uvu%m ||Av||%2+§jz|aj|2 , (4.29)
J= J=
d n+1
TlLuelts +eallLaclly S lellf + Z jaj* + [ Av] 32 (4.30)
]:
n+1
2 2 2 2
+ ol \|Av\|Lz+\|e||H;+§;|aj| :
j:

with ¢, > 0 given by (3.0]).
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Proof. step 1 L? weighted bound. We compute from (&IT):
1d

§£H6||%g = (e,0s6), = —(Lne,e), + (F — Mod, €),. (4.31)
From (£12), (£25):
n+1
(&, Mod),| < llellzz[Modllzz < llellrz H6||§{; + ) lai* + | Av] 3

j=2

n+1
< ol + s [ el + D layl* + 1 Av]ts

=2

for any 6 > 0. Integrating by parts and using (A]), we estimate

(e 8l + (T2l S [+ )y S el (432)
from which using (£.25):
n+1
[(L(e),2),| S ety | NelZs + D lagl? + 1Al
j=2

Finally using (£.27), (£.28):

(L) 5 [ etody <0 [1ePo+Cs [luftody
< o [1ePos ol [ 110y
- 1+ [yt
n+1
<

Sty + Colll~ | [ 1802 + ey + 3 lasP |
j=2

Injecting the collection of above bounds into (£3I)) and using the spectral gap
estimate (3.6]) with the choice of orthogonality conditions (4.9]) yields

d n+1

—llel® < =2enllellay (1 - Cllelfyy = D las* = [1Av]52) — €6 = Cslletllmy
j=2

n+1
2 2 2
+Cslole | [ A0+ el + 3 Lo

Jj=2

which using the bootstrap bounds (£17)), (£I8) and [@I9) gives (£29]) for sg large

enough and d small enough.

step 2 H? weighted bound. Let
g9 = Lye,
then g9 satisfies the orthogonality conditions (£9):
(e2,75) = (€2,01P,) =0, 1 <j<n+1, 1<k<3, (4.33)
and the equation from (LIT)):
0se9 + Lpgo = L, (F — Mod).
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Hence:
1d
2ds
We estimate from (£.20):

leall?s = —(Lnea, 22)p + (La(F — Mod), £3),. (4.34)

A n+1 n+1
B 1) 5+ o - al S ety + Yol + ol
=2 =2

|£aModllzs S |

~

Ts
A
We now use the commutator relation

[A,A] =2A
to compute
(L, A] = [~A+A—p®P~L A = —2A4p(p—1)BL 20, ®,, = 2(L,,—A+pDP 1) +p(p—1)DP 210, ),

from which using (£32), (AJ):

‘(527£HAE)P‘ = ‘(527 [ﬁnaA]E)P + (827A€2)p‘

S llealiiy + |(e2, M), | + [(e2, @ 71e) | + [(e2, PR ADre) |
S lealiZ + el
and similarly
(62, £adk)o] S Nealily + Il
Hence from (£.25]):
n+1
[(e2, LaL())pl S (leallFry + llellZ) | Nlell? + D las + | Av]7
=2

It remains to estimate the nonlinear term. We first integrate by parts since L,, is
self adjoint for (-,-), to estimate using the notation (E.I4):

2
|(L,NL,e2),| = |(VNL,Vez), + (ENL — p@fl_lNL,@)
p
S 1(Vg(v), Vez)o| + o1 (v) = p® g(v), &2
p
We now compute explicitly
Vg(v) = pVo[(®,+v)P~t — @71 (4.35)

+ pVao, [(@n + )Pt — Pt (p — 1)@5’;20] .
We estimate by homogeneity with the L* bound (@.23]):

lg()] S [, [Vg()l < [Vollv] + [v]?
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and hence the bound using (£.23]) again:

[(Vg(v), Vea),| +

(2000 - p<1>219<v>,ez>p

S [ BlV@I+ o] [Vealody + [ leallofpay
< dllaliy + G | [ 1PIVofpdy+ [ 1oftpas]
Vo of?
< §||Ves|3: + C %OU| d+/ d
> H EQHL% 5HUHL 1+’y‘2 Y 1+‘y’4 Y
n+1
< 8IVealZy + Callolie [lelify + D lasl? + 1 Av]Z
j=2

The collection of above bounds together with the spectral gap estimate (B.6]) and
the orthogonality conditions (433]) injected into (£34) yields (A.30). O

Remark 4.6. The proof of ([£29)) is elementary but requires in an essential way
the L°° smallness bound] ([#23), and in particular the sole control of the H; norm

cannot suffice to control the nonlinear term [ |e[P™1p due to both the energy super
critical nature of the problem and the exponential weight.

4.5. Outer global H? bound. We recall

v=¢c+1
and now aim at propagating an unweighted global H? decay estimate for v. We have
AS S
aSU—AU—TAU—%-VU:G
with
G = K%—Fl) A<I>n+%-V<I>n] +NL, NL=(®,+0v)" — ®F.

Lemma 4.7 (Global H? bound). There holds the Lyapounov type monotonicity
formula

d 1 2 1 2, 1 2 QR 2
ds | xa—o—2s. [Av|"dy | + NA—9—2s. IVAv|"dy S Ni—25.-3 HE”Hg "‘Z’aﬁ,
i=2

(4.36)

for some universal constant 0 < § < 1.

Proof. We compute the H? energy identity:

1d A T
S [ avPdy = [ AvA |Av+ SEAv+ Ly
st/\ v|*dy / v [ v+ 3 v+ 3 v—i—G]dy

AS S
= —/]VA@]Qdy—i—/AvA [TAU—F%'VU-FG} dy

and estimate all terms.

7o anything above or equal scaling in terms of regularity.
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p—1

step 1 Parameters terms. For any p > 0, let v, = —L v <%>, then:

m
2 1 2
[ 18ulay =y [ 1a0Pay
and hence differentiating and evaluating at p = 1:
—2/AvA(Av)dy =—(4—- 236)/]Av]2dy.
Hence
%/AUA(AU) =(2- sc)%/|Av|2dy.

Also, integrating by parts:

/AUA (%-w) dy = 0.

step 2 G terms. Thanks to the decay of the self similar solution from (L9):
/\AAcpny?der/\Av(pny?dy < +o0,

we estimate in brute force using (£.29]) the terms induced by the self similar solution:

fors{[(5 s o)

A " n+1
S |5 1]+ ]| nsolzn < 180l + G { ey + 1ol + Y- lasP
j=2
n+1
< o180l + s (el + 3 ol
j=2

It remains to estimate the nonlinear term. We estimate by homogeneity:

IANL| = [pA®, [(®, + )P~ — B2 + p(®, + v)P L Av

+ p(p = DIV [(®n + 072 = 77%] +p(p — 1)|Vo|*(@y + )P~

+ 2p(p — 1)(®, +v)P2VS, - Vv

S AD[(JuPH + [@nfP 72 [o]) + [Av|([olP T + 2P
+ Ve (072 + a7 o)) + [Vol* (0P~ + [@n[P7h) + [Vl [V (|07 + [0]P72)

and hence using the self similar decay of ®,, and the L>° smallness (£.23)):

| Ay |Vl N v
N O (71 W VI R O S T
+ Voot + [ @n 7).

}+n[|m|+ Yol Do
L+yl 1+ ]yl

IANL|
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The linear term is estimated using (A5):

2
|Av] |Vl v < 1
2 + 3 + 4
Lyl 1+yP 1+y

R 2 2
g5 [ 18+ Caly

n+1

5 1+ | el + 3 s

IN

and using (A.D)) again:

\VM W\]
Avl| +
/w @ | 1+ |yl 1+WP

To estimate the nonlinear term, we let
_ 31

¢ 2
We estimate using ([£.23]) with 6(p — 2) > ¢, and Sobolev:

2 2
/ Vol (0202 + |2, 2072) < IVollds (0135, %) + Il 35,2 ]

n+1

S 77HAUHL2 + H5||H2 + Z |‘LJ|2
7j=2

so that H®% C L%,

[6(p—2)

~ [6(»p—2) [6(p—2)

2(p—2 2(p—2
S Navlls [1@al3 %2 + wil3%2) ] < laviis [1+HwHHSC

| < a1,

We have therefore obtained

n+1
JIANLE < ajavlR +Cs | el + 3 laif
7j=2

The collection of above bounds and (£.25) yields (£30]). O

6. Control of the critical norm. We now claim the control of the critical norm
of w (defined by (£I0)).
Lemma 4.8 (Control of the critical norm). There holds the Lyapounov type control

n+1
o [ 1oy 19 oy < el + 3 fasl + A0+ v, (437)
j=2

for some small enough universal constant 0 < 6 = §(p) < 1.

Proof. Let
o, = Xifbn, (4.38)
we compute the evolution equation of w:
A ~
Osw — Aw = TsAw + % -Vw+G (4.39)
with
_ A ~ __
G = (75 —i—l) X%ACI)”—F % -V@n—i-ZVX% -V@n—FAX%(IDn — (X% — x4 )@ + NL,
A

NL = (Dn+w) — (@)

Observe from the space localization of the cut, from the decay of the self similar

solution, and from (£I9) and (4.20]):

Vse <5 <2, wlg S (4.40)
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We compute:

1d Se 2 o Se Se >\S 'CL‘S =~
§£/|V wldy = /V w-V [Aw%— )\Aw+)\ Vw+G}dy

—/!VSC“wPJr/VSCw-VSC [%Aw =2 Vw+G] dy

and estimate all terms.

step 1 Parameters terms. For any p > 0, let w, = 12 w ( > then :

[y = [ [y

and hence differentiating at py = 1:
—2 / Véew - Vi (Aw)dy = 0.
Integrating by parts:

/Vst VAL <% . Vw) dy = 0.

step 2 G terms. The decay of the self similar solution and the space localization of
the cut ensure using 1 < s, < 2:

H2VX% VP, + Ax1 @

S [29xy Ve +ax @,
2 2—5c 2 sc—1

< () () o

~ )\scfl )\3072 ~ ’

and similarly
HSC A A

()
A B

< (AS—SC)Z—SC(Aél—sc)sc—l S )\2.

~

Using (£.29):

2—S¢
o ‘QVX% Vo,

2—5¢ sc—1

<X1 - Xﬁ) o
A \

H1 H?2

As T
H (7 + 1> X§A<I>n + V(X&%)

n+1

<[5+ 5| S ety + 3 bl + nwie
=2

NT

We now turn to the control of the nonlinear term and claim the bound:
IV NL|| 2 < ||V wl| 2 (4.41)

for some small enough universal constant 0 < o = «a(p) < 1. Assume (@A), we
then interpolate with § = 52~ and use (£24), (£20) and the decay of the self

similar solution to estimate:
[Vt w| e S IVEw 50 [Aw]|f, S X5 + || Av]|3,,

and the collection of above bounds yields (4.37).
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Proof of (&41]). We compute

— —~ —~ ~ ~p-1
VNL = pV(®, +w)(®, +w) L pVd,d,"
= pvao, [( +w)P™ — <1>np_ + pr( + w)P~
—~ ~p—1
= po1(W)V(®, +w) +p®,  Vu
with .
g1(w) = (Py + w)p_l - (I)np
Hence letting
1 2 1
se=1+v, 0<l/—§—j<§
we estimate:
—~ —~ —~p—1
I9NLlz2 S ||V o1 )9 (@0 + )] |, + |77 (87 w) | . @42)

For the first term, we use the following commutator estimate proved in Appendix

B let
1 1 1 1 1
0<v<l, 1<pi,p2,ps3,pa<+00, 7= —+—=—+—
2 p1 p2 p3 pa

then

Vo (o)llrz S llull g llvllzee + llullzeallvll o s (4.43)
Pl P3

where we use here the standard space formulation of Besov norms for 0 < s < 1
and 1 <p< +odH

+oo rsupy, o Ju(- — ) — ()| zr \ 2 :
lull s, ~ (/0 ( Pzt | (tsy) OHL) %) . (4.44)

We pick a small enough 0 < a <1 to be chosen later and
1 1 o 1 1 «

P1 3 3’ D2 6 3
1 l14a+v 1 1-2a+v)

P3 3 7 p 6
Observe that
3 3
—vU + - =
P2 P4
and hence from (Z43)), the embedding of H*? in B; 9, and Soboled:

HV” [gl w)V(&); + w)} ‘

L2

N

IV(@5 + w)l| o g1 (w wlllgy +IV(@, ntw)lgy llgr(w)llces

N

1433 —~ 1 3
v 7 (Pn tw)llzz g (w)llgy |+ IV PR (@ w) | 2]V 1 (w) |

S VI (@ + w)| 2 g (w w)llgy

Since s. = % — p— < 2, we may pick 0 < a K 1 w1th £ —a > s. and hence using

(£40) and the decay of the self similar solution:
V272 (@ + w) 12 S 1.

2.

Bsee for example [4].
yging 2 5 f% =1—(a+v)>0.
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Let now
f) = (2P -1
then f(0) =0 and

/Z 122 F(r)dr

and hence by homogeneity:

|f(z2) = f(21)| =

z2
< / (Lt rP=2)dr < |z —al(1 4| P2 4+ |2 P2)
z1

191 (w2) — g1 (w1)] S [wa — wi|(|Bp P72 + [walP~2 + fwi P72).

Using the L> bound (@23]), ([£44]), and Sobolev?]

00 /3Up), <t w(- — — g1 (w())|| e \ 2 :
HQI(W)HB;Q’ < (/0 < Plyi<t lg1(w(- —y)) — g1(w()) Iz ) %)

2 tv

1
) 1
< /+oo SUDjy|<t [w(- —y) —w()| e @ ’ ~ |wl
~ 0 tv t By

3_3
< VTR R e = [Vt .

~

The collection of above bounds yields the control of the first term of (£.42]):

19" [91(0)V (@ + )] 122 S 19 w2,

For the second term in (£42)), we recall the following estimate proved in [42]: let
O<v<land p>0withp+v< %, let f smooth radially symmetric with

kpr< = =
|ar f| ~ 7"“+k, Oa 1’ (445)
then there holds the generalized Hardy bound
V" (wh)llze S NV fll e (4.46)

We then pick again a small enough 0 < a < 1 and let

3
uw=a, u+1/:1/+a:sc—1+a<§

for 0 < a < 1 small enough, and f = (X%®n)p*1 satisfies

0411 S e S T
Hence
197 (8.7 Vw) e S IV w2 = [V5 2] .
This concludes the proof of ([ZA]). (]

20Here we use that BS’Q embeds in B;g with s —3/2 =1t —3/p for p > 2, and BS,Q = H°.
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4.7. Conclusion. We are now in position to conclude the proof of Proposition
which then easily implies Theorem

Proof of Proposition[{.2 We recall that we are arguing by contradiction assuming
#22). We first show that the bounds (£I6), ([AI8]), (AI9) and (#20) can be im-
proved on [sp, s*], and then, the existence of the data (a;(0))2<;j<n+1 follows from
a classical topological argument a la Brouwer.

step 1 Improved scaling control. We estimate from (AI7), (AI8)), (£19), (£25):
< K2em2ms (4.47)

As
=41
vt

and hence after integration:

oz (52) 5= 0

for so large enough, which together with (£5)) implies:

“+oo
< / K2 ™ 7dr <1+ o(1)

S0

A(s) = (A(s0)e™®) e *(1 4 0(1)) and hence ¢’

< A(s) < 2e7°. (4.48)

step 2 Improved Sobolev bounds.

L2 bound. From [@29), @17), @EIT), E23):

d
T lellZ;  enllely S (1 K 4 FeZemdmse s < (o

~

for s > s large enough. From now on, we may fix once and for all the value
Cn,

p=2 (4.49)
and hence 4
EHffH%g + 4MH€||%1; < e (4.50)
which time integration yields using (£.7):
S S
eIy + 2e [ lelydo < (oe(so) By) e+ e [ emenar

S0 S0

< Kgem s, (4.51)

~

H? bound. We estimate from (E30) like for the proof of (E50):

%Ilﬁns\lig +4,u||£ns\|%{; < ||5H§{; 4 e(2+ous
whose time integration with the initial bound (7)) and the bound (£5I]) ensures:
I£ac(o)IEy S e
We recall

2 _
(Coziely = IVl + [ (25— pon ) IePoay

and hence we first estimate from the spectral bound (B.6]), the orthogonality condi-
tions (A9), and Cauchy-Schwarz:

IVelly < (Lncoe)p + CllelZs S Lncl; + lelZ < KZe 2. (452)

— ~

This yields using (A.2)):
IelBys < I1£nel2s + (4.53)
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and hence the improved bound

el < Kae 2. (4.54)

H? bound. We rewrite [A36) using (@17), @25), E54)
d 2 2 2 -2
A0l + (45— 250) | Aol < Ke2e
By possibly diminishing the value of ¢,, we may always assume
4—0—28.>cp=4u
and hence from (Z.7)):

S
HAUH%Q < ng*4“se4“s°e*2“s° + 64“5/ ng‘l‘”e*?‘”dT < ng*Q“s. (4.55)

S0

H¢ bound. We now rewrite ([@37) using (E106)-([20):
d
= [ 1wl < e

for some universal constant ¢ > 0 which time integration using (A7) ensures:

IV w(s)lIZ2 S IV w(so)l[Z2 + e < g (4.56)

for s¢ large enough.

step 3 The Brouwer fixed point argument. We conclude from (4.48)), ([454)), (4355),
(£E50), the definition (4.21]) of s* and a simple continuity argument that the contra-

diction assumption (£22)) implies from (£I7]):
n+1

> laj(s)f? = e (4.57)
j=2

Moreover, the vector field is strictly outgoing from (£27), (£17), (£I8), (EI19):

n+1 n+1 n+1

%% Z ajet|? = Z a;e((aj)s + paj) = Z a;e*ts (14 pj)a; + O (K26_2“8)]
=2 j=2 j=2
n+1
> MZ lajers|> + O (K?e %)
j=2
from which

d n+1
% Z laje!|? | (s*) > p+ O(K2e #50) > 0
=2
for sg large enough. We conclude from standard argument that the map
(aj(0)e"*0)2< i<+t = (a;(s™)e" )azjcntn

is continuous in the unit ball of R™, and the identity on its boundary, a contradiction
to Brouwer’s theorem. This concludes the proof of Proposition O

We are now in position to conclude the proof of Theorem
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Proof of Theorem [L.2. Let an initial data as in Proposition 4.2} then the correspond-
ing solution u(s, y) admits on [sg, +00) a decomposition ([A.8]) with the bounds (£.I7]),

step 1 Self similar time blow up. Using ({48)]), the life space of the solution w is

finite
400 +o0
T = / N (s)ds < / e 2 ds < +o0,

S0 S0
and hence

400
T—-t= / N (s)ds ~ e 2.
S
We may therefore rewrite (4.47]):
A+ 1] S (T -t
and integrating in time using A\(T") = 0 yields

A1) = V(2 + o) (T —t). (4.58)
Also from (.25]):

T +o0 +o00
/ || = / |xs|ds < / e ST s < too
0 S0 50

and (LI2) is proved.

step 2 Asymptotic stability above scaling. We now prove (LI3) and (LI5). We
first estimate from (A24]) using the self similar decay of ®,:

||w||H2 S ||U||H2 +|1(1— X%)(I)nH[p < e 2Hs _{_)\2786(5)
— 0 as t—T.

Hence from (£20]):

Vse <o <2, SETOO |lw(s)|| g =0
which using (4£.24]) and the self similar decay of ®,, again implies
< i o =
Vse<o <2, Tim_[lo(s)] . =0

this is (LI3). At the critical level, we have from ({.8), ([AI0) and the sharp self
similar decay from Proposition

[w(@)ll grse = X2 P + Wl gec = en(l+0(1))V/[l0gAl; e # 0,
and (A58) now yields (LIH).

step 3 Boundedness below scaling. We now prove (L.14).
Control of the Dirichlet energy. Recall the notation (A.38]) and compute by rescaling
using the self similar decay of ®,:

X190, )3 + 1@l S 1.

Hence the dissipation of energy which is translation invariant ensures

~

A2 D72, < A2 [IIV@L +w)7: + HV@LH%Q] S1+2B@) + o

S 1+ [Eol + XC Yl

[l

p+1
Lp+1
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We now interpolate using the smallnes<] (@200

lwllFris S lwlb IVellfs S iVl
and hence
NVl < Cluo) (4.59)
and

Vule $ X0 (982, + Vi) < 1

Proof of (L14). Let now 1 < o < s, then using (£20), (£59) and interpolation:

—~ Sc—o o—1

IV7ullpz S AT VI@p |2 + AT VTw][ 2 S 1+ X[Vl 57 [V ewll s
S 1 (T IVwllg) 7T S Cluo)

and (LT4) is proved. This concludes the proof of Theorem [[2] O

4.8. The Lipschitz dependence. We now state the Lipschitz aspect of the set of
solutions constructed in this paper.

Proposition 4.9 (Lipschitz dependence). Let so > 1, 6((]1) and 6((]2) satisfy (£4)
and [@IH), and take )\((]1) = )\(()2) = e %. Then the parameters (ag»l)(O))gSanJrl

and (a§2)(0))2§j§n+1, associated by Proposition [{.9 to (6(1),)\(()1)) and (6(2),)\((]2))
respectively, satisfy:

_l’_
—_

n 2

0 a0 5 [0 <)

‘a . (4.60)

<.
[|
N

Proof. The idea of the proof is classical, see for instance [I7]. We study the differ-
ence of two solutions, and use the bounds we already derived in the existence result
as a priori bounds now. This allows us to control the difference of solutions at a
low regularity level which is sufficient to conclude.

We use the superscripts (i), ¢ = 1, 2 for all variables associated to the two solutions
respectively: u() for @X), v for @IN), @ for @), A for the scales and 2
for the central points. The differences are denoted by

Ae =) — 8(2), Aaj = a;l) a a&z)’ Av = o) =),

We compare the two renormalized solutions at the same renormalized time s. The
time evolution for the difference is given by

O]

Dyt Loe = & flog (35)| A@n +0@) + (55 — 2 ) V(@ + )
1 )

n )\g
— Z(Aa]’78 — ,u,jAaj)ij + (m + 1) AAU
=2
(1) -
+Es VAU + {(cbn + o) — (9, +0v@)P — poi, 1&1} :

(4.61)

2lthis is the only place in the proof where we use that the critical norm is small, bounded
suffices everywhere else.
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step 1 Modulation equations. We claim that

d )\(1) xgl) ng) n+1
Elog (W) ‘ + D@ + Z |Aajs — pidajl
j=2
n+1
S e | oy + Y 10a | - (462)
j=2

We now show this estimate. Taking the scalar product of (61 with ¢); = ”Ag%,
n Lp

using the orthogonality conditions ({.9)) and (£26]) and the fact that 1); is radial for
1 <j <n+1, yields the identity

4 [1og (23)] (A@n +v@), 41),
= (g -2) .wz),wl)p — (3 1) (Asw), — (2 Ve
— ((@n+ 0O = (@ + @) — poh Av, wl)p

p

(4.63)
and we now estimate each term. The coercivity (A.J) and the bounds (EI7) and

HI8) yields
(A(@n +v®)),¢1), = 14+ 0(e7),

xgl) ng) (2) _
m - E Ve ,¢1 5 e M
p

The modulation estimate (£25]), with ([LI7), (AI8) and ([@I9) and an integration
by parts yields

xgl) ng)

AL A

)\gl) xgl) n+1
5O +1 | (AL, ), — W-VA&% Sehs HAgHLg + Z | Aaj|

P J=2
Eventually, for the difference of the nonlinear terms the nonlinear inequality
(@ + )P — (@ +2)7 = pe? "y — 2)| S (272 + [yl 72 + [2P72) (jy| + 2]y — 2]

for any z,y, z and the bound ([£23]) yields the pointwise estimate

((@n + oMY — (@, + PP — pqﬁlm‘ < e M| A, (4.64)
which implies
n+1
(@04 00— (@ 402 = ppt 201 [ (eliy + 318
P -
7j=2
(4.65)
The collection of the above bounds, when plugged in ([AG3)), yields
d )\(1) xgl) xgz) n+1
_ - < pTHS _ s —Ccus .
ds llog ()\(2))] St i@ | e 1Adls + Zz Al
]:
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With the same techniques, taking the scalar product of ([@81)) with 0¥®,,, k = 1,2,3

implies
(1) (2) 1) n+1
Ts Ts _ d A _
e N I L e cus 2 : .
]:

The two above equations, when put together, imply the estimate

d )\(1) xgl) ng) s n+1
s [lOg (E)”—i‘ D O@ Se HAaHLngZ\Aaﬂ
=2

The corresponding estimate for |Aaj s 4 p;Aaj| follows along the same lines, and

therefore (4£.62) is proven.

step 2 Localized energy estimate. We claim the differential bound

n+1
—HA6HL2 +ealldelzy S ey | Aayl? (4.66)
7j=2
which we now prove. From the evolution equation (LGI]) and the orthogonality
conditions (4.9) one obtains first the identity

L Aclzy = —(Latre, he), + 4 [log (33)] (W, 2e),
() 51 (3 i,
( &y - VA, As) + (( Wy — (@ +v(2))p —p®h 1AU As)

(4.67)
and we now estimate each term. The spectral gap (8.6]) and (€3] imply

—(Lalre, D), < —nl| e

The modulation estimates ([A.62]) of step 1 and Cauchy-Schwarz imply

d )\(1) i .%'(1) 1'(2)
- e 2) o5 2)
7 llog (}\(2)> (A Ae), + (()\(1) el Vol Ae
. P

PG NORNE
_ o (2) s
= <d510g<>\(2)> 1A lles + 155 — 5@ IVo@ gz | 1Ae] 22
n+1
S 0@ llge | 18elg + 3 10as1 | 1€l
=2
n+1
s et el + 3 1800
=

where we used (A)), EI7) and @IS) to control v(). Using the modulation esti-
mate [{25), with (@17), (@I]) and @I9) for u(V), integrating by parts and applying

p
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Cauchy-Schwarz and (A.J) yields

A\ L
w + 1 (AA’U, Ag)p + )\(1) VA’U AE

g (
n+1

S e [ 3700 + Acly
j=2

p
(1)

A

ALY

w-ﬁ-l

_l’_

) (AL, Ae)p| + |[(ADe, De)p| + [(VAY, Ae),| + [(VAe, Ac)y|)

Finally, the pointwise estimate (£.64]) and Cauchy-Schwarz imply for the nonlinear
term

n+1
(@0 400 = (@, 4 0O =080, ) | S e (0ely + 31807
p pes
=2
We inject all the above bounds in the identity (£67), which for sy large enough
imply the desired estimate (€66 since 0 < ¢ < 1.

step 3 Lipschitz bound by reintegration. We define

n+1
A := sup Z |Aaj(s)|e!® < 400, &:= sup ||A6HL262“8 < +o00, (4.68)
$>50 j=2 $>50

which are finite from (€I7) and (£I]]).

Identity for Aaj. Fix j with 2 < j < n+1. Reintegrating the modulation equation

#62) yields

s n+1
Na; = Naj(0)etis=s0) 4 ehis / e_“J'S/O(e_c“S/(HAaHLg—i—Z]Aaj\))ds'
S0 =2

_ Aa]j(o)e‘u]’(sfso) 4 eﬂjs/ O(e*(ﬂj‘f’(cﬁ’l)ﬂ)s’ (A + \/E))dsl

400
— (Aaj(o)eﬂjso+ O( —(pj+(c+)p (A+\/_)) )eﬂjs
400 ’
—ehi® O(e= Wit (A 1 \/€))ds (4.69)

S
The integral appearing in this identity is indeed convergent and satisfies:

—+00

O( —(pj+(c+1)p) (A+\/_))d8 <€ (nj+(c+D)p (A+\/_)

s

From (4.68)) one gets |Aa;| S e and from the two above identities one necessarily
must have that the parameter in front of the diverging term e*#® is 0:

+o0
Aaj(0)eHi% +/ O(e~ (st Dms (A 4 \/€))ds' = 0

which gives the first bound
Aay(0)] S Dm0 (A 1 VE), (4.70)
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and going back to the identity (€.69) one obtains:
Bay| S e (D4 1 VE)
which implies from the definition (£68]) of A the bound
A < e H0/E, (4.71)
Identity for Ae. We reintegrate the energy bound (4.66]) to find
18el2, S [1A2(0)[Zyemenm50) 4 emens [ cons T | g 2ember df

~

S A0y em om0 + AZem (e

since p = % from ([@49) and 0 < ¢ < 1 can be chosen arbitrarily small. Injecting
(@I in the above identity yields

£ S |12e(0)][7e*=
)

so that (TI) can be rewritten as A < HA&(O)HL%e(kc)“SO. We inject these two last
bounds in ([A70) which finally yields the desired estimate (Z.60]). O

Appendix A. Coercivity estimates
Lemma A.1 (Weighted L? estimate). Let u,0yu € L%(Rg), then
lrully < llull s - (A1)

Moreover,
1802, S 1= Au-ty- Valls + uly. (A2)

Proof. We may assume by density u € D(R?).

step 1 Proof of (A.Il). We use 0,p = —rp and integrate by parts to compute:

“+oo 1 2
/ <8ru — —ru) pr2dr
0 2
+00 1 +oo +oo
= / (Opu)?pridr + Z/ r2u?pridr —/ rudyupr’dr
0 0 0

oo 2 2 Lo 2,2 .2 1 27+
:/ (8Tu),m“d7“+—/ ruprdr—§[r3pu]o
0 0

4
1 [*o°
+§ / u?(3 — r?)pridr
0
+oo 1 +o0o 3 +oo
= / (Opu)? pridr — Z/ r2u?pridr + 2 / u? pr2dr
0 0 0
and hence
—+oco —+o0 —+oco
Hru”%z = / r2ulpridr < 4/ (3ru)2pr2dr + 6/ u?pridr < Hu”fq;
0 0 0

which concludes the proof of (A).
step 2. Proof of (A.2). We compute:

I = Aty Vully = Al + - Tull; ~ 2 [ (Aa)y- Tupdy.



To compute the crossed term, let uy(y) = u(Ay), then

/!Vm )P pdy = < /\Vu !p

and hence differentiating in A and evaluating at A = 1:

2/VU-V(y-Vu)pdy =/!VU\2(—p—y-W)dy
ie.
2/y -Vu(pAu+ Vu-Vp) = / \Vul*(p+y - Vp)dy
which using Vp = —yp becomes:

—2/(AU)y-Vux)dy=/IVUIQ,OIyI2 —2/Iy-VUI2p—/,OIVUI2-

Hence:
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|- Auty-Vully = [8ul+ [olsPITuP = ly- Vu) = [ plVaP

> (A, — [ Vul?,

which concludes the proof of (A.2).

O

We now turn to the proof of Hardy type inequalities. All proofs are more or less

standard and we give the argument for the sake of completeness.

Lemma A.2 (Radial Hardy with best constants). Let u € C°(r > 1) and

7#_15

400 (aru)Q v+ 1 2 ptoo u2
/1‘ ey dr Z <T> K md?ﬂ

Proof. We integrate by parts:

then

(A.3)

(A4)

1 1
“+o00 2 +o00 +o0o 2 3 +o0o 2 B
/ U= 2 / ur o2 / Y / Orw)” ).
P2 vy+1/1 rtl ly+1] \J; 2 1 r

and (A4) follows.

O

Lemma A.3 (Global Hardy for A). Then there exists ¢ > 0 such that Yu €

(|l > 1),

2 [Vul? | Jul®
/]Au\ dec/( FE —i—W dx.

Proof. We decompose u in spherical harmonics and consider

m(m+ 1)

2
Ay = Bfum + ;&um — 5 , méeN.

,
We claim that for all v € C°((1, +00)),

+oo +o0 2 1 4 2
/ Ao[2r2dr > C/ (\37"72)’ n ( +”i )[v] ) w2
1 1 T T

with ¢ independent of m. Assume (A.G]), then

|Vu| |a umk| 2|umk;| 2
2 Z Z / = rdr

m>0k=—m

(A.5)

(A.6)
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and hence summing (ALG]) ensures (A5).
To prove (AL6]), we factorize the Laplace operator:

_ * . Ay = -0, — ,mi = _rwlm ar("ﬂ’ym)a Ym = —M,
Am = —AmAm with ‘ A:;L _ 8r + 2—7:ym 87’ _ T2_17m ar(T.Q—’ym).

Hence from (A.4]):

+00 +oo too 1
/ (Apv)2r2dr :/ (A%, Av)2r2dr :/ ﬁ(ar(r%'ymflmv)fdr
1 1 1 r m
2 — 2y, + 1\ [+ o, (2= 2y, +1\? [t 1 2
> <f> /1 (Apv)dr = — /1 S (O (r’mv))*dr
_ 2 2 ptoo 2
> 2—=2v,+1 29m +1 / v
2 2 1 T'2

since 7, = —m with m € N which ensures that the forbidden value (A.3) is never
attained. We conclude that for some universal constant § > 0 independent of m:

+o0 5 9 4 +00 4,2 )
/1 (Apv)*rédr > 6(1 +m )/1 ar dr.

Also, since we have also proved that

—+oc0o —+oco
/ ]Amv\zdr < / (Amv)zrzdr,
1 1

we infer
—+o00 2 —+o00 2
/ ((9,42)) r2dr < / \Amv]2dr+’yfﬂ/v—4r2dr
1 r 1 r
—+o00
< / (Amv)zrzdr
1
and (A26) follows. O
Appendix B. Proof of (4.43)
Let

1 1 1 1 1
0<v<l 1<pi,pa,p3,ps<—+00, ==——+—=—+—.

2 p1 p2 p3 pa
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Using ({.44), we have

19" (o)l ~ vy

~ </0+°° (Supy|§t Huv('t—yy) - UU(')”L2>2 %)é

< ( /0 o <S“Py|g Ju(- - y)f:(- — ) = ()2 ) %>
+ < [ (sl 0 Ol %>
S lullLes (/O+OO (SUPIySt [o(- ;y) — ()| s >2 %>%

1
oo /suppy < Ju(- = y) — u)||Lr A
+([vllzr i = u

S lullgy ellzes + ullos ol gy

which concludes the proof of (£43)).

Appendix C. Proof of Lemma

The existence and uniqueness of ¢, m, Vp, satisfying ([3.9) and ([B.13) is well known.
Thus, we focus on their behaviour as r — +o0.

step 1 Inverting £,, ~. Let 7, be the solution to
Y = Ym0t —m(m +1) =0,

the corresponding discriminant A, is given by

Ay =1 —4pcfSt + d4m(m + 1). (C.1)
For m =1,
_(p+3 2
A1—<p_1> >0 (CQ)

and hence for all m > 1

A, > AL > 0.
Therefore, v, is real and we choose the smallest root? so that Ym is given by
1— VAL
=y

We now solve

22This is motivated by the fact that we obtain below the Kummer’s equation with b = —~,,+1/2.
This is equivalent to —b = ++/A,,. Since the Kummer function is not defined for —b € N, this
justifies to consider the smallest root 7y,.
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through the change of variable and unknown

which leads to

Loam(®) = =2 (0@ 4 (it § 5w - (1= B ).

(22)2 p—1
Thus, Lo m (1) = 0 if and only if
d>w dw
zW—F(b—z)%—aw:O
where we have used the notations
1 Ym 3
“To1 2 Tm g

Hence w is a linear combination of two special functions, the Kummer’s function
M(a,b,z) and the Tricomi function U(a,b,z). These special functions have the
following asymptotic behavior at infinity (see for example [47]):

T
M(a,b,z) ~ F((Zi 2272 U(a,b,2) ~ 27 as z — +00.

This allows us to infer the asymptotic for w for z — 0,. Finally, since

6)= 4w (%),

we infer from the asymptotic of w the following asymptotic behavior for v ,, and

wZ,m

1 2 g 72
Yim ~ —5— and Yo, ~rr-l “e2 asr — +oo.

rr-1

Consider the Wronskian W which is defined as

W o= wi,mwz,m_wé,mwl,M7

then without loss of generality since W' = (r — 2) w

T

We deduce using the variation of constants that the solution w to
£oo,m (u) = f7
is given by

+o0 9 2
u = <a1 + Jbomr’ err’> P1m + <a2 —
T

—+00

9 _r?
f1/117mr' e 2 dr') Yo m.-

T

step 2 Basis of £, , near +00. We now construct a solution to L, ,(¢) = 0 near
400 by solving:

Loon(®) = Lom(e) +p(@" =2 = p(@r~ — 827,

ie
—+00 5 2
Y = (al +/ p(@ﬁfl - (I)i)il)ﬁpwlmr/ 62d7a/> wl,m
r

400 9 2
+ <a2 - / p(q)ﬁ_l - (bg_l)@wl,mr, e_TdT,> wZ,m-
r
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To construct the solution ¢ with the choice a; = 1 and as = 0 we solve the fixed
point equation

1 =1%1m + 61, $1=G(p1) (C.3)

where

12

~ too 1 1 ~ / /2 r /
G@3)(r) = ( [ @ e G + ) 0 e—Tdr)wl,m

12

+o0
- (/ p(®5 = B2 (Y + D) (T/)ibl,mT'zeQdTI) b2,m-
T
Recall that we have in view of Corollary

lim suprﬁ@n(r) —®,(r)] =0.

n—-+o0o r>1

Thus, for n > N large enough, we infer

1
|@p(r) — @u(r)| < —5— for r > 1.
re-1
so that
1
—1 —1
p(@] )| <
We infer for » > 1

~ 1 Too 9 g 1 ~
G@ ) < (/ <2+!<p(7"’)!>d7"’>
rp—1 T r/p—1
L_ 'r2 +OO 1 T/2 1 ~
e ([ (2 o))
r r/p-1 r/p-1

1 1 too o g
2420 + Z (/ rlee 3‘90(7",)‘617”/)
T p— TrTr— T

N

and

+o0 2
G (30) (1) -G () )] < — ( / r'w3|¢(1)<r'>—¢<2><r'>|dr')

rr-1

2 g 72 teo g i ! ~ / /
+ 136 =€ 2 |[9a)(r') — e (r)|dr

r/p—1

Thus, for R > 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

2
sup ' 7T (] (r).
r>R
Hence, there exists a unique solution ¢; to (C3)) and

2
suprF71 (] (r) S 1.
r>R
Hence, ¢ satisfies Ly, (1) = 0 and

1
p1~—5—, asr — +o0.
rr—1
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The behaviour of the other solution at infinity is computed using the Wronskian

relation
2
T

12
W = ¢lp2 — 1 = ——e?

w2\’ w L2
—_— = —-—0 = —€
o1 i ]

" 1 M2 2 g 2
902(74) = @1(7‘)/ /27267(17“ ~ rp—1 e2 asr — +o0o
1

' p1(r')
and (B.I0) is proved.

and hence

from which

step 3 Behaviour of v, at +o00. First, consider the solution ¢ to

m(m+1)  pd’

2
2 _
— 0= O+ 3 2 =1 (C.4)

The homogeneous equation admits the basis of solutions
1 1

Y+ T T YT Tivem
r— 2 r-— 2

and the corresponding Wronskian is given by
1

W(r) = @ (r)e-(r) = ¢_(r)e+(r) = .

Using the variation of constants, the solutions to (C.4) are given by

+oo 2 +o0 2
80(7"): al—/ fo_r“dr ) oy + a2+/ forr=dr' ) p_.

Now, the equation H,,(¢) = 0 can be written as

e ko
20— 2o0+ MNP 4y (Qp‘l(v") - 7) o(r).

742
ie. (C4) with

-1
f=p (Q”I(T) - Cf%) o(r).

We construct the solution ¢, 1 to Hy(¢m,1) = 0 with the choice a; =1 and as =0
by solving the fixed point equation

Oy =@+ + b, ¢=F (5) (C.5)

F (5) (r) = - ( /r mp (Q”l(r/) - %) (s0+ + 5) (T/)sor'QdT’> ot

Foo 1 ngl e 2
+ / p| Q7 () - e (g0+ +¢) (rordr’ | o_.
Recall that

Qr) = Coo N ¢ sin (wlog(r) + ¢2) ‘o <

| —

2 1

) asr — +oo
rr-1 T2

N

r
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so that

r2

~1
p (Qp—l(r) — Coo )' < Tlisc for r > 1.

‘.7:(5)(7“)‘ < 1+1¢m ( /*‘x’ T/il < @ + ‘5\ (r’)) ﬁdﬂ)
r r 2 r

T 2 >
e ([ i) )
T 2 r r r— 2 ,r_/T
1 1 1 e 1 1 A /
S ol A T e </ ﬁmﬁ (r )dr>
r 2 r 2 r r 5
+ 1—VAm </ 15c—1  14+vVAm ‘QS (T/)dT’/)
r- 2 r r P
and
~ ~ < 1 +oo 1 1 " ~ , /
Flon)r) = }-(@)(r)‘ ~ o VAm el 1vAan ‘051 — ¢2‘ (r')dr
r 2 r T r! 5

1 too 1 N
e 15e—1_ 1tVAm “751 - ‘752‘ (r)dr” ) .
r- 2 r r T2

Thus, for R > 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

_ VB~
supr 7+ 3]
r>R

and yields a unique solution ¢ to (CH) with

Sc— \/_m -~
supr 21T1+ o lo|(r) < 1.

r>R
Hence, ¢, 1 satisfies Hy,(¢r,,1) = 0 and

1

¢m71 ~ T\/H’ as r — +o0o. (C6)
r— 2

The other independent solution ¢, 2 to Hy,(¢m,2) = 0 is computed through the
Wronskian relation

1
W = ¢1n71¢m,2 - ¢;n,2¢m,1 = —ﬁ
ie
bmalr) = oma(r) [ ol o asr +
2(r) = a(r r o~ —— as r 00.
Y TR M

Since vy, is a linear combination of ¢, 1 and ¢, 2, we infer

1% (7") ~ Cm7+ Cm7_
m 1+vBm 1—vAm
r- 2 2

as r — +00 (C.7)

r
for some constant ¢, + and ¢, —.
case m = 1: By translation invariance

H(Q") =0 and Q'(r) = Q"(0)r(1 + O(r?)) (C.8)
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Hence, by uniqueness of 1, we infer
Q'(r)
Vl('l") = Q//(O)
where we used from standard ODE arguments Q" (0) < 0 and
Q' <0 on (0,400). (C.9)
case m = 2: From (C.8)), (C.9) and standard Sturm Liouville oscillation arguments

<0 on (0,+00)

for central potentials [49], the quadratic form (Hyu,u) is positive on HL (0, +00)
and hence for m > 2, Hy,, > H; is definite positive, and hence v;,, > 0 on (0, +00).
Moreover, If ¢,, — = 0 in (CX), then v, € H}ad satisfies (Hp,Vpm, V) = 0 which is
a contradiction, hence the leading order behaviour (3.13).

step 4 Completing the basis.
case m = 2. Let ¢,, be the solution to H,,(¢,,) = 0 constructed above with the
behaviour ([C.6)). At the origin, the equation H,, reads

AnAmY =V,
with v v
— m . * 7 m+1
Apv =1r"0, <rm> , A R Or(r" )

and V' € L* and hence all solutions on (0,0) with 0 < § < 1 are of the form

_ m a m ’ dr " m+1v d
Y = cor —i—rmﬂ—i-?“ 2t T T wdt
r 0
through an elementary fixed point argument. Hence

c1 + O(r?)
¢m - Al .

(C.10)

Assume by contradiction that ¢; = 0. Then, the fixed point above leads to ¢, =
O(r™). Hence ¢y, is a zero of Hy, in H! 4 which is a contradiction. Thus, ¢; # 0
and together with (C.I0), we have obtained (3.14]).

case m = 1. We let ¢1 be given by the Wronskian relation
1
dr
¢1 = Vi\r / ————dt ~
L e
which is ([BI12]).

step 5 Proof of (3.10]). Let

Knm 2= My Prm (faT)-

Then, since ¢, , satisfies Ly, p(¢n,m) = 0, we infer

= as 7 =0, c#0,

1
/A a8 T — +00,

T 2

m(m + 1)

2 2 Pt
_8721"471,771 - ;arﬁn,m + 3 Rnm — D (;U'S ' (I)n(,u'nr)> Rn.m = _MiA’%n,m-

r
This yields

2 p—1
Hm(ﬁn,m) = fn,m =D ((Mﬁl q)n(ﬂnr)> - Qpl(r)> Rn,m — ,U%A"fn,m-

Since H,,(vy,) = 0, we infer

Hy, (Kn,m_ym) = fn,m-
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We let (v, &) be the completed fundamental basis for H,, so that

T T
2 2
Knm — Vm = <a1 — / fn,mqﬁmr' dr') Uy + <a2 +/ fn,mumr' dr') Dm-
0 0

Since
U (r) =™ (1+ O(r?)) and @pm(r) = r"™(1+ O(r?)) as r — 04,
we infer
Knm(r) —v(r) = O(Tm+2)

and hence (3.12), (B.14) implies a; = as = 0 and:

Rnm — Vm = — </ fn,mgbmrﬂdﬂ) Um + </ fn,mymrl2drl> Om.-
0 0

In order to estimate f;, ,,,, recall from Corollary that we have

r<ro p—1

1 r _
sup | (r) — —5 Q(—) < et
Hn

2293

This yields

2 p—1 ,U’SC—H
sup o (1 2ulian)) - @10 )| 5 5 (1)
r<0 Q_E
— Hn TO
Also, we rewrite f, ,,, as
2 p—1
fam = D <Mﬁ_l‘1)n(,unr)> _Qp_l(r) Vm_MiAVm (C.12)

2 p—1
+p ((NF ‘I)n(ﬂnr)> - Qp_l(r)> (Fnm — Vm) — MiA(“n,m — Vm).-

0 <r < 1. In view of the asymptotic behavior as r — 04 (B12), (314)) of the basis
of solutions vy, ¢y, and after integrating by parts the term A(ky p, — Vi), we have

for 0 <r <1 using (C.11]) and (C.12):

[fnm = vml(r) S 1 |Knm — Vil (1)

MsCJrl r l—m
+ 2n — + ,ui P2 g (/ |’{n,m - Vm|7"/ d?“/>
Tp-1 0

p—1
To

r
— 2
+ r m—1 (/ ‘:‘fn,m_Vm’T/er dT’)).
0

Using again the asymptotic behavior of v, as » — 04, we infer for all m > 1

|(Knm — vm)(7)] fo“ 2
sup : < + . C.13
o<r<t [vm(7)] ri*% " (C13)
In particular, this yields
1 . 1 o pset
/0 ’fn,m‘r, mdr/ +/0 ’fn,m‘r,m dr’ S 2?& + ,U'?L' (C'14)
p—1
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Next, we consider the region r > 1. In view of the asymptotic behavior at infinity

BI12), BI14), BII), BI3), after integrating by parts the term A(ky, ,, — v4) and
using also (C.14)), we have

"fn,m - Vm‘ S Mgﬂg‘ﬁn,m - Vm‘

~

1 7 9
+ v ;i + i+ [ [ frml —=dr’
(I+r) 2 rg 7! 1 1+r) 2™
1 Mstrl 9 T 7012
+ s | e Tt ’fnﬂn’ﬁdr,
(1+7r) 2 ro 7! 1 1+r) 2"

After integrating by parts the term A(kpm — V), and in view of the asymptotic
behavior of v, as r — 400 as well as (C.11]), we deduce

| (Knm — Vi) (7)]

1 ’ uif“ e
S o / [Vl + i | Av |+ | g | R — v
(1 +7“) 2 ,,,_0 p—
/2 Se+1
" ! Ky 2
“a e s +Mn>
(L4 Ty
1 r Sc+1 Sc+1
+—m</ L] + 12| A + | L2+ 2 | [ = vim
(I+7r) = 1 TO = ro 7'
12 Se+1
r / H 2
><1 ,1+\/de+ 2"1721—1-/%).
(I+r) 2 Ty
case m > 2: We estimate from (3.13)):
| (Kn,m — vim) (1)
[V ()]
1 /r ,U’SC—H 1
s | P
(1 + T’)m{ 1 ""3 p—l " (1 + 7“’) = 2Am o "
/2 Sc+1
r :u'n 2
X dr’ + +
(1 n T’) l*\é_m T p71 :U’n}
0
r Sc+1 1 7“/2
+/ l;ﬁi + uy, ( VAL ‘|’|/‘€nm Vm|> VA dr'
1 To p—1 (1—|—T’) 3 (1+Tl) 3
Se+1
+ Zii + -
rg 77
This yields
Ssc—1

|(Knm — vm)(7)] r

sup <
1<r<20 [V (7)] ~ -5

(=]
—_
+
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which together with (CI3]) concludes the proof of ([BI6) for n > N large enough
and m > 2.

case m = 1 We estimate using (B.11)), (3.12):
|(kn1 = 1)(7)]
i ()]

1+y/A7
ry P (142 (42

T
VA1 Uy, 2 1 _
+(1+7) </1 o T | | 5= e vl =

rog 77 (I+7)"2 (1—1—7"’)71

se+1
+'u"7 + ,ufl> .

2
Z_F
0

This yield

- A
sup M < 7“8 1+ 5 21 + < 7o >\/71 :ufzm;l + IU’T?L
1<r< o v (r)] 7?*7,1 I rzfﬁ
Hn 0 0

and hence, together with (CI3) and the fact that? v/A] < 2, we have for n > N

large enough

[(fpg —v)()] o o

sup ro-

o<r<io [v1(r)]
Hn

The corresponding estimates for first order derivatives are obtained in the same way,

and (B.16) is proved.

Appendix D. Proof of Lemma [3.3]

step 1 Proof of (3I8]). Let
Rp 1= (Pn,O(Mnr)-
Then, since ¢, o satisfies Ly, o(¢n,0) = 0, we infer

2 2 P
—83/% — ;8rlin —-p <,u7’{ 1<I>n(unr)> Ky = —Mi/\ﬁn-

23Here7 we use the fact that

\/A171:i<1
p—1

since p > 5, so that

" 7‘,2 2— A7
< 1
/ ey =

241ndeed, we have in view of (C2)

since p > 5.
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This yields

H(kn)

where we have introduced the notation

2 p—1
p ((uﬁl <I>n(un7“)> - Q”W“)) Fin = Hp M.
Since H(AQ) = 0, we infer
H </£n - %AQ)

Recall the solution p to H(p) = 0 constructed in Lemma 2.3 such that (AQ, p) forms
a basis of solutions of H(w) = 0, then the solution to

fn

I

Jn-

H(w) = f
is given by
w (al +/ fpr/zdr'> AQ + <a2 —/ fAQr/er/> p-
0 0
We infer
p—1
fin = — AQ

<a1 + /07’ fnpr/zdr'> AQ + <a2 — /Or anQr/zdr/> p.

Since AQ is a smooth function at r = 0 with

2
AQ0)=——#0
Q) = == #0.
we infer from the Wronskian relation that p has the following asymptotic behavior

c
pr~—asr— 04
r

for some constant ¢ # 0, and hence, we must have ay = 0. Furthermore, since we
have

(nn - ]%11\@> (0) =0, AQ(0) = —— #0

p—1
we infer a1 = 0. Hence, we have

T T
</ fnpr'er’> AQ — </ anQr'er'> p-
0 0
In order to estimate f,,, recall from Corollary that we have
1 T o1
sup (I)n(r) - LQ - g o
r<ro

Mﬁ—l ,U/n

p—1
B} _
Kn 5 Q

This yields

sup

r<l0
— Hn

c+1
< Hn

<stn (D.1)

p—1
To

p ((M_ %(unr))p_l - @H(r))
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Also, we rewrite f,, as
P21 r 1 p—1 2P — 1,9
fo= (7 0un) ) - @) P e - P g (D2)

(im0 (50 ).

We start with the region 0 < r < 1. In view of the asymptotic behavior for AQ
and p:

AQ ~ 2
p_

andpwfasr—>0+,
1 r

we infer

Fon ——AQ‘ /]fn\r/dr—i— (/ ]fn]r'er>

Together with (D) and (D.2) and integrating by parts the term A(k, — (p —
1)/2AQ), we deduce

MsCJrl r
— —AQ' s ] |1 +/
T 0

Rn

)

p—l

-1
Ky — p_2 AQ|r

We infer
sc—i—l 9
Sup |kn — —AQ‘ gy (D.3)
0<r<1 p—1
In particular, this yields
1 1 9 Msc—i-l
[ s+ [Cnptat s i, (D.4)
0 0 To p—l

Next, we consider the region r > 1. Recall the asymptotic behavior at infinity of
AQ and p given by Lemma 2.3

AQ(r) ~ & sin (wlog(r) + C8)7 o)~ @ sin (wlog(r) + c10)

1 1
r2 r2

as r — 400,

where c7,c9 # 0, cg,c19 € R. We infer for r > 1

p—1 psett 1
nn—TAQ‘ < —i—,un \fn dr’ 1+ )1'
r)2

l\)\»—i
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After integrating by parts the term A(k, — (p — 1)/2AQ), and together with (D.])
and (D.2)), we deduce

—1
(1+ 7“)% Kn pTAQ‘
Msc‘i‘l r 1
s (Se) (1 [ (g e T g
—5T 1 \(14r)2 (I+7")2
To
Se+1 Sce+1 r -1 T,IQ
< ‘j’_‘_wn (1+7)%+ ’;’_‘_wn / in = 15 AQ‘ i’ |
rg "7 rg 77 1 (14177)2
This yields
1 p—1 2 py !
sup (1+7)2 |k ——5—AQ| < 5|1+ 52
1<r< ;2 2 To_ﬁ
which together with (D.3]) implies
-1 Sc—1
sup (1—1—7”)% /ﬁn—I)—AQ' < 21+ Fn >
0<r< e 2 rifﬁ
Hence, we have for n > N large enough
sup | 14+ — | |ono(r) — —AQ S 7o
0<r<rg Hn Mn

step 2 Proof of (BI9). Recall from Lemma B3] that we have for n > N large

enough
PN
sup <1+—>
0<r<ro Hn

Also, recall that

ennlr) ~ Lo EAQ (M>' S 2

AQ(r) ~ cy sm(wlogl(r) + cs) as 7 400

r2
and that rrg, < ro/p, introduced in Corollary denotes the last zero of AQ
before 7o/ py,. This yields

wlog(ryn) — wlog(yn) + cs — (Wlog(rag.n) + cs)| S 75

and hence
2
Tim = ﬂnTAQ,neO(TO) = MnTAQ,n(l + O(T(%))
Furthermore, since we have from the proof of Corollary that
e 30 < TAQn = —0
n fin’
and
Tom = MnrAQm(l + 0(7“8)),
we deduce
"n = Ton + O(r()
and

_2m
e wrg < Tin <70
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