
HAL Id: hal-01324005
https://hal.science/hal-01324005

Preprint submitted on 31 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON THE STABILITY OF TYPE I BLOW UP FOR
THE ENERGY SUPER CRITICAL HEAT EQUATION

Charles Collot, Pierre Raphaël, Jeremie Szeftel

To cite this version:
Charles Collot, Pierre Raphaël, Jeremie Szeftel. ON THE STABILITY OF TYPE I BLOW UP FOR
THE ENERGY SUPER CRITICAL HEAT EQUATION. 2016. �hal-01324005�

https://hal.science/hal-01324005
https://hal.archives-ouvertes.fr


ar
X

iv
:1

60
5.

07
33

7v
1 

 [
m

at
h.

A
P]

  2
4 

M
ay

 2
01

6

ON THE STABILITY OF TYPE I BLOW UP FOR THE ENERGY

SUPER CRITICAL HEAT EQUATION

CHARLES COLLOT, PIERRE RAPHAËL, AND JEREMIE SZEFTEL

Abstract. We consider the energy super critical semilinear heat equation

∂tu = ∆u+ up, x ∈ R
3, p > 5.

We first revisit the construction of radially symmetric self similar solutions per-
formed through an ode approach in [51], [2], and propose a bifurcation type
argument suggested in [3] which allows for a sharp control of the spectrum of
the corresponding linearized operator in suitable weighted spaces. We then show
how the sole knowledge of this spectral gap in weighted spaces implies the finite
codimensional non radial stability of these solutions for smooth well localized
initial data using energy bounds. The whole scheme draws a route map for the
derivation of the existence and stability of self similar blow up in non radial
energy super critical settings.

1. Introduction

1.1. Setting of the problem. We consider the focusing nonlinear heat equation
{
∂tu = ∆u+ |u|p−1u, (t, x) ∈ R× R

d,
u|t=0

= u0,
(1.1)

where p > 1. This model dissipates the total energy

E(u) =
1

2

∫
|∇u|2 − 1

p+ 1

∫
up+1,

1

2

dE

dt
= −

∫
(∂tu)

2 < 0 (1.2)

and admits a scaling invariance: if u(t, x) is a solution, then so is

uλ(t, x) = λ
2

p−1u(λ2t, λx), λ > 0. (1.3)

This transformation is an isometry on the homogeneous Sobolev space

‖uλ(t, ·)‖Ḣsc = ‖u(t, ·)‖Ḣsc for sc =
d

2
− 2

p− 1
.

We address in this paper the question of the existence and stability of blow up
dynamics in the energy super critical range sc > 1 emerging from well localized
initial data.

1.2. Type I and type II blow up. There is a large litterature devoted to the
question of the description of blow up solutions for (1.1) and we recall some key
facts related to our analysis.

Type I blow-up. The universal scaling lower bound on blow up rate

‖u(t, ·)‖L∞ &
1

(T − t)
1

p−1
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is saturated by Type I singularities:

‖u(t, ·)‖L∞ ∼ 1

(T − t)
1

p−1

.

These solutions concentrate to leading order a blow up profile

u(t, x) ∼ 1

λ(t)
2

p−1

v

(
x

λ(t)

)
, λ(t) =

√
T − t,

which solves the non linear elliptic equation

∆v − 1

2
Λv + vp = 0, Λv =

2

p− 1
v + y · ∇v. (1.4)

There are three known classes of radial solutions to (1.4):

• the constant solution

κ =

(
1

p− 1

) 1
p−1

which generates the stable ODE type blow up [20, 21, 22, 23, 39, 40];
• the singular at the origin homogeneous self similar solution

Φ∗ =
c∞

|x|
2

p−1

, c∞ =

(
2

p− 1

(
d− 2− 2

p− 1

)) 1
p−1

; (1.5)

• for

1 +
4

d− 2
< p < pJL =

{
+∞ for d ≤ 10,
1 + 4

d−4−2
√
d−1

for d ≥ 11, (1.6)

where pJL is the so called Joseph-Lundgren exponent, there exists a quan-
tized sequence of smooth radially symmetric solutions Φn to (1.4) which
behave like

Φn(r) ∼
cn

r
2

p−1

as r → +∞.

These solutions have been constructed using global Lyapounov functionals
based ODE methods, [30, 51, 1, 2], and a sharp condition for their existence
in the radial positive class is given in [44].

Note that all these profiles have infinite energy and it is not clear how they may
participate in singularity formation emerging from smooth well localized initial data.
In the radially symmetric setting, the series of breakthrough works [35, 36] gives
partial answers showing the universality of the ODE blow up, and the possiblity
of threshold dynamics with Φ∗ or Φn regimes depending on the value of p. The
analysis however is strongly restricted to the radial setting and uses the intersection
number Lyapounov functionals based on the maximum principle. In particular this
approach does not provide any insight into the direct construction of these blow up
profiles and their dynamical stability in the non radial setting.

Type II blow-up. For p > pJL, there exist type II blow-up solutions

limt→T ‖u(t)‖L∞(T − t)
1

p−1 = +∞.

They appear in the radial setting as threshold dynamics again at the boundary of the
ODE blow up set, [37], and dynamical proofs were proposed in [25, 43, 45]. Their
construction has been revisited in [42, 6] in the setting of dispersive Schrödinger
and wave equations, and in [7] for the non radial heat equation, to produce the full
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quantized sequence of smooth type II blow up bubbles. The blow-up profile near
the singularity is a stationary profile:

u(t, x) ∼ 1

λ(t)
2

p−1

Q

(
x

λ(t)

)
, λ(t) ≪

√
T − t

where Q solves the soliton equation:

∆Q+Qp = 0. (1.7)

The heart of the analysis is to control the flow near Q using suitable energy es-
timates, hence avoiding maximum principle tools or spectral arguments. Type II
is intimately connected to the singular self similar profile (1.5), see [25, 42] for a
discussion on this fundamental matter.

1.3. Statement of the result. Our aim in this paper is to propose a robust ap-
proach for both the existence and stability of self similar blow up with smooth self
similar Φn like profile. For the sake of simplicity, we restrict ourselves to

d = 3, p > 5, pJL = +∞. (1.8)

We first revisit the construction of self similar blow up solutions of [51, 2] and
implement an abstract bifurcation argument which relies on the sole existence of
the stationary profile Q given by (1.7). Note that this kind of argument is classical
in the ODE literature, see for example [1, 11, 9], and relies on the oscillatory nature
of the eigenfunctions of the linearized operator close to Φ∗ for p < pJL.

Proposition 1.1 (Existence and asymptotic of excited self similar solutions). As-

sume (1.8). For all n > N large enough, there exist a1 smooth radially symmetric

solution to the self similar equation (1.4) such that

ΛΦn vanishes exactly n times on (0,+∞).

Moreover, there exists a small enough constant r0 > 0 independent of n such that:

1. Behavior at infinity:

lim
n→+∞

sup
r≥r0

(
1 + r

2
p−1

)
|Φn(r)− Φ∗(r)| = 0. (1.9)

2. Behaviour at the origin: there exists a sequence µn > 0 with µn → 0 as n→ +∞
such that

lim
n→+∞

sup
r≤r0

∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
= 0. (1.10)

Hence these solutions realize a connection between the ground state behavior Q
at the origin, and the homogeneous self similar decay Φ∗ at infinity. We now claim
that these solutions are the blow up profile of a class of finite energy initial data
leaving on a non radial n codimensional manifold.

Theorem 1.2 (Finite codimensional stability of Φn). Assume (1.8). Let n > N
large enough. There exists a Lipschitz codimension n manifold2 of non radial initial

data with finite energy

u0 = χA0Φn + w0

where A0 ≫ 1 is large enough and w0 is small enough3

‖w0‖H2
ρ
+ ‖∆w0‖L2 + ‖w0‖Ḣsc ≪ 1, (1.11)

1locally unique in some suitable space
2see Proposition 4.9 for a precise statement of the Lipschitz regularity.
3See (1.18) and below for the definition of the weighted Sobolev space H2

ρ .
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such that the corresponding solution to (1.1) blows up in finite time 0 < T < +∞
with a decomposition

u(t, x) =
1

λ(t)
2

p−1

(Φn + v)

(
t,
x− x(t)

λ(t)

)

where:

1. Control of the geometrical parameters: the blow up speed is self similar

λ(t) =
√

(2 + o(1))(T − t) as t→ T

and the blow up point converges

x(t) → x(T ) as t→ T. (1.12)

2. Behaviour of Sobolev norms: there holds the asymptotic stability of the self

similar profile above scaling

lim
t→T

‖v(t)‖Ḣs = 0 for sc < s ≤ 2, (1.13)

the boundedness of norms below scaling

lim sup
t→T

‖u(t)‖Ḣs < +∞ for 1 ≤ s < sc, (1.14)

and the logarithmic growth of the critical norm

‖u(t)‖ ˙Hsc = cn(1 + ot→T (1))
√

|log(T − t)|, cn 6= 0. (1.15)

Comments on the results.

1. On the construction of self similar solutions. The construction of self similar
solutions has been performed in [51, 2] using a global Lyapounov functional ode ap-
proach. A very interesting variational approach has also been developed in [5, 19] in
the setting of the related wave map problem. But there are many classical problems
which lack both the variational structure and the monotonicity formulas, hence the
need for a more systematic approach typically connected in a way or another to a
bifurcation argument, which is the method we are implementing here. This proce-
dure has been applied in various settings, see for example [1, 11]. One advantage
is that the proof further allows for a control of the linearized operator near the bi-
furcated object. The prize to pay however is that we only get the bifurcated family
locally near the bifurcation point, and not the whole branch4, in particular not the
fundamental mode. A closely related theorem is the construction [29] for the KdV
equation near the critical exponent.

2. Stability of self similar blow up. There is an important literature devoted to the
stability of self similar solutions for both parabolic and dispersive problems. We aim
at developing a robust approach which will extend to more complicated systems.
Hence we avoid on purpose maximum principle like tools. In [13, 14, 15, 16], this
kind of question has also been addressed for the radially symmetric supercritical
wave map problem, Yang-Mills, wave equation and Yang-Mills heat flow. In those
works, the analysis requires a detailed description of the complex spectrum of the
linearized operator in suitable spaces which is a delicate matter, and seems to rely
heavily on the fact that in the cases under consideration, the self similar solution
has an explicit formula. Our approach is different: once we know the spectral gap
estimate with exponential weight which is an elementary consequence of either the

4unless one works for pJL − ε < p < pJL in which case the whole family could be bifurcated
along the same lines as for the supercritical gKdV equation performed in [29].
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variational characterization of the self similar solution as in [5], or the construction
of the solution by bifurcation as in the setting of Proposition 1.1, then the control of
the nonlinear flow follows by adapting the general strategy based on energy bounds
of [48, 42]. In fact, the exponential decay bounds behind (1.13) considerably simplify
the analysis with respect to the study of type II blow up. The connexion with type
II blow up has been made in [26] using exponential weights again, and the analysis
is indeed intrinsically more involved. This energy method in weighted spaces also
draws a natural connexion with the analysis of ODE type I blow up for both the heat
and the wave equation [21, 39, 41]. Note also that we assume (1.8) for the sake of
simplicity only5. The solutions of Theorem 1.2 will be obtained using first a by now
classical Brouwer like topological argument [10, 42], which is then complemented by
a local uniqueness statement to construct the Lipschitz manifold as in [6, 33, 28, 17].

3. The flow near the ground state. The question of the classification of the flow
near the special class of stationary solutions Q has attracted a considerable at-
tention in the past ten years in connection with the construction of the unstable
manifold [46], or the complete classification of the flow near Q in energy subcritical
[46, 34] and critical settings [8]. The corresponding instabilities are central in the
derivation of unstable type II blow up bubbles, [42]. From (1.10), the self similar
solution ressembles the solitary wave Q up to scaling near the origin, and hence
the stability Theorem 1.2 can be viewed as describing one instability of the soli-
tary wave solution in a suitable function space. Here a fundamental issue is that
the linearized operator H = −∆ − pQp−1 is unbounded from below in the sense of
quadratic forms for p < pJL. This is a major difference with respect to the case
p > pJL where H > 0. Our analysis in this paper shows how the nonlinear bi-
furcated solution Φn precisely allows for the suitable modification of the linearized
operator which fixes this unboundedness from below of H. One also observes the
same behaviour of Sobolev norms (1.13), (1.14) as in [42] which illustrates the deep
non trivial structure in space of the associated blow up scenario6. Let us also stress
that the nature of our energy like non linear estimates goes far beyond the stability
issues of specific dynamics, and has allowed in [34] in a dispersive setting and [8]
in the parabolic setting for a complete description of the flow near the ground states.

This paper and [48, 42, 6, 7] hence display a deep unity and design a route map
based on robust energy estimates for the proof of the existence and stability of type
I or type II blow up bubbles in both radial and non radial settings.

Acknowledgements. All three authors are supported by the ERC-2014-CoG 646650
SingWave. P.R. is a junior member of the Institut Universitaire de France.

Notations. From now on and for the rest of this paper we fix

d = 3, p > 5.

The ground state expansion. We let Φ∗ given by (1.5) be the unique radial homoge-
nous self similar solution to (1.4). We let Q(r) denote the unique radially symmetric
solution to {

Q′′ + 2
r
Q′ +Qp = 0,

Q(0) = 1, Q′(0) = 0,

5Raising dimensions causes the nonlinearity to become non smooth since limd→+∞ pJL = 1 and
hence would lead to additional but manageable technical difficulties.

6and hence its relevance in particular for more geometric problems like the harmonic heat flow
of surfaces.
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which asymptotic behavior at infinity is from standard ODE argument7 given by

Q(r) = (1 + or→+∞(1))Φ∗(r).

The next term is this expansion relates to the pJL exponent (1.6) which is infinite
in dimension d = 3. Hence the quadratic polynomial

γ2 − γ + pcp−1
∞ = 0

has complex roots

γ =
1

2
± iω, ∆ := 1− 4pcp−1

∞ < 0, ω :=

√
−∆

2
(1.16)

and the asymptotic behavior of Q may be precised8:

Q(r) = Φ∗(r) +
c1 sin (ωlog(r) + c2)

r
1
2

+ o

(
1

r
1
2

)
as r → +∞ (1.17)

where c1 6= 0 and c2 ∈ R. Note that

1

2
− 2

p− 1
= sc − 1 > 0

so that the second term in the expansion of Q is indeed a correction term.

Weighted spaces. We define the derivation operator

Dk :=

{
∆m for m = 2k,
∇∆k for m = 2k + 1.

We define the scalar product

(f, g)ρ =

∫

R3

f(x)g(x)ρdx, ρ = e−
|x|2
2 (1.18)

and let L2
ρ be the corresponded weighted L2 space. We let Hk

ρ be the completion of

C∞
c (Rd) for the norm

‖u‖Hk
ρ
=

√√√√
k∑

j=0

‖Dju‖2
L2
ρ
.

Linearized operators. The scaling semi-group on functions u : Rd → R:

uλ(x) := λ
2

p−1u(λx) (1.19)

has for infinitesimal generator the linear operator

Λu :=
2

p− 1
u+ x.∇u =

∂

∂λ
(uλ)|λ=1.

We define the linearized operator corresponding to (1.4) around respectively Φ∗ and
Φn by

L∞ := −∆+Λ− pcp−1
∞
r2

, Ln := −∆+Λ− pΦp−1
n

and their projection onto spherical harmonics:

L∞,m := −∂rr −
2

r
∂r +

2

p− 1
+ r∂r +

m(m+ 1)

r2
− pΦp−1

∗ , m ∈ N,

Ln,m := −∂rr −
2

r
∂r +

2

p− 1
+ r∂r +

m(m+ 1)

r2
− pΦp−1

n , m ∈ N.

7see [12, 27, 31].
8see [12, 27, 31].
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Note that L∞ is formally self adjoint for the L2
ρ scalar product but (1.16) implies

that the associated quadratic form is not bounded from below9 on H1
ρ . We similarly

define the linearized operator corresponding to (1.7) around Q:

H := −∆− pQp−1

Hm := −∂rr −
2

r
∂r +

m(m+ 1)

r2
− pQp−1, m ∈ N.

and again H is not bounded from below on Ḣ1.

General notation. We let χ(x) denote a smooth radially symmetric function with

χ(x) :=

{
1 for |x| ≤ 1

4 ,

0 for |x| ≥ 1
2 ,

and for A > 0 (note the difference with (1.19)),

χA(x) = χ
( x
A

)
.

Organization of the paper. This paper is organized as follows. In section 2, we
construct the family of self similar solutions Φn using a nonlinear matching argu-
ment. The argument is classical, but requires a careful track of various estimates to
obtain the sharp bounds (1.9), (1.10). In section 3, we show how these bounds cou-
pled with Sturm-Liouville like arguments allow for a sharp counting of the number
of instabilities of the linearized operator close to Φn which is self adjoint against
the confining measure ρ(y)dy, Proposition 3.1. In section 4, we turn to the heart of
the dynamical argument and show how the spectral estimates in the weighted space
coupled with the control of the super critical Ḣ2 norm design a stability zone for
well localized initial data.

2. Construction of self-similar profiles

Our aim in this section is to construct radially symmetric solutions to the self
similar equation

∆v − Λv + vp = 0, (2.1)

by using the classical strategy of gluing solutions which behave like Φ∗ at infinity,
and like Q at the origin. As in [3, 11, 1], the matching is made possible by the
oscillatory behaviour (1.17) for p < pJL. The strength of this approach it that it
relies on the implicit function theorem and not on fine monotonicity properties, and
in this sense it goes far beyond the scalar parabolic setting, see for example [29]
for a deeply related approach. The sharp control of the obtained solution (1.9),
(1.10) will allow us to control the eigenvalues of the associated linearized operator
in suitable exponentially weighted spaces, see Proposition 3.1.

2.1. Exterior solutions. Recall that Φ∗ given by (1.5) is a solution to (2.1) on
(0,+∞). Our aim in this section is to construct the full family of solutions to (2.1)
on [r0,+∞) for some small r0 > 0 with the suitable behaviour at infinity. The
argument is a simple application of the implicit function theorem and continuity
properties of the resolvent of L∞ in suitable weighted spaces.

9this is a limit point circle case as r → 0, [49].
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Given 0 < r0 < 1, we define Xr0 as the space of functions on (r0,+∞) such that
the following norm is finite

‖w‖Xr0
= sup

r0≤r≤1
r

1
2 |w|+ sup

r≥1
r

2
p−1

+2|w|.

Lemma 2.1 (Outer resolvent of L∞). 1. Basis of fundamental solutions: there

exists two solutions ψ1 and ψ2 of

L∞(ψj) = 0 for j = 1, 2 on (0,+∞) (2.2)

with the following asymptotic behavior:

ψ1 =
1

r
2

p−1

(
1 +O

(
1

r2

))
, ψ2 = r

2
p−1

−3
e

r2

2

(
1 +O

(
1

r2

))
, as r → +∞ (2.3)

and

ψ1 =
c3 sin (ωlog(r) + c4)

r
1
2

+O
(
r

3
2

)
, ψ2 =

c5 sin (ωlog(r) + c6)

r
1
2

+O
(
r

3
2

)
as r → 0

(2.4)
where c3, c5 6= 0 and c4, c6 ∈ R. Moreover, there exists c 6= 0 such that

Λψ1 =
c

r
2

p−1
+2

(
1 +O

(
1

r2

))
as r → +∞. (2.5)

2. Continuity of the resolvent: let the inverse

T (f) =

(∫ +∞

r

fψ2r
′2e−

r′2
2 dr′

)
ψ1 −

(∫ +∞

r

fψ1r
′2e−

r′2
2 dr′

)
ψ2,

then

L∞(T (f)) = f

and

‖T (f)‖Xr0
.

∫ 1

r0

|f |r′
3
2dr′ + sup

r≥1
r

2
p−1

+2|f |. (2.6)

Proof. The proof is classical and we sketch the details for the reader’s convenience.

step 1 Basis of homogeneous solutions. Recall (1.16). Let the change of variable
and unknown

ψ(r) =
1

y
γ
2

φ(y), y = r2,

then

∂r = 2r∂y, ∂2r = 4r∂y(r∂y) = 4r2∂2y + 4r∂y(r)∂y = 4y∂2y + 2∂y, r∂r = 2y∂y.

This yields

L∞(ψ) =

(
−4y∂2y − 2∂y − 4∂y +

2

p− 1
+ 2y∂y −

pcp−1
∞
y

)(
1

y
γ
2

φ(y)

)
.

Since

∂y

(
1

y
γ
2

φ(y)

)
=

1

y
γ
2

φ′(y)− γ

2y
γ
2
+1
φ(y),

∂2y

(
1

y
γ
2

φ(y)

)
=

1

y
γ
2

φ′′(y)− γ

y
γ
2
+1
φ′(y) +

γ

2

(γ
2
+ 1
) 1

y
γ
2
+2
φ(y),
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we infer

L∞(ψ) =

{
− 4y

(
1

y
γ
2

φ′′(y)− γ

y
γ
2
+1
φ′(y) +

γ

2

(γ
2
+ 1
) 1

y
γ
2
+2
φ(y)

)

+ (−6 + 2y)

(
1

y
γ
2

φ′(y)− γ

2y
γ
2
+1
φ(y)

)
+

(
2

p− 1
− pcp−1

∞
y

)
1

y
γ
2

φ(y)

}

=
1

y
γ
2

{
− 4yφ′′(y) +

(
4γ − 6 + 2y)

)
φ′(y)

+

(
2

p− 1
− γ +

(
3γ − γ (γ + 2)− pcp−1

∞
) 1
y

)
φ(y)

}
.

Since γ satisfies

γ2 − γ + pcp−1
∞ = 0,

we infer

L∞(ψ) = − 4

y
γ
2

{
yφ′′(y) +

(
−γ +

3

2
− y

2

)
φ′(y) +

1

4

(
− 2

p− 1
+ γ

)
φ(y)

}
.

We change again variable by setting

φ(y) = w(z), z =
y

2
.

We have

φ′(y) =
1

2
w′(z), φ′′(y) =

1

4
w′′(z)

and obtain

L∞(ψ) = − 2

y
γ
2

(
zw′′(z) +

(
−γ +

3

2
− z

)
w′(z) −

(
1

p− 1
− γ

2

)
w(z)

)
.

Thus, L∞(ψ) = 0 if and only if

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0 (2.7)

where we have used the notations

a =
1

p− 1
− γ

2
, b = −γ +

3

2
. (2.8)

(2.7) is known as Kummer’s equation. As long as a is not a negative integer - which
holds in particular for our choice of a in (2.8) -, a basis of solutions to Kummer’s
equation consists of the Kummer’s function M(a, b, z) and the Tricomi function
U(a, b, z). These special functions have the following asymptotic behavior for z ≥ 0
(see for example [47])

M(a, b, z) =
Γ(b)

Γ(a)
za−bez(1 +O(z−1)), U(a, b, z) = z−a(1 +O(z−1)) as z → +∞,

(2.9)

M(a, b, z) = 1 +O(z) as z → 0, (2.10)

and10 for 1 ≤ ℜ(b) < 2 with b 6= 1,

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +

Γ(1− b)

Γ(a− b+ 1)
+O(z2−ℜ(b)) as z → 0. (2.11)

10Note that our choice of b in (2.8) is such that ℜ(b) = 1 and b 6= 1.
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Since w is a linear combination of M(a, b, z) and U(a, b, z), we immediately infer
from (2.9), (2.10) and (2.11) the asymptotic of w both as z → +∞ and z → 0+.
Finally, since

ψ(r) =
1

rγ
w

(
r2

2

)
,

we infer from the asymptotic of w the claimed asymptotic for ψ both as r → +∞
and r → 0+. This concludes the proof of (2.3), (2.4).

step 2 Estimate on the resolvent. The Wronskian

W := ψ′
1ψ2 − ψ′

2ψ1.

satisfies

W ′ =

(
−2

r
+ r

)
W, W =

C

r2
e

r2

2

where we may without loss of generality assume C = 1. We then solve

L∞(w) = f

using the variation of constants which yields

w =

(
a1 +

∫ +∞

r

fψ2r
′2e−

r′2
2 dr′

)
ψ1 +

(
a2 −

∫ +∞

r

fψ1r
′2e−

r′2
2 dr′

)
ψ2. (2.12)

In particular, T (f) corresponds to the choice a1 = a2 = 0 and thus satisfies

L∞(T (f)) = f.

Next, we estimate T (f) using the asymptotic behavior (2.3) and (2.4) of ψ1 and
ψ2 as r → 0+ and r → +∞. For r ≥ 1, we have

r
2

p−1
+2|T (f)|

= r
2

p−1
+2

∣∣∣∣
(∫ +∞

r

fψ2r
′2e−

r′2
2 dr′

)
ψ1 −

(∫ +∞

r

fψ1r
′2e−

r′2
2 dr′

)
ψ2

∣∣∣∣

. r2
(∫ +∞

r

|f |r′
2

p−1
−1
dr′
)
+ r

4
p−1

−1
e

r2

2

(∫ +∞

r

|f | 1

r′
2

p−1

r′2e−
r′2
2 dr′

)

.

{
sup
r>1

(
r2
(∫ +∞

r

dr′

r′3

)
+ r

4
p−1

−1e
r2

2

(∫ +∞

r

r′−
4

p−1 e−
r′2
2 dr′

))}
sup
r≥1

r
2

p−1
+2|f |

. sup
r≥1

r
2

p−1
+2|f |.

Also, for r0 ≤ r ≤ 1, we have

r
1
2

∣∣∣∣
(∫ +∞

r

fψ2r
′2e−

r′2
2 dr′

)
ψ1 −

(∫ +∞

r

fψ1r
′2e−

r′2
2 dr′

)
ψ2

∣∣∣∣

.

∫ 1

r

|f |r′
3
2dr′ +

∫ +∞

1
r′

2
p−1

−1|f |dr′ .
∫ 1

r0

|f |r′
3
2dr′ + sup

r≥1
r

2
p−1

+2|f |

and (2.6) is proved.

step 3 Refined control of ψ1. We now turn to the proof of (2.5). We decompose

ψ1 =
1

r
2

p−1

+ ψ̃1. (2.13)

Since L∞(ψ1) = 0, we infer

L∞(ψ̃1) = f
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where f is given by

f = −L∞

(
1

r
2

p−1

)
= ∂2r

(
1

r
2

p−1

)
+

2

r
∂r

(
1

r
2

p−1

)
+
pcp−1

∞
r2

1

r
2

p−1

=
2(p − 3)

p− 1)

1

r
2

p−1
+2
.

In view of (2.12), we infer

ψ̃1 =


a1 +

2(p− 3)

p− 1)

∫ +∞

r

ψ2
e−

r′2
2

r′
2

p−1

dr′


ψ1 +


a2 −

2(p − 3)

p− 1

∫ +∞

r

ψ1
e−

r′2
2

r′
2

p−1

dr′


ψ2.

On the other hand, we deduce from the asymptotic behavior of ψ1

ψ̃1 = o

(
1

r
2

p−1

)
as r → +∞.

In view of the asymptotic behavior of ψ1 and ψ2 as r → +∞, this forces a1 = a2 = 0
and hence

ψ̃1 =
2(p − 3)

p− 1



∫ +∞

r

ψ2
e−

r′2
2

r′
2

p−1

dr′


ψ1 −

2(p − 3)

p− 1



∫ +∞

r

ψ1
e−

r′2
2

r′
2

p−1

dr′


ψ2.

Then, applying Λ to both sides, and using the asymptotic behavior of ψ1 and ψ2 as
r → +∞ yields

Λψ̃1 =
c

r
2

p−1
+2

(
1 +O

(
1

r2

))
as r → +∞

for some constant11 c 6= 0. Injecting this into (2.13) yields

Λψ1 = Λψ̃1 =
c

r
2

p−1
+2

(
1 +O

(
1

r2

))
as r → +∞

for some constant c 6= 0 and concludes the proof of Lemma 2.1. �

We are now in position to construct the family of outer self similar solutions as
a classical consequence of the implicit function theorem.

Proposition 2.2 (Exterior solutions). Let 0 < r0 < 1 a small enough universal

constant. For all

0 < ε≪ rsc−1
0 , (2.14)

there exists a solution u to

∆u− Λu+ up = 0 on (r0,+∞) (2.15)

of the form

u = Φ∗ + εψ1 + εw

with the bounds:

‖w‖Xr0
. εr1−sc

0 , ‖Λw‖Xr0
. εr1−sc

0 . (2.16)

Furthermore,

w|ε=0
= 0 and ‖∂εw|ε=0

‖Xr0
. r1−sc

0 .

11Actually, c is explicitly given by

c = −p− 3

p− 1
6= 0.
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Proof. This a classical consequence of Lemma 2.1.

step 1. Setting up the Banach fixed point. Let v such that

u = Φ∗ + εv,

then u solves (2.15) iff:

L∞(v) = ε
p(p − 1)

2
Φp−2
∗ v2 + εF (Φ∗, v, ε) on r > r0,

where

F (Φ∗, v, ε) =
1

ε2

(
(Φ∗ + εv)p − Φp

∗ − pΦp−1
∗ εv − p(p− 1)

2
Φp−2
∗ ε2v2

)
.

Furthermore, we decompose
v = ψ1 + w

and hence, using in particular the fact that L∞(ψ1) = 0, w is a solution to

L∞(w) = p(p− 1)εG[Φ∗, ψ1, ε]w on r > r0

where we defined the map:

G[Φ∗, ψ1, ε]w =

(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w))p−2ds

)
(ψ1 + w)2.

We claim the non linear bounds: assume that

‖w‖Xr0
≤ 1,

then ∫ 1

r0

|G[Φ∗, ψ1, ε]w|r′
3
2dr′ + sup

r≥1
r

2
p−1

+2|G[Φ∗, ψ1, ε]w| . r1−sc
0 (2.17)

and ∫ 1

r0

|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2|r′
3
2 dr′

+sup
r≥1

r
2

p−1
+2|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2|

. r1−sc
0 ‖w1 − w2‖Xr0

. (2.18)

Assume (2.17), (2.18), then we look for w as the solution of the following fixed point

w = εp(p− 1)T
(
G[Φ∗, ψ1, ε]w

)
, w ∈ Xr0 . (2.19)

In view of the assumption εr1−sc
0 ≪ 1, the continuity estimate on the resolvent (2.6)

and the nonlinear estimates (2.17), (2.18), the Banach fixed point theorem applies
and yields a unique solution w to (2.19) with

‖w‖Xr0
. εr1−sc

0 .

Differentiating (2.19) in space, we immediately infer

‖Λw‖Xr0
. εr1−sc

0 .

Finally, we compute w|ε=0
and ∂εw|ε=0

. In view of (2.19), we have

w|ε=0
= 0.

Also, we have

∂εw = p(p − 1)T
(
G[Φ∗, ψ1, ε]w

)
+ εp(p− 1)T

(
∂εG[Φ∗, ψ1, ε]w

)
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and hence

∂εw|ε=0
= p(p− 1)T

(
G[Φ∗, ψ1, ε]w

)
|ε=0

.

We have

G[Φ∗, ψ1, ε]w|ε=0
=

(∫ 1

0
(1− s)Φp−2

∗ ds

)
ψ2
1 =

1

2
Φp−2
∗ ψ2

1

which yields

∂εw|ε=0
=
p(p− 1)

2
T
(
Φp−2
∗ ψ2

1

)
.

The continuity estimate (2.6) and the asymptotic behavior of ψ1 (2.3) (2.4) yield

‖∂εw|ε=0
‖Xr0

. r1−sc
0 .

step 2 Proof of the nonlinear estimates (2.17), (2.18). Note first that in view of
Lemma 2.1 and the definition of ‖ · ‖Xr0

, we have for r0 ≤ r ≤ 1,

|w(r)|+ |ψ1(r)| . r−
1
2 = r

1− 2
p−1

−sc . r1−sc|Φ∗(r)| ≤ r1−sc
0 |Φ∗(r)|

while for r ≥ 1, we have

|w(r)|+ |ψ1(r)| . |Φ∗(r)|,

and hence, our choice of ε yields for all r ≥ r0

ε|ψ1(r)|+ ε|w(r)| . |Φ∗(r)|.

Next, we estimate G[Φ∗, ψ1, ε]w. For r0 ≤ r ≤ 1, we have

|G[Φ∗, ψ1, ε]w| ≤ (|Φ∗(r)|+ ε(|ψ1(r)|+ |w(r)|))p−2(|ψ1(r)|+ |w(r)|)2

. |Φ∗(r)|p−2(|ψ1(r)|+ |w(r)|)2 .

(
1

r
2

p−1

)p−2( 1

r
1
2

)2

(1 + ‖w‖Xr0
)2 . r

2
p−1

−3

and hence
∫ 1

r0

|G[Φ∗, ψ1, ε]w|r′
3
2dr′ .

(∫ 1

r0

r′−scdr′
)

. r1−sc
0 .

Also, for r ≥ 1, we have

|G[Φ∗, ψ1, ε]w| ≤ (|Φ∗(r)|+ ε(|ψ1(r)|+ |w(r)|))p−2(|ψ1(r)|+ |w(r)|)2

.

(
1

r
2

p−1

)p

(1 + ‖w‖Xr0
)2 .

1

r
2+ 2

p−1

and hence

sup
r≥1

r
2

p−1
+2|G[Φ∗, ψ1, ε]w| . 1
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and (2.17) is proved. We now prove the contraction estimate:

G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2

=

(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w1))

p−2ds

)
(ψ1 + w1)

2

−
(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w2))

p−2ds

)
(ψ1 + w2)

2

=

(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w1))

p−2ds

)(
(ψ1 + w1)

2 − (ψ1 + w2)
2
)

+

(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w1))

p−2ds

−
∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w2))

p−2ds

)
(ψ1 + w2)

2

=

(∫ 1

0
(1− s)(Φ∗ + sε(ψ1 + w1))

p−2ds

)(
2ψ1 + w1 + w2

)
(w1 − w2)

+ (p− 2)

(∫ 1

0
s(1− s)

∫ 1

0
(Φ∗ + sε(ψ1 + w1) + σsε(w2 − w1))

p−3dσds

)

× (ψ1 + w2)
2ε(w1 −w2)

and hence

|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2|
. (|Φ∗(r)|+ ε(|ψ1(r)|+ |w1(r)|))p−2

(
|ψ1(r)|+ |w1(r)|+ |w2(r)|

)
|w1(r)− w2(r)|

+(|Φ∗(r)|+ ε(|ψ1(r)|+ |w1(r)|))p−3(|ψ1(r)|+ |w2(r)|)2ε|w1(r)−w2(r)|
.

{
|Φ∗(r)|p−2(|ψ1(r)|+ |w1(r)|+ |w2(r)|) + ε|Φ∗(r)|p−3(|ψ1(r)|+ |w2(r)|)2

}
|w1(r)− w2(r)|.

For r0 ≤ r ≤ 1, we have

∣∣∣G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2

∣∣∣

.

(
1

r
2

p−1

)p−2( 1

r
1
2

)2

(1 + ‖w1‖Xr0
+ ‖w2‖Xr0

)‖w1 − w2‖Xr0

+ ε

(
1

r
2

p−1

)p−3( 1

r
1
2

)3

(1 + ‖w1‖Xr0
+ ‖w2‖Xr0

)2‖w1 − w2‖Xr0

.
(
r

2
p−1

−3
+ εr

4
p−1

− 7
2

)
‖w1 − w2‖Xr0

and hence

∫ 1

r0

|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2|r′
3
2dr′

.

(∫ 1

r0

r′−scdr′ + ε

∫ 1

r0

r′1−2scdr′
)
‖w1 − w2‖Xr0

. r1−sc
0 (1 + εr1−sc

0 )‖w1 − w2‖Xr0
. r1−sc

0 ‖w1 − w2‖Xr0
.
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Similarly, for r ≥ 1,

|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2|

.

(
1

r
2

p−1

)p

(1 + ‖w1‖Xr0
+ ‖w2‖Xr0

)3‖w1 − w2‖Xr0

.
1

r2+
2

p−1

‖w1 − w2‖Xr0

and hence

sup
r≥1

r
2

p−1
+2|G[Φ∗, ψ1, ε]w1 −G[Φ∗, ψ1, ε]w2| . ‖w1 − w2‖Xr0

.

This concludes the proof of (2.17), (2.18) and of Proposition 2.2. �

2.2. Constructing interior self-similar solutions. We now construct the family
of inner solutions to (2.1) in [0, r0] which after renormalization bifurcate from the
stationary equation and the ground state solution Q.

We start with the continuity of the resolvent of the linearized operator H close to
Q in suitable weighted spaces. Given r1 ≫ 1, we define Yr1 as the space of functions
on (0, r1) such that the following norm is finite

‖w‖Yr1
= sup

0≤r≤r1

(1 + r)−
3
2 (|w|+ r|∂rw|).

Lemma 2.3 (Interior resolvent of H). 1. Basis of fundamental solutions: we have

H(ΛQ) = 0, Hρ = 0

with the following asymptotic behavior as r → +∞

ΛQ(r) =
c7 sin (ωlog(r) + c8)

r
1
2

+O

(
1

rsc−
1
2

)
, ρ(r) =

c9 sin (ωlog(r) + c10)

r
1
2

+O

(
1

rsc−
1
2

)
,

where c7, c9 6= 0, c8, c10 ∈ R.

2. Continuity of the resolvent: let the inverse

S(f) =
(∫ r

0
fρr′2dr′

)
ΛQ−

(∫ r

0
fΛQr′2dr′

)
ρ

then

‖S(f)‖Yr1
. sup

0≤r≤r1

(1 + r)
1
2 |f |. (2.20)

Proof. step 1 Fundamental solutions. Define

Qλ(r) = λ
2

p−1Q(λr), λ > 0,

then

∆Qλ +Qp
λ = 0 for all λ > 0

and differentiating w.r.t. λ and evaluating at λ = 1 yields

H(ΛQ) = 0.

Let ρ be another solution to H(ρ) = 0 which does not depend linearly on ΛQ, we
aim at deriving the asymptotic of both ΛQ and ρ as r → +∞.
Limiting problem We first solve

− ∂2rϕ− 2

r
∂rϕ− pcp−1

∞
r2

ϕ = f. (2.21)
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The homogeneous problem admits the explicit basis of solutions

ϕ1 =
sin(ωlog(r))

r
1
2

, ϕ2 =
cos(ωlog(r))

r
1
2

, (2.22)

and the corresponding Wronskian is given by

W (r) = ϕ′
1(r)ϕ2(r)− ϕ′

2(r)ϕ1(r) =
ω

r2
.

Using the variation of constants, the solutions to (2.21) are given by

ϕ(r) =

(
a1,0 +

∫ +∞

r

fϕ2
r′2

ω
dr′
)
ϕ1 +

(
a2,0 −

∫ +∞

r

fϕ1
r′2

ω
dr′
)
ϕ2.

Inverting H. We now claim that all solutions to H(φ) = 0 admit an expansion

φ(r) = a1,0ϕ1 + a2,0ϕ2 +O

(
1

rsc−
1
2

)
as r → +∞. (2.23)

Indeed, we rewrite the equation

−∂2rφ− 2

r
∂rφ− pcp−1

∞
r2

φ = f, f = p

(
Qp−1(r)− cp−1

∞
r2

)
φ(r),

and hence

φ = a1,0ϕ1 + a2,0ϕ2 + φ̃, φ̃ = F
(
φ̃
)

(2.24)

where

F
(
φ̃
)
(r) = −

(∫ +∞

r

p

(
Qp−1(r′)− cp−1

∞
r′2

)(
a1,0ϕ1 + a2,0ϕ2 + φ̃

)
(r′)ϕ2

r′2

ω
dr′
)
ϕ1

+

(∫ +∞

r

p

(
Qp−1(r′)− cp−1

∞
r′2

)(
a1,0ϕ1 + a2,0ϕ2 + φ̃

)
(r′)ϕ1

r′2

ω
dr′
)
ϕ2.

Recall that

Q(r) =
c∞

r
2

p−1

+O

(
1

r
1
2

)
as r → +∞

so that ∣∣∣∣∣p
(
Qp−1(r)− cp−1

∞
r2

)∣∣∣∣∣ .
1

r1+sc
for r ≥ 1.

We infer for r ≥ 1
∣∣∣F
(
φ̃
)
(r)
∣∣∣ .

1

r
1
2

(∫ +∞

r

(
1

r′sc
+

1

r′sc−
1
2

∣∣∣φ̃
∣∣∣ (r′)

)
dr′
)

.
1

rsc−
1
2

+
1

r
1
2

(∫ +∞

r

1

r′sc−
1
2

∣∣∣φ̃
∣∣∣ (r′)dr′

)

and
∣∣∣F
(
φ̃1

)
(r)−F

(
φ̃2

)
(r)
∣∣∣ .

1

r
1
2

(∫ +∞

r

1

r′sc−
1
2

∣∣∣φ̃1 − φ̃2

∣∣∣ (r′)dr′
)
.

Thus, for R ≥ 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

sup
r≥R

rsc−
1
2

∣∣∣φ̃
∣∣∣ (r)
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and yields a unique solution φ̃ to (2.24) with

sup
r≥R

rsc−
1
2

∣∣∣φ̃
∣∣∣ (r) ≤ 1,

and (2.23) is proved.
In particular, in view of the explicit formula (2.22) for ϕ1 and ϕ2, and in view of
the fact that H(ΛQ) = 0 and H(ρ) = 0, we infer as r → +∞

ΛQ(r) =
c7 sin (ωlog(r) + c8)

r
1
2

+O

(
1

rsc−
1
2

)
, ρ =

c9 sin (ωlog(r) + c10)

r
1
2

+O

(
1

rsc−
1
2

)

(2.25)
where c7, c9 6= 0, c8, c10 ∈ R.

step 2 Continuity of the resolvent. We compute

W := ΛQ′ρ− ρ′ΛQ, W ′ = −2

r
W, W =

−1

r2
,

without loss of generality. Still without loss of generality for R0 > 0 small enough
such that ΛQ > 0 on [0, R0] the integration of the Wronskian law yields

ρ = −ΛQ

∫ R0

r

1

(ΛQ)2r′2
dr′

on (0, R0] which ensures

|ρ(r)| . 1

r
, |∂rρ(r)| .

1

r2
as r → 0. (2.26)

We now solve

H(w) = f,

using the variation of constants which yields

w =

(
a1 +

∫ r

0
fρr′2dr′

)
ΛQ+

(
a2 −

∫ r

0
fΛQr′2dr′

)
ρ.

In particular, S(f) corresponds to the choice a1 = a2 = 0 and thus

H(S(f)) = f.

Finally, using the estimates (2.25), (2.26), we estimate for 0 ≤ r ≤ 1:

|S(f)| =
∣∣∣∣
(∫ r

0
fρr′2dr′

)
ΛQ−

(∫ r

0
fΛQr′2dr′

)
ρ

∣∣∣∣

.

(∫ r

0
r′dr′ +

1

r

∫ r

0
r′2dr′

)
sup

0≤r≤1
|f | . sup

0≤r≤r1

(1 + r)
1
2 |f |,

|r∂rS(f)| =
∣∣∣∣
(∫ r

0
fρr′2dr′

)
r∂rΛQ−

(∫ r

0
fΛQr′2dr′

)
r∂rρ

∣∣∣∣

.

(
r2
∫ r

0
r′dr′ +

1

r

∫ r

0
r′2dr′

)
sup

0≤r≤1
|f | . sup

0≤r≤r1

(1 + r)
1
2 |f |,
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and for 1 ≤ r ≤ r1:

(1 + r)−
3
2 |S(f)| = (1 + r)−

3
2

∣∣∣∣
(∫ r

0
fρr′2dr′

)
ΛQ−

(∫ r

0
fΛQr′2dr′

)
ρ

∣∣∣∣

. (1 + r)−2

(∫ r

0
f(1 + r′)

3
2dr′

)
. (1 + r)−2

(∫ r

0
(1 + r′)dr′

)
sup

0≤r≤r1

(1 + r)
1
2 |f |

. sup
0≤r≤r1

(1 + r)
1
2 |f |

(1 + r)−
3
2 |r∂rS(f)| = (1 + r)−

3
2

∣∣∣∣
(∫ r

0
fρr′2dr′

)
r∂rΛQ−

(∫ r

0
fΛQr′2dr′

)
r∂rρ

∣∣∣∣

. (1 + r)−2

(∫ r

0
f(1 + r′)

3
2dr′

)
. (1 + r)−2

(∫ r

0
(1 + r′)dr′

)
sup

0≤r≤r1

(1 + r)
1
2 |f |

. sup
0≤r≤r1

(1 + r)
1
2 |f |,

which concludes the proof of (2.20) and Lemma 2.3. �

We are now in position to build the family of interior solutions:

Proposition 2.4 (Construction of the interior solution). Let r0 > 0 small enough

and let 0 < λ ≤ r0. Then, there exists a solution u to

∆u− Λu+ up = 0 on 0 ≤ r ≤ r0

of the form

u =
1

λ
2

p−1

(Q+ λ2T1)
( r
λ

)

with

‖T1‖Y r0
λ

+ ‖ΛT1‖Y r0
λ

+ ‖Λ2T1‖Y r0
λ

. 1. (2.27)

Proof. This is again a classical consequence of Lemma 2.3.

step 1 Setting up the Banach fixed point. We look for u of the form

u =
1

λ
2

p−1

(Q+ λ2T1)
( r
λ

)

so that u solves ∆u− Λu+ up = 0 on [0, r0] if and only if

H(T1) = J [Q,λ2]T1 on 0 ≤ r ≤ r1

where

r1 =
r0
λ

≥ 1

so that
λ2r21 = r20 ≪ 1

and with

J [Q,λ2]T1 = −ΛQ− λ2ΛT1 + p(p− 1)λ2
(∫ 1

0
(1− s)(Q+ sλ2T1)

p−2ds

)
T 2
1 .

We claim the nonlinear estimates: assume ‖w‖Yr1
. 1, then

sup
0≤r≤r1

(1 + r)
1
2 |J [Q,λ2]w| . 1, (2.28)

sup
0≤r≤r1

(1 + r)
1
2 |J [Q,λ2]w1 − J [Q,λ2]w2| . r21λ

2‖w1 − w2‖Yr1
. (2.29)
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Assume (2.28), (2.29), we then look for T1 as the solution to the fixed point

T1 = S(J [Q,λ2]T1). (2.30)

In view of the bound λ2r21 ≪ 1, the resolvent estimate (2.20) and the nonlinear
estimates (2.28), (2.29), the Banach fixed point theorem applies and yields a unique
solution T1 to (2.30) which furthermore satisfies:

‖T1‖Y r0
λ

. 1.

step 2 Proof of (2.28), (2.29). Note first that for 0 ≤ r ≤ r1, we have

|w(r)| . (1 + r)
3
2 = r21(1 + r)−

1
2 . r21|Q(r)|.

Thus, we infer for all 0 ≤ r ≤ r1

λ2|w(r)| . λ2r21|Q(r)|

and hence, our choice of λ yields for all 0 ≤ r ≤ r1

λ2|w(r)| . |Q(r)|.

Next, we estimate J [Q,λ2]w. For 0 ≤ r ≤ r1, we have

|J [Q,λ2]w| ≤ |ΛQ|+ p(p− 1)λ2(|Q|+ λ2|w|)p−2|w|2 + λ2
∣∣∣∣
1

2
w + r∂rw

∣∣∣∣

. |ΛQ|+ λ2|Q|p−2|w|2 + λ2|1
2
w + r∂rw|

. (1 + r)−
1
2 + λ2(1 + r)

− 2(p−2)
p−1 (1 + r)3‖w‖2Yr1

+ λ2(1 + r)
3
2‖w‖2Yr1

. (1 + r)−
1
2

(
1 + λ2(1 + r)

2
p−1

+ 3
2 + λ2(1 + r)2

)

. (1 + r)−
1
2
(
1 + λ2(1 + r)−sc+3 + λ2r21

)
. (1 + r)−

1
2
(
1 + λ2r21

)
. (1 + r)−

1
2

and hence

sup
0≤r≤r1

(1 + r)
1
2 |J [Q,λ2]w| . 1.
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Next, we estimate |J [Q,λ2]w1 − J [Q,λ2]w2|. We have

J [Q,λ2]w1 − J [Q,λ2]w2

= p(p− 1)λ2
(∫ 1

0
(1− s)(Q+ sλ2w1)

p−2ds

)
w2
1 − p(p− 1)λ2

(∫ 1

0
(1− s)(Q+ sλ2w2)

p−2ds

)
w2
2

+λ2
(
1

2
(w1 − w2) + r(∂rw1 − ∂rw2)

)
w

= p(p− 1)λ2
(∫ 1

0
(1− s)(Q+ sλ2w1)

p−2ds

)
(w2

1 − w2
2)

+ p(p− 1)λ2
(∫ 1

0
(1− s)(Q+ sλ2w1)

p−2ds−
∫ 1

0
(1− s)(Q+ sλ2w2)

p−2ds

)
w2
2

+λ2
(
1

2
(w1 − w2) + r(∂rw1 − ∂rw2)

)
w

= p(p− 1)λ2
(∫ 1

0
(1− s)(Q+ sλ2w1)

p−2ds

)
(w1 + w2)(w1 −w2)

+ p(p− 1)(p − 2)λ4
(∫ 1

0
s(1− s)

∫ 1

0
(Q+ sλ2w1 + σsλ2(w2 − w1))

p−3dσds

)
w2
2(w1 − w2)

+λ2
(
1

2
(w1 − w2) + r(∂rw1 − ∂rw2)

)
w

and hence

|J [Q,λ2]w1 − J [Q,λ2]w2| . λ2(|Q(r)|+ λ2|w1(r)|)p−2(|w1(r)|+ |w2(r)|)|w1(r)− w2(r)|
+λ4(|Q(r)|+ λ2|w1(r)|+ λ2|w2(r)|)p−3|w2(r)|2|w1(r)− w2(r)|

+λ2
(
1

2
(w1 − w2) + r(∂rw1 − ∂rw2)

)
w

. λ2|Q(r)|p−2(|w1(r)|+ |w2(r)|)|w1(r)− w2(r)|+ λ4|Q(r)|p−3|w2(r)|2|w1(r)− w2(r)|

+λ2
(
1

2
(w1 − w2) + r(∂rw1 − ∂rw2)

)
w.

This yields

|J [Q,λ2]w1 − J [Q,λ2]w2| . λ2(1 + r)−
2(p−2)
p−1 (1 + r)3(‖w1‖Yr1

+ ‖w2‖Yr1
)‖w1 − w2‖Yr1

λ4(1 + r)−
2(p−3)
p−1 (1 + r)

9
2‖w2‖2Yr1

‖w1 − w2‖Yr1
+ λ2(1 + r)

3
2‖w1 − w2‖Yr1

. λ2(1 + r)−
1
2

(
(1 + r)

2
p−1

+ 3
2 + λ2(1 + r)

4
p−1

+3 + (1 + r)2
)
‖w1 − w2‖Yr1

. λ2(1 + r)−
1
2

(
(1 + r)−sc+3 + λ2(1 + r)−2sc+6 + (1 + r)2

)
‖w1 − w2‖Yr1

. r21λ
2(1 + r)−

1
2

(
1 + λ2r21

)
‖w1 − w2‖Yr1

. r21λ
2(1 + r)−

1
2 ‖w1 − w2‖Yr1

which concludes the proof of (2.29) and Proposition 2.4. �

2.3. The matching. We now construct a solution to (2.1) by matching the exterior
solution to (2.1) constructed in section 2.1 on [r0,+∞) to the interior solution to
(2.1) constructed in section 2.2 on [0, r0]. The oscillations (1.17) allow to perform
the matching at r0 for a quantized sequence of the small parameter ε introduced in
Proposition 2.2.
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Proposition 2.5 (Existence of a countable number of smooth selfsimilar profiles).
There exists N ∈ N large enough so that for all n ≥ N , there exists a smooth

solution Φn to (2.1) such that ΛΦn vanishes exactly n times.

Proof. step 1 Initialization. Since

ψ1(r) =
c3 sin(ωlog(r) + c4)

r
1
2

+O
(
r

3
2

)
as r → 0, c3 6= 0

we compute

Λψ1(r) = c3
(1− sc) sin(ωlog(r) + c4) + ω cos(ωlog(r) + c4)

r
1
2

+O
(
r

3
2

)
as r → 0.

We may therefore choose 0 < r0 ≪ 1 such that

ψ1(r0) =
c3

r
1
2
0

+O

(
r

3
2
0

)
, Λψ1(r0) =

c3(1− sc)

r
1
2
0

+O

(
r

3
2
0

)
, (2.31)

and Proposition 2.2 and Proposition 2.4 apply. We therefore choose ε and λ such
that

0 < ε≪ rsc−1
0 , 0 < λ ≤ r0,

and have from Proposition 2.2 an exterior solution uext to

−∆uext + Λuext − upext, r ≥ r0

such that
uext[ε] = Φ∗ + εψ1 + εw

and
‖w‖Xr0

. εr1−sc
0 , ‖Λw‖Xr0

. εr1−sc
0 . (2.32)

We also have from Proposition 2.4 an interior solution uint to

−∆uint + Λuint − upint, 0 ≤ r ≤ r0

such that

uint[λ] =
1

λ
2

p−1

(Q+ λ2T1)
( r
λ

)
.

with
‖T1‖Y r0

λ

. 1. (2.33)

We now would like to match the two solutions at r = r0 which is equivalent to
requiring that

uext(r0)− uint(r0) = 0 and u′ext(r0)− u′int(r0).

step 2 Matching the functions. We introduce the map

F [r0](ε, λ) := uext[ε](r0)− uint[λ](r0).

We compute

∂εF [r0](ε, λ) = ∂εuext[ε](r0) = ψ1(r0) + w(r0) + ε∂εw(r0).

In particular, since w|ε=0
= 0 and ‖∂εw|ε=0

‖Xr0
. r1−sc

0 in view of Proposition 2.2,
we have

∂εF [r0](0, 0) = ψ1(r0) 6= 0

since we assumed that ψ1(r0) 6= 0. Also, in view of the asymptotic behavior of Q
at infinity, we have as λ→ 0+
∣∣∣∣

1

λ
2

p−1

(Q−Φ∗ + λ2T1)
(r0
λ

)∣∣∣∣ .
1

λ
2

p−1

(
1

r
1
2

+
λ2r2

r
1
2

)(r0
λ

)
.
λ

1
2
− 2

p−1

r
1
2
0

.
λsc−1

r
1
2
0
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and hence, since sc > 1, we infer

lim
λ→0+

1

λ
2

p−1

(Q− Φ∗ + λ2T1)
(r0
λ

)
= 0.

Since
1

λ
2

p−1

Φ∗
(r0
λ

)
= Φ∗(r0),

this yields

F [r0](0, 0) = Φ∗(r0)− Φ∗(r0) = 0.

We may thus apply the implicit function theorem12 which yields the existence of
λ0 > 0 and a Cmin(1,(sc−1)−) function ε(λ) defined on [0, λ0) such that F(ε(λ), λ) = 0
and hence

uext[ε(λ)](r0) = uint[λ](r0) on [0, λ0).

step 3 Control of ε(λ). We claim for λ ∈ [0, λ0)

ε(λ) =
1

ψ1(r0)λ
2

p−1

(Q− Φ∗)
(r0
λ

)
+O

[
λsc−1(r20 + λsc−1r1−sc

0 )
]
. (2.34)

Indeed, by construction

uext[ε(λ)](r0) = uint[λ](r0)

which is equivalent to

ε(λ)ψ1(r0) + ε(λ)w(r0) =
1

λ
2

p−1

(Q− Φ∗ + λ2T1)
(r0
λ

)
. (2.35)

We infer from (2.31), (2.32), (2.33) and the asymptotic of Q:

ε(λ)ψ1(r0) + ε(λ)w(r0) = ε(λ)
c3

r
1
2
0

(
1 +O(r20) +O(ε(λ)r1−sc

0 )
)
,

1

λ
2

p−1

∣∣∣Q− Φ∗ + λ2T1)
(r0
λ

)∣∣∣ . λsc−1

r
1
2
0

(1 +O(r20)).

This first yields using (2.14)

|ε(λ)| . λsc−1. (2.36)

which reinjected into (2.35) yields (2.34).

step 4 Computation of the spatial derivatives. We consider the difference of spatial
derivatives at r0 for λ ∈ [0, λ0)

G[r0](λ) := uext[ε(λ)]
′(r0)− uint[λ]

′(r0)

and claim the leading order expansion:

G[r0](λ) = λsc−1

[
c1c3ω

ψ1(r0)r20
sin (−ωlog(λ) + c2 − c4) (2.37)

+ O

(
r
−sc− 1

2
0 λsc−1 + r

1
2
0

)]
.

12We actually apply the implicit function theorem to

F̃ [r0](ε, µ) := F(ε, µ
1

sc−1−δ )

for any 0 < δ < sc − 1 so that F̃ ∈ C1. This yields the existence of ε̃ ∈ C1 and we choose
ε(λ) = ε̃(λsc−1−δ) so that ε belongs indeed to Cmin(1,(sc−1)

−
).
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Indeed,

G[r0](λ) = ε(λ)ψ′
1(r0) + ε(λ)w′(r0)−

1

λ
2

p−1
+1

(Q′ − Φ′
∗ + λ2T ′

1)
(r0
λ

)
.

From (2.36), (2.16):

|ε(λ)w′(r0)| . λsc−1|w′(r0)| . λ2(sc−1)r
− 1

2
−sc

0

and from (2.27)

∣∣∣∣
1

λ
2

p−1
+1
λ2T ′

1

(r0
λ

)∣∣∣∣ . r
1
2
0 λ

sc−1

and hence using (2.34), (2.31):

G[r0](λ) = ε(λ)ψ′
1(r0)− λsc−1 1

λ
3
2

(Q′ − Φ′
∗)
(r0
λ

)
+O

((
r
− 3

2
0 λsc−1 + r

1
2
0

)
λsc−1

)

= λsc−1

(
1

λ
1
2ψ1(r0)

(Q− Φ∗)
(r0
λ

)
ψ′
1(r0)−

1

λ
3
2

(Q′ − Φ′
∗)
(r0
λ

))

+O

((
r
−sc− 1

2
0 λsc−1 + r

1
2
0

)
λsc−1

)

=
1

r
1
2
0 ψ1(r0)

λsc−1

{(r0
λ

) 1
2
(Q− Φ∗)

(r0
λ

)
ψ′
1(r0)−

(r0
λ

) 3
2
(Q′ − Φ′

∗)
(r0
λ

) ψ1(r0)

r0

}

+O

((
r
−sc− 1

2
0 λsc−1 + r

1
2
0

)
λsc−1

)
.

Recall that

ψ1(r) =
c3 sin(ωlog(r) + c4)

r
1
2

+O
(
r

3
2

)
as r → 0,

ψ′
1(r) = −c3 sin(ωlog(r) + c4)

2r
3
2

+
c3ω cos(ωlog(r) + c4)

r
3
2

+O
(
r

1
2

)
as r → 0,

Q(r)−Φ∗(r) =
c1 sin (ωlog(r) + c2)

r
1
2

+O

(
1

rsc−
1
2

)
as r → +∞,

Q′(r)− Φ′
∗(r) = −c1 sin (ωlog(r) + c2)

2r
3
2

+
c1ω cos (ωlog(r) + c2)

r
3
2

+O

(
1

rsc+
1
2

)
as r → +∞
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and hence:
(r0
λ

) 1
2
(Q− Φ∗)

(r0
λ

)
ψ′
1(r0)−

(r0
λ

) 3
2
(Q′ − Φ′

∗)
(r0
λ

) ψ1(r0)

r0

=
c1c3

r
3
2
0

(
sin (ωlog(r0)− ωlog(λ) + c2)

(
−sin(ωlog(r0) + c4)

2
+ ω cos(ωlog(r0) + c4)

))

−
(
−sin (ωlog(r0)− ωlog(λ) + c2)

2
+ ω cos (ωlog(r0)− ωlog(λ) + c2)

)
sin(ωlog(r0) + c4)

+O

(
r

1
2
0 + λsc−1r

−sc− 1
2

0

)

=
c1c3ω

r
3
2
0

(
sin (ωlog(r0)− ωlog(λ) + c2) cos(ωlog(r0) + c4)

− cos (ωlog(r0)− ωlog(λ) + c2) sin(ωlog(r0) + c4)

)
+O

(
r

1
2
0 + λsc−1r

−sc− 1
2

0

)

=
c1c3ω

r
3
2
0

sin (−ωlog(λ) + c2 − c4) +O

(
r

1
2
0 + λsc−1r

−sc− 1
2

0

)
.

The collection of above bounds and (2.31) yields (2.37).

step 5 Discrete matching. For δ0 > 0 a small enough universal constant such that
δ0 ≥ r0 to be chosen later, we consider

λk,+ = exp

(−kπ − c4 + c2 + δ0
ω

)
, λk,− = exp

(−kπ − c4 + c2 − δ0
ω

)
. (2.38)

From

lim
k→+∞

λk,± = 0,

there holds for k ≥ k0 large enough:

0 < · · · < λk,+ < λk,− < · · · < λk0,+ < λk0,− ≤ λ0

With the above definition of λk,±, we have for all k ≥ k0

sin (−ωlog(λk,+) + c2 − c4) = (−1)k sin(δ0), sin (−ωlog(λk,−) + c2 − c4) = −(−1)k sin(δ0),

and hence

G[r0](λk,±) = ±(−1)kλsc−1
k,±

(
c1c3ω

ψ1(r0)r20
sin(δ0) +O

(
r
−sc− 1

2
0 λsc−1

k,± + r
1
2
0

))
.

Since δ0 ≥ r0, this yields for r0 small enough and for any k ≥ k0 large enough:

G[r0](λk,−)G[r0](λk,+) < 0.

Since the function λ→ G[r0](λ) is continuous, we infer from the mean value theorem
applied to the intervals [λk,+, λk,−] the existence of µk such that

λk,+ < µk < λk,− and G[r0](µk) = 0 for all k ≥ k0.

Finally, for k ≥ k0, we have

F [r0](ε(µk), µk) = 0 and G[r0](µk) = 0

which yields

uext[ε(µk)](r0) = uint[µk](r0) and uext[ε(µk)]
′(r0) = uint[µk]

′(r0).



25

and hence the function

uk(r) :=

{
uint[µk](r) for 0 ≤ r ≤ r0,
uext[ε(µk)](r) for r > r0

is smooth and satisfies (2.1).
The rest of the proof is devoted to counting the number of zeroes of Λuk and show-
ing that this number is an unambiguous way of counting the number of self similar
solutions uk as k → +∞.

step 6 Zeroes of Λuext[ε]. We claim that

Λuext[ε] has as many zeros as Λψ1 on r ≥ r0. (2.39)

Indeed, Λψ1 +Λw does not vanish on [R0,+∞) for R0 large enough from (2.5) and
the uniform bound (2.16). Moreover, Λψ1(r0) 6= 0 from the normalization (2.31),
and the absolute derivative of Λψ1 at any of its zeroes is uniformly lower bounded
using (2.2), (2.4), and hence the uniform smallness (2.16)

‖Λw‖Xr0
. εr1−sc

0 ≪ 1

yields the claim.

step 7 Zeroes of Λuint[µk]. We now claim that

Λuint[µk] has as many zeros as ΛQ on 0 ≤ r ≤ r0/µk. (2.40)

Indeed, recall that

Λuint[µk](r) =
1

µ
2

p−1

k

(ΛQ+ µ2kΛT1)

(
r

µk

)
.

We now claim (
r0
µk

) 1
2
∣∣∣∣ΛQ

(
r0
µk

)∣∣∣∣ & 1. (2.41)

Assume (2.41), then since the zeros of ΛQ are simple, since we have

ΛQ(r) =
c7 sin (ωlog(r) + c8)

r
1
2

+O

(
1

rsc−
1
2

)
as r → +∞,

since
‖ΛT1‖Y r0

µk

= sup
0≤r≤ r0

µk

(1 + r)−
3
2 |ΛT1| . 1

so that
sup

0≤r≤ r0
µk

(1 + r)
1
2 |µ2kΛT1| . r20,

and similarily for Λ2T1, and since

ΛQ(0) =
2

p− 1
6= 0,

we conclude that ΛQ + µ2kΛT1 has as many zeros as ΛQ on 0 ≤ r ≤ r0/µk. We
deduce that on 0 ≤ r ≤ r0, Λuint[µk] has as many zeros as ΛQ on 0 ≤ r ≤ r0/µk.

Proof of (2.41): Recall that

uext[ε(µk)](r0) = uint[µk](r0) and uext[ε(µk)]
′(r0) = uint[µk]

′(r0),

which implies
Λuext[ε(µk)](r0) = Λuint[µk](r0).
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This yields using (2.34):

ε(µk)

µsc−1
k

=
1

ψ1(r0)µ
1
2
k

(Q− Φ∗)

(
r0
µk

)
+O

(
µsc−1
k rsc−1

0 + r20

)

and differentiating (2.35):

ε(µk)

µsc−1
k

=
1

Λψ1(r0)µ
1
2
k

ΛQ

(
r0
µk

)
+O

(
µsc−1
k rsc−1

0 + r20

)
.

We infer

1

ψ1(r0)µ
1
2
k

(Q− Φ∗)

(
r0
µk

)
=

1

Λψ1(r0)µ
1
2
k

ΛQ

(
r0
µk

)
+O

(
µsc−1
k rsc−1

0 + r20

)
.

In view of (2.31) which we recall below

ψ1(r0) =
c3

r
1
2
0

+O

(
r

3
2
0

)
, Λψ1(r0) =

c3(1− sc)

r
1
2
0

+O

(
r

3
2
0

)
,

this yields
∣∣∣∣∣

(
r0
µk

) 1
2

(Q− Φ∗)

(
r0
µk

)∣∣∣∣∣ ≤
2

sc − 1

∣∣∣∣∣

(
r0
µk

) 1
2

ΛQ

(
r0
µk

)∣∣∣∣∣+O
(
µsc−1
k + r20

)
. (2.42)

On the other hand,

Q(r)− Φ∗(r) =
c1 sin (ωlog(r) + c2)

r
1
2

+O

(
1

rsc−
1
2

)
as r → +∞ (2.43)

and hence as r → +∞

ΛQ(r) = c1
(1− sc) sin(ωlog(r) + c2) + ω cos(ωlog(r) + c2)

r
1
2

+O

(
1

rsc−
1
2

)

= c1
√

(sc − 1)2 + ω2
sin(ωlog(r) + c2 + α0)

r
1
2

+O

(
1

rsc−
1
2

)
(2.44)

where

cos(α0) =
1− sc√

(sc − 1)2 + ω2
, sin(α0) =

ω√
(sc − 1)2 + ω2

, α0 ∈
(π
2
, π
)
.

Thus there exists r2 > 0 sufficiently small and a constant δ1 > 0 sufficiently small
only depending on ω and sc − 1 such that for 0 < r < r2, we have

dist
(
ωlog(r)+c2+α0, πZ

)
< δ1 ⇒ r

1
2 |Q(r)−Φ∗(r)| ≥

4

sc − 1
r

1
2 |ΛQ(r)|+c1 sin(α0)

2
.

In view of (2.42), we infer for k ≥ k1 large enough

dist

(
ωlog

(
r0
µk

)
+ c2 + α0, πZ

)
≥ δ1 (2.45)

and (2.41) is proved.

step 8 Counting. We have so far obtained

#{r ≥ 0 such that Λuk(r) = 0}

= #

{
0 ≤ r ≤ r0

µk
such that ΛQ(r) = 0

}
+#{r > r0 such that Λψ1(r) = 0}
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which implies

#{r ≥ 0 such that Λuk+1(r) = 0} = #{r ≥ 0 such that Λuk(r) = 0}+#Ak,

with

Ak :=

{
r0
µk

< r ≤ r0
µk+1

such that ΛQ(r) = 0

}
.

We claim for k ≥ k0 large enough:

#Ak = 1 (2.46)

which by possibly shifting the numerotation by a fixed amount ensures that Λuk
vanishes exactly k times.

Upper bound. We first claim
#Ak ≤ 1 (2.47)

Recall that

ΛQ(r) =
c7 sin (ωlog(r) + c8)

r
1
2

+O

(
1

rsc−
1
2

)
as r → +∞, (2.48)

so that there exists R ≥ 1 large enough such that

{r ≥ R/ΛQ(r) = 0} = {rq, q ≥ q1}, ωlog(rq) + c8 = qπ +O

(
1

rsc−1
q

)
. (2.49)

In view of (2.44) and (2.48), we have

c2 + α0 = c8

and hence, together with (2.45) and (2.49), we infer

inf
q≥q1,k≥k1

∣∣∣∣log
(
r0
µk

)
− log(rq)

∣∣∣∣ ≥
δ1
2ω
. (2.50)

This implies for k ≥ k1

Ak =

{
q ≥ q1 such that rq ∈

(
r0
µk
,
r0
µk+1

)}
(2.51)

⊂
{
q ≥ q1 such that log

(
r0
µk

)
+
δ1
2ω

≤ log(rq) ≤ log

(
r0
µk+1

)
− δ1

2ω

}
.

Since λk,+ < µk < λk,− with λk,± given by (2.38), we have for k ≥ k1

log

(
r0
µk+1

)
− δ1

2ω
−
(
log

(
r0
µk

)
+
δ1
2ω

)
= log(µk)− log(µk+1)−

δ1
ω

≤ log(λk+)− log(λk+1,−)−
δ1
ω

≤ π + 2δ0 − δ1
ω

.

Also, we have for q ≥ q1

log(rq+1)− log(rq) =
π

ω
+O

(
1

rsc−1
q

)
.

We now choose δ0 such that

0 < δ0 <
δ1
4
. (2.52)

Then, we infer for k ≥ k1

log

(
r0
µk+1

)
− δ1

2ω
−
(
log

(
r0
µk

)
+
δ1
2ω

)
≤ π

ω
− δ1

2ω
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and hence for k ≥ k1 and q ≥ q1, we have

log(rq+1)− log(rq) > log

(
r0
µk+1

)
− δ1

2ω
−
(
log

(
r0
µk

)
+
δ1
2ω

)

which in view of (2.51) implies (2.47).

Lower bound. We now prove (2.46) and assume by contradiction:

#Ak2 = 0.

Then, let q2 ≥ q1 such that

rq2 <
r0
µk2

<
r0

µk2+1
< rq2+1.

We infer from (2.50):

log(rq2) ≤ log

(
r0
µk2

)
− δ1

2ω
< log

(
r0

µk2+1

)
+
δ1
2ω

≤ log(rq2+1). (2.53)

However, we have for k ≥ k1

log

(
r0

µk2+1

)
+
δ1
2ω

−
(
log

(
r0
µk2

)
− δ1

2ω

)
= log(µk2)− log(µk2+1) +

δ1
ω

≥ log(λk2,−)− log(λk2+1,+) +
δ1
ω

≥ π − 2δ0 + δ1
ω

≥ π

ω
+
δ1
2ω

in view of our choice (2.52). Hence, we infer

log

(
r0

µk2+1

)
+
δ1
2ω

−
(
log

(
r0
µk2

)
− δ1

2ω

)
> log(rq2+1)− log(rq2)

which contradicts (2.53).
This concludes the proof of Proposition 2.5. �

We now collect final estimates on the constructed solution Φn which conclude the
proof of Proposition 1.1.

Corollary 2.6. Let Φn the solution to (2.1) constructed in Proposition 2.5. Then

there exists a small enough constant r0 > 0 independent of n such that:

1. Convergence to Φ∗ as n→ +∞:

lim
n→+∞

sup
r≥r0

(
1 + r

2
p−1

)
|Φn(r)− Φ∗(r)| = 0. (2.54)

2. Convergence to Q at the origin: there holds for some µn → 0 as n→ +∞:

lim
n→+∞

sup
r≤r0

∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
= 0. (2.55)

3. Last zeroes: let r0,n < r0 denote the last zero of ΛΦn before r0. Then, for n ≥ N
large enough, we have

e−
2π
ω r0 < r0,n < r0.

Let rΛQ,n < r0/µn denote the last zero of ΛQ before r0/µn, then

r0,n = µnrΛQ,n(1 +O(r20)).
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Proof. We choose r0 > 0 small enough as in the proof of Proposition 2.5. We start
with the proof of the first claim. Recall from the proof of Proposition 2.5 that we
have for r ≥ r0

Φn(r) = Φ∗(r) + ε(µn)ψ1(r) + ε(µn)w(r)

where we have in particular

sup
r0≤r≤1

r
1
2 (|ψ1|+ |w|) + sup

r≥1
r

2
p−1 (|ψ1|+ |w|) . 1

and

lim
n→+∞

ε(µn) = 0.

We infer

sup
r≥r0

(
1 + r

2
p−1

)
|Φn(r)− Φ∗(r)|

. ε(µn)

(
sup
r≥r0

(|ψ1(r)|+ |w(r)|) + sup
r≥1

r
2

p−1 (|ψ1(r)|+ |w(r)|)
)

. ε(µn)r
− 1

2
0

and hence

lim
n→+∞

sup
r≥r0

(
1 + r

2
p−1

)
|Φn(r)− Φ∗(r)| = 0.

Next, recall from the proof of Proposition 2.5 that we have for r ≤ r0

Φn(r) =
1

µ
2

p−1
n

(Q+ µ2nT1)

(
r

µn

)

with

sup
0≤r≤ r0

µn

(1 + r)−
3
2 |T1| . 1.

We infer for r ≤ r0∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
≤ µ

2− 2
p−1

n |T1|
(
r

µn

)
. µ

1
2
− 2

p−1
n

and hence

sup
r≤r0

∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
. µsc−1

n . (2.56)

and since µn → 0 as n→ +∞, (2.55) is proved.
We now estimate the localization of the last zeroes of Φn and ΛQ before r0. Recall
that

ΛQ(r) ∼ c7 sin(ωlog(r) + c8)

r
1
2

as r → +∞.

Since sin(ωlog(r) + c8) changes sign on the interval

e−
3π
2ω
r0
µn

≤ r ≤ r0
µn
,

and since r ≫ 1 on this interval, we infer by the mean value theorem that ΛQ(r)
has a zero on this interval. In particular, this yields

e−
3π
2ω
r0
µn

≤ rΛQ,n ≤ r0
µn
.
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Also, recall from the proof of Proposition 2.5 that we have for r ≤ r0

ΛΦn(r) =
1

µ
2

p−1
n

(ΛQ+ µ2nΛT1)

(
r

µn

)
,

Since

ΛQ(r) ∼ c7 sin(ωlog(r) + c8)

r
1
2

as r → +∞,

and

sup
0≤r≤ r0

µn

(1 + r)
3
2 |ΛT1| . 1,

and since

e−
2π
ω r0 ≤ r ≤ r0,

we have r/µn ∼ r0/µn ≫ 1 for n ≥ N large enough, we infer

ΛΦn(r) ∼ c7 sin(ωlog(r)− ωlog(µn) + c8) +O(r20)

µ
2

p−1
n

(
r
µn

) 1
2

.

This yields
∣∣∣ωlog(r0,n)− ωlog(µn) + c8 − (ωlog(rΛQ,n) + c8)

∣∣∣ . r20

and hence

r0,n = µnrΛQ,ne
O(r20)

= µnrΛQ,n(1 +O(r20)).

Furthermore, since we have

e−
3π
2ω
r0
µn

≤ rΛQ,n ≤ r0
µn
,

we deduce

e−
2π
ω r0 ≤ r0,n ≤ r0.

This concludes the proof of the corollary. �

3. Spectral gap in weighted norms

Our aim in this section is to produce a spectral gap for the linearized operator
corresponding to (1.4) around Φn:

Ln := −∆+Λ− pΦp−1
n . (3.1)

Recall (1.18), then Ln is self adjoint for the L2
ρ scalar product. Moreover, from (A.1)

and the local compactness of the Sobolev embeddings H1(|x| ≤ R) →֒ L2(|x| ≤ R),
and the fact that Φn ∈ L∞, the selfadjoint operator Ln + Mn for the measure
ρdx is for Mn ≥ 1 large enough invertible with compact resolvent. Hence Ln is
diagonalizable in a Hilbert basis of L2

ρ, and we claim the following sharp spectral
gap estimate:

Proposition 3.1 (Spectral gap for Ln). Let n > N with N ≫ 1 large enough, then

the following holds:

1. Eigenvalues. The spectrum of Ln is given by

− µn+1,n < · · · < −µ2,n < −µ1,n = −2 < −µ−1,n = −1 < 0 < λ0,n < λ1,n < . . .
(3.2)
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with

λj,n > 0 for all j ≥ 0 and lim
j→+∞

λj,n = +∞. (3.3)

The eigenvalues (−µj,n)1≤j≤n+1 are simple and associated to spherically symmetric

eigenvectors

ψj,n, ‖ψj,n‖L2
ρ
= 1, ψ1,n =

ΛΦn

‖ΛΦn‖ρ
,

and the eigenspace for µ−1,n is spanned by

ψk
−1,n =

∂kΦn

‖∂kΦn‖ρ
, 1 ≤ k ≤ 3. (3.4)

Moreover, there holds as r → +∞
|∂kψj,n(r)| . (1 + r)

− 2
p−1

−µj,n−k
, 1 ≤ j ≤ n+ 1, k ≥ 0. (3.5)

2. Spectral gap. There holds for some constant cn > 0:

∀ε ∈ H1
ρ , (Lnε, ε)ρ ≥ cn‖ε‖2H1

ρ
− 1

cn



n+1∑

j=1

(ε, ψj,n)
2
ρ +

3∑

k=1

(ε, ψk
0,n)

2
ρ


 . (3.6)

In other words, Ln admits n+1 instability directions when ΛΦn vanishes n times,
and 0 is never in the spectrum. Moreover, there are no additional non radial insta-
bilities apart from the trivial translation invariance (3.4).

The rest of this section is devoted to preparing the proof of Proposition 3.1 which
is completed in section 3.4.

3.1. Decomposition in spherical harmonics. We first recall some basic facts
about spherical harmonics. Spherical harmonics are the eigenfunctions of the Laplace-
Beltrami operator on the sphere S

2. The spectrum of this self-adjoint operator with
compact resolvent is

{−m(m+ 1), m ∈ N} .
For each m ∈ N the eigenvalue m(m+1) has geometric multiplicity 2m+1. We then

denote the associated orthonormal family of eigenfunctions by (Y (m,k))m∈N, −m≤k≤m

so that we have

L2(S2) =
+∞
⊕

m=0
Span

〈
Y (m,k), −m ≤ k ≤ m

〉

and

−∆S2Y
(m,k) = m(m+ 1)Y (m,k),

∫

S2

Y (m,k)Y (m′,k′)dσS2 = δ(m,k),(m′,k′). (3.7)

In particular, u ∈ H1
ρ is decomposed as

u =
+∞∑

m=0

m∑

k=−m

um,kY
(m,k)

where um,k are radial functions satisfying the Parseval formula

‖u‖2ρ =

+∞∑

m=0

m∑

k=−m

‖um,k‖2ρ.

This allows us to write

(Ln(u), u)ρ =

+∞∑

m=0

m∑

k=−m

(Ln,m(um,k), um,k)ρ (3.8)
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where we recall

Ln,m := −∂rr −
2

r
∂r +

2

p− 1
+ r∂r +

m(m+ 1)

r2
− pΦp−1

n .

We also recall for further use the definition of the operators:

L∞,m := −∂rr −
2

r
∂r +

2

p− 1
+ r∂r +

m(m+ 1)

r2
− pΦp−1

∗ ,

Hm := −∂rr −
2

r
∂r +

m(m+ 1)

r2
− pQp−1.

3.2. Linear ODE analysis. We compute in this section the fundamental solutions
of Ln,m, Hm and we recall the behavior of the eigenvalues of L∞. The claims are
standard and follow from a classical ODE perturbation analysis using in an essential
way the uniform bound (1.10).

Lemma 3.2 (Fundamental solution for Ln,m, Hm). Let m ≥ 1. Let ∆m > 0 be

given by (C.1).
1. Basis for Ln,m. Let φn,m be the solution to Ln,mφn,m = 0 with the behaviour at

the origin

ϕn,m = rm[1 +O(r2)] as r → 0, (3.9)

then

ϕn,m ∼ c1

r
2

p−1

+ c2r
2

p−1
−3
e

r2

2 as r → +∞, (c1, c2) 6= (0, 0). (3.10)

2. Basis for H1: let m = 1, then there exists a fundamental basis (ν1, φ1) with

ν1(r) =
Q′(r)
Q′′(0)

∣∣∣∣∣
= r[1 +O(r2)] as r → 0
∼ c1,+

r
1+

√
∆1

2

as r → +∞ (3.11)

and

φ1(r) =

∣∣∣∣∣

1
r2
[1 +O(r2)] as r → 0

∼ c1,−

r
1−

√
∆1

2

as r → +∞, c1,− 6= 0. (3.12)

2. Basis for Hm: let m ≥ 2, then there exists a fundamental basis (νm, φm) with

νm

∣∣∣∣∣
= rm[1 +O(r2)] as r → 0
∼ cm,−

r
1−

√
∆m

2

as r → +∞, cm,− > 0 (3.13)

and

φm(r) =

∣∣∣∣∣
1

r1+m [1 +O(r2)] as r → 0
∼ cm,+

r
1+

√
∆m

2

as r → +∞, cm,+ 6= 0. (3.14)

4. Positivity:

νm(r) > 0 on (0,+∞). (3.15)

5. Uniform closeness: Fix m ≥ 1. There exists a sequence13 µn → 0 as n → +∞
such that for n ≥ N large enough

sup
0≤r≤r0

∣∣∣µ−m
n ϕn,m(r)− νm

(
r
µn

)∣∣∣
∣∣∣νm

(
r
µn

)∣∣∣
+ sup

0≤r≤r0

∣∣∣µ−m+1
n ϕ′

n,m(r)− ν ′m
(

r
µn

)∣∣∣
∣∣∣ν ′m

(
r
µn

)∣∣∣
. r20. (3.16)

13(µn)n≥N is the same sequence of scales as in (1.10) in Proposition 1.1 and Corollary 2.6.
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The uniform in n bound (3.16) follows from the uniform control (1.10) using a
standard ODE analysis. We provide a detailed proof of Lemma 3.2 in Appendix C
for the sake of completeness.

We now detail the structure of the smooth zero of Ln,0 which is the key to the
counting of non positive eigenvalues. Let ϕn,0 be the solution to

Ln,0(ϕn,0) = 0, ϕn,0(0) = 1, ϕ′
n,0(0) = 0. (3.17)

We recall that r0,n < r0 denotes the last zero of ΛΦn before r0, and we let r1,n < r0
denote the last zero of ϕn,0 before r0. We claim:

Lemma 3.3 (Zeroes of Φn,0). There holds

sup
0≤r≤r0

(
1 +

r

µn

) 1
2
∣∣∣∣ϕn,0(r)−

p− 1

2
ΛQ

(
r

µn

)∣∣∣∣ . r20 (3.18)

and

r1,n = r0,n +O(r30), e−
2π
ω r0 ≤ r1,n ≤ r0. (3.19)

This is again a simple perturbative analysis which proof is detailed in Appendix D.

We now claim the following classical result which relies on the standard analysis
of explicit special functions:

Lemma 3.4 (Special functions lemma). Let λ ∈ R. The solutions to

L∞(ψ) = λψ, ψ ∈ H1
ρ(1,+∞)

behaves for r → +∞ as

ψ ∼ r
− 2

p−1
+λ

and for r → 0+ as

ψ =
1

r
1
2

cos(ωlog(r)− Φ(λ)) +O
(
r

3
2

)
(3.20)

where

Φ(λ) = arg


 2

iω
2 Γ(iω)

Γ
(

1
p−1 − λ

2 − 1
4 +

iω
2

)


 .

Proof. We consider the solution ψ to

L∞(ψ) = λψ.

The change of variable and unknown

ψ(r) =
1

(2z)
γ
2

w(z), z =
r2

2

leads to

L∞(ψ)− λψ = − 2

(2z)
γ
2

(
zw′′(z) +

(
−γ +

3

2
− z

)
w′(z)−

(
1

p− 1
− λ

2
− γ

2

)
w(z)

)

and thus L∞(ψ) = λψ if and only if

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0

with

a =
1

p− 1
− λ

2
− γ

2
, b = −γ +

3

2
. (3.21)
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Hence w is a linear combination of the special functions M(a, b, z) and U(a, b, z)
whose asymptotic at infinity is given by (2.9):

M(a, b, z) ∼ Γ(b)

Γ(a)
za−bez, U(a, b, z) ∼ z−a as z → +∞,

In particular, a non zero contribution of M(a, b, z) to w would yield for ψ(r) the
following asymptotic

ψ(r) ∼ r
2

p−1
−3−λe

r2

2 as r → +∞.

which contradicts ψ ∈ H1
ρ (1,+∞). Hence

w(z) = U(a, b, z).

In view of the asymptotic of U recalled in (2.9), we have

w(z) ∼ z−a as z → +∞.

Since

ψ(r) =
1

rγ
w

(
r2

2

)
,

this yields

ψ ∼ r
− 2

p−1
+λ

as r → +∞.

Also, in view of the asymptotic of U recalled in (2.11), we have

w(z) =
Γ(b− 1)

Γ(a)
z1−b +

Γ(1− b)

Γ(a− b+ 1)
+O(z2−ℜ(b)) as z → 0,

which in view of (3.21) and the fact that γ = 1/2 + iω yields

w(z) =
Γ(−iω)

Γ
(

1
p−1 − λ

2 − 1
4 − iω

2

)ziω +
Γ(iω)

Γ
(

1
p−1 − λ

2 − 1
4 + iω

2

) +O(z) as z → 0.

Since

ψ(r) =
1

rγ
w

(
r2

2

)
,

this yields

ψ(r) =
2−

iω
2

r
1
2


 2−

iω
2 Γ(−iω)

Γ
(

1
p−1 − λ

2 − 1
4 − iω

2

)riω +
2

iω
2 Γ(iω)

Γ
(

1
p−1 − λ

2 − 1
4 +

iω
2

)r−iω




+O
(
r

3
2

)
as r → 0,

and since ψ is real valued, we infer14

ψ(r) =
cos(ωlog(r)− Φ(λ))

r
1
2

+O
(
r

3
2

)
as r → 0,

where

Φ(λ) = arg


 2

iω
2 Γ(iω)

Γ
(

1
p−1 − λ

2 − 1
4 +

iω
2

)


 .

This concludes the proof of the lemma. �

14Note in particular that Γ satisfies Γ(z) = Γ(z) for all z ∈ C.
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3.3. Perturbative spectral analysis. We now prove elementary spectral analysis
perturbation results based on the uniform bounds (1.9), (1.10) which allow us to
precisely count the number of instabilities of Ln,0.

Lemma 3.5 (Control of the outside spectrum). Let r0 > 0 and let rn,2 such that

rn,2 > e−
2π
ω r0. Let us define the operators

∣∣∣∣
An[rn,2](f) = Ln,0(f) on r > rn,2, f(rn,2) = 0,
A∞[rn,2](f) = L∞(f) on r > rn,2, f(rn,2) = 0,

(3.22)

then

sup
λ∈Spec(An[rn,2])

inf
µ∈Spec(A∞[rn,2])

|λ− µ|+ sup
µ∈Spec(A∞[rn,2])

inf
λ∈Spec(An[rn,2])

|λ− µ| → 0

(3.23)
as n→ +∞.

Proof. In view of (A.1), the local compactness of the Sobolev embeddings

H1(|x| ≤ R) →֒ L2(|x| ≤ R) for all 1 ≤ R < +∞,

and the fact that Φn ∈ L∞ and , the selfadjoint operators An[rn,2]+Mn for the mea-
sure ρdx are forMn ≥ 1 large enough invertible with compact resolvent, and An[rn,2]
is diagonalizable. Since Φ∗ ∈ L∞(r > r0), we deduce similarly that A∞[rn,2] is di-
agonalizable. Let then λn be an eigenvalue of An[rn,2] with normalized eigenvector
wn:

Ln(wn) = 0 on r > rn,2, wn(rn,2) = 0, ‖wn‖L2
ρ(r>rn,2) = 1.

Since A∞[rn,2] is diagonalizable in a Hilbert basis of L2
ρ, we have

‖A∞[rn,2](wn)− λnwn‖L2
ρ(r>rn,2) ≥ dist(λn, spec(A∞[rn,2]))‖wn‖L2

ρ(r>rn,2)

= dist(λn, spec(A∞[rn,2])).

On the other hand,

‖A∞[rn,2](wn)− λnwn‖L2
ρ(r>rn,2) = ‖(A∞[rn,2]−An[rn,2])(wn)‖L2

ρ(r>rn,2)

from which:

dist(λn, spec(A∞[rn,2])) ≤ ‖(A∞[rn,2]−An[rn,2])(wn)‖L2
ρ(r>rn,2)

≤
(

sup
r≥rn,2

(
p|Φn(r)− Φ∗(r)|p−1

)) 1
2

‖wn‖L2
ρ(r>rn,2) ≤

(
sup

r≥rn,2

(
p|Φn(r)− Φ∗(r)|p−1

)) 1
2

→ 0 as n→ +∞
from (1.9). (3.23) follows by exchanging the role An[rn,2] and A∞[rn,2]. �

Lemma 3.6 (Local continuity of the spectrum). Let r0 > 0 and let r1 and r2 such

that

e−
2π
ω r0 ≤ r1, r2 ≤ r0

and

r1 = r2 +O(r30).

Then, for any eigenvalue λ1 of A∞[r1] such that λ1 ∈ [−3, 1], we have

dist(λ1,Spec(A∞[r2])) . r
3
2
0 . (3.24)
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Proof. Recall from the proof of Lemma 3.5 that both A∞[r1] and A∞[r2] are diag-
onalizable. Furthermore, by Sturm-Liouville, their eigenvalues are simple. Let λ1
be an eigenvalue of A∞[r1]. We claim the existence of a nearby eigenvalue λ2 of
A∞[r2] using a classical Lyapunov Schmidt procedure.
Let ϕ1 the normalized eigenfunction of A∞[r1] associated to λ1 so that

A∞[r1](ϕ1) = λ1ϕ1, ‖ϕ1‖ρ = 1.

The eigenvalue equation
A∞[r2](ϕ2) = λ2ϕ2

is equivalent to

A∞[r1](g) = λ2g + hg + (r2 − r1)∂rg (3.25)

where

g(r) = ϕ2(r + r2 − r1), h(r) =
pcp−1

∞
(r + r2 − r1)2

− pcp−1
∞
r2

.

We decompose
g = ϕ1 + r0g̃, λ2 = λ1 + cr0

where the constant c will be chosen later. Then, g satisfies (3.25) if and only if g̃
satisfies

(A∞[r1]− λ1)(g̃) = cϕ1 + cr0g̃ +
h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂rg. (3.26)

We choose c such that

c(ϕ1, r0, g̃) := − 1

1 + r0(g̃, ϕ1)ρ

(
h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂r(ϕ1 + r0g̃), ϕ1

)

ρ

.

Then, the right-hand side of (3.26) is orthogonal to ϕ1 and hence to the kernel of
A∞[r1]− λ1 since λ1 is a simple eigenvalue. Thus, we infer

g̃ = F(g̃) (3.27)

where

F(g̃) := B∞[r1, λ1]
−1
(
c(ϕ1, r0, g̃)(ϕ1 + r0g̃) +

h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂r(ϕ1 + r0g̃)
)

with the operator B∞[r1, λ1] being the restriction of A∞[r1]− λ1 to the orthogonal
complement of the kernel of A∞[r1]− λ1, i.e.

B∞[r1, λ1] = (A∞[r1]− λ1)|
ϕ⊥
1

.

Since λ1 is an eigenvalue of A∞[r1], from the explicit behavior (3.20) of the eigen-
functions of L∞ and the boundary condition (3.22) at r1 one deduces that there
exists k ∈ Z such that

ωlog(r1)−Φ(λ1) = kπ +
π

2
+O(r20).

Let λ′1 be the smallest eigenvalue of A∞[r1] greater than λ1. It then satisfies:

ωlog(r1)− Φ(λ′1) = kπ +
π

2
± π +O(r20)

and so

|Φ(λ1)− Φ(λ′1)| = π +O(r20) ≥
π

2
.

As Φ is a continuous function we deduce that there exists c > 0 independent of r0
such that λ′1 ≥ λ1 + c and we infer

inf{|λ− λ1|, λ ∈ Spec(A∞[r1]), λ > λ1} ≥ c.
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Similarly

inf{|λ− λ1|, λ ∈ Spec(A∞[r1]), λ < λ1} ≥ c′, c′ > 0

and we conclude that

‖B∞[r1, λ1]
−1‖L(L2

ρ,H
2
ρ)

. 1

with a bound that does not depend on r0. Also, note that

h

r0
=

pcp−1
∞
r0r2

(
1

(1 + r2−r1
r

)2
− 1

)
=
h1(r)

r2

where

h1(r) = −pcp−1
∞

(
2(r1−r2)

r0r
+ (r1−r2)2

r0r2

)

(1 + r2−r1
r

)2
.

Since

e−
2π
ω r0 ≤ r1 ≤ r0 and r1 = r2 +O(r30),

we infer

‖h1‖L∞(r>r1) . ‖h1‖
L∞(r>e−

2π
ω r0)

. r0.

Moreover,

‖r−2‖L2(r1<r<1) .

(∫ 1

r1

dr

r2

)1
2

.
1

r
1
2
1

.
1

r
1
2
0

.

Collecting the previous estimates, we infer

‖F(g̃)‖H2
ρ(r>r1)

. ‖B∞[r1, λ1]
−1‖L(L2

ρ,H
2
ρ)

∥∥∥∥c(ϕ1, r0, g̃)(ϕ1 + r0g̃) +
h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂r(ϕ1 + r0g̃)

∥∥∥∥
L2
ρ

. |c(ϕ1, r0, g̃)|(1 + r0‖g̃‖L2
ρ
) + r0‖g̃‖H1

ρ

+‖h1‖L∞(r>r1)(1 + r0‖g̃‖L2
ρ
+ ‖ϕ1 + r0g̃‖L∞

(r1<r<1)
‖r−2‖L2(r1<r<1))

.
r

1
2
0

1− r0‖g̃‖L2
ρ

(1 + r0‖g̃‖L2
ρ
) + r0‖g̃‖H1

ρ

and

‖F(g̃1)−F(g̃2)‖H2
ρ (r>r1) .

r
3
2
0

1− r0‖g̃‖L2
ρ

(1 + r0‖g̃‖L2
ρ
)‖g̃1 − g̃2‖L2

ρ
+ r0‖g̃1 − g̃2‖H1

ρ
.

Thus, for r0 > 0 small enough, the Banach fixed point theorem applies in the space
H2

ρ (r > r1) and yields a unique solution g̃ to (3.27) with

‖g̃‖H2
ρ (r>r1) . r

1
2
0 .

Hence, ϕ2 with

ϕ2(r) = g(r + r1 − r2), g = ϕ1 + r0g̃

satisfies

A∞[r2](ϕ2) = λ2ϕ2



38 C. COLLOT, P. RAPHAËL, AND J. SZEFTEL

where

λ2 = λ1 + c(ϕ1, r0, g̃)r0

= λ1 −
r0

1 + r0(g̃, ϕ1)ρ

(
h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂r(ϕ1 + r0g̃), ϕ1

)

ρ

.

Thus, λ2 belongs to the spectrum of A∞[r2] and hence

dist(λ1,Spec(A∞[r2])) ≤ |λ2 − λ1|

≤
∣∣∣∣∣

r0
1 + r0(g̃, ϕ1)ρ

(
h

r0
(ϕ1 + r0g̃) +

r2 − r1
r0

∂r(ϕ1 + r0g̃), ϕ1

)

ρ

∣∣∣∣∣ .

In view of the previous estimates, we infer

dist(λ1,Spec(A∞[r2])) .
r

3
2
0

1− r0‖g̃‖L2
ρ

(1 + r0‖g̃‖L2
ρ
) . r

3
2
0 .

and (3.24) is proved. �

3.4. Proof of Proposition 3.1. Recall that Ln is diagonalizable in a Hilbertian
basis of L2

ρ, and hence the spectral gap estimate (3.6) follows from the explicit
distribution of eigenvalues (3.2) which we now prove. Observe that the symmetry
group of dilations and translations generates the explicit eigenmodes

LnΛΦn = −2ΛΦn, Ln∇Φn = −∇Φn. (3.28)

Using the decomposition into spherical harmonics (3.8), the further study of the
quadratic form (Ln(u), u)ρ reduces to the study of the quadratic form (Ln,m(u), u)ρ
for m ≥ 0 for which classical Strum Liouville arguments are now at hand.

step 1 The case m = 1. Let ϕn,1 be defined in Lemma 3.2. In particular, ϕn,1

satisfies

Ln,1(ϕn,1) = 0, ϕn,1(0) = 0, ϕ′
n,1(0) = 1.

Then from standard Sturm Liouville oscillation argument for central potentials, [49],
the number of zeros of ϕn,1 in r > 0 correspond to the number of strictly negative
eigenvalues of Ln,1.

Since we have

∇Φn(x) = Φ′
n(r)

x

r
= Φ′

n(r)(Y
(1,−1), Y (1,1), Y (1,0))

and hence

Ln(∇Φn) = −∇Φn implies Ln,1(Φ
′
n) = −Φ′

n.

Thus, Ln,1 has at least one strictly negative eigenvalue, and hence ϕn,1 has at least
one zero which we denote by rn,1 > 0. On [0, r0], we have by (3.16):

sup
0≤r≤r0

∣∣∣µ−1
n ϕn,1(r)− ν1

(
r
µn

)∣∣∣
∣∣∣ν1
(

r
µn

)∣∣∣
. r20

Since ν1(r) > 0 for all r > 0, we infer that ϕn,1 can not vanish on [0, r0]. Hence,
rn,1 ≥ r0.
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No other zero. Assume by contradiction that there exists a second zero rn,2 > rn,1.
Let fn,1 being given as

fn,1 :=





ϕn,1 on rn,1 < r < rn,2,
0 on r < rn,1,
0 on r > rn,2.

Then, we have fn,1 ∈ H1
ρ and

(Ln,1(fn,1), fn,1)ρ = 0. (3.29)

On the other hand, using (1.5):

(L∞,1(u), u)ρ = ‖u′‖2ρ +
∫ +∞

0

2− pcp−1
∞

r2
u2r2ρdr

= ‖u′‖2ρ +
2(p + 1)

(p − 1)2

(∫ +∞

0

u2

r2
r2ρdr

)
& ‖u

r
‖2L2

ρ
. (3.30)

We now estimate from (1.10)

sup
r≥r0

r2|Φp−1
n − (Φ∗)

p−1| = on→+∞(1) (3.31)

and hence for u supported in (r0,+∞):

|(L∞,1(u), u)ρ − (Ln,1(u), u)ρ| .

∫ +∞

r0

∣∣Φp−1
n − Φp−1

∗
∣∣u2r2ρ(r)dr

≤ on→+∞(1)
∥∥∥u
r

∥∥∥
2

L2
ρ

. (3.32)

Since fn,1 is supported in (rn,1, rn,2) ⊂ (r0,+∞), (3.30), (3.32) applied to fn,1 and
(3.29) yield a contradiction for n ≥ N large enough. Thus, rn,2 can not exist, and
hence ϕn,1 vanishes only once.

ϕn,1 is not an eigenstate. Since ϕn,1 vanishes only once, Ln,1 has exactly one strictly
negative eigenvalue. It remains to check the ϕn,1 /∈ L2

ρ, i.e. ϕn,1 is not an eigenvector
associated to the eigenvalue 0. To this end, note that ϕn,1 is strictly positive on
(0, rn,1) from (3.9) and strictly negative on (rn,1,+∞). In particular, we have

ϕ′
n,1(rn,1) < 0.

Since Ln,1(ϕn,1) = 0, we have

(r2ρϕ′
n,1)

′ = r2ρ

[
2

p− 1
+

(2− pr2Φp−1
n )

r2

]
ϕn,1

and from (3.32) for r ≥ rn,1 ≥ r0:

2− r2pΦp−1
n = 2− pcp−1

∞ + pcp−1
∞ − r2pΦp−1

n ≥ 2(p + 1)

(p− 1)2
+ o(1) > 0. (3.33)

Since ϕn,1 is strictly negative on (rn,1,+∞), we deduce

r2ρϕ′
n,1(r) ≤ r2n,1ρ(rn,1)ϕ

′
n,1(rn,1) = c1 < 0 on (rn,1,+∞)

which implies ∫ +∞

rn,1

|ϕ′
n,1(r)|2ρr2dr &

∫ +∞

rn,1

dr

r2ρ
= +∞

and hence ϕn,1 /∈ H1
ρ and is therefore not an eigenvector.
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Conclusion. We conclude that −1 is the only negative eigenvalue of Ln,1, and is
associated to the single eigenvector Φ′

n. Hence, there exists a constant cn > 0 such
that for all u ∈ H1

ρ :

(Ln,1(u), u)ρ ≥ cn‖u‖2L2
ρ
− 1

cn
(u,Φ′

n)
2
ρ. (3.34)

step 2 The case m ≥ 2. Let ϕn,m be defined in Lemma 3.2. In particular, ϕn,m

satisfies
Ln,m(ϕn,m) = 0 and ϕn,m = rm(1 +O(r2)) as r → 0+.

Then, the number of zeros of ϕn,m in r > 0 corresponds to the number of strictly
negative eigenvalues of Ln,m. On [0, r0], we have by Lemma 3.2.

sup
0≤r≤r0

∣∣∣µ−m
n ϕn,m(r)− νm

(
r
µn

)∣∣∣
∣∣∣νm

(
r
µn

)∣∣∣
. r20

and νm(r) > 0 for all r > 0, and hence ϕn,m cannot vanish on [0, r0]:

ϕn,m(r) > 0 on [0, r0].

Next, we investigate the sign of ϕ′
n,m(r0). Recall (3.13):

νm(r) ∼ cm,−

r
1−

√
∆m

2

as r → +∞ cm.− > 0

and hence

ν ′m(r) ∼ cm,−(
√
∆m − 1)

r
3−

√
∆m

2

as r → +∞.

We infer for n ≥ N large enough

ϕn,m(r0) =
cm,−(1 +O(r20))µ

m
n

(
r0
µn

) 1−
√

∆m
2

and

ϕ′
n,m(r0) =

cm,−(
√
∆m − 1)(1 +O(r20))µ

m−1
n

(
r0
µn

) 3−
√

∆m
2

.

Thus, taking also into account that ϕn,m(r) > 0 on [0, r0], we infer from the identity
for ϕn,m(r0) that

cm,− > 0.

Since
√
∆m ≥

√
∆1 =

p+3
p−1 > 1, we conclude:

φn,m(r0) > 0, φ′n,m(r0) > 0. (3.35)

Since Ln,m(ϕn,m) = 0, we have

(r2ρϕ′
n,m)′ = r2ρ

[
2

p− 1
+

(m(m+ 1)− pr2Φp−1
n )

r2

]
ϕn,m (3.36)

which together with (3.35), (3.33) and the fact that m ≥ 2, and an elementary
continuity argument ensures

φ′m,n(r) > 0, φn,m(r) ≥ φn,m(r0) > 0 for r ≥ r0.

Hence φn,m does not vanish on (0,+∞) and using (3.36):

r2φ′n,mρ(r) ≥ r20φ
′
n,mρ(r0) = c0 > 0
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which implies ∫ +∞

r0

(φ′n,m)2ρr2dr &

∫ +∞

r0

dr

r2ρ
= +∞

and hence φn,m is not eigenvector. We finally conclude that for m = 2 and all
n ≥ N large enough, Ln,2 has a spectral gap and there exists a constant cn > 0
such that we have for all u ∈ H1

ρ

(Ln,2(u), u)ρ ≥ cn‖u‖2L2
ρ
.

Since we have for all m ≥ 2

(Ln,m(u), u)ρ ≥ (Ln,2(u), u)ρ,

we infer for all m ≥ 2 and for all u ∈ H1
ρ

(Ln,m(u), u)ρ ≥ cn‖u‖2L2
ρ
. (3.37)

step 3. The case m = 0. We now focus onto Ln,0 which is the most delicate case,
and we claim that Ln,0 has exactly n + 1 strictly negative eigenvalues, and that 0
is not in the spectrum. The key is to combine the uniform bounds (1.9) with the
explicit knowledge of the limiting outer spectrum, Lemma 3.4, as nicely suggested
at the formal level in [3].
Let ϕn,0 be the solution to (3.17) so that the number of strictly negative eigenvalues
of Ln,0 coincides with the numbers of zeroes of ϕn,0. We count the number of zeros
of ϕn,0 by comparing them with the number of zeros of ΛΦn.

Lower bound. First, since ΛΦn is an eigenvector of Ln,0 corresponding to the eigen-
value −2 and since ΛΦn vanishes n times from Proposition 2.5, we infer from Sturm
Liouville

#Spec(Ln,0 + 2) ∩ (−∞, 0] = n+ 1.

In particular, since the number of strictly negative eigenvalues of Ln,0 coincides with
the number of zeroes of ϕn,0, we infer

#{r ≥ 0 such that ϕn,0(r) = 0} ≥ n+ 1.

Upper bound. Recall (3.18):

sup
0≤r≤r0

(
1 +

r

µn

) 1
2
∣∣∣∣ϕn,0(r)−

p− 1

2
ΛQ

(
r

µn

)∣∣∣∣ . r20.

Also, we have ΛQ(0) 6= 0 and from (2.41):
(
r0
µn

)1
2
∣∣∣∣ΛQ

(
r0
µn

)∣∣∣∣ ≥ c > 0

for some constant c > 0 independent of n. Hence ϕn,0 and ΛQ vanish the same
number of times on [0, r0]. Since on the other hand ΛQ and ΛΦn vanish the same
number of times on [0, r0] from (2.40), ϕn,0 and ΛΦn vanish the same number of
times of [0, r0].
Let now rn,0 to be the last zero of ΛΦn before r0. In view of Corollary 2.6, we have

e−
2π
ω r0 ≤ rn,0 ≤ r0.

Let us now consider the operators (3.22):

An[rn,0](f) = Ln,0(f) on r > r0,n, f(rn,0) = 0,

A∞[rn,0](f) = L∞(f) on r > rn,0, f(rn,0) = 0,
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then

Ln,0(ΛΦn) = −2ΛΦn and ΛΦn(rn,0) = 0,

implies

An[rn,0](ΛΦn) = −2ΛΦn.

In particular, −2 belongs to the spectrum of An[rn,0]. In view of Lemma 3.5, we
deduce for n ≥ N large enough that the exists an eigenvalue λ0 of A∞[rn,0] such
that λ0 = −2 + o(1). On the other hand, in view of Lemma 3.4, the solutions to

L∞(f) = λf

with f ∈ H1
ρ are completely explicit and behave for r → 0 as

f ∼ 1

r
1
2

cos(ωlog(r)− Φ(λ))

with

Φ(λ) = arg


 2

iω
2 Γ(iω)

Γ
(

1
p−1 − λ

2 − 1
4 +

iω
2

)


 .

In order for f to be an eigenfunction of A∞[rn,0], we need f(rn,0) = 0 and hence
there should exists k ∈ Z such that

ωlog(rn,0)− Φ(λ) ∼ π

2
+ kπ.

Recall that λ0 = −2+o(1) is an eigenvalue of A∞[rn,0], and let λ1 > λ0 be the next
eigenvalue of A∞[rn,0]. Then, there exists k0 ∈ R such that

ωlog(rn,0)− Φ(λ0) ∼
π

2
+ k0π, ωlog(rn,0)− Φ(λ1) ∼

π

2
+ (k0 − 1)π

and hence

Φ(λ1) = Φ(−2) + π + o(1). (3.38)

Now, by numerical check, we have15

sup
5≤p<+∞

sup
−2≤λ≤0.5

(Φ(λ)− Φ(−2)− π) ∼ −0.5945 < 0,

and hence, the solution λ1 to (3.38) satisfies

inf
5≤p<+∞

λ1 ≥ 0.5 > 0.

We infer that A∞[rn,0] has no eigenvalue between λ0 = −2 + o(1) and λ1 ≥ 0.5.
Hence, using again Lemma 3.5, An[rn,0] has no eigenvalue between −2 and λ1 +
o(1) ≥ 0.25. Thus, we have

#Spec(An[rn,0]) ∩ (−∞, 0] = #Spec(An[rn,0] + 2) ∩ (−∞, 0].

On the other hand, we have

#Spec(An[rn,0] + 2) ∩ (−∞, 0] = #{r > rn,0 such that ΛΦn(r) = 0}+ 1

15Notice that Φ(λ) has a well defined limit as p → +∞ given by

Φ∞(λ) = arg

(
2

i

4 Γ( i
2
)

Γ
(
−λ

2
− 1

4
+ i

4

)
)
.

Our numerics are carried out using Matlab and indicate that Φp(λ) is increasing on [−2, 0.5] for all
p ≥ 5 so that the maximum on [−2, 0.5] is achieved at λ = 0.5. Also, this maximum appears to be
a growing function of p so that the maximum in p is given by Φ∞(0.5) −Φ∞(−2)− π ∼ −0.5945.
See [3] for a similar numerical computation.
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since ΛΦn is in the kernel of An[rn,0] + 2, and hence

#Spec(An) ∩ (−∞, 0] = #{r > rn,0 such that ΛΦn(r) = 0}+ 1.

Also, since ϕn,0 can not be an eigenvector of An
16, we have

#Spec(An[rn,0]) ∩ (−∞, 0] = #{r > rn,0 such that ϕn,0(r) = 0}.
We infer

#{r > rn,0 such that ϕn,0(r) = 0} = #{r > rn,0 such that ΛΦn(r) = 0}+ 1.

But since rn,0 has been chosen to be the last zero of ΛΦn before r0, we have

#{r > rn,0 such that ΛΦn(r) = 0} = #{r > r0 such that ΛΦn(r) = 0}
and hence

#{r > rn,0 such that ϕn,0(r) = 0} = #{r > r0 such that ΛΦn(r) = 0}+ 1.

Next, together with the fact that ϕn,0 and ΛΦn vanish the same number of times
of [0, r0], we infer

#{r > 0 such that ϕn,0(r) = 0}
≤ #{0 ≤ r ≤ r0 such that ϕn,0(r) = 0}+#{r > rn,0 such that ϕn,0(r) = 0}
= #{0 ≤ r ≤ r0 such that ΛΦn(r) = 0}+#{r > r0 such that ΛΦn(r) = 0}+ 1

= #{r > 0 such that ΛΦn(r) = 0}+ 1

= n+ 1

and since

#{r ≥ 0 such that ϕn,0(r) = 0} ≥ n+ 1.

φn,0 is not an eigenstate. We conclude that

#{r ≥ 0 such that ϕn,0(r) = 0} = n+ 1.

Assume now by contradiction that ϕn,0 is in the kernel of Ln,0. Recall that r0,n < r0
is the last 0 of ΛΦn and let r1,n < r0 be the last 0 of ϕn,0. In particular, we have
from Lemma 3.3:

e−
2π
ω r0 ≤ r0,n, r1,n ≤ r0 and r1,n = r0,n +O(r30).

Also, since ϕn,0 is in the kernel of Ln,0 and ϕn,0(r1,n) = 0, we infer that 0 is in the
spectrum of An[r1,n], and hence applying Lemma 3.5 twice as well as Lemma 3.6,
we obtain that

dist(Spec(An[r0,n]), 0) . r
3
2
0 + o(1)

as n → +∞. In particular, we have for r0 > 0 small enough and n ≥ N large
enough

dist(Spec(An[r0,n]), 0) ≤ 0.2.

On the other hand, we have proved above that An[rn,0] has no eigenvalue between
−2 and λ1 + o(1) ≥ 0.25 so that

dist(Spec(An[r0,n]), 0) ≥ 0.25

which is a contradiction. Hence ϕ0,n is not in the kernel of Ln,0.

16Indeed, ϕn,0 would be an eigenvector for the eigenvalue 0, but 0 is not in the spectrum of An

as seen above.
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Conclusion. We conclude that Ln,0 has exactly n + 1 strictly negative eigenval-
ues. On the other hand, since ΛΦn is an eigenvector of Ln,0 corresponding to the
eigenvalue −2 and since ΛΦn vanishes n times, we infer

#Spec(Ln,0 + 2) ∩ (−∞, 0] = n+ 1,

and hence Ln,0 has exactly n + 1 negative eigenvalues and the largest negative
eigenvalue is −2. We denote these eigenvalues by

−µn+1,n < · · · < −µ2,n < −µ1,n = −2.

By Sturm Liouville, these eigenvalues are simple and associated to eigenvectors

ψj,n, ‖ψj,n‖L2
ρ
= 1, ψ1,n =

ΛΦn

‖ΛΦn‖ρ
.

Also, there holds for some constant cn > 0 and for all u ∈ H1
ρ

(Ln,0(u), u)ρ ≥ cn‖u‖2L2
ρ
− 1

cn



n+1∑

j=1

(u, ψj,n)
2
ρ


 . (3.39)

The behavior as r → +∞ of the eigenstates (3.5) follows from the asymptotic in
Lemma 3.4 and a standard ODE argument using the variation of constants formula,
this is left to the reader.

step 4 Conclusion. We decompose u ∈ H1
ρ as

u =

+∞∑

m=0

m∑

k=−m

um,kY
(m,k)

where um,k are radial functions satisfying

‖u‖2ρ =

+∞∑

m=0

m∑

k=−m

‖um,k‖2ρ.

We have

(Ln(u), u)ρ =

+∞∑

m=0

m∑

k=−m

(Ln,m(um,k), um,k)ρ.

Together with (3.34), (3.37) and (3.39), we infer for all u ∈ H1
ρ

(Ln(u), u)ρ = (Ln,0(u0,0), u0,0)ρ +

1∑

k=−1

(Ln,1(u1,k), u1,k)ρ +

+∞∑

m=2

m∑

k=−m

(Ln,m(um,k), um,k)ρ

≥ cn‖u‖2ρ −
1

cn



n+1∑

j=1

(u0,0, ψj,n)
2
ρ +

3∑

k=1

(u1,k,Φ
′
n)

2
ρ


 .

Since ψj,n are all radial, we have

(u0,0, ψj,n)ρ = (u, ψj,n)ρ.

Also, since

∇Φn(x) = Φ′
n(r)

x

r
= Φ′

n(r)(Y
(1,−1), Y (1,1), Y (1,0)),

we infer
3∑

k=1

(u1,k,Φ
′
n)

2
ρ =

3∑

k=1

(u, ∂kΦn)
2
ρ.
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Finally, there holds for some constant cn > 0 and for all u ∈ H1
ρ

(Lnu, u)ρ ≥ cn‖u‖2H1
ρ
− 1

cn




n∑

j=0

(u, ψj,n)
2
ρ +

3∑

k=1

(u, ∂kΦn)
2
ρ


 .

This concludes the proof of Proposition 3.1.

4. Dynamical control of the flow

We now turn to the question of the stability of the self similar solution, and more
precisely the construction of a manifold of finite energy initial data such that the
corresponding solution to (1.1) blows up in finite time with Φn profile in the self
similar regime described by Theorem 1.2. n is now fixed.

4.1. Setting of the bootstrap. We set up in this section the bootstrap analysis
of the flow for a suitable set of finite energy initial data. The solution will be
decomposed in a suitable way with standard technique, see [32, 38].
Geometrical decomposition. We start by showing the existence of the suitable

decomposition. Recall the spectral Proposition 3.1. To ease notations we now omit
the n subscript and write ψj , µj and λj instead.

Define the L∞ tube around the renormalized versions of Φn:

Xδ =

{
u =

1

λ
2

p−1

(Φn + v)

(
x− y

λ

)
, y ∈ R

d, λ > 0, ‖v‖L∞ < δ

}

Lemma 4.1 (Geometrical decomposition). There exists δ > 0 and C > 0 such that

any u ∈ Xδ has a unique decomposition

u =
1

λ
2

p−1

(Φn +

n+1∑

j=2

ajψj + ε)

(
x− x

λ

)
,

where ε satisfies the orthogonality conditions

(ε, ψj)ρ = (ε, ∂kΦn)ρ = 0, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ 3,

the parameters λ, x and aj being Fréchet differentiable on Xδ, and with

‖ε‖L∞ +
∑

|aj | ≤ C. (4.1)

Proof. It is a classical consequence of the implicit function theorem.
step 1 Decomposition near λ = 1, x = 0. We introduce the smooth maps

F (v, µ, x, b1, . . . , bn) = µ
2

p−1 (Φn + v)(µy + x)− Φn −
n+1∑

j=2

bjψj

and

G = ((F,ΛΦn), (F, ∂1Φn), (F, ∂2Φn), (F, ∂3Φn), (F,ψ2), . . . , (F,ψn+1)).

We immediately check that G(Φn, 1, 0, . . . , 0) = 0 and that

∂G

∂(µ, x, b2, . . . , bn+1) |(Φn,1,0,...,0)

is invertible. In view of the implicit function theorem, for κ > 0 small enough, for
any

‖v‖L∞ ≤ κ



46 C. COLLOT, P. RAPHAËL, AND J. SZEFTEL

there exists (µ, z, a2, . . . , an+1) and

ε = F (v, µ, z, a2, . . . , an+1)

such that

u = Φn + v =
1

µ
2

p−1


Φn +

n+1∑

j=2

ajψj + ε



(
x− z

µ

)
,

(ε, ψj) = (ε, ∂kΦn) = 0, 1 ≤ j ≤ n, 1 ≤ k ≤ 3,

and there exist two universal constants K, K̃ > 0 such that

‖ε‖L∞ +
n+1∑

j=2

|aj |+ |µ− 1|+ |z| ≤ K‖v‖L∞

and such that the decomposition is unique under the bound

‖ε‖L∞ +

n+1∑

j=2

|aj |+ |µ − 1|+ |z| ≤ K̃. (4.2)

step 2 Decomposition near any λ, x. For any δ > 0, we take C = C(δ) := Kδ. Let
u ∈ Xδ then for some λ′ > 0 and y one has

u(x) =
1

λ
′ 2
p−1

(Φn + v)

(
x− y

λ′

)
, ‖v‖L∞ < δ.

The first step then provides the decomposition claimed in the lemma for δ small
enough via the formulas λ = λ′µ(v), x = y − λ′z(v), aj = aj(v) and ε = ε(v).
We will show in the next step that the decomposition is unique, implying that the
parameters are Fréchet differentiable on Xδ for those of step 1 are.
step 3 Uniqueness of the decomposition. First, from a continuity argument, for
any ǫ > 0, there exists δ > 0 such that if

(Φn + v)(x) =
1

µ
2

p−1

(Φn + v′)

(
x− y

µ

)
, ‖v‖L∞ + ‖v′‖L∞ ≤ δ

then

|µ− 1|+ |y| ≤ ǫ.

Now recall that C = Kδ and assume that we are given a second decomposition for
u ∈ Xδ . In view of step 2, performing a change of variable, this amount to say that
Φn + v admits another decomposition:

(Φn + v)(x) =
1

µ
2

p−1

(Φn +
n+1∑

j=2

ajψj + ε)

(
x− z

µ

)

and the bound (4.1) gives

n+1∑

j=2

|aj|+ ‖ε‖L∞ ≤ Kδ.

Using the above continuity estimate, one obtains that for δ small enough

|z|+ |µ− 1| ≪ K̃.

Therefore, for δ small enough the second decomposition associated with µ, z, aj
and ε satisfies (4.2), and is therefore the one given by step 2 by uniqueness. �
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Description of the initial datum. We will now focus on solutions of (1.1) that are
a suitable perturbation of Φn at initial time:

u0 =
1

λ
2

p−1

0

(Φn + v0)

(
x

λ0

)
(4.3)

with

v0 =

n+1∑

j=2

ajψj + ε0, (ε0, ψj)ρ = (ε0, ∂kΦn)ρ = 0, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ 3. (4.4)

For s0 ≫ 1 and µ,K0 > 0 three constants to be defined later on, the parameters
λ0, aj and the profile ε0 satisfy the bounds

• rescaled solution:
λ0 = e−s0 ; (4.5)

• initial control of the unstable modes:
n+1∑

j=2

|aj |2 ≤ e−2µs0 ; (4.6)

• smallness of suitable initial norms:

‖ε0‖H2
ρ
+ ‖∆v0‖L2 + ‖w0‖Ḣsc ≤ K0e

−µs0 ; (4.7)

where w0 is given by

w0 =

(
1− χ 1

λ0

)
Φn + v0.

Note that in view of the L∞ bound (4.23), the decomposition (4.3) is precisely the
one given by Lemma 4.1.

Renormalized flow. As long as the solution u(t) starting from (4.3) belongs to Xδ,
Lemma 4.1 applies and it can be written

u(t, x) =
1

λ(t)
2

p−1

(Φn + ψ + ε)(s, z), y =
x− x(t)

λ(t)
(4.8)

with

ψ =

n+1∑

j=2

ajψj , (ε, ψj)ρ = (ε, ∂kΦn)ρ = 0, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ 3. (4.9)

Moreover, as the parameters are Fréchet differentiable in L∞, and as u ∈ C1((0, T ), L∞)
from parabolic regularizing effects, the above decomposition is differentiable with
respect to time. We also introduce a further decomposition

v = ψ + ε, Φn + v = χ 1
λ
Φn + w. (4.10)

Consider the renormalized time

s(t) =

∫ t

0

dτ

λ2(τ)
+ s0.

Injecting (4.8) into (1.1) yields the renormalized equation

∂sε+ Lnε = F − Mod (4.11)

with the modulation term

Mod =

n+1∑

j=2

[(aj)s − µjaj]ψj −
(
λs
λ

+ 1

)
(ΛΦn + Λψ)− xs

λ
· (∇Φn +∇ψ) (4.12)
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and the force terms

F = L(ε) + NL, L(ε) =

(
λs
λ

+ 1

)
Λε+

xs
λ

· ∇ε (4.13)

NL = g(ε + ψ), g(v) = (Φn + v)p −Φp
n − pΦp−1

n v. (4.14)

We claim the following bootstrap proposition.

Proposition 4.2 (Bootstrap). There exist universal constants 0 < µ, η ≪ 1, K ≫ 1
such that for all s0 ≥ s0(K,µ, η) ≫ 1 large enough the following holds. For any λ0
and ε0 satisfying (4.5), (4.4) and

‖(1− χ 1
λ0

)Φn + ε0‖Ḣsc + ‖ε0‖H2
ρ
+ ‖∆ε0‖L2 ≤ e−2µs0 , (4.15)

there exist (a2(0), . . . , an+1(0)) satisfying (4.6) such that the solution starting from

u0 given by (4.3), decomposed according to (4.8) satisfies for all s ≥ s0:

• control of the scaling:

0 < λ(s) < e−µs; (4.16)

• control of the unstable modes:

n+1∑

j=2

|aj|2 ≤ e−2µs; (4.17)

• control of the exponentially weighted norm:

‖ε‖H2
ρ
< Ke−µs; (4.18)

• control of a Sobolev norm above scaling:

‖∆v‖L2 < Ke−µs; (4.19)

• control of the critical norm:

‖w‖Ḣsc < η. (4.20)

Proposition 4.2 is the heart of the analysis, and the corresponding solutions are
easily shown to satisfy the conclusions of Theorem 1.2. The strategy of the proof
follows [10, 42]: we prove Proposition 4.2 by contradiction using a topological argu-
ment à la Brouwer: given (ε0, λ0) satisfying (4.5), (4.15) and (4.4), we assume that
for all (a2(0), . . . , an+1(0)) satisfying (4.6), the exit time

s∗ = sup{s ≥ s0 such that (4.16), (4.17), (4.18), (4.19), (4.20) holds on [s0, s)}
(4.21)

is finite

s∗ < +∞ (4.22)

and look for a contradiction for 0 < µ, η, 1
K

small enough and s0 ≥ s0(K,µ) large
enough. From now on, we therefore study the flow on [s0, s

∗] where (4.16), (4.17),
(4.18), (4.19) and (4.20) hold. Using a bootstrap method we show that the bounds
(4.16), (4.18), (4.19) and (4.20) can be improved, implying that at time s∗ neces-
sarily the unstable modes have grown and (4.17) is violated. Since 0 is a linear
repulsive equilibrium for these modes, this would contradict Brouwer fixed point
theorem.

From the asymptotic (3.5) of ψj for 2 ≤ j ≤ n + 1, (4.6) and (4.15), one can fix
the constant K0 independently of (s0, µ, ) such that (4.7) holds. Also, note that the
bootstrap bounds (4.17), (4.18), (4.19) and (4.20) imply the L∞ bound (4.23), and
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therefore the decomposition used in the Proposition is well defined since Lemma 4.1
applies.

4.2. L∞ bound. We start with the derivations of unweighted L∞ and Sobolev
bounds on v,w which will be essential to control nonlinear terms in the sequel and
follow from (4.19), (4.20).

Lemma 4.3 (L∞ smallness). There holds

‖v‖L∞ + ‖w‖L∞ ≤ e−cµs ≤ η ≪ 1 (4.23)

for some universal constants c > 0, 0 < η ≪ 1.

Proof. We compute from (4.10):

w = (1− χ 1
λ
)Φn + v. (4.24)

The self similar decay (1.9) and (4.19) yield:

‖w‖Ḣ2 . ‖v‖Ḣ2 + ‖(1 − χ 1
λ
)Φn‖Ḣ2 . K

[
e−µs + λ(s)2−sc

]
≤ e−cµs.

Hence by interpolation using sc =
3
2 − 2

p−1 <
3
2 < 2:

‖w‖L∞ . ‖ŵ‖L1 . ‖w‖1−α

Ḣsc
‖w‖α

Ḣ2 , α =
3
2 − sc

2− sc

which together with (4.20) ensures:

‖w‖L∞ . e−cµs.

The decay (1.9) and (4.16), (4.24) yield the L∞ smallness for v and conclude the
proof. �

4.3. Modulation equations. We now compute the modulation equations which
describe the time evolution of the parameters. They are computed in the self-similar
zone, and involve the ρ weighted norm.

Lemma 4.4 (Modulation equations). There holds the bounds

∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣+
n+1∑

j=2

|(aj)s − µjaj | . ‖ε‖2H1
ρ
+ ‖∆v‖2L2 +

n+1∑

j=2

|aj |2. (4.25)

Proof. This lemma is a classical consequence of the choice of orthogonality condi-
tions (4.9), but the control of the nonlinear term relies in an essential way on the
L∞ smallness (4.23).

step 1 Law for aj . Take the L2
ρ scalar product of (4.11) with ψj for 2 ≤ j ≤ n+ 1,

then using (4.9) and the orthogonality

(ψj , ψk)ρ = δjk, ψ1 =
ΛΦn

‖ΛΦn‖L2
ρ

, (4.26)

we obtain

(aj)s − µjaj =

(
λs
λ

+ 1

)
(Λψ,ψj)ρ + (F,ψj)ρ.

First, from (4.17) one has

|(Λψ,ψj)ρ| . e−µs ≪ η.

We now estimate the F -term given by (4.13) . We use the bound from p > 5:
∣∣|1 + z|p − 1− pzp−1

∣∣ . |z|p + |z|2
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to estimate from the L∞ bound (4.23):

|NL| . |ε+ ψ|p +Φp−2
n (ε+ ψ)2 . (ε+ ψ)2 = v2. (4.27)

We estimate from the Hardy inequality (A.5):

∫ |∇v|2
1 + |y|2 +

|v|2
1 + |y|4 .

∫
|∆v|2 + ‖v‖2H1

ρ
.

∫
|∆v|2 + ‖ε‖2H1

ρ
+

n+1∑

j=2

|aj|2 (4.28)

and hence using the polynomial bound (3.5):

|(NL, ψj)ρ| .

∫
v2|ψj |ρ .

∫ |v|2
1 + |y|4 .

∫
|∆v|2 + ‖v‖2H1

ρ

. ‖ε‖2H1
ρ
+ ‖∆v‖2L2 +

n+1∑

j=2

|aj |2.

Next, we integrate by parts and use Cauchy Schwarz and (3.5) to estimate:
∣∣∣∣∣

((
λs
λ

+ 1

)
Λε+

xs
λ

· ∇ε, ψj

)

ρ

∣∣∣∣∣ .
[∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣
]
‖ε‖L2

ρ

and hence the first bound

|(aj)s − µjaj| .
(∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣
)
η + ‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2 .

step 2 Law for scaling and translation. We scalarize (4.11) with ψ1 =
ΛΦn

‖ΛΦn‖L2
ρ

and

∂kΦn

‖∂kΦn‖L2
and obtain in a completely similar way

∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣ .
(∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣
)
η + ‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2 .

Summing the above estimates and using the smallness of η yields (4.25). �

4.4. Energy estimates with exponential weights. We now turn to the proof of
exponential decay which is an elementary consequence of the spectral gap estimate
(3.6), the dissipative structure of the flow and the L∞ bound (4.23) to control the
non linear term.

Lemma 4.5 (Lyapounov control of exponentially weighed norms). There holds the

differential bound

d

ds
‖ε‖2L2

ρ
+ cn‖ε‖2H1

ρ
.

n+1∑

j=2

|aj |4 + ‖∆v‖4L2 + ‖v‖2L∞


‖∆v‖2L2 +

n+1∑

j=2

|aj |2

 , (4.29)

d

ds
‖Lnε‖2L2

ρ
+ cn‖Lnε‖2H1

ρ
. ‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |4 + ‖∆v‖4L2 (4.30)

+ ‖v‖2L∞


‖∆v‖2L2 + ‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |2

 ,

with cn > 0 given by (3.6).
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Proof. step 1 L2 weighted bound. We compute from (4.11):

1

2

d

ds
‖ε‖2L2

ρ
= (ε, ∂sε)ρ = −(Lnε, ε)ρ + (F − Mod, ε)ρ. (4.31)

From (4.12), (4.25):

|(ε,Mod)ρ| . ‖ε‖L2
ρ
‖Mod‖L2

ρ
. ‖ε‖L2

ρ


‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2




. δ‖ε‖2L2
ρ
+ Cδ


‖ε‖4H1

ρ
+

n+1∑

j=2

|aj|4 + ‖∆v‖4L2




for any δ > 0. Integrating by parts and using (A.1), we estimate

|(ε,Λε)ρ|+ |(∇ε, ε)ρ| .
∫

(1 + |y|2)ε2ρdy . ‖ε‖2H1
ρ

(4.32)

from which using (4.25):

∣∣∣(L(ε), ε)ρ
∣∣∣ . ‖ε‖2H1

ρ


‖ε‖2L2

ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2


 .

Finally using (4.27), (4.28):

|(NL, ε)ρ| .

∫
|ε|v2ρdy ≤ δ

∫
|ε|2ρ+ Cδ

∫
|v|4ρdy

≤ δ

∫
|ε|2ρ+ Cδ‖v‖2L∞

∫ |v|2
1 + |y|4 dy

≤ δ‖ε‖2L2
ρ
+ Cδ‖v‖2L∞



∫

|∆v|2 + ‖ε‖2H1
ρ
+

n+1∑

j=2

|aj |2

 .

Injecting the collection of above bounds into (4.31) and using the spectral gap
estimate (3.6) with the choice of orthogonality conditions (4.9) yields

d

ds
‖ε‖2 ≤ −2cn‖ε‖H1

ρ


1− C(‖ε‖2H1

ρ
−

n+1∑

j=2

|aj|2 − ‖†∆v‖2L2)− Cδ − Cδ‖ε†‖H1
ρ




+Cδ‖v‖L∞



∫

∆v2 + ‖ε‖2H1
ρ
+

n+1∑

j=2

|aj |2



which using the bootstrap bounds (4.17), (4.18) and (4.19) gives (4.29) for s0 large
enough and δ small enough.

step 2 H2 weighted bound. Let

ε2 = Lnε,

then ε2 satisfies the orthogonality conditions (4.9):

(ε2, ψj) = (ε2, ∂kΦn) = 0, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ 3, (4.33)

and the equation from (4.11):

∂sε2 + Lnε2 = Ln(F − Mod).
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Hence:

1

2

d

ds
‖ε2‖2L2

ρ
= −(Lnε2, ε2)ρ + (Ln(F − Mod), ε2)ρ. (4.34)

We estimate from (4.25):

‖LnMod‖L2
ρ
.

∣∣∣∣
λs
λ

− 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣+
n+1∑

j=2

|(aj)s − aj| . ‖ε‖2H1
ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2 .

We now use the commutator relation

[∆,Λ] = 2∆

to compute

[Ln,Λ] = [−∆+Λ−pΦp−1
n ,Λ] = −2∆+p(p−1)Φp−2

n r∂rΦn = 2(Ln−Λ+pΦp−1
n )+p(p−1)Φp−2

n r∂rΦn

from which using (4.32), (A.1):

|(ε2,LnΛε)ρ| = |(ε2, [Ln,Λ]ε)ρ + (ε2,Λε2)ρ|
. ‖ε2‖2H1

ρ
+ |(ε2,Λε)ρ|+ |(ε2,Φp−1

n ε)ρ|+ |(ε2,Φp−2
n ΛΦnε)ρ|

. ‖ε2‖2H1
ρ
+ ‖ε‖2H1

ρ

and similarly

|(ε2,Ln∂kε)ρ| . ‖ε2‖2H1
ρ
+ ‖ε‖2H1

ρ
.

Hence from (4.25):

|(ε2,LnL(ε))ρ| . (‖ε2‖2H1
ρ
+ ‖ε‖2H1

ρ
)


‖ε‖2ρ +

n+1∑

j=2

|aj |2 + ‖∆v‖2L2


 .

It remains to estimate the nonlinear term. We first integrate by parts since Ln is
self adjoint for (·, ·)ρ to estimate using the notation (4.14):

|(LnNL, ε2)ρ| =

∣∣∣∣∣(∇NL,∇ε2)ρ +
(

2

p− 1
NL − pΦp−1

n NL, ε2

)

ρ

∣∣∣∣∣

. |(∇g(v),∇ε2)ρ|+
∣∣∣∣∣

(
2

p− 1
g(v) − pΦp−1

n g(v), ε2

)

ρ

∣∣∣∣∣ .

We now compute explicitly

∇g(v) = p∇v
[
(Φn + v)p−1 − Φp−1

n

]
(4.35)

+ p∇Φn

[
(Φn + v)p−1 −Φp−1

n − (p− 1)Φp−2
n v

]
.

We estimate by homogeneity with the L∞ bound (4.23):

|g(v)| . |v|2, |∇g(v)| . |∇v||v|+ |v|2
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and hence the bound using (4.23) again:

|(∇g(v),∇ε2)ρ|+
∣∣∣∣∣

(
2

p− 1
g(v) − pΦp−1

n g(v), ε2

)

ρ

∣∣∣∣∣

.

∫ [
|v||∇(v)| + |v|2

]
|∇ε2|ρdy +

∫
|ε2||v|2ρdy

≤ δ‖ε2‖2H1
ρ
+ Cδ

[∫
|v|2|∇v|2ρdy +

∫
|v|4ρdy

]

≤ δ‖∇ε2‖2L2
ρ
+ Cδ‖v‖2L∞

[∫ |∇v|2
1 + |y|2 dy +

∫ |v|2
1 + |y|4dy

]

≤ δ‖∇ε2‖2L2
ρ
+ Cδ‖v‖2L∞


‖ε‖2H1

ρ
+

n+1∑

j=2

|aj|2 + ‖∆v‖2L2


 .

The collection of above bounds together with the spectral gap estimate (3.6) and
the orthogonality conditions (4.33) injected into (4.34) yields (4.30). �

Remark 4.6. The proof of (4.29) is elementary but requires in an essential way
the L∞ smallness bound17 (4.23), and in particular the sole control of the H1

ρ norm

cannot suffice to control the nonlinear term
∫
|ε|p+1ρ due to both the energy super

critical nature of the problem and the exponential weight.

4.5. Outer global Ḣ2 bound. We recall

v = ε+ ψ

and now aim at propagating an unweighted global Ḣ2 decay estimate for v. We have

∂sv −∆v − λs
λ
Λv − xs

λ
· ∇v = G

with

G =

[(
λs
λ

+ 1

)
ΛΦn +

xs
λ

· ∇Φn

]
+ N̂L, N̂L = (Φn + v)p − Φp

n.

Lemma 4.7 (Global Ḣ2 bound). There holds the Lyapounov type monotonicity

formula

d

ds

[
1

λ4−δ−2sc

∫
|∆v|2dy

]
+

1

λ4−δ−2sc

∫
|∇∆v|2dy .

1

λ4−2sc−δ


‖ε‖2H2

ρ
+

n+1∑

j=2

|aj |2



(4.36)
for some universal constant 0 < δ ≪ 1.

Proof. We compute the Ḣ2 energy identity:

1

2

d

ds

∫
|∆v|2dy =

∫
∆v∆

[
∆v +

λs
λ
Λv +

xs
λ

· ∇v +G

]
dy

= −
∫

|∇∆v|2dy +
∫

∆v∆

[
λs
λ
Λv +

xs
λ

· ∇v +G

]
dy

and estimate all terms.

17or anything above or equal scaling in terms of regularity.
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step 1 Parameters terms. For any µ > 0, let vµ = 1

µ
2

p−1
v
(

y
µ

)
, then:

∫
|∆vµ|2dy =

1

µ4−2sc

∫
|∆v|2dy

and hence differentiating and evaluating at µ = 1:

−2

∫
∆v∆(Λv)dy = −(4− 2sc)

∫
|∆v|2dy.

Hence

λs
λ

∫
∆v∆(Λv) = (2− sc)

λs
λ

∫
|∆v|2dy.

Also, integrating by parts:

∫
∆v∆

(xs
λ

· ∇v
)
dy = 0.

step 2 G terms. Thanks to the decay of the self similar solution from (1.9):

∫
|∆ΛΦn|2dy +

∫
|∆∇Φn|2dy < +∞,

we estimate in brute force using (4.25) the terms induced by the self similar solution:

∣∣∣∣
∫

∆v∆

{[(
λs
λ

+ 1

)
ΛΦn +

xs
λ

· ∇Φn

]}∣∣∣∣

.

[∣∣∣∣
λs
λ

+ 1

∣∣∣∣+
∣∣∣xs
λ

∣∣∣
]
‖∆v‖L2 ≤ δ‖∆v‖2L2 +Cδ


‖ε‖2H1

ρ
+ ‖∆v‖2L2 +

n+1∑

j=2

|aj |2



2

≤ δ‖∆v‖2L2 + Cδ


‖ε‖2H1

ρ
+

n+1∑

j=2

|aj |2

 .

It remains to estimate the nonlinear term. We estimate by homogeneity:

|∆N̂L| =

∣∣∣∣∣p∆Φn

[
(Φn + v)p−1 − Φp−1

n

]
+ p(Φn + v)p−1∆v

+ p(p− 1)|∇Φn|2
[
(Φn + v)p−2 − Φp−2

n

]
+ p(p− 1)|∇v|2(Φn + v)p−1

+ 2p(p − 1)(Φn + v)p−2∇Φn · ∇v
∣∣∣∣∣

. |∆Φn|(|v|p−1 + |Φn|p−2|v|) + |∆v|(|v|p−1 + |Φn|p−1)

+ |∇Φn|2(|v|p−2 + |Φn|p−3|v|) + |∇v|2(|v|p−1 + |Φn|p−1) + |∇v||∇Φn|(|Φn|p−2 + |v|p−2)

and hence using the self similar decay of Φn and the L∞ smallness (4.23):

|∆N̂L| .

[ |∆v|
1 + |y|2 +

|∇v|
1 + |y|3 +

|v|
1 + |y|4

]
+ η

[
|∆v|+ |∇v|

1 + |y| +
|v|

1 + |y|2
]

+ |∇v|2(|v|p−1 + |Φn|p−1).
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The linear term is estimated using (A.5):
∫ ∣∣∣∣

|∆v|
1 + |y|2 +

|∇v|
1 + |y|3 +

|v|
1 + |y|4

∣∣∣∣
2

.
1

A4

∫

|y|≥A

|∆v|2 + CA‖v‖2H2
ρ

≤ δ

∫
|∆v|2 + Cδ


‖ε‖2H2

ρ
+

n+1∑

j=2

|aj |2



and using (A.5) again:

∫ ∣∣∣∣η
[
|∆v|+ |∇v|

1 + |y| +
|v|

1 + |y|2
]∣∣∣∣

2

. η‖∆v‖2L2 + ‖ε‖2H2
ρ
+

n+1∑

j=2

|aj|2.

To estimate the nonlinear term, we let

qc =
3(p − 1)

2
so that Ḣsc ⊂ Lqc .

We estimate using (4.23) with 6(p − 2) > qc and Sobolev:
∫

|∇v|4(|v|2(p−2) + |Φn|2(p−2)) . ‖∇v‖4L6

[
‖v‖2(p−2)

L6(p−2) + ‖Φn‖2(p−2)

L6(p−2)

]

. ‖∆v‖4L2

[
‖Φn‖2(p−2)

L6(p−2) + ‖w‖2(p−2)

L6(p−2)

]
. ‖∆v‖4L2

[
1 + ‖w‖

p−1
2

Ḣsc

]
≤ δ‖∆v‖2L2 .

We have therefore obtained

∫
|∆N̂L|2 ≤ δ‖∆v‖2L2 + Cδ


‖ε‖2H2

ρ
+

n+1∑

j=2

|aj |2

 .

The collection of above bounds and (4.25) yields (4.36). �

4.6. Control of the critical norm. We now claim the control of the critical norm
of w (defined by (4.10)).

Lemma 4.8 (Control of the critical norm). There holds the Lyapounov type control

d

ds

∫
|∇scw|2dy+

∫
|∇sc+1w|2dy . ‖ε‖2H2

ρ
+

n+1∑

j=2

|aj |2 + λδ(2−sc) + ‖∆v‖δL2 . (4.37)

for some small enough universal constant 0 < δ = δ(p) ≪ 1.

Proof. Let

Φ̃n = χ 1
λ
Φn, (4.38)

we compute the evolution equation of w:

∂sw −∆w =
λs
λ
Λw +

xs
λ

· ∇w + G̃ (4.39)

with

G̃ =

(
λs
λ

+ 1

)
χ 1

λ
ΛΦn +

xs
λ

· ∇Φ̃n + 2∇χ 1
λ
· ∇Φn +∆χ 1

λ
Φn − (χ 1

λ
− χp

1
λ

)Φp
n + ÑL,

ÑL = (Φ̃n + w)p − (Φ̃n)
p.

Observe from the space localization of the cut, from the decay of the self similar
solution, and from (4.19) and (4.20):

∀sc ≤ s ≤ 2, ‖w‖Ḣs . η. (4.40)
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We compute:

1

2

d

ds

∫
|∇scw|2dy =

∫
∇scw · ∇sc

[
∆w +

λs
λ
Λw +

xs
λ

· ∇w + G̃

]
dy

= −
∫

|∇sc+1w|2 +
∫

∇scw · ∇sc

[
λs
λ
Λw +

xs
λ

· ∇w + G̃

]
dy

and estimate all terms.

step 1 Parameters terms. For any µ > 0, let wµ = 1

µ
2

p−1
w
(

y
µ

)
, then :

∫
|∇scwµ|2dy =

∫
|∇scw|2dy

and hence differentiating at µ = 1:

−2

∫
∇scw · ∇sc(Λw)dy = 0.

Integrating by parts: ∫
∇scw · ∇sc

(xs
λ

· ∇w
)
dy = 0.

step 2 G̃ terms. The decay of the self similar solution and the space localization of
the cut ensure using 1 < sc < 2:

∥∥∥2∇χ 1
λ
· ∇Φn +∆χ 1

λ
Φn

∥∥∥
Ḣsc

.
∥∥∥2∇χ 1

λ
· ∇Φn +∆χ 1

λ
Φn

∥∥∥
2−sc

Ḣ1

∥∥∥2∇χ 1
λ
· ∇Φn +∆χ 1

λ
Φn

∥∥∥
sc−1

Ḣ2

.

(
λ2

λsc−1

)2−sc ( λ2

λsc−2

)sc−1

. λ2,

and similarly
∥∥∥∥
(
χ 1

λ
− χp

1
λ

)
Φp
n

∥∥∥∥
Ḣsc

.

∥∥∥∥
(
χ 1

λ
− χp

1
λ

)
Φp
n

∥∥∥∥
2−sc

Ḣ1

∥∥∥∥
(
χ 1

λ
− χp

1
λ

)
Φp
n

∥∥∥∥
sc−1

Ḣ2

. (λ3−sc)2−sc(λ4−sc)sc−1 . λ2.

Using (4.25):
∥∥∥∥
(
λs
λ

+ 1

)
χ 1

λ
ΛΦn +

xs
λ

· ∇(χ 1
λ
Φn)

∥∥∥∥
Ḣsc

.
∣∣∣xs
λ

∣∣∣+
∣∣∣∣
λs
λ

+ 1

∣∣∣∣ . ‖ε‖2L2
ρ
+

n+1∑

j=2

|aj |2 + ‖∆v‖2L2 .

We now turn to the control of the nonlinear term and claim the bound:

‖∇scÑL‖L2 . ‖∇sc+αw‖L2 (4.41)

for some small enough universal constant 0 < α = α(p) ≪ 1. Assume (4.41), we
then interpolate with δ = α

2−sc
and use (4.24), (4.20) and the decay of the self

similar solution to estimate:

‖∇sc+αw‖L2 . ‖∇scw‖1−δ
L2 ‖∆w‖δL2 . λδ(2−sc) + ‖∆v‖δL2 ,

and the collection of above bounds yields (4.37).
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Proof of (4.41). We compute

∇ÑL = p∇(Φ̃n + w)(Φ̃n + w)p−1 − p∇Φ̃nΦ̃n

p−1

= p∇Φ̃n

[
(Φ̃n + w)p−1 − Φ̃n

p−1
]
+ p∇w(Φ̃n +w)p−1

= pg1(w)∇(Φ̃n + w) + pΦ̃n

p−1∇w
with

g1(w) = (Φ̃n + w)p−1 − Φ̃n

p−1
.

Hence letting

sc = 1 + ν, 0 < ν =
1

2
− 2

p− 1
<

1

2
,

we estimate:

‖∇scÑL‖L2 .
∥∥∥∇ν

[
g1(w)∇(Φ̃n + w)

]∥∥∥
L2

+
∥∥∥∇ν

(
Φ̃n

p−1∇w
)∥∥∥

L2
. (4.42)

For the first term, we use the following commutator estimate proved in Appendix
B: let

0 < ν < 1, 1 < p1, p2, p3, p4 < +∞,
1

2
=

1

p1
+

1

p2
=

1

p3
+

1

p4
then

‖∇ν(uv)‖L2 . ‖u‖Ḃν
p1,2

‖v‖Lp2 + ‖u‖Lp4‖v‖Ḃν
p3,2

, (4.43)

where we use here the standard space formulation of Besov norms for 0 < s < 1
and 1 ≤ p < +∞18:

‖u‖Ḃs
p,2

∼
(∫ +∞

0

(
sup|y|≤t ‖u(· − y)− u(·)‖Lp

ts

)2
dt

t

) 1
2

. (4.44)

We pick a small enough 0 < α≪ 1 to be chosen later and

1

p1
=

1

3
+
α

3
,

1

p2
=

1

6
− α

3

1

p3
=

1 + α+ ν

3
,

1

p4
=

1− 2(α+ ν)

6
.

Observe that

−ν + 3

p2
=

3

p4

and hence from (4.43), the embedding of Ḣs,p in Ḃs
p,2, and Sobolev19:

∥∥∥∇ν
[
g1(w)∇(Φ̃n + w)

]∥∥∥
L2

. ‖∇(Φ̃n + w)‖Lp1‖g1(w)‖Ḃν
p2,2

+ ‖∇(Φ̃n + w)‖Ḃν
p3,2

‖g1(w)‖Lp4

. ‖∇1+ 3
2
− 3

p1 (Φ̃n + w)‖L2‖g1(w)‖Ḃν
p2,2

+ ‖∇1+ν+ 3
2
− 3

p3 (Φ̃n + w)‖L2‖∇νg1(w)‖Lp2

. ‖∇ 3
2
−α(Φ̃n + w)‖L2‖g1(w)‖Ḃν

p2 ,2
.

Since sc =
3
2 − 2

p−1 <
3
2 , we may pick 0 < α ≪ 1 with 3

2 − α > sc and hence using

(4.40) and the decay of the self similar solution:

‖∇ 3
2
−α(Φ̃n + w)‖L2 . 1.

18see for example [4].
19using 3

2
− 3

p3
= 1

2
− (α+ ν) > 0.
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Let now

f(z) = (1 + z)p−1 − 1

then f(0) = 0 and

|f(z2)−f(z1)| =
∣∣∣∣
∫ z2

z1

f ′(τ)dτ

∣∣∣∣ .
∫ z2

z1

(1+ |τ |p−2)dτ . |z2−z1|(1+ |z1|p−2+ |z2|p−2)

and hence by homogeneity:

|g1(w2)− g1(w1)| . |w2 − w1|(|Φ̃n|p−2 + |w2|p−2 + |w1|p−2).

Using the L∞ bound (4.23), (4.44), and Sobolev20

‖g1(w)‖Ḃν
p2,2

.

(∫ +∞

0

(
sup|y|≤t ‖g1(w(· − y))− g1(w(·))‖Lp2

tν

)2
dt

t

)1
2

.

(∫ +∞

0

(
sup|y|≤t ‖w(· − y)− w(·)‖Lp2

tν

)2
dt

t

)1
2

∼ ‖w‖Ḃν
p2 ,2

. ‖∇ν+ 3
2
− 3

p2w‖L2 = ‖∇sc+αw‖L2 .

The collection of above bounds yields the control of the first term of (4.42):

‖∇ν
[
g1(w)∇(Φ̃n + w)

]
‖L2 . ‖∇sc+αw‖L2 .

For the second term in (4.42), we recall the following estimate proved in [42]: let
0 < ν < 1 and µ > 0 with µ+ ν < 3

2 , let f smooth radially symmetric with

|∂kr f | .
1

1 + rµ+k
, k = 0, 1, (4.45)

then there holds the generalized Hardy bound

‖∇ν(uf)‖L2 . ‖∇ν+µf‖L2 . (4.46)

We then pick again a small enough 0 < α≪ 1 and let

µ = α, µ+ ν = ν + α = sc − 1 + α <
3

2

for 0 < α≪ 1 small enough, and f = (χ 1
λ
Φn)

p−1 satisfies

|∂kr f | .
1

1 + r2+k
.

1

1 + rµ+k
.

Hence

‖∇ν
(
Φ̃n

p−1∇w
)
‖L2 . ‖∇ν+µ+1w‖L2 = ‖∇sc+αw‖L2 .

This concludes the proof of (4.41). �

20Here we use that Ḃs
2,2 embeds in Ḃt

p,2 with s− 3/2 = t− 3/p for p ≥ 2, and Ḃs
2,2 = Ḣs.
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4.7. Conclusion. We are now in position to conclude the proof of Proposition 4.2
which then easily implies Theorem 1.2.

Proof of Proposition 4.2. We recall that we are arguing by contradiction assuming
(4.22). We first show that the bounds (4.16), (4.18), (4.19) and (4.20) can be im-
proved on [s0, s

∗], and then, the existence of the data (aj(0))2≤j≤n+1 follows from
a classical topological argument à la Brouwer.

step 1 Improved scaling control. We estimate from (4.17), (4.18), (4.19), (4.25):
∣∣∣∣
λs
λ

+ 1

∣∣∣∣ . K2e−2µs (4.47)

and hence after integration:
∣∣∣∣log

(
λ(s)

λ0

)
+ s− s0

∣∣∣∣ .
∫ +∞

s0

K2e−2µτdτ . 1 + o(1)

for s0 large enough, which together with (4.5) implies:

λ(s) = (λ(s0)e
s0) e−s(1 + o(1)) and hence

e−s

2
≤ λ(s) ≤ 2e−s. (4.48)

step 2 Improved Sobolev bounds.
L2
ρ bound. From (4.29), (4.17), (4.19), (4.23):

d

ds
‖ε‖2L2

ρ
+ cn‖ε‖2H1

ρ
. (1 +K4)e−4µs +K2e−2µse−2cµs ≤ e−(2+c)µs

for s ≥ s0 large enough. From now on, we may fix once and for all the value

µ =
cn
4

(4.49)

and hence
d

ds
‖ε‖2L2

ρ
+ 4µ‖ε‖2H1

ρ
≤ e−(2+c)µs (4.50)

which time integration yields using (4.7):

‖ε(s)‖2L2
ρ
+ 2µe−2µs

∫ s

s0

e2µσ‖ε‖2H1
ρ
dσ ≤

(
e2µs0‖ε(s0)‖2L2

ρ

)
e−2µs + e−2µs

∫ s

s0

e−µcτdτ

. K2
0e

−2µs. (4.51)

H2
ρ bound. We estimate from (4.30) like for the proof of (4.50):

d

ds
‖Lnε‖2L2

ρ
+ 4µ‖Lnε‖2H1

ρ
. ‖ε‖2H1

ρ
+ e−(2+c)µs

whose time integration with the initial bound (4.7) and the bound (4.51) ensures:

‖Lnε(s)‖2L2
ρ
. K2

0e
−2µs.

We recall

(Lnε, ε)ρ = ‖∇ε‖2L2
ρ
+

∫ (
2

p− 1
− pΦp−1

n

)
|ε|2ρdy

and hence we first estimate from the spectral bound (3.6), the orthogonality condi-
tions (4.9), and Cauchy-Schwarz:

‖∇ε‖2L2
ρ
≤ (Lnε, ε)ρ + C‖ε‖2L2

ρ
. ‖Lnε‖2L2

ρ
+ ‖ε‖2L2

ρ
. K2

0e
−2µs. (4.52)

This yields using (A.2):

‖ε‖2H2
ρ
. ‖Lnε‖2L2

ρ
+ ‖ε‖2H1

ρ
(4.53)
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and hence the improved bound

‖ε‖2H2
ρ
. K2

0e
−2µs. (4.54)

Ḣ2 bound. We rewrite (4.36) using (4.17), (4.25), (4.54)

d

ds
‖∆v‖2L2 + (4− δ − 2sc)‖∆v‖2L2 . K2

0e
−2µs.

By possibly diminishing the value of cn, we may always assume

4− δ − 2sc > cn = 4µ

and hence from (4.7):

‖∆v‖2L2 ≤ K2
0e

−4µse4µs0e−2µs0 + e−4µs

∫ s

s0

K2
0e

4µτ e−2µτdτ . K2
0e

−2µs. (4.55)

Ḣsc bound. We now rewrite (4.37) using (4.16)-(4.20):

d

ds

∫
‖∇scw‖2L2 ≤ e−cµs

for some universal constant c > 0 which time integration using (4.7) ensures:

‖∇scw(s)‖2L2 . ‖∇scw(s0)‖2L2 + e−cs0 <
η

2
(4.56)

for s0 large enough.

step 3 The Brouwer fixed point argument. We conclude from (4.48), (4.54), (4.55),
(4.56), the definition (4.21) of s∗ and a simple continuity argument that the contra-
diction assumption (4.22) implies from (4.17):

n+1∑

j=2

|aj(s∗)|2 = e−2µs∗ . (4.57)

Moreover, the vector field is strictly outgoing from (4.25), (4.17), (4.18), (4.19):

1

2

d

ds

n+1∑

j=2

|ajeµs|2 =

n+1∑

j=2

aje
2µs((aj)s + µaj) =

n+1∑

j=2

aje
2µs
[
(µ+ µj)aj +O

(
K2e−2µs

)]

≥ µ

n+1∑

j=2

|ajeµs|2 +O
(
K2e−µs

)

from which 
 d

ds

n+1∑

j=2

|ajeµs|2

 (s∗) > µ+O(K2e−µs0) > 0

for s0 large enough. We conclude from standard argument that the map

(aj(0)e
µs0)2≤j≤n+1 7→ (aj(s

∗)eµs
∗
)2≤j≤n+1

is continuous in the unit ball of Rn, and the identity on its boundary, a contradiction
to Brouwer’s theorem. This concludes the proof of Proposition 4.2. �

We are now in position to conclude the proof of Theorem 1.2.



61

Proof of Theorem 1.2. Let an initial data as in Proposition 4.2, then the correspond-
ing solution u(s, y) admits on [s0,+∞) a decomposition (4.8) with the bounds (4.17),
(4.23), (4.19), (4.20), (4.48).

step 1 Self similar time blow up. Using (4.48), the life space of the solution u is
finite

T =

∫ +∞

s0

λ2(s)ds .

∫ +∞

s0

e−2sds < +∞,

and hence

T − t =

∫ +∞

s

λ2(s)ds ∼ e−2s.

We may therefore rewrite (4.47):

|λλt + 1| . (T − t)µ

and integrating in time using λ(T ) = 0 yields

λ(t) =
√

(2 + o(1))(T − t). (4.58)

Also from (4.25):
∫ T

0
|xt| =

∫ +∞

s0

|xs|ds .
∫ +∞

s0

e−s−2µsds < +∞

and (1.12) is proved.

step 2 Asymptotic stability above scaling. We now prove (1.13) and (1.15). We
first estimate from (4.24) using the self similar decay of Φn:

‖w‖Ḣ2 . ‖v‖Ḣ2 + ‖(1− χ 1
λ
)Φn‖Ḣ2 . e−2µs + λ2−sc(s)

→ 0 as t→ T.

Hence from (4.20):

∀sc < σ ≤ 2, lim
s→+∞

‖w(s)‖Ḣσ = 0

which using (4.24) and the self similar decay of Φn again implies

∀sc < σ ≤ 2, lim
s→+∞

‖v(s)‖Ḣσ = 0,

this is (1.13). At the critical level, we have from (4.8), (4.10) and the sharp self
similar decay from Proposition 2.2:

‖u(t)‖Ḣsc = ‖χ 1
λ
Φn + w‖Ḣsc = cn(1 + o(1))

√
|logλ|, cn 6= 0,

and (4.58) now yields (1.15).

step 3 Boundedness below scaling. We now prove (1.14).
Control of the Dirichlet energy. Recall the notation (4.38) and compute by rescaling
using the self similar decay of Φn:

λ2(sc−1)
[
‖∇Φ̃n‖2L2 + ‖Φ̃n‖p+1

Lp+1

]
. 1.

Hence the dissipation of energy which is translation invariant ensures

λ2(sc−1)‖∇w‖2L2 . λ2(sc−1)
[
‖∇(Φ̃n + w)‖2L2 + ‖∇Φ̃n‖2L2

]
. 1 + 2E(u) +

2

p+ 1
‖u‖p+1

Lp+1

. 1 + |E0|+ λ2(sc−1)‖w‖p+1
Lp+1 .
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We now interpolate using the smallness21 (4.20)

‖w‖p+1
Lp+1 . ‖w‖p−1

Ḣsc
‖∇w‖2L2 . η‖∇w‖2L2

and hence

λ2(sc−1)‖∇w‖2L2 . C(u0) (4.59)

and

‖∇u‖2L2 . λ2(sc−1)
[
‖∇Φ̃n‖2L2 + ‖∇w‖2L2

]
. 1.

Proof of (1.14). Let now 1 ≤ σ < sc, then using (4.20), (4.59) and interpolation:

‖∇σu‖L2 . λsc−σ‖∇σΦ̃n‖L2 + λsc−σ‖∇σw‖L2 . 1 + λsc−σ‖∇w‖
sc−σ
sc−1

L2 ‖∇scw‖
σ−1
sc−1

L2

. 1 +
(
λsc−1‖∇w‖L2

) sc−σ
sc−1 . C(u0)

and (1.14) is proved. This concludes the proof of Theorem 1.2. �

4.8. The Lipschitz dependence. We now state the Lipschitz aspect of the set of
solutions constructed in this paper.

Proposition 4.9 (Lipschitz dependence). Let s0 ≫ 1, ε
(1)
0 and ε

(2)
0 satisfy (4.4)

and (4.15), and take λ
(1)
0 = λ

(2)
0 = e−s0 . Then the parameters (a

(1)
j (0))2≤j≤n+1

and (a
(2)
j (0))2≤j≤n+1, associated by Proposition 4.2 to (ε(1), λ

(1)
0 ) and (ε(2), λ

(2)
0 )

respectively, satisfy:

n+1∑

j=2

∣∣∣a(1)j (0)− a
(2)
j (0)

∣∣∣
2
.
∥∥∥ε(1)0 − ε

(2)
0

∥∥∥
2

L2
ρ

. (4.60)

Proof. The idea of the proof is classical, see for instance [17]. We study the differ-
ence of two solutions, and use the bounds we already derived in the existence result
as a priori bounds now. This allows us to control the difference of solutions at a
low regularity level which is sufficient to conclude.

We use the superscripts (i), i = 1, 2 for all variables associated to the two solutions

respectively: u(i) for (4.8), v(i) for (4.10), ψ(i) for (4.9), λ(i) for the scales and x(i)

for the central points. The differences are denoted by

△ε := ε(1) − ε(2), △aj := a
(1)
j − a

(2)
j , △v := v(1) − v(2).

We compare the two renormalized solutions at the same renormalized time s. The
time evolution for the difference is given by

△εs + Ln△ε = d
ds

[
log
(
λ(1)

λ(2)

)]
Λ(Φn + v(2)) +

(
x
(1)
s

λ(1) − x
(2)
s

λ(2)

)
.∇(Φn + v(2))

−
n+1∑

j=2

(△aj,s − µj△aj)ψj +

(
λ
(1)
s

λ(1)
+ 1

)
Λ△v

+x
(1)
s

λ(1) .∇△v +
[
(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v
]
.

(4.61)

21this is the only place in the proof where we use that the critical norm is small, bounded
suffices everywhere else.
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step 1 Modulation equations. We claim that
∣∣∣∣∣
d

ds
log

(
λ(1)

λ(2)

)∣∣∣∣∣+
∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣+
n+1∑

j=2

|△aj,s − µj△aj|

. e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj|


 . (4.62)

We now show this estimate. Taking the scalar product of (4.61) with ψ1 =
ΛΦn

‖ΛΦn‖L2
ρ

,

using the orthogonality conditions (4.9) and (4.26) and the fact that ψj is radial for
1 ≤ j ≤ n+ 1, yields the identity

d
ds

[
log
(
λ(1)

λ(2)

)]
(Λ(Φn + v(2)), ψ1)ρ

= −
((

x
(1)
s

λ(1) − x
(2)
s

λ(2)

)
.∇ε(2), ψ1

)
ρ
−
(
λ
(1)
s

λ(1) + 1
)
(Λ△v, ψ1)ρ −

(
x
(1)
s

λ(1) .∇△ε, ψ1

)
ρ

−
(
(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v, ψ1

)
ρ

(4.63)
and we now estimate each term. The coercivity (A.1) and the bounds (4.17) and
(4.18) yields

(Λ(Φn + v(2)), ψ1)ρ = 1 +O(e−µs),

∣∣∣∣∣∣

((
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

)
.∇ε(2), ψ1

)

ρ

∣∣∣∣∣∣
. e−µs

∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣ .

The modulation estimate (4.25), with (4.17), (4.18) and (4.19) and an integration
by parts yields
∣∣∣∣∣∣

(
λ
(1)
s

λ(1)
+ 1

)
(Λ△v, ψ1)ρ −

(
x
(1)
s

λ(1)
.∇△ε, ψ1

)

ρ

∣∣∣∣∣∣
. e−µs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj|


 .

Eventually, for the difference of the nonlinear terms the nonlinear inequality
∣∣(x+ y)p − (x+ z)p − pxp−1(y − z)

∣∣ . (|x|p−2 + |y|p−2 + |z|p−2)(|y|+ |z|)|y − z|

for any x, y, z and the bound (4.23) yields the pointwise estimate
∣∣∣(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v
∣∣∣ . e−cµs|△v|, (4.64)

which implies

∣∣∣∣
(
(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v, ψ1

)
ρ

∣∣∣∣ . e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj |


 .

(4.65)
The collection of the above bounds, when plugged in (4.63), yields

∣∣∣∣∣
d

ds

[
log

(
λ(1)

λ(2)

)]∣∣∣∣∣ . e−µs

∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣+ e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj |


 .
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With the same techniques, taking the scalar product of (4.61) with ∂kΦn, k = 1, 2, 3
implies

∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣ . e−µs

∣∣∣∣∣
d

ds

[
log

(
λ(1)

λ(2)

)]∣∣∣∣∣+ e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj |


 .

The two above equations, when put together, imply the estimate

∣∣∣∣∣
d

ds

[
log

(
λ(1)

λ(2)

)]∣∣∣∣∣+
∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣ . e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj |


 .

The corresponding estimate for |△aj,s + µj△aj | follows along the same lines, and
therefore (4.62) is proven.

step 2 Localized energy estimate. We claim the differential bound

d

ds
‖△ε‖2L2

ρ
+ cn‖△ε‖2L2

ρ
. e−cµs

n+1∑

j=2

|△aj |2 (4.66)

which we now prove. From the evolution equation (4.61) and the orthogonality
conditions (4.9) one obtains first the identity

d
ds

1
2‖△ε‖2L2

ρ
= −(Ln△ε,△ε)ρ + d

ds

[
log
(
λ(1)

λ(2)

)]
(Λv(2),△ε)ρ

+
((

x
(1)
s

λ(1) − x
(2)
s

λ(2)

)
.∇v(2),△ε

)
ρ
+
(
λ
(1)
s

λ(1) + 1
)
(Λ△v,△ε)ρ

+
(
x
(1)
s

λ(1) .∇△v,△ε
)
ρ
+
(
(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v,△ε
)
ρ

(4.67)
and we now estimate each term. The spectral gap (3.6) and (4.9) imply

−(Ln△ε,△ε)ρ ≤ −cn‖△ε‖2L2
ρ
.

The modulation estimates (4.62) of step 1 and Cauchy-Schwarz imply

∣∣∣∣∣∣
d

ds

[
log

(
λ(1)

λ(2)

)]
(Λv(2),△ε)ρ +

((
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

)
.∇v(2),△ε

)

ρ

∣∣∣∣∣∣

.

(∣∣∣∣∣
d

ds
log

(
λ(1)

λ(2)

)∣∣∣∣∣ ‖Λv
(2)‖L2

ρ
+

∣∣∣∣∣
x
(1)
s

λ(1)
− x

(2)
s

λ(2)

∣∣∣∣∣ ‖∇v
(2)‖L2

ρ

)
‖△ε‖L2

ρ

. ‖v(2)‖H2
ρ
e−cµs


‖△ε‖L2

ρ
+

n+1∑

j=2

|△aj |


 ‖△ε‖L2

ρ

. e−(1+c)µs


‖△ε‖2L2

ρ
+

n+1∑

j=2

|△aj |2



where we used (A.1), (4.17) and (4.18) to control v(2). Using the modulation esti-

mate (4.25), with (4.17), (4.18) and (4.19) for u(1), integrating by parts and applying
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Cauchy-Schwarz and (A.1) yields
∣∣∣∣∣∣

(
λ
(1)
s

λ(1)
+ 1

)
(Λ△v,△ε)ρ +

(
x
(1)
s

λ(1)
.∇△v,△ε

)

ρ

∣∣∣∣∣∣

.

(∣∣∣∣∣
λ
(1)
s

λ(1)
+ 1

∣∣∣∣∣+
∣∣∣∣∣
x
(1)
s

λ(1)

∣∣∣∣∣

)
(|(Λ△ψ,△ε)ρ|+ |(Λ△ε,△ε)ρ|+ |(∇△ψ,△ε)ρ|+ |(∇△ε,△ε)ρ|)

. e−2µs




n+1∑

j=2

|△aj|2 + ‖△ε‖2H1
ρ


 .

Finally, the pointwise estimate (4.64) and Cauchy-Schwarz imply for the nonlinear
term

∣∣∣∣
(
(Φn + v(1))p − (Φn + v(2))p − pΦp−1

n △v,△ε
)
ρ

∣∣∣∣ . e−cµs


‖△ε‖2L2

ρ
+

n+1∑

j=2

|△aj|2

 .

We inject all the above bounds in the identity (4.67), which for s0 large enough
imply the desired estimate (4.66) since 0 < c ≤ 1.

step 3 Lipschitz bound by reintegration. We define

A := sup
s≥s0

n+1∑

j=2

|△aj(s)|eµs < +∞, E := sup
s≥s0

‖∆ε‖2L2
ρ
e2µs < +∞, (4.68)

which are finite from (4.17) and (4.18).
Identity for △aj. Fix j with 2 ≤ j ≤ n+1. Reintegrating the modulation equation
(4.62) yields

△aj = △aj(0)eµj (s−s0) + eµjs

∫ s

s0

e−µjs
′
O(e−cµs′(‖∆ε‖L2

ρ
+

n+1∑

j=2

|△aj |))ds′

= △aj(0)eµj (s−s0) + eµjs

∫ s

s0

O(e−(µj+(c+1)µ)s′(A+
√
E))ds′

=

(
△aj(0)e−µjs0 +

∫ +∞

s0

O(e−(µj+(c+1)µ)s′(A+
√
E))ds′

)
eµjs

−eµjs

∫ +∞

s

O(e−(µj+(c+1)µ)s′(A+
√
E))ds′. (4.69)

The integral appearing in this identity is indeed convergent and satisfies:
∣∣∣∣
∫ +∞

s

O(e−(µj+(c+1)µ)s′(A+
√
E))ds′

∣∣∣∣ . e−(µj+(c+1)µ)s(A+
√
E).

From (4.68) one gets |△aj | . e−µs and from the two above identities one necessarily
must have that the parameter in front of the diverging term eµjs is 0:

△aj(0)e−µjs0 +

∫ +∞

s0

O(e−(µj+(c+1)µ)s′(A+
√
E))ds′ = 0

which gives the first bound

|△aj(0)| . e−(c+1)µs0(A+
√
E), (4.70)
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and going back to the identity (4.69) one obtains:

|△aj | . e−((c+1)µ)s(A+
√
E)

which implies from the definition (4.68) of A the bound

A . e−cµs0
√
E . (4.71)

Identity for △ε. We reintegrate the energy bound (4.66) to find

‖△ε‖2
L2
ρ

. ‖△ε(0)‖2
L2
ρ
e−cn(s−s0) + e−cns

∫ s

s0
ecns

′∑n+1
j=2 |△aj |2e−µcs′ds′

. ‖△ε(0)‖2
L2
ρ
e−cn(s−s0) +A2e−(c+2)µs

since µ = cn
4 from (4.49) and 0 < c ≪ 1 can be chosen arbitrarily small. Injecting

(4.71) in the above identity yields

E . ‖△ε(0)‖2L2
ρ
e2µs0

so that (4.71) can be rewritten as A . ‖△ε(0)‖L2
ρ
e(1−c)µs0 . We inject these two last

bounds in (4.70) which finally yields the desired estimate (4.60). �

Appendix A. Coercivity estimates

Lemma A.1 (Weighted L2 estimate). Let u, ∂ru ∈ L2
ρ(R

3), then

‖ru‖ρ . ‖u‖H1
ρ
. (A.1)

Moreover,

‖∆u‖2L2
ρ
. ‖ −∆u+ y · ∇u‖2L2

ρ
+ ‖u‖2H1

ρ
. (A.2)

Proof. We may assume by density u ∈ D(R3).

step 1 Proof of (A.1). We use ∂rρ = −rρ and integrate by parts to compute:
∫ +∞

0

(
∂ru− 1

2
ru

)2

ρr2dr

=

∫ +∞

0
(∂ru)

2ρr2dr +
1

4

∫ +∞

0
r2u2ρr2dr −

∫ +∞

0
ru∂ruρr

2dr

=

∫ +∞

0
(∂ru)

2ρr2dr +
1

4

∫ +∞

0
r2u2ρr2dr − 1

2

[
r3ρu2

]+∞
0

+
1

2

∫ +∞

0
u2(3− r2)ρr2dr

=

∫ +∞

0
(∂ru)

2ρr2dr − 1

4

∫ +∞

0
r2u2ρr2dr +

3

2

∫ +∞

0
u2ρr2dr

and hence

‖ru‖2L2
ρ
=

∫ +∞

0
r2u2ρr2dr ≤ 4

∫ +∞

0
(∂ru)

2ρr2dr + 6

∫ +∞

0
u2ρr2dr . ‖u‖2H1

ρ

which concludes the proof of (A.1).

step 2. Proof of (A.2). We compute:

‖ −∆u+ y · ∇u‖2L2
ρ
= ‖∆u‖2L2

ρ
+ ‖y · ∇u‖2L2

ρ
− 2

∫
(∆u)y · ∇uρdy.
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To compute the crossed term, let uλ(y) = u(λy), then
∫

|∇uλ(y)|2ρdy =
1

λ

∫
|∇u(y)|2ρ

(y
λ

)
dy

and hence differentiating in λ and evaluating at λ = 1:

2

∫
∇u · ∇(y · ∇u)ρdy =

∫
|∇u|2(−ρ− y · ∇ρ)dy

i.e.

2

∫
y · ∇u(ρ∆u+∇u · ∇ρ) =

∫
|∇u|2(ρ+ y · ∇ρ)dy

which using ∇ρ = −yρ becomes:

−2

∫
(∆u)y · ∇uρdy =

∫
|∇u|2ρ|y|2 − 2

∫
|y · ∇u|2ρ−

∫
ρ|∇u|2.

Hence:

‖ −∆u+ y · ∇u‖2L2
ρ

= ‖∆u‖2L2
ρ
+

∫
ρ(|y|2|∇u|2 − |y · ∇u|2)−

∫
ρ|∇u|2

≥ ‖∆u‖2L2
ρ
− ‖∇u‖2L2

ρ

which concludes the proof of (A.2). �

We now turn to the proof of Hardy type inequalities. All proofs are more or less
standard and we give the argument for the sake of completeness.

Lemma A.2 (Radial Hardy with best constants). Let u ∈ C∞
c (r > 1) and

γ 6= −1, (A.3)

then ∫ +∞

1

(∂ru)
2

rγ
dr ≥

(
γ + 1

2

)2 ∫ +∞

1

u2

rγ+2
dr. (A.4)

Proof. We integrate by parts:

∫ +∞

1

u2

rγ+2
dr =

2

γ + 1

∫ +∞

1

u∂ru

rγ+1
dr ≤ 2

|γ + 1|

(∫ +∞

1

u2

rγ+2
dr

)1
2
(∫ +∞

1

(∂ru)
2

rγ
dr

) 1
2

and (A.4) follows. �

Lemma A.3 (Global Hardy for ∆). Then there exists c > 0 such that ∀u ∈
C∞
c (|x| > 1), ∫

|∆u|2dx ≥ c

∫ ( |∇u|2
|x|2 +

|u|2
|x|4

)
dx. (A.5)

Proof. We decompose u in spherical harmonics and consider

∆mum = ∂2rum +
2

r
∂rum − m(m+ 1)

r2
, m ∈ N.

We claim that for all v ∈ C∞
c ((1,+∞)),

∫ +∞

1
|∆mv|2r2dr ≥ c

∫ +∞

1

( |∂rv|2
r2

+
(1 +m4)|v|2

r4

)
r2dr (A.6)

with c independent of m. Assume (A.6), then
∫ |∇u|2

r2
dx ∼

∑

m≥0

m∑

k=−m

∫ ( |∂rum,k|2
r2

+
m2|um,k|2

r4

)
r2dr
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and hence summing (A.6) ensures (A.5).
To prove (A.6), we factorize the Laplace operator:

∆m = −A∗
mAm with

∣∣∣∣
Am = −∂r − γm

r
= − 1

rγm
∂r(r

γm), γm = −m,
A∗

m = ∂r +
2−γm

r
∂r =

1
r2−γm ∂r(r

2−γm).

Hence from (A.4):

∫ +∞

1
(∆mv)

2r2dr =

∫ +∞

1
(A∗

mAmv)
2r2dr =

∫ +∞

1

1

r2−2γm
(∂r(r

2−γmAmv))
2dr

≥
(
2− 2γm + 1

2

)2 ∫ +∞

1
(Amv)

2dr =

(
2− 2γm + 1

2

)2 ∫ +∞

1

1

r2γm
(∂r(r

γmv))2dr

≥
(
2− 2γm + 1

2

)2(2γm + 1

2

)2 ∫ +∞

1

v2

r2
dr

since γm = −m with m ∈ N which ensures that the forbidden value (A.3) is never
attained. We conclude that for some universal constant δ > 0 independent of m:

∫ +∞

1
(∆mv)

2r2dr ≥ δ(1 +m4)

∫ +∞

1

v2

r4
r2dr.

Also, since we have also proved that

∫ +∞

1
|Amv|2dr .

∫ +∞

1
(∆mv)

2r2dr,

we infer

∫ +∞

1

(∂rv)
2

r2
r2dr .

∫ +∞

1
|Amv|2dr + γ2m

∫
v2

r4
r2dr

.

∫ +∞

1
(∆mv)

2r2dr

and (A.6) follows. �

Appendix B. Proof of (4.43)

Let

0 < ν < 1, 1 < p1, p2, p3, p4 < +∞,
1

2
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.
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Using (4.44), we have

‖∇ν(uv)‖L2 ∼ ‖uv‖Ḃν
2,2

∼
(∫ +∞

0

(
sup|y|≤t ‖uv(· − y)− uv(·)‖L2

tν

)2
dt

t

) 1
2

.

(∫ +∞

0

(
sup|y|≤t ‖u(· − y)(v(· − y)− v(·))‖L2

tν

)2
dt

t

) 1
2

+

(∫ +∞

0

(
sup|y|≤t ‖v(·)(u(· − y)− u(·))‖L2

tν

)2
dt

t

) 1
2

. ‖u‖Lp4

(∫ +∞

0

(
sup|y|≤t ‖v(· − y)− v(·)‖Lp3

tν

)2
dt

t

) 1
2

+‖v‖Lp2

(∫ +∞

0

(
sup|y|≤t ‖u(· − y)− u(·)‖Lp1

tν

)2
dt

t

) 1
2

. ‖u‖Ḃν
p1,2

‖v‖Lp2 + ‖u‖Lp4‖v‖Ḃν
p3,2

which concludes the proof of (4.43).

Appendix C. Proof of Lemma 3.2

The existence and uniqueness of φn,m, νm satisfying (3.9) and (3.13) is well known.
Thus, we focus on their behaviour as r → +∞.

step 1 Inverting Lm,∞. Let γm be the solution to

γ2m − γm + pcp−1
∞ −m(m+ 1) = 0,

the corresponding discriminant ∆m is given by

∆m := 1− 4pcp−1
∞ + 4m(m+ 1). (C.1)

For m = 1,

∆1 =

(
p+ 3

p− 1

)2

> 0 (C.2)

and hence for all m ≥ 1

∆m ≥ ∆1 > 0.

Therefore, γm is real and we choose the smallest root22 so that γm is given by

γm =
1−

√
∆m

2
.

We now solve

L∞,m(ψ) = 0

22This is motivated by the fact that we obtain below the Kummer’s equation with b = −γm+1/2.
This is equivalent to −b = ±

√
∆m. Since the Kummer function is not defined for −b ∈ N, this

justifies to consider the smallest root γm.
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through the change of variable and unknown

ψ(r) =
1

(2z)
γm
2

w(z), z =
r2

2

which leads to

L∞,m(ψ) = − 2

(2z)
γ
2

(
zw′′(z) +

(
−γm +

3

2
− z

)
w′(z)−

(
1

p− 1
− γm

2

)
w(z)

)
.

Thus, L∞,m(ψ) = 0 if and only if

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0

where we have used the notations

a =
1

p− 1
− γm

2
, b = −γm +

3

2
.

Hence w is a linear combination of two special functions, the Kummer’s function
M(a, b, z) and the Tricomi function U(a, b, z). These special functions have the
following asymptotic behavior at infinity (see for example [47]):

M(a, b, z) ∼ Γ(b)

Γ(a)
za−bez, U(a, b, z) ∼ z−a as z → +∞.

This allows us to infer the asymptotic for w for z → 0+. Finally, since

ψ(r) =
1

rγm
w

(
r2

2

)
,

we infer from the asymptotic of w the following asymptotic behavior for ψ1,m and
ψ2,m

ψ1,m ∼ 1

r
2

p−1

and ψ2,m ∼ r
2

p−1
−3e

r2

2 as r → +∞.

Consider the Wronskian W which is defined as

W := ψ′
1,mψ2,m − ψ′

2,mψ1,m,

then without loss of generality since W ′ =
(
r − 2

r

)
W

W =
1

r2
e

r2

2 .

We deduce using the variation of constants that the solution w to

L∞,m(u) = f,

is given by

u =

(
a1 +

∫ +∞

r

fψ2,mr
′2e−

r′2
2 dr′

)
ψ1,m +

(
a2 −

∫ +∞

r

fψ1,mr
′2e−

r′2
2 dr′

)
ψ2,m.

step 2 Basis of Lm,n near +∞. We now construct a solution to Ln,m(ϕ) = 0 near
+∞ by solving:

L∞,m(ϕ) = Ln,m(ϕ) + p(Φp−1
n − Φp−1

∗ ) = p(Φp−1
n − Φp−1

∗ )ϕ

ie

ϕ =

(
a1 +

∫ +∞

r

p(Φp−1
n − Φp−1

∗ )ϕψ2,mr
′2e−

r′2
2 dr′

)
ψ1,m

+

(
a2 −

∫ +∞

r

p(Φp−1
n − Φp−1

∗ )ϕψ1,mr
′2e−

r′2
2 dr′

)
ψ2,m.
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To construct the solution ϕ1 with the choice a1 = 1 and a2 = 0 we solve the fixed
point equation

ϕ1 = ψ1,m + ϕ̃1, ϕ̃1 = G (ϕ̃1) (C.3)

where

G (ϕ̃) (r) =

(∫ +∞

r

p(Φp−1
n − Φp−1

∗ ) (ψ1,m + ϕ̃) (r′)ψ2,mr
′2e−

r′2
2 dr′

)
ψ1,m

−
(∫ +∞

r

p(Φp−1
n − Φp−1

∗ ) (ψ1,m + ϕ̃) (r′)ψ1,mr
′2e−

r′2
2 dr′

)
ψ2,m.

Recall that we have in view of Corollary 2.6

lim
n→+∞

sup
r≥1

r
2

p−1 |Φn(r)− Φ∗(r)| = 0.

Thus, for n ≥ N large enough, we infer

|Φn(r)− Φ∗(r)| ≤
1

r
2

p−1

for r ≥ 1.

so that

|p(Φp−1
n − Φp−1

∗ )| . 1

r2
.

We infer for r ≥ 1

|G (ϕ̃) (r)| .
1

r
2

p−1

(∫ +∞

r

r′
2

p−1
−3
(

1

r′
2

p−1

+ |ϕ̃(r′)|
)
dr′
)

+ r
2

p−1
−3
e

r2

2

(∫ +∞

r

1

r′
2

p−1

e−
r′2
2

(
1

r′
2

p−1

+ |ϕ̃(r′)|
)
dr′
)

.
1

r2+
2

p−1

+
1

r
2

p−1

(∫ +∞

r

r′
2

p−1
−3|ϕ̃(r′)|dr′

)

+ r
2

p−1
−3e

r2

2

(∫ +∞

r

1

r′
2

p−1

e−
r′2
2 |ϕ̃(r′)|dr′

)

and

∣∣G
(
ϕ̃(1)

)
(r)− G

(
ϕ̃(2)

)
(r)
∣∣ .

1

r
2

p−1

(∫ +∞

r

r′
2

p−1
−3|ϕ̃(1)(r

′)− ϕ̃(2)(r
′)|dr′

)

+ r
2

p−1
−3
e

r2

2

(∫ +∞

r

1

r′
2

p−1

e−
r′2
2 |ϕ̃(1)(r

′)− ϕ̃(2)(r
′)|dr′

)

Thus, for R ≥ 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

sup
r≥R

r1+
2

p−1 |ϕ̃| (r).

Hence, there exists a unique solution ϕ̃1 to (C.3) and

sup
r≥R

r
1+ 2

p−1 |ϕ̃1| (r) . 1.

Hence, ϕ1 satisfies Ln,m(ϕ1) = 0 and

ϕ1 ∼
1

r
2

p−1

, as r → +∞.
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The behaviour of the other solution at infinity is computed using the Wronskian
relation

W = ϕ′
1ϕ2 − ϕ′

2ϕ1 = − 1

r2
e

r2

2

and hence (
ϕ2

ϕ1

)′
= −W

ϕ2
1

=
1

r2ϕ2
1

e
r2

2

from which

ϕ2(r) = ϕ1(r)

∫ r

1

1

r′2ϕ2
1(r

′)
e

r′2
2 dr′ ∼ r

2
p−1

−3e
r2

2 as r → +∞

and (3.10) is proved.

step 3 Behaviour of νm at +∞. First, consider the solution ϕ to

− ∂2rϕ− 2

r
∂rϕ+

m(m+ 1)

r2
− pcp−1

∞
r2

ϕ = f. (C.4)

The homogeneous equation admits the basis of solutions

ϕ+ =
1

r
1+

√
∆m

2

, ϕ− =
1

r
1−

√
∆m

2

and the corresponding Wronskian is given by

W (r) = ϕ′
+(r)ϕ−(r)− ϕ′

−(r)ϕ+(r) = − 1

r2
.

Using the variation of constants, the solutions to (C.4) are given by

ϕ(r) =

(
a1 −

∫ +∞

r

fϕ−r
′2dr′

)
ϕ+ +

(
a2 +

∫ +∞

r

fϕ+r
′2dr′

)
ϕ−.

Now, the equation Hm(φ) = 0 can be written as

−∂2rφ− 2

r
∂rφ+

m(m+ 1)

r2
φ− pcp−1

∞
r2

φ = p

(
Qp−1(r)− cp−1

∞
r2

)
φ(r),

i.e. (C.4) with

f = p

(
Qp−1(r)− cp−1

∞
r2

)
φ(r).

We construct the solution φm,1 to Hm(φm,1) = 0 with the choice a1 = 1 and a2 = 0
by solving the fixed point equation

φm,1 = ϕ+ + φ̃, φ̃ = F
(
φ̃
)

(C.5)

where

F
(
φ̃
)
(r) = −

(∫ +∞

r

p

(
Qp−1(r′)− cp−1

∞
r′2

)(
ϕ+ + φ̃

)
(r′)ϕ−r

′2dr′
)
ϕ+

+

(∫ +∞

r

p

(
Qp−1(r′)− cp−1

∞
r′2

)(
ϕ+ + φ̃

)
(r′)ϕ+r

′2dr′
)
ϕ−.

Recall that

Q(r) =
c∞

r
2

p−1

+
c1 sin (ωlog(r) + c2)

r
1
2

+ o

(
1

r
1
2

)
as r → +∞
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so that ∣∣∣∣∣p
(
Qp−1(r)− cp−1

∞
r2

)∣∣∣∣∣ .
1

r1+sc
for r ≥ 1.

We infer for r ≥ 1

∣∣∣F(φ̃)(r)
∣∣∣ .

1

r
1+

√
∆m

2

(∫ +∞

r

1

r′sc−1

(
1

r
1+

√
∆m
2

+
∣∣∣φ̃
∣∣∣ (r′)

)
1

r′
1−

√
∆m

2

dr′
)

+
1

r
1−

√
∆m

2

(∫ +∞

r

1

r′sc−1

(
1

r
1+

√
∆m
2

+
∣∣∣φ̃
∣∣∣ (r′)

)
1

r′
1+

√
∆m
2

dr′
)

.
1

rsc−1

1

r
1+

√
∆m
2

+
1

r
1+

√
∆m
2

(∫ +∞

r

1

r′sc−1

1

r′
1−

√
∆m

2

∣∣∣φ̃
∣∣∣ (r′)dr′

)

+
1

r
1−

√
∆m

2

(∫ +∞

r

1

r′sc−1

1

r′
1+

√
∆m

2

∣∣∣φ̃
∣∣∣ (r′)dr′

)

and
∣∣∣F(φ̃1)(r)−F(φ̃2)(r)

∣∣∣ .
1

r
1+

√
∆m
2

(∫ +∞

r

1

r′sc−1

1

r′
1−

√
∆m

2

∣∣∣φ̃1 − φ̃2

∣∣∣ (r′)dr′
)

+
1

r
1−

√
∆m

2

(∫ +∞

r

1

r′sc−1

1

r′
1+

√
∆m
2

∣∣∣φ̃1 − φ̃2

∣∣∣ (r′)dr′
)
.

Thus, for R ≥ 1 large enough, the Banach fixed point theorem applies in the space
corresponding to the norm

sup
r≥R

r
sc−1

2 r
1+

√
∆m
2 |φ̃|(r)

and yields a unique solution φ̃ to (C.5) with

sup
r≥R

r
sc−1

2 r
1+

√
∆m
2 |φ̃|(r) ≤ 1.

Hence, φm,1 satisfies Hm(φm,1) = 0 and

φm,1 ∼
1

r
1+

√
∆m
2

, as r → +∞. (C.6)

The other independent solution φm,2 to Hm(φm,2) = 0 is computed through the
Wronskian relation

W := φ′m,1φm,2 − φ′m,2φm,1 = − 1

r2

ie

φm,2(r) = φm,1(r)

∫ r

1

1

r′2φ2m,1(r
′)
dr′ ∼ 1

r
1−

√
∆m

2

as r → +∞.

Since νm is a linear combination of φm,1 and φm,2, we infer

νm(r) ∼ cm,+

r
1+

√
∆m
2

+
cm,−

r
1−

√
∆m

2

as r → +∞ (C.7)

for some constant cm,+ and cm,−.
case m = 1: By translation invariance

H1(Q
′) = 0 and Q′(r) = Q′′(0)r(1 +O(r2)) (C.8)
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Hence, by uniqueness of ν1, we infer

ν1(r) =
Q′(r)
Q′′(0)

< 0 on (0,+∞)

where we used from standard ODE arguments Q′′(0) < 0 and

Q′ < 0 on (0,+∞). (C.9)

case m = 2: From (C.8), (C.9) and standard Sturm Liouville oscillation arguments

for central potentials [49], the quadratic form (H1u, u) is positive on Ḣ1
rad(0,+∞)

and hence for m ≥ 2, Hm > H1 is definite positive, and hence νm > 0 on (0,+∞).

Moreover, If cm,− = 0 in (C.7), then νm ∈ Ḣ1
rad satisfies (Hmνm, νm) = 0 which is

a contradiction, hence the leading order behaviour (3.13).

step 4 Completing the basis.
case m = 2. Let φm be the solution to Hm(φm) = 0 constructed above with the
behaviour (C.6). At the origin, the equation Hmψ reads

A∗
mAmψ = V ψ,

with

Amv = rm∂r

( v

rm

)
, A∗

m =
v

rm+1
∂r(r

m+1v)

and V ∈ L∞ and hence all solutions on (0, δ) with 0 < δ ≪ 1 are of the form

ψ = c0r
m +

c1
rm+1

+ rm
∫ δ

r

dτ

τ2m+1

∫ r

0
τm+1V ψdτ

through an elementary fixed point argument. Hence

φm =
c1 +O(r2)

rm+1
. (C.10)

Assume by contradiction that c1 = 0. Then, the fixed point above leads to φm =

O(rm). Hence φm is a zero of Hm in Ḣ1
rad which is a contradiction. Thus, c1 6= 0

and together with (C.10), we have obtained (3.14).

case m = 1. We let φ1 be given by the Wronskian relation

φ1 = ν1(r)

∫ 1

r

dτ

τ2ν21 (τ)
dτ ∼

∣∣∣∣∣

c
r2

as r → 0, c 6= 0,
1

r
1−

√
∆1

2

as r → +∞,

which is (3.12).

step 5 Proof of (3.16). Let

κn,m := µ−m
n ϕn,m(µnr).

Then, since ϕn,m satisfies Ln,m(ϕn,m) = 0, we infer

−∂2rκn,m − 2

r
∂rκn,m +

m(m+ 1)

r2
κn,m − p

(
µ

2
p−1
n Φn(µnr)

)p−1

κn,m = −µ2nΛκn,m.

This yields

Hm(κn,m) = fn,m := p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)
κn,m − µ2nΛκn,m.

Since Hm(νm) = 0, we infer

Hm (κn,m − νm) = fn,m.
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We let (νm, φm) be the completed fundamental basis for Hm so that

κn,m − νm =

(
a1 −

∫ r

0
fn,mφmr

′2dr′
)
νm +

(
a2 +

∫ r

0
fn,mνmr

′2dr′
)
φm.

Since

νm(r) = rm(1 +O(r2)) and ϕn,m(r) = rm(1 +O(r2)) as r → 0+,

we infer

κn,m(r)− ν(r) = O(rm+2)

and hence (3.12), (3.14) implies a1 = a2 = 0 and:

κn,m − νm = −
(∫ r

0
fn,mφmr

′2dr′
)
νm +

(∫ r

0
fn,mνmr

′2dr′
)
φm.

In order to estimate fn,m, recall from Corollary 2.6 that we have

sup
r≤r0

∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
. µsc−1

n

This yields

sup
r≤ r0

µn

∣∣∣∣∣p
((

µ
2

p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)∣∣∣∣∣ .
µsc+1
n

r
2− 2

p−1

0

. (C.11)

Also, we rewrite fn,m as

fn,m = p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)
νm − µ2nΛνm (C.12)

+p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)
(κn,m − νm)− µ2nΛ(κn,m − νm).

0 ≤ r ≤ 1. In view of the asymptotic behavior as r → 0+ (3.12), (3.14) of the basis
of solutions νm, φm, and after integrating by parts the term Λ(κn,m − νm), we have
for 0 ≤ r ≤ 1 using (C.11) and (C.12):

|κn,m − νm|(r) . µ2nr
2|κn,m − νm|(r)

+


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(
rm+2 + rm

(∫ r

0
|κn,m − νm|r′1−m

dr′
)

+ r−m−1

(∫ r

0
|κn,m − νm|r′m+2

dr′
))

.

Using again the asymptotic behavior of νm as r → 0+, we infer for all m ≥ 1

sup
0≤r≤1

|(κn,m − νm)(r)|
|νm(r)| .

µsc+1
n

r
2− 2

p−1

0

+ µ2n. (C.13)

In particular, this yields
∫ 1

0
|fn,m|r′1−m

dr′ +
∫ 1

0
|fn,m|r′m+2

dr′ .
µsc+1
n

r
2− 2

p−1

0

+ µ2n. (C.14)
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Next, we consider the region r ≥ 1. In view of the asymptotic behavior at infinity
(3.12), (3.14), (3.11), (3.13), after integrating by parts the term Λ(κn,m − νm) and
using also (C.14), we have

|κn,m − νm| . µ2nr
2|κn,m − νm|

+
1

(1 + r)
1+

√
∆m
2


 µsc+1

n

r
2− 2

p−1

0

+ µ2n +

∫ r

1
|fn,m|

r′2

(1 + r′)
1−

√
∆m

2

dr′




+
1

(1 + r)
1−

√
∆m

2


 µsc+1

n

r
2− 2

p−1

0

+ µ2n +

∫ r

1
|fn,m|

r′2

(1 + r′)
1+

√
∆m

2

dr′


 .

After integrating by parts the term Λ(κn,m − νm), and in view of the asymptotic
behavior of νm as r → +∞ as well as (C.11), we deduce

|(κn,m − νm)(r)|

.
1

(1 + r)
1+

√
∆m

2

(∫ r

1


 µsc+1

n

r
2− 2

p−1

0

|νm|+ µ2n|Λνm|+


 µsc+1

n

r
2− 2

p−1

0

+ µ2n


 |κn,m − νm|




× r′2

(1 + r′)
1−

√
∆m

2

dr′ +
µsc+1
n

r
2− 2

p−1

0

+ µ2n

)

+
1

(1 + r)
1−

√
∆m

2

(∫ r

1


 µsc+1

n

r
2− 2

p−1

0

|νm|+ µ2n|Λνm|+


 µsc+1

n

r
2− 2

p−1

0

+ µ2n


 |κn,m − νm|




× r′2

(1 + r′)
1+

√
∆m

2

dr′ +
µsc+1
n

r
2− 2

p−1

0

+ µ2n

)
.

case m ≥ 2: We estimate from (3.13):

|(κn,m − νm)(r)|
|νm(r)|

.
1

(1 + r)
√
∆m

{∫ r

1


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(

1

(1 + r′)
1−

√
∆m

2

+ |κn,m − νm|
)

× r′2

(1 + r′)
1−

√
∆m

2

dr′ +
µsc+1
n

r
2− 2

p−1

0

+ µ2n

}

+

∫ r

1


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(

1

(1 + r′)
1−

√
∆m

2

+ |κn,m − νm|
)

r′2

(1 + r′)
1+

√
∆m
2

dr′

+
µsc+1
n

r
2− 2

p−1

0

+ µ2n.

This yields

sup
1≤r≤ r0

µn

|(κn,m − νm)(r)|
|νm(r)| . r20


1 +

µsc−1
n

r
2− 2

p−1

0
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which together with (C.13) concludes the proof of (3.16) for n ≥ N large enough
and m ≥ 2.
case m = 1 We estimate using (3.11), (3.12):

|(κn,1 − ν1)(r)|
|ν1(r)|

.

∫ r

1


 µsc+1

n

r
2− 2

p−1

0

+ µ2n




 1

(1 + r′)
1+

√
∆1

2

+ |κn,1 − ν1|


 r′2

(1 + r′)
1−

√
∆1

2

dr′

+
µsc+1
n

r
2− 2

p−1

0

+ µ2n

+(1 + r)
√
∆1

(∫ r

1


 µsc+1

n

r
2− 2

p−1

0

+ µ2n




 1

(1 + r′)
1+

√
∆1

2

+ |κn,1 − ν1|


 r′2

(1 + r′)
1+

√
∆1

2

dr′

+
µsc+1
n

r
2− 2

p−1

0

+ µ2n

)
.

This yields23

sup
1≤r≤ r0

µn

|(κn,1 − ν1)(r)|
|ν1(r)|

. r20


1 +

µsc−1
n

r
2− 2

p−1

0


+

(
r0
µn

)√
∆1


 µsc+1

n

r
2− 2

p−1

0

+ µ2n




and hence, together with (C.13) and the fact that24
√
∆1 < 2, we have for n ≥ N

large enough

sup
0≤r≤ r0

µn

|(κn,1 − ν1)(r)|
|ν1(r)|

. r20.

The corresponding estimates for first order derivatives are obtained in the same way,
and (3.16) is proved.

Appendix D. Proof of Lemma 3.3

step 1 Proof of (3.18). Let
κn := ϕn,0(µnr).

Then, since ϕn,0 satisfies Ln,0(ϕn,0) = 0, we infer

−∂2rκn − 2

r
∂rκn − p

(
µ

2
p−1
n Φn(µnr)

)p−1

κn = −µ2nΛκn.

23Here, we use the fact that
√
∆1 − 1 =

4

p− 1
< 1

since p > 5, so that ∫ r

0

r′
2

(1 + r′)1+
√

∆1

. (1 + r)2−
√

∆1 .

24Indeed, we have in view of (C.2)
√
∆1 =

p+ 3

p− 1
= 2− p− 5

p− 1
< 2

since p > 5.
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This yields

H(κn) = fn

where we have introduced the notation

fn := p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)
κn − µ2nΛκn.

Since H(ΛQ) = 0, we infer

H

(
κn − p− 1

2
ΛQ

)
= fn.

Recall the solution ρ to H(ρ) = 0 constructed in Lemma 2.3 such that (ΛQ, ρ) forms
a basis of solutions of H(w) = 0, then the solution to

H(w) = f

is given by

w =

(
a1 +

∫ r

0
fρr′2dr′

)
ΛQ+

(
a2 −

∫ r

0
fΛQr′2dr′

)
ρ.

We infer

κn − p− 1

2
ΛQ =

(
a1 +

∫ r

0
fnρr

′2dr′
)
ΛQ+

(
a2 −

∫ r

0
fnΛQr

′2dr′
)
ρ.

Since ΛQ is a smooth function at r = 0 with

ΛQ(0) =
2

p− 1
6= 0,

we infer from the Wronskian relation that ρ has the following asymptotic behavior

ρ ∼ c

r
as r → 0+

for some constant c 6= 0, and hence, we must have a2 = 0. Furthermore, since we
have

(
κn − p− 1

2
ΛQ

)
(0) = 0, ΛQ(0) =

2

p− 1
6= 0

we infer a1 = 0. Hence, we have

κn − p− 1

2
ΛQ =

(∫ r

0
fnρr

′2dr′
)
ΛQ−

(∫ r

0
fnΛQr

′2dr′
)
ρ.

In order to estimate fn, recall from Corollary 2.6 that we have

sup
r≤r0

∣∣∣∣∣∣
Φn(r)−

1

µ
2

p−1
n

Q

(
r

µn

)∣∣∣∣∣∣
. µsc−1

n

This yields

sup
r≤ r0

µn

∣∣∣∣∣p
((

µ
2

p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)∣∣∣∣∣ .
µsc+1
n

r
2− 2

p−1

0

. (D.1)
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Also, we rewrite fn as

fn = p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)
p− 1

2
ΛQ− µ2n

p− 1

2
Λ2Q (D.2)

+p

((
µ

2
p−1
n Φn(µnr)

)p−1

−Qp−1(r)

)(
κn − p− 1

2
ΛQ

)
− µ2nΛ

(
κn − p− 1

2
ΛQ

)
.

We start with the region 0 ≤ r ≤ 1. In view of the asymptotic behavior for ΛQ
and ρ:

ΛQ ∼ 2

p− 1
and ρ ∼ c

r
as r → 0+,

we infer

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ .

∫ r

0
|fn|r′dr′ +

1

r

(∫ r

0
|fn|r′2dr′

)
.

Together with (D.1) and (D.2) and integrating by parts the term Λ(κn − (p −
1)/2ΛQ), we deduce

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ .


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(
1 +

∫ r

0

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ r′dr′

+
1

r

(∫ r

0

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ r′
2
dr′
))

.

We infer

sup
0≤r≤1

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ .
µsc+1
n

r
2− 2

p−1

0

+ µ2n. (D.3)

In particular, this yields

∫ 1

0
|fn|r′dr′ +

∫ 1

0
|fn|r′2dr′ .

µsc+1
n

r
2− 2

p−1

0

+ µ2n. (D.4)

Next, we consider the region r ≥ 1. Recall the asymptotic behavior at infinity of
ΛQ and ρ given by Lemma 2.3

ΛQ(r) ∼ c7 sin (ωlog(r) + c8)

r
1
2

, ρ(r) ∼ c9 sin (ωlog(r) + c10)

r
1
2

as r → +∞,

where c7, c9 6= 0, c8, c10 ∈ R. We infer for r ≥ 1

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ .


 µsc+1

n

r
2− 2

p−1

0

+ µ2n +

∫ r

1
|fn|

r′2

(1 + r′)
1
2

dr′


 1

(1 + r)
1
2

.
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After integrating by parts the term Λ(κn − (p − 1)/2ΛQ), and together with (D.1)
and (D.2), we deduce

(1 + r)
1
2

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣

.


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(
1 +

∫ r

1

(
1

(1 + r′)
1
2

+

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣

)
r′2

(1 + r′)
1
2

dr′
)

.


 µsc+1

n

r
2− 2

p−1

0

+ µ2n


 (1 + r)2 +


 µsc+1

n

r
2− 2

p−1

0

+ µ2n



(∫ r

1

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣
r′2

(1 + r′)
1
2

dr′
)
.

This yields

sup
1≤r≤ r0

µn

(1 + r)
1
2

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ . r20


1 +

µsc−1
n

r
2− 2

p−1

0




which together with (D.3) implies

sup
0≤r≤ r0

µn

(1 + r)
1
2

∣∣∣∣κn − p− 1

2
ΛQ

∣∣∣∣ . r20


1 +

µsc−1
n

r
2− 2

p−1

0


 .

Hence, we have for n ≥ N large enough

sup
0≤r≤r0

(
1 +

r

µn

) 1
2
∣∣∣∣ϕn,0(r)−

p− 1

2
ΛQ

(
r

µn

)∣∣∣∣ . r20.

step 2 Proof of (3.19). Recall from Lemma 3.3 that we have for n ≥ N large
enough

sup
0≤r≤r0

(
1 +

r

µn

) 1
2
∣∣∣∣ϕn,0(r)−

p− 1

2
ΛQ

(
r

µn

)∣∣∣∣ . r20.

Also, recall that

ΛQ(r) ∼ c7 sin(ωlog(r) + c8)

r
1
2

as r → +∞

and that rΛQ,n < r0/µn introduced in Corollary 2.6 denotes the last zero of ΛQ
before r0/µn. This yields

∣∣∣ωlog(r1,n)− ωlog(µn) + c8 − (ωlog(rΛQ,n) + c8)
∣∣∣ . r20

and hence

r1,n = µnrΛQ,ne
O(r20) = µnrΛQ,n(1 +O(r20)).

Furthermore, since we have from the proof of Corollary 2.6 that

e−
3π
2ω
r0
µn

≤ rΛQ,n ≤ r0
µn
,

and

r0,n = µnrΛQ,n(1 +O(r20)),

we deduce
r1,n = r0,n +O(r30)

and
e−

2π
ω r0 ≤ r1,n ≤ r0.
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