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We consider the semilinear heat equation in large dimension d ≥ 11 ∂tu = ∆u + |u| p-1 u, p = 2q + 1, q ∈ N on a smooth bounded domain Ω ⊂ R d with Dirichlet boundary condition. In the supercritical range p ≥ p(d) > 1 + 4 d-2 we prove the existence of a countable family (u ℓ ) ℓ∈N of solutions blowing-up at time T > 0 with type II blow up:

They concentrate the ground state Q being the only radially and decaying solution of ∆Q + Q p = 0:

. This is the first non-radial construction of a solution blowing up by concentration of a stationary state in the supercritical regime, and provides a general strategy to prove similar results for dispersive equations or parabolic systems and to extend it to multiple blow ups.

(N LH) ∂ t u = ∆u + |u| p-1 , u(0) = u 0 , u = 0 on ∂Ω, (1.1) 
where u is real valued, p is analytic p = 2q + 1, q ∈ N, and Ω ⊂ R d is a smooth bounded open domain. For smooth enough initial data u 0 satisfying some compatibility conditions at the border ∂Ω, the Cauchy problem is well posed and there exists a unique maximal solution u ∈ C((0, T ), L ∞ (Ω)). If T < +∞ the solution is said to blow-up and necessarily lim t→T u(t) L ∞ (Ω) = +∞.

This paper adresses the general issue of the asymptotic behavior t → T . In the case Ω = R d , there is a natural scale invariance, namely if u is a solution then so is:

u λ (λ 2 t, x) := λ 2 p-1 u(λ 2 t, λx). (1.2) 
The Sobolev space that is invariant for this scale change is:

Ḣsc (R d ) := u, R d |ξ| 2sc |û| 2 dξ < +∞ , s c := d 2 - 2 p -1 (1.3)
where û stands for the Fourier transform of u. Two particular solutions arise, the constant in space blow-up solution (1.4) and the unique (up to translation and scale change) radially decaying stationary solution Q, see [START_REF] Li | Asymptotic Behavior of Positive Solutions of Equation ∆u + K(x)u p = 0 in R n[END_REF] and references therein, solving the stationary elliptic equation ∆Q + Q p = 0.

u(t, x) = ± κ(p) (T -t) 1 p-1 , κ(p) := 1 p -1 1 p-1
(1.5)

Blow-up for (NLH).

Being one of the model nonlinear evolution equation, the blow-up dynamics has attracted a great amount of work (see [START_REF] Quittner | Superlinear parabolic problems: blow-up, global existence and steady states[END_REF] for a review).

A comparison argument with the constant in space blow-up solution (1.4) implies the lower bound lim sup

t→T u(t) L ∞ (T -t) 1 p-1 ≥ κ(p)
and leads to the following distinction between type I and type II blow-up [START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF]: The ODE blow-up (1.4) does not see the dissipative term in (1.1) whereas type II blow-up involves an interplay between dissipation and nonlinearity, and therefore its existence and properties may change according to d and p. In the series of work [START_REF] Giga | On elliptic equations related to self-similar solutions for nonlinear heat equations[END_REF][START_REF] Giga | Asymptotically self?similar blow?up of semilinear heat equations[END_REF][START_REF] Giga | Characterizing blowup using similarity variables[END_REF][START_REF] Giga | Nondegeneracy of blowup for semilinear heat equations[END_REF][START_REF] Giga | Blow up rate for semilinear heat equation with subcritical nonlinearity[END_REF][START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF][START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF], the authors show that in the energy subcritical range 1 < p < d+2 d-2 all blow-up solution are of type I and match the constant in space solution (1.4):

u
lim sup t→T u(t) L ∞ (T -t) 1 p-1 = κ(p).
In the energy critical case p = d+2 d-2 , d = 4, Schweyer constructed in [START_REF] Schweyer | Type II blow-up for the four dimensional energy critical semi linear heat equation[END_REF] a radial type II blow-up solution, following the analysis of critical problems [START_REF] Merle | Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation[END_REF][START_REF] Merle | Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation[END_REF][START_REF] Raphaël | Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | Quantized slow blow up dynamics for the corotational energy critical harmonic heat flow[END_REF][START_REF] Raphaël | Stable blow up dynamics for the critical corotational wave maps and equivariant Yang Mills problems[END_REF][START_REF] Merle | Blow up dynamics for smooth solutions to the energy critical Schrödinger map[END_REF]. In that case, the scale invariance (1.2) implies that there exists a one dimensional continuum of ground states

1 λ 2 p-1 Q x λ λ>0
. The properties of the ground state (1.5) then allow the existence of a solution u that stays close to this manifold, u = 1 λ(t) 2 p-1 Q x λ(t) + ε, ε ≪ 1, such that the scale goes to 0 in finite time T > 0: λ(t) → 0 as t → T, the ground state shrinks and the solution blows-up. This blow-up scenario is not always possible as it heavily relies on the asymptotic behavior of the ground state, and is impossible in dimension d ≥ 7, [START_REF] Collot | Dynamics near the ground state for the energy critical heat equation in large dimensions[END_REF].

In the radial energy supercritical case p > d+2 d-2 the Joseph-Lundgren exponent [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF] p

JL := +∞ if d ≤ 10, 1 + 4 d-4-2 √ d-1 if d ≥ 11, (1.6) 
dictates the existence of type II blow-up solutions. For d+2 d-2 < p < p JL , type II blow-up solutions do not exist [START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF][START_REF] Mizoguchi | Nonexistence of type II blowup solution for a semilinear heat equation[END_REF]. For p > p JL type II blow-up solutions are completely classified. In [START_REF] Herrero | Explosion de solutions des Equations paraboliques semilinéaires supercritiques[END_REF] the authors predicted the existence of a countable family of solutions u ℓ such that:

u(t) L ∞ ∼ C(u n (0))(T -t) ℓ α(d,p) 2 p-1 , ℓ ∈ N, ℓ > α 2 ,
(α is defined in (1.10)), which are the same speeds as in the present paper. The rigorous proof was first made in an unpublished paper [START_REF] Herrero | A blow up result for semilinear heat equations in the supercritical case[END_REF] and then in [START_REF] Mizoguchi | Type-II blowup for a semilinear heat equation[END_REF]. In the series of work [START_REF] Matano | Blow-up in nonlinear heat equations with supercritical power nonlinearity[END_REF][START_REF] Matano | Classification of type I and type II behaviors for a supercritical nonlinear heat equation[END_REF][START_REF] Mizoguchi | Rate of type II blowup for a semilinear heat equation[END_REF][START_REF] Mizoguchi | Blow-up rate of type II and the braid group theory[END_REF] any type II blow-up solution was proved to have one of the above blow-up rate. These works have the powerful advantage that they deal with large solutions, but strongly rely on comparison principles that are only available for radial parabolic problems.

1.3. Outlook on blow-up for other problems. Many model nonlinear equations share similar features with (NLH). The construction of solutions concentrating a stationary state for the energy supercritical Schrödinger and wave equations has been done in [START_REF] Collot | Type II blow up for the energy supercritical wave equation[END_REF][START_REF] Merle | Type II blow up for the energy super critical NLS, to appear in Cambridge Math. Jour[END_REF], and recently for the harmonic heat flow in [START_REF] Biernat | Type II blow-up mechanism for supercritical harmonic map heat flow[END_REF]. These concentration scenarios happen on a central manifold near the continuum of ground states

1 λ 2 p-1 Q x λ λ>0
whose topological and dynamical properties has been a popular subject of studies in the past years [START_REF] Schlag | Stable manifolds for an orbitally unstable nonlinear Schrˆdinger equation[END_REF][START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]. The possibility of various blow-up speeds is linked to the regularity of the solutions and this is why parabolic problems are more rigid, thanks to the regularizing effect, than dispersive problems, for which a wider range of concentration scenarios exists [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF].

A major goal is the study of blow-up for general data, where non radial stationary states can appear as blow-up profiles [START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF]. The solution may also not be a small perturbation of it. One thus needs robust tools for the perturbative study of special nonlinear profiles as well as a better understanding of the set of stationary solutions. The present work is a step toward this general aim.

1.4. Statement of the result. We revisit the result of [START_REF] Herrero | Explosion de solutions des Equations paraboliques semilinéaires supercritiques[END_REF][START_REF] Mizoguchi | Type-II blowup for a semilinear heat equation[END_REF] with the techniques employed in [START_REF] Raphaël | Stable blow up dynamics for the critical corotational wave maps and equivariant Yang Mills problems[END_REF] to address the non radial setting. From [START_REF] Li | Asymptotic Behavior of Positive Solutions of Equation ∆u + K(x)u p = 0 in R n[END_REF], for p > p JL (defined in (1.6)) the radially decaying ground state Q, solution of (1.5), admits the asymptotic:

Q(x) = c ∞ |x| 2 p-1 + a 1 |x| γ + o(|x| -γ ) as |x| → +∞, a 1 = 0, (1.7) 
with

c ∞ := 2 p -1 d -2 - 2 p -1 1 p-1 , (1.8 
)

γ := 1 2 (d -2 -△), △ := (d -2) 2 -4pc p-1 ∞ (△ > 0 iff p > p JL ), (1.9) 
and we define α := γ -2 p -1 .

(1.10)

For n ∈ N we define the following numbers (△ n > 0 if p > p JL ):

-γ n := -(d -2) + √ △ n 2 , △ n := (d -2) 2 -4cp ∞ + 4n(d + n -2).
The above numbers are directly linked with the existence and the number of instability directions of type II blow-up solutions concentrating Q. Our result is the existence and precise description of some localized type II blow-up solutions in any domain with smooth boundary.

Theorem 1.1 (Existence of non radial type II blow-up for the energy supercritical heat equation). Let d ≥ 11, p = 2q + 1 > p JL , q ∈ N, where p JL is given by (1.6).

Let Q, γ, α, γ n and s c be given by (1.7), (1.9), (1.10), (1.18) and (1.3) and ǫ > 0.

Let Ω ⊂ R d be a smooth open bounded domain. For x 0 ∈ Ω let χ(x 0 ) be a smooth cut-off function around x 0 with support in Ω. Pick ℓ ∈ N satisfying 2ℓ > α. Then, there exists a large enough regularity exponent:

s + = s + (ℓ) ∈ 2N, s + ≫ 1
such that under the non degeneracy condition:

d 2 -γ / ∈ 2N for all n ∈ N such that d -2γ n ≤ s + , (1.11) 
there exists a solution u of (1.1) with u 0 ∈ H s + (Ω) (which can be chosen smooth and compactly supported) blowing up in finite time 0 < T < +∞ by concentration of the ground state at a point x ′ 0 ∈ Ω with |x ′ 0 -x 0 | ≤ ǫ: u(t, x) = χ x 0 (x) 1

λ(t) 2 p-1 Q x -x ′ 0 λ(t) + v (1.12)
with: (i) Blow-up speed:

u L ∞ = c(u 0 )(T -t) -2ℓ
α(p-1) (1 + o(1)), as t → T, c(u 0 ) > 0, (1.13)

λ(t) = c ′ (u 0 )(1 + o t→T (1))(T -t)
ℓ α , as t → T, c ′ (u 0 ) > 0.

(1.14) (ii) Asymptotic stability above scaling in renormalized variables:

lim t→T λ(t) 2 p-1 w (t, x 0 + λ(t)x) H s (λ(t) -1 (Ω-{x 0 })
= 0 for all s c < s ≤ s + . (1.15) (iii) Boundedness below scaling: lim sup t→T u(t) H s (Ω) < +∞, for all 0 ≤ s < s c .

(1.16)

(iv) Asymptotic of the critical norm:

u(t) H sc (Ω) = c(d, p) √ ℓ |log(T -t)|(1 + o(1)
), as t → T, c(d, p) > 0. (1.17)

Comments on Theorem 1.1

1. On the assumptions. First, the assumption p > p JL is not just technical as radial type II blow-up is impossible for d+2 d-2 < p < p JL [START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF][START_REF] Mizoguchi | Nonexistence of type II blowup solution for a semilinear heat equation[END_REF]. Non radial type II blowup solutions in this latter range, if they exist, must have a very different dynamical description. Next, if p is not an odd integer, then the nonlinearity x → |x| p-1 x is singular at the origin, yielding regularity issues. In that case the techniques used in the present paper could only be applied for a certain range of integers ℓ. Eventually, the condition (1.11) is purely technical, as it avoids the presence of logarithmic corrections in some inequalities that we use. It could be removed since the analysis relies on gains that are polynomial and not logarithmic, but would weighs the already long proof. Note that a large number of couples (p, ℓ) satisfy this condition. Indeed, only finitely many integer n are concerned from (1.20), and the value of γ n is very rarely a rational number from (1.18).

Blow-up by concentration at any point and manifold of type II blow-up solutions.

For any x 0 ∈ Ω, Theorem 1.1 provides a solution that concentrates at a point that can be arbitrarily close to x 0 . In fact there exists a solution that concentrates exactly at x 0 , meaning that this blow-up can happen at any point of Ω. To show that, one needs an additional continuity argument in addition to the informations contained in the proof, to be able to reason as in [START_REF] Planchon | Existence and Stability of the log?log Blow-up Dynamics for the L 2-Critical Nonlinear Schrˆdinger Equation in a Domain[END_REF][START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow?up points[END_REF] for exemple. This continuity property amounts to prove that the set of type II blow-up solutions that we construct is a Lipschitz manifold with exact codimension in a suitable functional space. This was proved in the radial setting in [START_REF] Collot | Type II blow up for the energy supercritical wave equation[END_REF] and the analysis could be adapted here using the non radial analysis provided in the present paper. However a precise and rigorous proof of this fact would be too lengthy to be inserted in this paper. Let us stress that the solutions built here possess an explicit number of linear non radial instabilities. An interesting question is then whether or not these new instabilities can be used, with the help of resonances through the nonlinear term, to produce new type II blow-up mechanisms around Q in the non radial setting.

Multiple blow-ups and continuation after blow-up.

As in our analysis we are able to cut and localize the approximate blow-up profile, there should be no problems in constructing a solution blowing up with this mechanism at several points simultaneously as in [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow?up points[END_REF]. Cases where the blow-up bubbles really interact can lead to very different dynamics, see [START_REF] Martel | Strongly interacting blow up bubbles for the mass critical NLS[END_REF][START_REF] Jendrej | Construction of two-bubble solutions for energy-critical wave equations[END_REF] for recent results. From the construction, as t → T , u admits a strong limit in H sc loc (Ω\{x 0 }). One could investigate the properties of this limit in order to continue the solution u beyond blow-up time, which is a relevant question for blow-up issues [START_REF] Matano | Classification of type I and type II behaviors for a supercritical nonlinear heat equation[END_REF], especially for hamiltonian equations where a subcritical norm is under control.
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Supercritical numerology: for d ≥ 11 the condition p > p JL where p JL is defined by (1.6) 

is equivalent to 2 + √ d -1 < s c < d 2 .
We define the sequences of numbers describing the asymptotic of particular zeros of H for n ∈ N:

-γ n := -(d -2) + √ △ n 2 , △ n := (d -2) 2 -4cp ∞ + 4n(d + n -2), (1.18) 
α n := γ n -2 p -1

(1. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF] where △ n > 0 for p > p JL . We will use the following facts in the sequel:

γ 0 = γ, γ 1 = 2 p -1 + 1, γ n < 2 p -1
for n ≥ 2 and γ n ∼ -n, (1.20) see Lemma A.1 (where γ is defined in (1.9)). In particular α 0 = α, α 1 = 1 and α n < 0 for n ≥ 2. A computation yields the bound:

2 < α < d 2 - 1 
(see [START_REF] Merle | Type II blow up for the energy super critical NLS, to appear in Cambridge Math. Jour[END_REF]). We let:

g := min(α, △) -ǫ, g ′ := 1 2 min(g, 1, δ 0 -ǫ) (1.21)
where 0 < ǫ ≪ 1 is a very small constant just here to avoid to track some logarithmic terms later on. For n ∈ N we define1 :

m n := E 1 2 ( d 2 -γ n ) (1.22)
and denote by δ n the positive real number 0 ≤ δ n < 1 such that:

d = 2γ n + 4m n + 4δ n .
(1.23)

For 1 ≪ L a very large integer we define the Sobolev exponent:

s L := m 0 + L + 1 (1.24)
In this paper we assume the technical condition (1.11) for s + = s L which means:

0 < δ n < 1 (1.25)
for all integer n such that d -2γ n ≤ 4s L (there is only a finite number of such integers from (1.20)). We let n 0 be the last integer to satisfy this condition:

n 0 ∈ N, d -2γ n 0 ≤ 4s L and d -2γ n 0 +1 > 4s L (1.26)
and we define:

δ ′ 0 := max 0≤n≤n 0
δ n ∈ (0, 1).

(1.27)

For all integer n ≤ n 0 we define the integer:

L n := s L -m n -1 (1.28)
and in particular L 0 = L. Given an integer ℓ > α 2 (that will be fixed in the analysis later on), for 0 ≤ n ≤ n 0 we define the real numbers:

i n = ℓ - γ -γ n 2 .
(1.29)

Notations for the analysis: For R ≥ 0 the euclidian sphere and ball are denoted by:

S d-1 (R) := x ∈ R d , d 1 x 2 i = R 2 , B d (R) := x ∈ R d , d 1 x 2 i ≤ R 2 .
We use the Kronecker delta-notation:

δ i,j := 0 if i = j 1 if i = j,
for i, j ∈ N. We let:

F (u) := ∆u + f (u), f (u) := |u| p-1 u so that (1.1) writes: ∂ t u = F (u). When using the binomial expansion for the nonlinearity we use the constants

f (u + v) = p l=0 C p l u l v p-l , C p l := p l .
The linearized operator close to Q (defined in (1.5)) is:

Hu := -∆u -pQ p-1 u (1.30)
so that F (Q + ε) ∼ -Hε. We introduce the potential

V := -pQ p-1 (1.31)
so that H = -∆ + V . Given a strictly positive real number λ > 0 and function u : R d → R, we define the rescaled function: .32) This semi-group has the infinitesimal generator:

u λ (x) = λ 2 p-1 u(λx). ( 1 
Λu := ∂ ∂λ (u λ ) |λ=1 = 2 p -1 u + x.∇u.
The action of the scaling on (1.1) is given by the formula:

F (u λ ) := λ 2 (F (u)) λ .
For z ∈ R d and u : R d → R, the translation of vector z of u is denoted by: τ z u(x) := u(x -z). (1.33) This group has the infinitesimal generator:

∂ ∂z (τ z u) |z=0 = -∇u.
The original space variable will be denoted by x ∈ Ω and the renormalized one by y, related through x = z + λy. The number of spherical harmonics of degree n is:

k(0) := 1, k(1) := d, k(n) := 2n + p -2 n n + p -3 n -1 for n ≥ 2
The Laplace-Beltrami operator on the sphere S d-1 (1) is self-adjoint with compact resolvent and its spectrum is {n(d + n -2), n ∈ N}. For n ∈ N the eigenvalue n(d + 2 -n) has geometric multiplicity k(n), and we denote by (Y (n,k) ) n∈N, 1≤k≤k(n) an associated orthonormal Hilbert basis of L 2 (S d ):

L 2 (S d-1 (1)) = +∞ ⊕ n=0 ⊥ Span Y (n,k) , 1 ≤ k ≤ k(n) , ∆ S d-1 (1) Y (n,k) = n(d + n -2)Y (n,k) , S d-1 (1) Y (n,k) Y (n ′ ,k ′ ) = δ (n,k),(n ′ ,k ′ ) , (1.34) 
with the special choices:

Y (0,1) (x) = C 0 , Y 1,k (x) = -C 1 x k (1.35) 
where C 0 and C 1 are two renormalization constants. The action of H on each spherical harmonics is described by the family of operators on radial functions

H (n) := -∂ rr - d -1 r ∂ r + n(d + n -2) r 2 -pQ p-1 (1.36)
for n ∈ N as for any radial function f they produce the identity

H x → f (|x|)Y (n,k) x |x| = x → (H (n) (f ))(|x|)Y (n,k) x |x| . (1.37) 
For two strictly positive real number b (0,1) 1

> 0 and η > 0 we define the scales:

M ≫ 1 B 0 = |b (0,1) 1 | -1 2 , B 1 = B 1+η 0 , (1.38) 
The blow-up profile of this paper will is an excitation of several direction of stability and instability around the soliton Q. Each one of these directions of perturbation, denoted by T (n,k) i will be associated to a triple (n, k, i), meaning that it is the i-th perturbation located on the spherical harmonics of degree (n, k). For each (n, k) with n ≤ n 0 , there will be L n + 1 such perturbations for i = 0, ..., L n except for the cases n = 0, k = 1, and n = 1, k = 1, ..., d, where there will be L n perturbations for i = 1, ..., L n (n = 1, 2). Hence the set of triple (n, k, i) used in the analysis is:

I := (n, k, i) ∈ N 3 , 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n), 0 ≤ i ≤ L n \({(0, 1, 0)} ∪ {(1, 1, 0), ..., (1, d, 0)}) (1.39)
with cardinal

#I := n 0 n=0 k(n)(L n + 1) -d -1.
(1.40)

For j ∈ N and a n-tuple of integers µ = (µ i ) 1≤i≤j the usual length is denoted by: |µ| := j i=1 µ i .

If j = d and h is a smooth function on R d then we use the following notation for the differentiation:

∂ µ h := ∂ |µ| ∂ µ 1 x 1 ...∂ µ d x d h.
For J is a #I-tuple of integers we introduce two others weighted lengths:

|J| 2 = n,k,i ( γ -γ n 2 + i)J (n,k) i , (1.41 
)

|J| 3 = L i=1 iJ (0,1) i + 1≤i≤L 1 , 1≤k≤d iJ (1,k) i + (n,k,i)∈I, 2≤n (i + 1)J (n,k) i . (1.42)
To localize some objects we will use a radial cut-off function χ ∈ C ∞ (R d ):

0 ≤ χ ≤ 1, χ(|x|) = 1 for |x| ≤ 1, χ(|x|) = 0 for |x| ≥ 2 (1.43)
and for B > 0, χ B will denote the cut-off around B d (0, B):

χ B (x) := χ x B .
1.6. Strategy of the proof. We now describe the main ideas behind the proof of Theorem 1.1. Without loss of generality, via scale change and translation in space one can assume that x 0 = 0 and B d (7) ⊂ Ω.

(i) Linear analysis and tail computations: The linearized operator near Q is H = -∆ -pQ p-1 and its generalized kernel is:

{f, ∃j ∈ N, H j f = 0} = Span T (n,k) i (n,i)∈N 2 , 1≤k≤k (n) 
, where T

(n,k) i (x) = T (n) i (|x|)Y (n,k) x |x| , T (n) i
being radial, is located on the spherical harmonics of degree (n, k), with

T (0,1) 0 = ΛQ, T (1,k) 0 = ∂ x k Q, HT (n,k) 0 = 0, HT (n,k) i+1 = -T (n,k) i (1.44)
For any L ∈ N, defining s L , n 0 (L) and L n (L) by (1.24), (1.26) and (1.28), H s L is coercive for functions that are not in the suitably truncated generalized kernel:

εH s L ε ∇ s L ε 2 L 2 + ε 2 loc if ε ∈ Span T (n,k) i ⊥ 0≤n≤n 0 , 1≤k≤k(n), 0≤i≤Ln
(1.45) where ε 2 loc means any norm of ε on a compact set involving derivatives up to order 2s L . A scale change for these profiles produces the following identity:

∂ ∂λ (T (n,k) i ) |λ=1 (x) = ΛT (n,k) i (x) ∼ (2i -α n )T (n,k) i (x) as |x| → +∞. (1.46) 
(ii) The renormalized flow: For u a solution, λ : (0, T ) → R and z : (0, T ) → R d , we define the renormalized time: ds dt = 1 λ 2 , s(0) = s 0 .

(1.47) v = (τ -z u) λ then solves the following renormalized equation:

∂ s v - λ s λ Λv - z s λ .∇v -F (v) = 0.
(1.48)

(iii) The dynamical system for the coordinates on the center manifold: Let I be defined by (1.39). For an approximate solution of (1.1) under the form

u = Q + (n,k,i)∈I b (n,k) i T (n,k) i z, 1 λ (1.49)
described by some parameters b (n,k) i

∈ R one has the identity from (1.44) and (1.45):

-z t .∇u -λt λ Λu + (n,k,i)∈I b (n,k) i,t T (n,k) i z, 1 λ = ∂ t u ≈ F (u) = b (1,•) 1 λ .∇u + b (0,1) 1 λ 2 Λu + (n,k,i)∈I b (n,k) i+1 -(2i-αn)b (1,0) 1 b (n,k) i λ 2 T (n,k) i z, 1 λ + ψ (1.50)
where b

(1,•) 1 = (b (1,1) 1 , ..., b (1,d) 1 
) and with the convention b

(n,k)

Ln+1 = 0.
The error term ψ is negligible under a size assumption on the parameters. Identifying the terms in the above identity yields the following finite dimensional dynamical system 2 :

λ t = - b (0,1) 1 λ , z t = - b (1,•) 1 λ , b (n,k) i,t = -1 λ 2 (2i -α n )b (0,1) 1 b (n,k) i + 1 λ 2 b (n,k) i+1 , ∀(n, k, i) ∈ I.
(1.51)

(iv) The approximate blow-up profile: (1.51) admits for any ℓ ∈ N with 2ℓ > α an explicit special solution (λ,

) such that z = 0 and λ ∼ (T -t) ℓ α for some T > 0. Moreover, when linearizing (1.51) around this solution, one finds an explicit number m of directions of linear instability and #I -m directions of stability. In addition, for the renormalized time s associated to λ one has:

lim t→T s(t) = +∞, |b (i,n) k (s)| s -γ-γn 2 -i .
(1.52)

(Q + (n,k,i)∈I b (n,k) i (t)T (n,k) i ) z(t), 1 λ(t)
is then our approximate blow-up profile.

(v) The blow-up ansatz: Following (iv), we study solutions of the form:

u = χ Q + (n,k,i)∈I b (n,k) i T (n,k) i z, 1 λ + w (1.53)
and decompose the remainder w according to:

w int := χ 3 w, w ext := (1 -χ 3 )w, ε := (τ -z w int ) λ . (1.54)
w ext is the remainder outside the blow-up zone, w int the remainder inside the blowup zone, and ε is the renormalization of the remainder inside the blow-up zone corresponding to the scale and central point of the ground state Q z, 1 λ . w is orthogonal to the suitably truncated center manifold:

ε ∈ Span T (n,k) i ⊥ 0≤n≤n 0 , 1≤k≤k(n), 0≤i≤Ln (1.55) 
which fixes in a unique way the value of the parameters b

(n,k) i
, λ and z. We then define the renormalized time s associated to λ via (1.47). We take b, λ and z to be perturbations of b, λ and z for the renormalized time:

b (n,k) i (s) = b (n,k) i (s) + b ′ (n,k i (s), λ(s) = λ(s) + λ ′ (s), z(s) = z(s) + z ′ (s) (1.56) 2 Again, with the convention b (n,k) Ln+1 = 0.
We define four norms for the remainder in (1.53) and (1.54):

E σ := ∇ σ ε 2 L 2 (R d ), E 2s L := R d |H s L ε| 2 , w ext H σ (Ω) and w ext H s L (Ω)
where σ is a slightly supercritical regularity exponent

0 < σ -s c ≪ 1. (1.57) One has that E 2s L ∇ 2s L ε L 2 from (1.45).
Interpretation: We decompose a solution near the set of localized and concentrated Bootstrap method in a trapped regime: We study solutions that are close to the approximate blow-up profile for the renormalized time, i.e. that satisfy:

ground states χ(Q z, 1 λ ) according to (1.53). A part, χ (n,k,i)∈I b (n,k) i T (n,k) i z,
E σ + w ext 2 H σ (Ω) 1, E 2s L + w ext H s L (Ω) 1 λ 2(2s L -sc) s L+(1-δ 0 )+ν , (1.58) |b ′ (n,k) i | s -γ-γn 2 -i , |λ| + |z| ≪ 1.
(1.59)

1 λ 2(2s L -sc) s L+(1-δ ′ 0 ) is the size of the excitation χ (n,k,i)∈I b (n,k) i T (n,k) i z, 1 λ
and ν > 0 in (1.58) then quantify some gain describing how smaller is the remainder w.

(v) The bootstrap regime: From (1.1) and (1.50), the evolution of the solution under the decomposition (1.53) and (1.54) has the form

∂ t w ext = ∆w ext + ∆χ 3 w + 2∇χ 3 .∇w + (1 -χ 3 )w p , (1.60) 
∂ t w int = -H z, 1 λ w int + χψ + N L +χ ( b (1,•) 1 λ 2 + zt λ ).∇(Q + (n,k,i)∈I b (n,k) i T (n,k) i ) z, 1 λ +χ ( b (0,1) 1 λ 2 + λt λ )Λ(Q + (n,k,i)∈I b (n,k) i T (n,k) i ) z, 1 λ +χ (n,k,i)∈I -b (n,k) i,t - (2i-αn)b (0,1) 1 b (n,k) 1 +b (n,k) i+1 λ 2 T (n,k) i ) z, 1 λ (1.61) where H z,λ = -∆ -pQ p-1 z, 1 λ
and N L stands for the purely nonlinear term.

Modulation. The evolution of the parameters is computed using the orthogonality directions related to the decomposition, i.e. by taking the scalar product between (1.61) and (T 

(n,k) i ) z, 1 λ for 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n) and 0 ≤ i ≤ L n ,
+ zs λ + b (1,•) 1 + (n,k,i)∈I b (n,k) i,s + (2i -α n )b (n,k) i b (0,1) 1 + b (n,k) i+1 E 2s L + s -L-3 .
(1.62) These estimates hold because the error produced by the approximate dynamics is very small (s L-3 ) and compact sets, and on the other hand the remainder ε is also very small on compact sets and located far away from the origin from (1.58) and the coercivity (1.45).

Lyapunov monotonicity for the remainder. From the evolution equations (1.60) and (1.61), in the bootstrap regime (1.58) one performs energy estimates of the form:

d dt 1 λ 2(σ-sc) E σ + w ext H σ (Ω) 1 λ 2 s 1+κ ′ + 1 λ (σ-sc) E σ ∇ σ ψ L 2 , (1.63) d dt 1 λ 2(2s L -sc) E 2s L + w ext H 2s L (Ω) 1 λ 2(2s L -sc)+2 s L+2-δ 0 +ν+κ + 1 λ 2s L -sc E 2s L H s L z, 1 λ ψ L 2 , (1.64) 
where κ > 0 represents a gain. The key properties yielding these estimates are the following. The control of a slightly supercritical norm (1.57) and another high regularity norm allows to control precisely the energy transfer between low and high frequencies and to control the nonlinear term. The dissipation in (1.60) and (1.61) (for the second equation it is a consequence of the coercivity (1.45)) erases the border terms and smaller order local interactions. Finally, the approximate blow-up profile is in fact a refinement of (1.49) where the error in the approximate dynamics is well localized in the self-similar zone |x -z| ∼ √ T -t, by the addition of suitable corrections via inverting elliptic equations and by precise cuts.

(vi) Existence via a topological argument:. In the bootstrap regime close to the approximate blow-up profile described by (1.58) and (1.59), one has precise bounds for the error term ψ. Reintegrating the energy estimates (1.63) and (1.64) then leads to the bounds:

E σ + w ext 2 H σ (Ω) ≪ 1, E 2s L + w ext H s L (Ω) ≪ 1 λ 2(2s L -sc) s L+(1-δ 0 )+ν ,
which are an improvement of (1.58). Therefore, a solution ceases to be in the bootstrap regime if and only if the bound (1.59) describing the proximity of the parameters with respect to the special blow-up parameters (b, λ, z) are violated. From (iv) the parameters admit (λ, z, b) as an hyperbolic orbit with m directions of instability and #I -m of instability. From the modulation equations (1.62) the remainder w perturbs this dynamics only at lower order. Therefore, an application of Brouwer fixed point theorem yields the persistence of an orbit similar to (λ, z, b) for the full nonlinear equation, i.e. with a perturbation along the parameters that stays small for all time. This gives the existence of a true solution of (1.1) that stays close to the approximate blow-up profile for all renormalized times, implying blow-up by concentration of Q with a precise asymptotics.

The paper is organized as follows. In Section 2 we recall the known properties of the ground state in Lemma 2.1 and describe the kernel of the linearized operator H in Lemma 2.3. This provides a formula to invert elliptic equations of the form 3 With the convention b (n,k)

Ln+1 = 0.
Hu = f , stated in Lemma 2.6 and allows to describe the generalized kernel of H in Lemma 2.10. The blow-up profile is built on functions depending polynomially on some parameters and with explicit asymptotic at infinity, and we introduce the concept of homogeneous functions in Definition 2.14 and Lemma 2.15 to track these informations easily. With these tools, in Section 3 we construct a first approximate blow-up profile for which the error is localized at infinity in Proposition 3.1 and we cut it in the self-similar zone in Proposition 3.3. The evolution of the parameters describing the approximate blow-up profile is an explicit dynamical system with special solutions given in Lemma 3.4 for which the linear stability is investigated in Lemma 3.5. In Section 4 we define a bootstrap regime for solutions of the full equation close to the approximate blow-up profile. We give a suitable decomposition for such solutions, using orthogonality conditions that are provided by Definition 4.1 and Lemma 4.2, in Lemma 4.3. They must satisfy in addition some size assumption, and all the conditions describing the bootstrap regime are given in Definition 4.4. The main result of the paper is Proposition 4.6, stating the existence of a solution staying for all times in the boostrap regime, whose proof is relegated to the next Section. With this result we end the proof of Theorem 1.1 in Subsection 4.2. To to this, the modulation equations are computed in Lemma 4.7, yielding that solutions staying in the bootstrap regime must concentrate in Lemma 4.8 with an explicit asymptotic for Sobolev norm in Lemma 4.9. In Section 5 we prove the main Proposition 4.6. For solutions in the boostrap regime, an improved modulation equation is established in Lemma 5.1, and Lyapunov type monotonicity formulas are established in Propositions 5.3 and 5.5 for the low regularity Sobolev norms of the remainder, and in Propositions 5.6 and 5.8 for the high regularity norms. With this analysis one can characterize the conditions under which a solution leaves the boostrap regime in Lemma 5.9, and with a topological argument provided in Lemma 5.10 one ends the proof of Proposition 4.6 in Proof 5.4.

The appendix is organized as follows. In Section A we give the proof of Lemma 2.3 describing the kernel of H. In Section B we recall some Hardy and Rellich type estimates, among which the most useful is given in Lemma B. [START_REF] Collot | Type II blow up for the energy supercritical wave equation[END_REF]. In Section C we investigate the coercivity of H in Lemmas C.2 and C.3. In Section D we prove some bounds for solutions in the bootstrap regime. In Section E we give the proof of the decomposition Lemma 4.3.

Preliminaries on Q and H

We first summarize the content and ideas of this section. The instabilities near Q underlying the blow up that we study result from the excitement of modes in the generalized kernel of H. We first describe this set. H being radial, we use a decomposition into spherical harmonics: restricted to spherical harmonics of degree n, see (1.37), it becomes the operator H (n) on radial functions defined by (1.36). Using ODE techniques, the kernel is described in Lemma 2.3 and the inversion of H (n) is given by Definition 2.6 and (2.13). By inverting successively the elements in the kernel of H (n) one obtains the generators of the generalized kernel ∪ j Ker((H (n) ) j ) of this operator in Lemma 2.10.

To track the asymptotic behavior and the dependance in some parameters of various profiles during the construction of the approximate blow up profile in the next section, we introduce the framework of "homogeneous" functions in Definition 2.14 and Lemma 2.15.

2.1.

Properties of the ground state and of the potential. Any positive smooth radially symmetric solution to:

-∆φ -φ p = 0, is a dilate of a given normalized ground state profile Q:

φ = Q λ , λ > 0, -∆Q -Q p = 0 Q(0) = 1
see [START_REF] Li | Asymptotic Behavior of Positive Solutions of Equation ∆u + K(x)u p = 0 in R n[END_REF] and references therein. The following lemma describes the asymptotic behavior of Q. We refer to [START_REF] Ding | On the elliptic equation Deltau + Ku (n+2)/(n-2) = 0 and related topics[END_REF] for an earlier work. ). We recall that g > 0, c ∞ and γ are defined in (1.9) and (1.21). One has the asymptotics:

Q = c ∞ r 2 p-1 + a 1 r γ + O 1 r γ+g , as r → +∞, a 1 = 0 (2.1) V = - pc p-1 ∞ r 2 + O 1 r 2+α , as r → +∞, (2.2) 
d dλ [(Q λ ) p-1 ] |λ=1 = O 1 r 2+α as r → +∞, (2.3) 
and these identities propagate for the derivatives. There exists δ(p) > 0 such that there holds the pointwise bounds for all y ∈ R d :

0 < Q(y) < c ∞ |y| 2 p-1 , (2.4 
)

- (d -2) 2 4|y| 2 + δ(p) |y| 2 ≤ V (y) < 0. (2.5) Remark 2.2. The standard Hardy inequality R d |∇u| 2 ≥ (d-2) 2 4 R d u 2
|y| 2 dy and (2.4) then imply the positivity of H on Ḣ1 (R d ):

R d uHudy ≥ R d δ(p)u 2 |y| 2 dy. (2.6)
It is worth mentioning that the aforementioned expansion (2.1) is false for p ≤ p JL . This asymptotics at infinity of Q is decisive for type II blow up via perturbation of it, as from [START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF][START_REF] Mizoguchi | Nonexistence of type II blowup solution for a semilinear heat equation[END_REF] it cannot occur for d+2 d-2 < p < p JL . 2.2. Kernel of H.

Lemma 2.3 (Kernel of H (n)

). We recall that the numbers (γ n ) n∈N and g are defined in (1.18). Let n ∈ N. There exist

T (n) 0 , Γ (n) : (0, +∞) → R two smooth functions such that if f : (0, +∞) → R is smooth and satisfies H (n) f = 0, then f ∈ Span(T (n) 0 , Γ (n) ). They enjoy the asymptotics:          T (n) 0 (r) = r→0 l j=0 c (n) j r n+2j + O(r n+2+2l ), ∀l ∈ N, c (n) 0 = 0, T (n) 0 ∼ r→+∞ C n r -γn + O(r -γn-g ), C n = 0, Γ (n) ∼ r→0 c ′ n r d-2+n and Γ (n) ∼ r→+∞ c′ n r -γn , c ′ n , c′ n = 0.
(2.7)

Moreover, T (n) 0
is strictly positive, and for

1 ≤ k ≤ k(n) the functions y → T (n) 0 (|y|)Y n,k |y| y
are smooth on R d . The first two regular and strictly positive zeros are explicit:

T (0) 0 = 1 C 0 ΛQ and T (1) 0 = - 1 C 1 ∂ y Q. (2.8)
where C 0 and C 1 are the renormalized constants defined by (1.35).

Proof. The proof of this lemma is done in Appendix A.

Remark 2.4. The presence of the renormalized constants in (2.8) is here to produce the identities [START_REF] Mizoguchi | Type-II blowup for a semilinear heat equation[END_REF]. For each n ∈ N, only one zero, T (n) 0 , is regular at the origin. We insist on the fact that -γ n > 0 is a positive number 4 for n large from (1.20) making these profile grow as r → +∞. (n) . We start by a useful factorization formula for H (n) . Let n ∈ N and W (n) denote the potential:

T (0) 0 Y (0,0) = ΛQ and T (1) 0 Y (1,k) = ∂ x k Q from (1.

Inversion of H

W (n) := ∂ r (log(T (n) 0 )), (2.9) 
where

T (n) 0
is defined in (2.7) and define the first order operators on radial functions:

A (n) : u → -∂ r u + W (n) u, A (n) * : u → 1 r d-1 ∂ r (r d-1 u) + W (n) u.
(2.10)

Lemma 2.5 (Factorization of H (n)

). There holds the factorization:

H (n) = A (n) * A (n) . (2.11) 
Moreover one has the adjunction formula for smooth functions with enough decay:

+∞ 0 (A (n) u)vr d-1 dr = +∞ 0 u(A (n) * v)r d-1 dr.
Proof of Lemma 2.5. As T (n) 0 > 0 from (2.7), W (n) is well defined. This factorization is a standard property of Schrödinger operators with a non-vanishing zero. We start by computing:

A (n) * A (n) u = -∂ rr u - d -1 r ∂ r u + d -1 r W (n) + ∂ r W (n) + (W (n) ) 2 u.
As

W (n) = ∂rT (n) 0 T (n) 0
, the potential that appears is nothing but:

d-1 r W (n) + ∂ r W (n) + (W (n) ) 2 = ∂rrT (n) 0 + d-1 r T (n) 0 T (n) 0 = -H (n) T (n) 0 +( n(d+n-2) r 2 +V )T (n) 0 T (n) 0 = n(d+n-2) r 2 + V, as H (n) T (n) 0
= 0, which proves the factorization formula (2.11). The adjunction formula comes from a direct computation using integration by parts.

From the asymptotic behavior (2.7) of T (n) 0 at the origin and at infinity, we deduce the asymptotic behavior of W (n) :

W (n) = n r + O(1) as r → 0, -γn r + O 1 r 1+g+j as r → +∞, (2.12) 
which propagates for the derivatives. Using the factorization (2.11), to define the inverse of H (n) we proceed in two times, first we invert A (n) * , then A (n) .

Definition 2.6 (Inverse of H (n) ). Let f : (0, +∞) → R be smooth with f (r) = O(r n ) as r → 0. We define 5 the inverses (A (n) * ) -1 f and (H (n) ) -1 f by:

(A (n) * ) -1 f (r) = 1 r d-1 T (n) 0 r 0 f T (n) 0 s d-1 ds, (2.13 
)

(H (n) ) -1 f (r) =      T (n) 0 +∞ r (A (n) * ) -1 f T (n) 0 ds if (A (n) * ) -1 f T (n) 0 is integrable on (0, +∞), -T (n) 0 r 0 (A (n) * ) -1 f T (n) 0 ds if (A (n) * ) -1 f T (n) 0
is not integrable on (0, +∞).

(2.14)

Direct computations give indeed H (n) • (H (n) ) -1 = A (n) * • (A (n) * ) -1 = Id, and 
A (n) •(H (n) ) -1 = (A (n) * ) -1 .
As we do not have uniqueness for the equation Hu = f , one may wonder if this definition is the "right" one. The answer is yes because this inverse has the good asymptotic behavior, namely, if f ≈ r→+∞ r q one would expect u ≈ r→+∞ r q+2 , which will be proven in Lemma 2.9. To keep track of the asymptotic behaviors at the origin and at infinity, we now introduce the notion of admissible functions.

Definition 2.7 (Simple admissible functions). Let n be an integer, q be a real number and f : (0, +∞) → R be smooth. We say that f is a simple admissible function of degree (n, q) if it enjoys the asymptotic behaviors:

∀l ∈ N, f = l j=0 c j r n+2j + O(r n+2l+2 ) (2.15)
at the origin for a sequence of numbers (c l ) l∈N ∈ R N , and at infinity:

f = O(r q ) as r → +∞, (2.16) 
and if the two asymptotics propagate for the derivatives of f . Remark 2.8. Let f : (0, +∞) be smooth, we define the sequence of n-adapted derivatives of f by induction:

f [n,0] := f and for j ∈ N, f [n,j+1] := A (n) f [n,j] for j even, A (n) * f [n,j] for j odd. (2.17)
From the definition (2.10) of A (n) and A (n) * , and the asymptotic behavior (2.12) of the potential W (n) , one notices that the condition (2.16) on the asymptotic at infinity for a simple admissible function of degree (n, q) and its derivatives is equivalent to the following condition for all j ∈ N:

f [n,j] = O(r q-j ) as r → +∞ (2.18)
where the adapted derivatives (f [n,j] ) j∈N are defined by (2.17). We will use this fact many times in the rest of this subsection, as it is more adapted to our problem.

The operators H (n) and (H (n) ) -1 leave this class of functions invariant, and the asymptotic at infinity is increased by -2 and 2 under some conditions (that will always hold in the sequel) on the coefficient q to avoid logarithmic corrections. 5 u is well defined because from the decay of f at the origin one deduces (A (n) * ) -1 f = O(r n+1 ) as y → 0 and so u ′ T n 0 is integrable at the origin from the asymptotic behavior (2.7).

Lemma 2.9 (Action of H (n) and (H (n) ) -1 on simple admissible functions). Let n ∈ N and f be a simple admissible function of degree (n, q) in the sense of Definition 2.7, with q > γ n -d and -γ n -2 -q ∈ 2N. Then for all integer i ∈ N:

(i) (H (n) ) i f is simple admissible of degree (n, q -2i). (ii) (H (n) ) -i f is simple admissible of degree (n, q + 2i).
Proof of Lemma 2.9. step 1 Action of H (n) . For each integer i and j one has from (2.17) and (2.11):

((H (n) ) i f ) [n,j] = f [n,j+2i]
. Using the equivalent formulation (2.18), the asymptotic at infinity (2.16) for H i f is then a straightforward consequence of the asymptotic at infinity (2.16) for f . Close to the origin, one notices that

H (n) = -∆ (n) + V with ∆ (n) = ∂ rr + d-1 r ∂ r -n(d + n -2). If f satisfies (2.
15) at the origin, then so does (∆ (n) ) i f by a direction computation. As V is smooth at the origin, (H (n) ) i f satisfies also (2.15). Hence (H (n) ) i f is a simple admissible function of degree q -2i.

step 2 Action of (H (n) ) -1 . We will prove the property for (H (n) ) -1 f , and the general result will follow by induction on i. Let u denote the inverse by H (n) : u = (H (n) ) -1 f . -Asymptotic at infinity. We will prove the equivalent formulation (2.18) of the asymptotic at infinity (2.16). From (2.17), (2.13), (2.14) and (2.11)

, u [n,j] = f [n,j-2]
for j ≥ 2 so the asymptotic behavior (2.18) at infinity for the n-adapted derivatives of u are true for j ≥ 2. Therefore it remains to prove them for j = 0, 1. Case j = 1. From the definition of the inverse (2.14) and of the adapted derivatives (2.17), one has:

u [n,1] = 1 r d-1 T (n) 0 r 0 f T (n) 0 s d-1 ds.
From the asymptotic behaviors (2.16) and (2.7) for f and T

(n) 0 at infinity and the condition q > γ n -d, the integral diverges and we get

u [n,1] (r) = O(r q+1 ) as r → +∞ (2.19)
which is the desired asymptotic (2.18) for u [n,1] .

Case j = 0. Suppose (A (n) * ) -1 f T (n) 0 = u [n,1] T (n) 0
is integrable on (0, +∞). In that case:

u = T (n) 0 +∞ r u [n,1] T (n) 0
ds.

If q > -γ n -2, then from the integrability of the integrand and (2.7) one gets the desired asymptotic u

[n,0] = u = O(r -γn ) = O(r q+2 ). If q < -γ n -2 then from (2.19) one has u [n,1] T (n) 0 = O(r q+1+γn ) and then +∞ r u [n,1] T (n) 0 ds = O(r q+2+γn ), from what
we get the desired asymptotic u = O(r q+2 ). Suppose now

u [n,1] T (n) 0
is not integrable, then we must have q > -γ n + 2 from (2.19). u is then given by:

u = -T (n) 0 r 0 u [n,1] T (n) 0
ds and the integral has asymptotic O(r q+2+γn ). We hence get u = O(r q+2 ) at infinity using (2.7).

Conclusion.

In both cases, we have proven that the asymptotic at infinity (2.18) holds for u.

-Asymptotic at the origin. We have:

u = -T (n) 0 r 0 u [n,1] T (n) 0 ds + aT (n) 0
where a = 0 if

u [n,1] T (n) 0
is not integrable, and a = +∞ 0

u [n,1] T (n) 0 ds if it is. From (2.7), T (n) 0
satisfies (2.15). So it remains to prove (2.15) for -T

(n) 0 r 0 u [n,1] T (n) 0
ds. We proceed in two steps. First, from (2.15) for f we obtain that for every integers j, p:

u [n,1] = 1 r d-1 T (n) 0 r 0 f T (n) 0 s d-1 ds = l j=0 cj r n+1+2j + Rl ,
where

∂ k r Rl = r→0 O(r max(n+2l+3-k,0)
) for some coefficients cj depending on the c j 's and the asymptotic at the origin of T n 0 . It then follows that

-T (n) 0 r 0 u [n,1] T (n) 0 ds = l j=0 ĉj r n+2+2j + Rl , where ∂ k r Rl = r→0 O(r max(n+2l+4-k,0) )
for some coefficients ĉl . This implies that u satisfies (2.15) at the origin.

We can now invert the elements in the kernel of H (n) and construct the generalized kernel of this operator. Lemma 2.10 (Generators of the generalized kernel of

H (n) ). Let n ∈ N, γ n , g ′ , (H (n) ) -1 and T (n) 0
be defined by (1.18), (1.21), Definition 2.6 and (2.3). We denote by (T (n) i ) i∈N the sequence of profiles given by: T

(n)

i+1 := -(H (n) ) -1 T (n) i , i ∈ N.
(2.20)

Let (Θ (n) 
i ) i∈N be the associated sequence of profiles defined by:

Θ (n) i := ΛT (n) i -2i + 2 p -1 -γ n T (n) i , i ∈ N. (2.21) 
Then for each i ∈ N:

(i) T (n) i is simple admissible of degree (n, -γ n + 2i), (2.22) 
(ii) Θ (n) i is simple admissible of degree (n, -γ n + 2i -g ′ ), (2.23) 
where simple admissibility is defined in Definition (2.7).

Proof of Lemma 2.10. step 1 Admissibility of T (n)

i . From the asymptotic behaviors (2.7) at infinity and at the origin, T

(n) 0 is simple admissible of degree (n, -γ n ) in the sense of Definition (2.7). -γ n > γ n -d since -2γ n + d ≥ -2γ 0 + d = 2 +
√ △ > 0 from (1.9) and since (γ n ) n∈N is decreasing from (1.18). One has also

-γ n -2 -(-γ n ) = -2 / ∈ 2N.
Therefore one can apply Lemma 2.9: for all i ∈ N,

T (n) i
given by (2.20) is an admissible profile of degree (n, -γ n + 2i).

Step 2 Admissibility of Θ (n) i . We start by computing the following commutator relations from (1.36), (2.9) and (2.10):

A (n) Λ = ΛA (n) + A (n) -(W (n) + y∂ y W (n) ), H (n) Λ = ΛH (n) + 2H (n) -(2V + y.∇V ).
(2.24)

We now proceed by induction. From the previous equation, and the asymptotic behaviors (2.7), (2.2) and (2.12) of the functions T (n) 0 , V and W (n) , we get that Θ (n) 0 is simple admissible of degree (n, -γ n -g ′ ). Now let i ≥ 1 and suppose that the property (ii) is true for i -1. Using the previous formula and (2.21) we obtain:

H (n) Θ n i = -Θ (n) i-1 -(2V + y.∇V )T (n) 
i . The asymptotic at infinity (2.2) of V yields the decay 2V + y.∇V = (y -2-α ). This, as T (n) i is simple admissible of degree (n, 2i-γ n ) and from the induction hypothesis, gives that

H (n) Θ (n) i is simple admissible of degree (n, 2i-2-γ n -g ′ ) because g ′ < α from (1.21). One has 2i -2 -γ n -g ′ > γ n -d because 2i -2 -2γ n -g ′ + d ≥ -2γ 0 -g ′ + d = 2 + △ -g ′ > 0 as 0 < g ′ < 1, i ≥ 1, (γ n ) n∈N is decreasing from (1.18) and from (1.9). Similarly -γ n -2 -(2i -2 -γ n -g ′ ) = -2i + g ′ / ∈ 2N.
Therefore we can apply Lemma (2.9) and obtain that (

H (n) ) -1 H (n) Θ (n) i is of degree (n, 2i -γ n -g ′ ). From Lemma (2.3) one has (H (n) ) -1 H (n) Θ (n) i = Θ (n) i + aT (n) 0 + bΓ (n) , for two integration constants a, b ∈ R. At the origin Γ (n) is singular from (2.7), hence b = 0. As T (n) 0 is of degree (n, -γ n ) with -γ n + 2i -g ′ > -γ n (because i ≥ 1) we get that Θ (n) i is of degree (n, 2i -γ n -g ′ ).
2.4. Inversion of H on non radial functions. The Definition 2.6 of the inverse of H (n) naturally extends to give an inverse of H by inverting separately the components onto each spherical harmonics. There will be no problem when summing as for the purpose of the present paper one can restrict to the following class of functions that are located on a finite number of spherical harmonics. Definition 2.11 (Admissible functions). Let f : R d → R be a smooth function, with decomposition f (y) = n,k f (n,k) (|y|)Y (n,k) y |y| , and q be a real number. We say that f is admissible of degree q if there is only a finite number of couples (n, k) such that f (n,k) = 0, and that for every such couple f (n,k) is a simple admissible function of degree (n, q) in the sense of Definition 2.7.

For f = n,k f (n,k) (|y|)Y (n,k) y
|y| an admissible function we define its inverse by H by (the sum being finite):

(H (-1) f )(y) := n,k [(H (n) ) -1 f (n,k) (|y|)]Y (n,k) y |y| (2.25)
where (H (n) ) -1 is defined by Definition 2.6. For n, k and i three integers with 1 ≤ k ≤ k(n), we define the profile T (n,k) i : R d → R as:

T (n,k) i (y) = T (n) i (|y|)Y (n,k) y |y| (2.26)
where the radial function T

(n) i is defined by (2.20). From Lemma 2.10, T (n,k) i is an admissible function of degree (-γ n + 2i) in the sense of Definition 2.11. The class of admissible functions has some structural properties: it is stable under summation, multiplication and differentiation, and its elements are smooth with an explicit decay at infinity. This is the subject of the next lemma. Lemma 2.12 (Properties of admissible functions). Let f and g be two admissible functions of degree q and q ′ in the sense of Definition 2.11, and µ ∈ N d . Then:

(i) f is smooth.

(ii) f g is admissible of degree q + q ′ . (iii) ∂ µ f is admissible of degree q -|µ|.

(iv) There exists a constant C(f, µ) such that for all y with |y| ≥ 1:

|∂ µ f (y)| ≤ C(f, µ)|y| q-|µ| .
Proof of Lemma 2.12. From the Definition 2.11,

f = n,k f (n,k) (|y|)Y (n,k) y |y| and g = n,k g (n,k) (|y|)Y (n,k) y
|y| and both sums involve finitely many non zero terms. Therefore, without loss of generality, we will assume that f and g are located on only one spherical harmonics:

f = f (n,k) Y (n,k) and g = g (n ′ ,k ′ ) Y (n ′ ,k ′ ) , for f (n,k)
and g (n ′ ,k ′ ) simple admissible of degree (n, q) and (n ′ , q ′ ) in the sense of Definition 2.7. The general result will follow by a finite summation. Proof of (i). y → f (n,k) (|y|) is smooth outside the origin since f is smooth, and y → Y (n,k) y |y| is also smooth outside the origin, hence f is smooth outside the origin. The Laplacian on spherical harmonics is:

(-∆) i f = (-∆) i f (n,k) (|y|)Y (n,k) y |y| = ((-∆ (n) ) i f (n,k) )(|y|)Y (n,k)
where -∆

(n) = -∂ rr -d-1 r ∂r + n(d + n -2). From the expansion of f (n,k) (2.15), (-∆ (n) ) i f (n,k
) is bounded at the origin for each i ∈ N. Therefore (-∆) i f is bounded at the origin for each i and f is smooth at the origin from elliptic regularity.

Proof of (ii). We treat the case where n + n ′ is even, and the case n + n ′ odd can be treated with verbatim the same arguments. As the product of the two spherical harmonics Y (n,k) Y n,k ′ decomposes onto spherical harmonics of degree less than n + n ′ with the same parity than n + n ′ , the product f g can be written:

f g = 0≤ñ≤n+n ′ , ñ even, 1≤ k≤k(ñ) a n,k,n ′ ,k ′ ,ñ, kf (n,k) g (n ′ ,k ′ ) Y (ñ, k)
with a n,k,n ′ ,k ′ ,ñ, k some fixed coefficients. Now fix ñ and k in the sum, one has n + n ′ = ñ + 2i for some i ∈ N. Using the Leibniz rule, as ∂ j r f (n,k) = O(r q-j ) and ∂ j r g (n,k) = O(r q ′ -j ) at infinity, we get that ∂ j r (f (n,k) g (n ′ ,k ′ ) ) = O(r q+q ′ -j ) as y → +∞, which proves that f (n,k) g (n ′ ,k ′ ) satisfies the asymptotic at infinity (2.16) of a simple admissible function of degree (ñ, q + q ′ ). Close to the origin, the two expansions (2.15) for f (n,k) and g (n ′ ,k ′ ) , starting at r n and r n ′ respectively, imply the same expansion (2.15) starting at y n+n ′ for the product f (n,k) g (n ′ ,k ′ ) . As n + n ′ = ñ + 2i, f (n,k) g (n,k) satisfies the expansion at the origin (2.15) of a simple admissible function of degree (ñ, q + q ′ ). Therefore f (n,k) g (n,k) is simple admissible of degree (ñ, q + q ′ ) and thus f g is simple admissible of degree q + q ′ . Proof of (iii). We treat the case where n is even, and the case n odd can be treated with exactly the same reasoning. Let 1 ≤ i ≤ d, we just have to prove that ∂ y i f is admissible of degree q -1 and the result for higher order derivatives will follow by induction. We recall that Y (n,k) is the restriction of an homogenous harmonic polynomial of degree n to the sphere. We will still denote by Y (n,k) (y) this polynomial extended to the whole space R d and they are related by

Y (n,k) (y) = |y| n Y (n,k) y
|y| . This homogeneity implies y.∇(Y (n,k) )(y) = nY (n,k) (y) and leads to the identity:

∂ y i f (n,k) (|y|)Y (n,k) y |y| = ∂ r f (n,k) (|y|) -n f (|y|) |y| y i |y| Y (n,k) y |y| + f (|y|) |y| ∂ y i Y (n,k) y |y| .
(2.27)

One has now to prove that the two terms in the right hand side are admissible of degree q -1. We only show it for the last term, the proof being the same for the first one. As ∂ y i Y (n,k) y |y| is an homogeneous polynomial of degree n -1 restricted to the sphere, it can be written as a finite sum of spherical harmonics of odd degrees (because n is even) less than n -1 and this gives:

f |y| ∂ y i Y (n,k) y |y| = 1≤n ′ ≤n-1, n ′ odd, 1≤k≤k(n ′ ) a i,n,k,n ′ ,k ′ f |y| Y (n ′ ,k ′ ) y |y| for some coefficients a i,n,k,n ′ ,k ′ . Now fix n ′ , k ′ in the sum. At infinity a i,n,k,n ′ ,k ′ f (|y|)
|y| satisfies the asymptotic behavior (2.16) of a simple admissible function of degree (n ′ , q -1). Close to the origin, one has from (2.15), the fact that n ′ + 2j = n -1 for some j ∈ N, that for any i ∈ N:

a i,n,k,n ′ ,k ′ f (r) r = i l=0 cl r n-1+2l + O(r n-1+2i+2 ) = i l=0 ĉl r n ′ +2j+2l + O(r n ′ +2j+2i+2 ),
which is the asymptotic behavior (2.15) of a simple admissible function of degree (n ′ , q -1) close to the origin. Therefore, a i,n,k,n ′ ,k ′ f (r) r is a simple admissible function of degree (n ′ , q -1). Thus f |y| ∂ y i Y (n,k) y |y| is an admissible function of degree (q -1). The same reasoning works for the first term in the right hand side of (2.27), and therefore

∂ y i f (n,k) (|y|)Y (n,k) y |y| is admissible of degree q -1.
Proof of (iv). We just showed in the last step that ∂ µ f is admissible of degree q -|µ| for all µ ∈ N d , we then only have to prove (iv) for the case µ = (0, ..., 0). This can be showed via the following brute force bound for |y| ≥ 1:

|f (y)| = f (n,k) (|y|)Y (n,k) y |y| ≤ Y (n,k) L ∞ |f (n,k) (|y|)| ≤ C|y| q from (2.16) since f is a simple admissible function of degree (n, q).
The next Lemma extends Lemma 2.9 to admissible functions. We do not give a proof, as it is a direct consequence of the latter. Lemma 2.13 (Action of H on admissible functions). Let f be an admissible function in the sense of Definition 2.11 written as f (y) = n,k f (n,k) (|y|)Y (n,k) y |y| , of degree q, with q > γ n -d. Assume that for all n ∈ N such that there exists k, 1 ≤ k ≤ k(n) with f (n,k) = 0 q satisfies -q -γ n -2 ∈ 2N. Then for all integer i ∈ N, recalling that H -1 f is defined by (2.25):

(i) H i f is admissible of degree q -2i. (ii) H -i f is admissible of degree q + 2i.

Homogeneous functions.

The approximate blow up profile we will build in the following subsection will look like

Q + b (n,k) i T (n,k) i for some coefficients b (n,k) i (T (n,k) i
being defined in (2.26)). The nonlinearity in the semilinear heat equation (1.1) will then produce terms that will be products of the profiles T . The set of triples (n, k, i) for wich we will make a perturbation along T (n,k) i is I, defined in (1.39). Hence the vector b representing the perturbation will be:

b = (b (n,k) i ) (n,k,i)∈I = (b (0,1) 1 , ..., b (0,1) L , b (1,1) 1 , ..., b (1,1) L 1 , ..., b (n 0 ,k(n 0 )) 0 , ..., b (n 0 ,k(n 0 )) Ln 0 ) (2.28)
We will then represent a monomial in the coefficients b (n,k) i by a tuple of #I integers:

J = (J (n,k) i ) (n,k,i)∈I = (J (0,1) 1 , ..., J (0,1) L , J (1,1) 1 , ..., J (1,1) L 1 , ..., J (n 0 ,k(n 0 )) 0 , ..., J (n 0 ,k(n 0 )) Ln 0 ) through the formula: b J := (b (0,1) 1 ) J (0,1) 1 × ... × (b (n 0 ,k(n 0 )) Ln 0 ) J (n 0 ,k(n 0 )) Ln 0 (2.29)
We associate three different lengths to J for the analysis. The first one, |J| := J

(n,k) i
, represents the number of parameters b (n,k) i that are multiplied in the above formula, counted with multiplicity, i.e. the standard degree of b J . In the analysis the coefficients b (nk) i will have the size |b

(n,k) i | |b (0,1) 1 | γ-γn 2 +i . The second length, |J| 2 := n,k,i ( γ-γn 2 + i)J (n,k) i
is tailor made to produce the following identity if these latter bounds hold:

|b J | (b (0,1) 1 
) |J| 2 ,
i.e. |J| 2 encodes the "size" of the real number b J . For the construction of the approximate blow up profile, we will invert several times some elliptic equations, and the i-th inversion will be related to the following third length, |J| 3 := L i=1 iJ (0,1) i

+ 1≤i≤L 1 , 1≤k≤d iJ (1,k) i + (n,k,i)∈I, 2≤n (i + 1)J (n,k) i .
To track information about of the non-linear terms generated by the semilinear heat equation (1.1) we eventually introduce the class of homogeneous functions. Definition 2.14 (Homogeneous functions). Let b denote a #I-tuple under the form (2.28), m ∈ N and q ∈ R. We recall that |J| 2 and |J| 3 are defined by (1.41) (1.42) and b J is given by (2.29). We say that a function S : R I × R d → R is homogeneous of degree (m, q) if it can be written as a finite sum: S(b, y) = J∈J b J S J (y), #J < +∞, where for each tuple J ∈ J , one has that |J| 3 = m and that the function S J is admissible of degree 2|J| 2 + q in the sense of Definition 2.11.

As a direct consequence of the Lemma 2.12, and so we do not write here the proof, we obtain the following properties for homogeneous functions.

Lemma 2.15 (Calculus on homogeneous functions). Let S and S ′ be two homogeneous functions of degree (m, q) and (m ′ , q ′ ) in the sense of Definition 2.14, and µ ∈ N d . Then:

(i) ∂ µ S is homogeneous of degree (m, q -|µ|).

(ii) SS ′ is homogeneous of degree (m + m ′ , q + q ′ ). k) , one has that 2|J| 2 + q > γ n -d and -2|J| 2 -q-γ n -2 ∈ 2N for all n, J such that there exists k, 1 ≤ k ≤ k(n) with S (n,k) J = 0, then for all i ∈ N, H -i (S) (given by (2.25)) is homogeneous of degree (m, q + 2i).

(iii) If, writing S = J∈J b J n,k S (n,k) J Y (n,
3. The approximate blow-up profile 3.1. Construction. We first summarize the content and ideas of this section. We construct an approximate blow-up profile relying on a finite number of parameters close to the set of functions (τ z (Q λ )) λ>0, z∈R d . It is built on the generalized kernel of H, Span((T (2.26), and can therefore be seen as a part of a center manifold. The profile is built on the whole space R d for the moment and will be localized later.

(n,k) i ) n,i∈N, 1≤k≤k(n) ) defined by
In Proposition 3.1 we construct a first approximate blow up profile. The procedure generates an error terms ψ, and by inverting elliptic equations, i.e. adding the term H -1 ψ to our approximate blow up profile, one can always convert this error term into a new error term that is localized far away from the origin. We apply several times this procedure to produce an error term that is very small close to the origin. Then, in Proposition 3.3 we localize the approximate blow-up profile to eliminate the error terms that are far away from the origin. We will cut in the zone |y| ≈ B 1 = B 1+η 0 where η ≪ 1 is a very small parameter. In this zone, the perturbation in the approximate blow-up profile has the same size than ΛQ, being the reference function for scale change. It will correspond to the self-similar zone |x| ∼ √ T -t for the true blow-up function, where T will be the blow-up time.

The blow-up profile is described by a finite number of parameters whose evolution is given by the explicit dynamical system (3.58). In Lemma 3.4 we show the existence of special solutions describing a type II blow up with explicit blow-up speed. The linear stability of these solutions is investigated in Lemma 3.5.

There is a natural renormalized flow linked to the invariances of the semilinear heat equations (1.1). For u a solution of (1.1), λ : [0, T (u 0 )) → R * + and z : [0, T (u 0 )) → R d two C 1 functions, if one defines for s 0 ∈ R the renormalized time:

s(t) := s 0 + t 0 1 λ(t ′ ) 2 dt ′ (3.1)
and the renormalized function:

v(s, •) := (τ -z u(t, •)) λ ,
then from a direct computation v is a solution of the renormalized equation:

∂ s v - λ s λ Λv - z s λ .∇v -F (v) = 0. (3.2)
Our first approximate blow up profile is adapted to this new flow and is a special perturbation of Q. > 0. There exists ) and where we used the convention b (n,k) Ln+1 = 0. ψ b is an error term. Let B 1 be defined by (1.38). If the parameters satisfy the size conditions 6 b (0,1) 1

a #I-dimensional manifold of C ∞ functions (Q b ) b∈R * + ×R #I-1 such that: F (Q b ) = b (0,1) 1 ΛQ b +b (1,•) 1 .∇Q b + (n,k,i)∈I -(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 ∂Q b ∂b (n,k) i -ψ b , (3.3 
≪ 1 and |b (n,k) i | |b (0,1) 1 | γ-γn
2 +i for all (n, k, i) ∈ I, then ψ b enjoys the following bounds:

(i) Global 7 bounds: For 0 ≤ j ≤ s L ,

H j ψ b 2 L 2 (|y|≤2B 1 ) ≤ C(L)(b (0,1) 1 ) 2(j-m 0 )+2(1-δ 0 )+g ′ -C(L)η , (3.4) 
∇ j ψ b 2 L 2 (|y|≤2B 1 ) ≤ C(L)(b (0,1) 1 ) 2( j 2 -m 0 )+2(1-δ 0 )+g ′ -C(L)η (3.5)
where C(L) is a constant depending on L only. (ii) Local bounds:

∀j ≥ 0, ∀B > 1, |y|≤B |∇ j ψ b | 2 dy ≤ C(j, L)B C(j,L) (b (0,1) 1 ) 2L+6 . (3.6)
where C(L, j) is a constant depending on L and j only. The profile Q b is of the form:

Q b := Q + α b , α b := (n,k,i)∈I b (n,k) i T (n,k) i + L+2 i=2 S i , (3.7) 
where

T (n,k) i
is given by (2.26), and the profiles S i are homogeneous functions in the sense of definition 2.14 with:

deg(S i ) = (i, -γ -g ′ ) (3.8)
and with the property that for all 2 ≤ j ≤ L + 2,

∂S j ∂b (n,k) i = 0 if j ≤ i for n = 0, 1 and if j ≤ i + 1 for n ≥ 2.
Remark 3.2. The previous proposition is to be understood the following way. We have a special function depending on some parameters b close to Q, that it to say at scale 1 and with concentration point 0 for the moment. (3.3) means that the force term (i.e. when applying F ) generated by (NLH) makes it concentrate at speed b (0,1) 1

and translate at speed b

(1,•)
1 , while the time evolution of the parameters is an explicit dynamical system given by the third term. These approximations involve an error for which we have some explicit bounds (3.4) and (3.6).

The size of this approximate profile is directly related to the size of the perturbation along T (0,1) 1

, the first term in the generalized kernel of H responsible for scale variation. Indeed we ask for |b will therefore be the the universal order 6 This means that under the bounds |b

(n,k) i | |b (0,1) 1 | γ-γn
(n,k) i | ≤ K|b (0,1) 1 | γ-γn 2
+i for some K > 0, there exists b * (K) such that the estimates that follow hold if b (0,1) 1 ≤ b * (K) with constants depending on K. K will be fixed independently of the other important constants in what follows. 7 The zone y ≤ B1 is called global because in the next proposition we will cut the profile Q b in the zone |y| ∼ B1.

of magnitude in our problem.

Because of the shape of this approximate blow up profile (3.7), when including the time evolution of the parameters in (3.3) we get:

∂ s (Q b ) -F (Q b ) + b (0,1) 1 ΛQ b + b (1,•) 1 .∇Q b = Mod(s) + ψ b , (3.9) 
where 8 :

Mod(s) = (n,k,i)∈I [b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 ]   T (n,k) i + L+2 j=i+1+δ n≥2 ∂S j ∂b (n,k) i   .
(3.10) For all 2 ≤ j ≤ L + 2, as S j is homogeneous of degree (j, -γ -g ′ ) in the sense of Definition 2.14 from (3.8), and from the fact that

∂S j ∂b (n,k) i = 0 if j ≤ i for n = 0, 1
and if j ≤ i + 1 for n ≥ 2, one has that for all j, n, k, i,

∂S j ∂b (0,1) i
is either 0 or is homogeneous of degree (a, b) with a ≥ 1, meaning that it never contains non trivial constant functions independent of the parameters b. Hence, if the bounds |b [START_REF] Karageorgis | Instability of steady states for nonlinear wave and heat equations[END_REF], one has in particular that on compact sets for any 2 ≤ j ≤ L + 2 and (n, k, i) ∈ I:

(n,k) i | |b (0,1) 1 | γ-γn 2 +i hold, since |b (0,1) 1 | 1 and -γ n ≥ -γ from (1.
∂S j ∂b (n,k) i = O(|b (0,1) 1 |). (3.11) 
Proof of Proposition 3.1. step 1 Computation of ψ b . We first find an appropriate reformulation for the error ψ b given by (3.3) when Q b has the form (3.7).

-

rewriting of F (Q b ) in (3.
3). We start by computing:

-F (Q b ) = H(α b ) -(f (Q b ) -f (Q) -α b f ′ (Q)) = (n,k,i)∈I b (n,k) i HT (n,k) i + L+2 i=2 H(S i ) -(f (Q b ) -f (Q) -α b f ′ (Q)) = -b (0,1) 1 ΛQ -b (1,•) 1 .∇Q -(n,k,i)∈I b (n,k) i+1 T (n,k) i + L+2 i=2 H(S i ) -(f (Q b ) -f (Q) -α b f ′ (Q)) (3.
12) where we used the definition of the profiles T (n,k) i from (2.26), and the convention b (n,k) Ln+1 = 0. Now, for i = 2, ..., L, we regroup the terms that involve the multiplication of i parameters b

(n,k) j in the non linear term -(f (Q b ) -f (Q) -α b f ′ (Q)). Since p is an odd integer: (f (Q b ) -f (Q) -α b f ′ (Q)) = p k=2 C p k Q p-k α k b = p k=2 C p k Q p-k |J| 1 =k C J (n,k,i)∈I (b (n,k) i ) J (n,k) i (T (n,k) k ) J (n,k) i L+2 i=2 S J i i , (3.13) where J = (J (0,1) 1 , ..., J (n 0 ,k(n 0 )) Ln 0
, J 2 , ..., J L+2 ) represents a (#I + L + 1)-tuple of integers. Anticipating that the profile S i will be an homogeneous profile of degree (i, γ -g ′ ), we define for such tuples J:

|J| 3 = L i=1 iJ (0,1) i + 1≤i≤L 1 , 1≤k≤d iJ (1,k) i + (n,k,i)∈I, 2≤n (i + 1)J (n,k) i + L+2 i=2 iJ i . (3.14)
8 Here δ n≥2 = 1 if n ≥ 2, and is zero otherwise.

We reorder the sum in the previous equation (3.13), partitioning the #I + L + 1tuples J according to their length |J| 3 instead of their length J 1 :

(f (Q b ) -f (Q) -α b f ′ (Q)) = L+2 j=2 P j + R, P j captures the terms with polynomials of the parameters b (n,k) i of length |J| 3 = j: P j = p k=2 C k Q p-k   |J|=k,|J| 3 =j C J (n,k,i)∈I (b (n,k) i ) J (n,k) i (T (n,k) k ) J (n,k) i L+2 i=2 S J i i   (3.15)
and the remainder contains only terms involving polynomials of the parameters b

(n,k) i of length | • | 3 greater or equal to L + 3: R = (f (Q b ) -f (Q) -α b f ′ (Q)) - L+2 i=2 P i . (3.16)
From (3.12) we end up with the final decomposition :

-

F (Q b ) = -b (0,1) 1 ΛQ -b (1,•) 1 .∇Q - (n,k,i)∈I b (n,k) i+1 T (n,k) i + L i=2 H(S i ) - L+2 i=2 P i -R.
(3.17) -rewriting of the other terms in (3.3). One has from the form of

Q b (3.7): b (0,1) 1 ΛQ b = b (0,1) 1 ΛQ + (n,k,i)∈I b (0,1) 1 b (n,k) i ΛT (n,k) i + L+2 i=2 b (0,1) 1 ΛS i , (3.18) 
b

(1,•) 1 .∇Q b = b (1,•) 1 .∇Q + d j=1   (n,k,i)∈I b (1,j) 1 b (n,k) i ∂ x j T (n,k) i + L+2 i=2 b (1,j) 1 ∂ x j S i   , (3.19) 
(n,k,i)∈I -(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 ∂Q b ∂b (n,k) i = (n,k,i)∈I -(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 T (n,k) i + L+2 j=2 ∂S j ∂b (n,k) i . (3.20) 
-Expression of the error term ψ b . We define from (2.21):

Θ (n,k) i (y) := Θ (n) i (|y|)Y (n,k) y |y| .
From (3.17), (3.18), (3.19) and (3.20), ψ b given by (3.3) is a sum of terms that are polynomials in b, and, denoting a monomial by b J , we rearrange them according to the value |J| 3 :

ψ b = L+2 i=2 [Φ i + H(S i )] + b (0,1) 1 ΛS L+2 + d j=1 b (1,j) 1 ∂ x j S L+2 + (n,k,i)∈I (-(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 ) ∂S L+2 ∂b (n,k) i -R, (3.21) 
where the profiles Φ i are given by the following formulas:

Φ 2 := (b (0,1) 1 ) 2 Θ (0,1) 1 + d k=1 b (0,1) 1 b (1,k) 1 Θ (1,k) 1 + d j=1 b (1,j) 1 b (0,1) 1 ∂ x j T (0,1) 1 + d k=1 b (1,j) 1 b (1,k) 1 ∂ x j T (1,k) 1 + (n,k,0)∈I, n≥2 b (0,1) 1 b (n,k) 0 Θ (n,k) 0 + d j=1 b (1,j) 1 b (n,k) 0 ∂ x j T (n,k) 0 -P 2 , (3.22) 
for i = 3...L + 1:

Φ i := b (0,1) 1 b (0,1) i-1 Θ (0,1) i-1 + d k=1, (1,k,i-1)∈I b (0,1) 1 b (1,k) i-1 Θ (1,k) i-1 + d j=1 b (1,j) 1 b (0,1) i-1 ∂ x j T (0,1) i-1 + d k=1, (1,k,i-1)∈I b (1,j) 1 b (1,k) i-1 ∂ x j T (1,k) 1 + (n,k,i-2)∈I, n≥2 b (0,1) 1 b (n,k) i-2 Θ (n,k) i-2 + d j=1 b (1,j) 1 b (n,k) i-2 ∂ x j T (n,k) i-2 +b (0,1) 1 ΛS i-1 + d m=1 b (1,m) 1 ∂ xm S i-1 + (n,k,j)∈I (-(2j -α n )b (0,1) 1 b (n,k) j + b (n,k) j+1 ) ∂S i-1 ∂b (n,k) j -P i , (3.23) Φ L+2 := b (0,1) 1 ΛS L+1 + d m=1 b (1,m) 1 ∂ xm S L+1 + (n,k,j)∈I (-(2j -α n )b (0,1) 1 b (n,k) j + b (n,k) j+1 ) ∂S L+1 ∂b (n,k) j -P L+2 (3.24)
step 2 Definition of the profiles (S i ) 2≤i≤L+2 and simplification of ψ b . We define by induction a sequence of couples of profiles (S i ) 2≤i≤L+2 by:

S 2 := -H -1 (Φ 2 ) S i := -H -1 (Φ i ) for 3 ≤ i ≤ L + 2, Φ i being defined by (3.22), (3.23), (3.24) (3.25)
where H -1 is defined by (2.25). In the next step we prove that there is no problem in this construction. The S i 's being defined this way, from (3.21) we get the final expression for the error:

ψ b = b (0,1) 1 ΛS L+2 + d j=1 b (1,j) 1 ∂ x j S L+2 + (n,k,i)∈I (-(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 ) ∂S L+2 ∂b (n,k) i -R. (3.26)
step 3 Properties of the profiles S i . We prove by induction on i = 2, ..., L + 2 that S i is homogeneous of degree (i, -γ -g ′ ) in the sense of Definition 2.14, and that for all 2 ≤ j ≤ L + 2,

∂S j ∂b (n,k) i = 0 if j ≤ i for n = 0, 1 and if j ≤ i + 1 for n ≥ 2.
-Initialization. We now prove that S 2 is homogeneous of degree (2, -γ -g ′ ), and that

∂S 2 ∂b (n,k) i = 0 if 2 ≤ i for n = 0, 1 and if 1 ≤ i for n ≥ 2. We claim that Φ 2 is homogeneous of degree (2, -γ -g ′ -2) and that ∂Φ 2 ∂b (n,k) i = 0 if 2 ≤ i for n = 0, 1 and if 1 ≤ i for n ≥ 2.
To prove this, we prove that these two properties are true for every term in the right hand side of (3.22). From Lemma 2.10,

Θ (0,1) 1 is simple admissible of degree (0, -γ + 2 -g ′ ) in the sense of Definition 2.11. (b (0,1) 1
) 2 can be written under the form J 

(0,1) 1 ) 2 Θ (0,1) 1 is homogeneous of degree (|J| 3 , -γ + 2 -g ′ -2|J| 2 ) = (2, -γ -g ′ -2). The same reasoning applies for b (0,1) 1 b (1,k) 1 Θ (1,k) 1 for 1 ≤ k ≤ d. For 1 ≤ j ≤ d, T (0,1) 1 is admissible of degree (0, -γ + 2) from Lemma 2.12 so ∂ x j T (0,1) 1 is admissible of degree (-γ+1) from Lemma 2.10. b (1,j) 1 b (0,1) 1 can be written under the form b J with J (0,1) 1 = 1, J (1,j) 1 = 1 and J (n,k) i = 0 otherwise, therefore |J| 3 = 2 and |J| 2 = 1 + γ-γ 1 2 + 1 = 2 + α-1 2 from (1.18). Thus b (1,j) 1 b (0,1) 1 ∂ x j T (0,1) 1 is homogeneous of degree (|J| 3 , -γ1 + 1 -2|J| 2 ) = (2, -γ -2 -α). As g ′ < α, it is then homogeneous of degree (2, -γ -g ′ -2
). The same reasoning applies for

1 ≤ j, k ≤ d to the term b (1,j) 1 b (1,k) 1 ∂ x j T (1,k) 1
.

We now examine for (n, k, 0) ∈ I the profile:

b (0,1) 1 b (n,k) 0 Θ (n,k) 0 + d j=1 b (1,j) 1 b (n,k) 0 ∂ x j T (n,k) 0 . Θ (n,k) 0 is simple admissible of degree (n, -γ n -g ′ ) from Lemma 2.10. b (0,1) 1 b (n,k) 0 can be written under the form b J for J (0,1) 1 = 1, J (n,k) 0 = 1 and J (n ′ ,k ′ ) i = 0 otherwise, and one then has |J| 3 = 2 and |J| 2 = 1 + γ-γn 2 . Therefore, b (0,1) 1 b (n,k) 0 Θ (n,k) 0 is homogeneous of degree (|J| 3 , -γ n -g ′ -2|J| 2 ) = (2, -γ -g ′ -2).
Similarly the terms in the sum in the above identity are homogeneous of degree (2, -γ -g ′ -2).

We now look at the non-linear term P 2 . As for 2 ≤ i ≤ L + 2 the profile S i involves polynomials of b under the form b J with |J| 3 = i, from its definition (3.15) P 2 does not depend on the profiles S i for 2 ≤ i ≤ L + 2 and can be written as:

P 2 = CQ p-2   b (0,1) 1 T (0,1) 1 + d k=1 b (1,k) 1 T (1,k) 1 + (n,k,0)∈I b (n,k) 0 T (n,k) 0   2
for a constant C. We have to prove that all the mixed terms that are produced by this formula are homogeneous of degree (2, γ -g ′ -2). We write it only for one term, and apply the same reasonning to the others. For all ((n, k, 0), (n ′ , k ′ , 0)) ∈ I 2 , from Lemmas 2.10 and 2.15 and (2.1), the profile b

(n,k) 0 b (n ′ ,k ′ ) 0 Q p-2 T (n,k) 0 T (n ′ ,k ′ ) 0 is homogeneous of degree (2, -γ -2 -α) and then of degree (2, -γ -2 -g ′ ).
As we said, similar considerations yield that all the other terms are homogeneous of degree (2, γ -g ′ -2). This implies that P 2 is homogeneous of degree (2, -γ -g ′ -2).

We have examined all terms in (3.22) and consequently proved that Φ 2 is homogeneous of degree (2, -γ -2 -g ′ ). By a direct check at all the terms in the right hand side of (3.22), with P 2 given by the above identity, one has that

∂Φ 2 ∂b (n,k) i = 0 if 2 ≤ i for n = 0, 1 and if 1 ≤ i for n ≥ 2.
We now check that we can apply (iii) in Lemma 2.15 to invert Φ 2 and to propagate the homogeneity. For all #I-tuple J with |J| 3 = 2, one has indeed for all integer n that 2|J| 2 -γ n -2 -g ′ > γ n -d as the sequence (γ n ) n∈N is decreasing and d -2γ -2 > 0. For the second condition required by the Lemma, we notice that g ′ is not a "fixed" constant in our problem, as its definition (1.21) involves a parameter ǫ. The purpose of the parameter ǫ is the following: by choosing it appropriately, we can suppose that for every 0 ≤ n ≤ n 0 and #I-tuple J with |J| 3 = 2 there holds:

-2|J| 2 + γ + g ′ -γ n / ∈ 2N.
This allows us to apply (iii) in Lemma 2.15: S 2 is homogeneous of degree (2, -γ-g ′ ).

We also get that

∂S 2 ∂b (n,k) i = 0 if 2 ≤ i for n = 0, 1 and if 1 ≤ i for n ≥ 2 as this is true for Φ 2 .
This proves the initialization of our induction.

-Heredity. Suppose 3 ≤ i ≤ L + 1, and that for 2 ≤ i ′ ≤ i, S i ′ is homogeneous of degree (i ′ , -γ -g ′ ), and that

∂S ′ i ∂b (n,k) j = 0 if i ′ ≤ j for n = 0, 1 and if i ′ -1 ≤ j
for n ≥ 2. We claim that Φ i is homogeneous of degree (i, -γ -g ′ -2) and that

∂Φ i ∂b (n,k) j = 0 if i ≤ j for n = 0, 1 and if i -1 ≤ j for n ≥ 2.
We prove it by looking at all the terms in the right hand side of (3.23). With the same reasoning we used for the initialization, we prove that

b (0,1) 1 b (0,1) i-1 Θ (0,1) i-1 + d k=1, (1,k,i-1)∈I b (0,1) 1 b (1,k) i-1 Θ (1,k) i-1 + d j=1 b (1,j) 1 b (0,1) i-1 ∂ x j T (0,1) i-1 + d k=1, (1,k,i-1)∈I b (1,j) 1 b (1,k) i-1 ∂ x j T (1,k) 1 + (n,k,i-2)∈I, n≥2 b (0,1) 1 b (n,k) i-2 Θ (n,k) i-2 + d j=1 b (1,j) 1 b (n,k) i-2 ∂ x j T (n,k) i-2 is homogeneous of degree (i, γ -g ′ -2). From the induction hypothesis, b (0,1) 1 ΛS i-1 is homogeneous of degree (i, -γ -g ′ -2). From Lemma 2.12, for 1 ≤ j ≤ d, ∂ x j S i-1 is homogeneous of degree (i -1, -γ -g ′ -1), so that b (1,j) 1 ∂ x j S i-1 is homogeneous of degree (i, -γ -g ′ -2 -α), α being positive, it is then homogeneous of degree (i, -γ -g ′ -2). Still from the induction hypothesis, for all (n, k, i ′ ) ∈ I, (-(2i ′ - α n )b (0,1) 1 b (n,k) i ′ + b (n,k) i ′ +1 ) ∂S i-1 ∂b (n,k) i ′ is homogeneous of degree (i, -γ -g ′ -2
). The last term to be consider is P i . As for 2 ≤ j ≤ L + 2 the profile S j involves polynomials of b under the form b J with |J| 3 = i, from its definition (3.15) P i does not depend on the profiles S j for i ≤ j ≤ L + 2 and can be written as:

P i = p k=2 C k Q p-k   |J|=k,|J| 3 =i C J (n,k,i)∈I (b (n,k) i ) J (n,k) i (T (n,k) k ) J (n,k) i i-1 j=2 S J j j   Let k be an integer 2 ≤ k ≤ p, let J be a #I + L-tuple with |J| 3 = i. Then from the induction hypothesis, Q p-k (n,k,i)∈I (b (n,k) i ) J (n,k) i (T (n,k) k ) J (n,k) i i-1 j=2 S J j j is homogeneous of degree (i, -γ -2 -(k -1)α -g ′ i-1 j=2 J j ). As k ≥ 2 and α > g ′ , it is homogeneous of degree (i, γ -2 -g ′ ).
We just proved that Φ i is homogeneous of degree (i, -γ -2 -g ′ ). By a direct check at all the terms in the right hand side of (3.23), with P i given by the above formula, one has that ∂Φ i ∂b (n,k) j = 0 if i ≤ j for n = 0, 1 and if i -1 ≤ j for n ≥ 2. We now check that we can apply (iii) from Lemma 2.15 to get the desired properties for

S i = -H -1 Φ i . For all #I-tuple J with |J| 3 = i and integer n, the first condition |J| 2 -γ -2 -g ′ > γ n -d is fulfilled since -2γ n -d ≥ -2γ -d > 2.
For the second condition, again as in the initialization, as g ′ is not a "fixed" constant in our problem (its definition (1.21) involving a parameter ǫ), we can choose it such that for every 0 ≤ n ≤ n 0 and #I-tuple J with |J| 3 = i:

-2|J| 2 + γ + g ′ -γ n / ∈ 2N.
We thus can apply (iii) in Lemma 2.15: S i is homogeneous of degree (i, -γ -g ′ ).

One also obtains that

∂S i ∂b (n,k) j = 0 if i ≤ j for n = 0, 1 and if i -1 ≤ j for n ≥ 2 as
this is true for Φ i . This proves the heredity in our induction. The last step, that it is the heredity from L + 1 to L + 2, can be proved verbatim the same way and we do not write it here.

step 4 Bounds for the error term. In Step 2 we have computed the expression (3.26) of the error term ψ b . In Step 3 we proved that the profiles S i were well defined and homogeneous of degree (i, -γ -g ′ ). We can now prove the bounds on ψ b claimed in the Proposition. In the sequel we always assume the bounds |b

(n,k) i | |b (0,1) 1 | γ-γn 2 +i
and |b

(0,1) 1 | ≪ 1.
-Homogeneity of ψ b . We claim that ψ b is a finite sum of homogeneous functions of degree (i, -γ -g ′ -2) for i ≥ L + 3. For this we consider all terms in the right hand side of (3.26). As S L+2 is homogeneous of degree (L + 2, -γ -g ′ ) from

Step 3, the function b

(0,1) 1 ΛS L+2 is homogeneous of degree (L + 3, -γ -g ′ -2) from Lemma 2.15. Similarly for 1 ≤ j ≤ d, b (1,j) 1 ∂ x j S L+2 is homogeneous of degree (L + 3, -γ -g ′ -2 -α) (and then homogeneous of degree (L + 3, -γ -g ′ -2) as α > 0), and for (n, k, i) ∈ I, (-(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 ) ∂S L+2 ∂b (n,k) i is homogeneous of degree (L + 3, -γ -g ′ -2).
From its definition (3.16), and as for

2 ≤ i ≤ L + 2, S i is homogeneos of degree (i, -γ -g ′ ), R is a finite sum of homogeneous profiles of degree (i, -γ -α -2) with i ≥ L + 3. All this implies that ψ b is a finite sum of homogeneous functions of degree (i, -γ -g ′ -2) for i ≥ L + 3.
-Proof of an intermediate estimate. We claim that there exists an integer A ≥ L + 3 such that for µ a d-tuple of integers, j ∈ N and B > 1 there holds:

|y|≤B |∂ µ ψ b | 2 1 + |y| 2j dy ≤ C(L) A i=L+3 |b (0,1) 1 | 2i B max(4i+4(m 0 -|µ|+j 2 )+4(δ 0 -1)-2g ′ ,0) . (3.27)
We now prove this bound. We proved earlier that ψ b is a finite sum of homogeneous functions of degree (i, -γ -g ′ -2) for i ≥ L + 3. Consequently, it suffices to prove this bound for an homogeneous function b

J f (y) of degree (|J| 3 , -γ -g ′ -2) with |J| 3 ≥ L + 3. One then computes as f is admissible of degree (2|J| 2 -γ -g ′ -2): |y|≤B |b J ∂ µ f | 2 1+|y| 2j ≤ C(f )|b (0,1) 1 | 2|J| 2 B 0 (1 + r) 4|J| 2 -2γ-2g ′ -4-2j-2|µ| r d-1 dr ≤ C(f )|b (0,1) 1 | 2|J| 2 B max(4|J| 2 +4(m 0 + j+|µ| 2 )+4(δ 0 -1)-2g ′ ,0)
(we avoid the logarithmic case in the integral by changing a bit the value of g' defined in (1.21), by changin a bit the value of ǫ). This concludes the proof of (3.27).

-Proof of the local bounds for the error. Let j be an integer, and µ ∈ N d with |µ| = j. From (3.27), |b (0,1) 1

| ≪ 1 and B > 1 we obtain from (3.27):

|y|≤B |∂ µ ψ b | 2 dy ≤ C(L)|b (0,1) 1 | 2L+6 B max(4A+4(m 0 -|µ|+j 2 )+4(δ 0 -1)-2g ′ ,0)
which gives the desired bound (3.6).

-Proof of the global bounds for the error. Let j ≤ 2s L , and µ ∈ N d with |µ| = j. Using (3.27), we notice that for

L + 3 ≤ i ≤ A one has max(4i + 4(m 0 - |µ| + j 2 ) + 4(δ 0 -1) -2g ′ , 0) = 4i + 4(m 0 - |µ| + j 2 ) + 4(δ 0 -1) -2g ′
This implies:

|y|≤B 1 |∂ µ ψ b | 2 1+|y| 2j dy ≤ C(L) A i=L+3 |b (0,1) 1 | 2i B 4i+4(m 0 - |µ|+j 2 )+4(δ 0 -1)-2g ′ 1 ≤ C(L)|b (0,1) 1 | 2( j 2 -m 0 )+2(1-δ 0 )+g ′ -C(L)η .
which is the desired bound (3.5). Let j be an integer, j ≤ s L . Now, as

H = -∆ + V where V is a smooth potential satisfying |∂ µ V | ≤ C(µ)(1 + |y|) -2-|µ| from (2.
2) one obtains using (3.27):

|y|≤B 1 |H j ψ b | 2 dy ≤ C(L) j ′ +|µ| 1 =2j |y|≤B 1 |∂ µ ψ b | 2 1+|y| 2j ′ dy ≤ C(L) j ′ +|µ|=2j A i=L+3 |b (0,1) 1 | 2i B max(4i+4(m 0 -j)+4(δ 0 -1)-2g ′ ,0) 1 ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+g ′ -C(L)η
(because again 4i + 4(m 0 -j) + 4(δ 0 -1) -2g ′ > 0 as i ≥ L + 3 and j ≤ s L ). This proves the last estimate (3.4).

We now localize the perturbation built in Proposition 3.1 in the zone |y| ≤ B 1 and estimate error generated by the cut. We also include the time dependance of the parameters following Remark 3.2. We recall that s L is defined by (1.24) Proposition 3.3 (Localization of the perturbation). χ is a cut-off defined by (1.43). We keep the notations from Proposition 3.1. I = (s 0 , s 1 ) is an interval, and

b : I → R #I s → (b (n,k) i (s)) (n,k,i)∈I
is a C 1 function with the following a priori bounds 9 :

|b (n,k) i | |b (0,1) 1 | γ-γn 2 +i , 0 < b (0,1) 1 ≪ 1, |b (0,1) 1,s | |b (0,1) 1 | 2 . (3.28) 
We define the profile Qb as:

Qb := Q + αb = Q + χ B 1 α b , αb := χ B 1 α b . (3.29) 
Then one has the following identity (Mod(s) being defined by (3.10)):

∂ s Qb -F ( Qb ) + b (0,1) 1 Λ Qb + b (1,•) 1 .∇ Qb = ψb + χ B 1 Mod(s) (3.30)
with, for 0 < η ≪ 1 small enough, an error term ψb satisfying the following bounds: (i) Global bounds: For any integer j with 1 ≤ j ≤ s L -1 there holds:

R d |H j ψb | 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C j η . (3.31)
For any real number s c ≤ j < 2s L -2:

R d |∇ j ψb | 2 dy ≤ C(L)|b (0,1) 1 | 2( j 2 -m 0 )+2(1-δ 0 )-C j η . (3.32) 
And for j = s L one has the improved bound:

R d |H s L ψb | 2 dy ≤ C(L)|b (0,1) 1 | 2L+2+2(1-δ 0 )+2η(1-δ ′ 0 ) . (3.33) 
(ii) Local bounds: one has that (ψ b being defined by (3.3)):

∀|y| < B 1 , ψb (y) = ψ b , (3.34) 
and for any 1 ≤ B ≤ B 1 and j ∈ N:

|y|≤B |∇ j ψb | 2 dy ≤ C(L, j)B C(L,j) |b (0,1) 1 | 2L+6 . (3.35)
9 This means that under the bounds |b

(n,k) i | ≤ K|b (0,1) 1 | γ-γn 2
+i for some K > 0, there exists b * (K) such that the estimates that follow hold if b (0,1) 1 ≤ b * (K) with constants depending on K. K will be fixed independently of the other important constants in what follows.

Proof of Proposition 3.3. First, we compute the expression of the new error term by rewriting the left hand side of (3.30) using (3.9) and the fact that Global bounds. Let m 1 + 1 ≤ j ≤ s L . We will prove the bounds (3.31) and (3.33) by proving that this estimate holds for all terms in the right hand side of (3.36). The reasoning to prove the estimates will be similar from one term to another. For this reason, we shall go quickly whenever an argument has already been used earlier.

F (Q) = 0: ψb = χ B 1 ψ b + ∂ s (χ B 1 ) αb -[F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q))] +b (0,1) 1 (ΛQ -χ B 1 ΛQ) + b (0,1) 1 (Λ(χ B 1 α b ) -χ B 1 Λα b ) +b (1,•) 1 .(∇Q -χ B 1 ∇Q) + b (0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b ). ( 3 
-

The χ B 1 ψ b term. As H = -∆ + V for V a smooth potential with ∂ µ V (1 + |y|) -2-|µ| from (2.
2), and as

(∂ k r (χ B 1 ))(r) = B -k 1 ∂ k r χ( r B 1
) there holds the identity:

H j (χ B 1 ψ b ) = χ B 1 H j ψ b + j µ∈N d , 0≤|µ|≤2j-1 f µ ∂ µ ψ b where for each µ ∈ N d , 0 ≤ |µ| ≤ j -1, f µ has its support in B 1 ≤ |x| ≤ 2B 1 and satisfies: |f µ | ≤ C(L)B -(2j-|µ|) 1
. Using (3.4) and (3.5) we obtain:

R d |H j (χ B 1 ψ b )| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+g ′ -C(L)η + j µ∈N d , 0≤|µ|≤2j-1 B -(4j-2|µ|) 1 b 2( |µ| 2 -m 0 +2(1-δ 0 )+g ′ -C(L)η) 1 ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+g ′ -C(L)η .
(3.37) Similarly, one obtains for any integer j ′ with 0 ≤ j ′ ≤ 2s L -2:

R d |∇ j ′ (χ B 1 ψ b )| 2 ≤ C(L)|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )+g ′ -C(L)η . (3.38) 
Using interpolation, this estimate remains true for any real number j ′ with 0

≤ j ′ ≤ 2s L -2. -The ∂ s (χ B 1 )α b term.
We first split from (3.7):

∂ s (χ B 1 )α b = ∂ s (χ B 1 )   (n,k,i)∈I b (n,k) i T (n,k) i + L+2 i=2 S i   (3.39) We compute ∂ s (χ B 1 ) = (b (0,1) 1 ) -1 b (0,1) 1,s |y| B 1 (∂ r χ B 1 )( y B 1
). One first treat the S i terms. As we already explained in the study of the χ B 1 ψ b term one has:

H j (∂ s (χ B 1 )S i ) = µ∈N d , |µ|≤2j f µ ∂ µ S i with f µ a smooth function, with support in B 1 ≤ |x| ≤ 2B 1 and satisfying |f µ | ≤ C(L)b (0,1) 1 B -(2j-|µ| 1 ) 1 (because |b (0,1) 1,s | |b (0,1) 1 | 2 from (3.28))
. As S i is homogeneous of degree (i, -γ -g ′ ) in the sense of Definition 2.14 from (3.8) and |b

(n,k) i | |b (0,1) 1 | γ-γn
2 +i we get using Lemma 2.15:

R d |H j (∂ s (χ B 1 )S i )| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+g ′ -C(L)η . (3.40)
Now we treat the T (n,k) i terms in the identity (3.39). Let (i, n, k) ∈ I. Then again one has the decomposition:

H j [∂ s (χ B 1 )b (n,k) i T (n,k) i ] = b (n,k) i µ∈N d , |µ|≤2j f µ ∂ µ T n,k i with f µ a smooth function, with support in B 1 ≤ |y| ≤ 2B 1 and satisfying |f µ | ≤ C(L)b (0,1) 1 B -(2j-|µ|) 1 . As T (n,k) i
is an admissible profile of degree (-γ n + 2i) in the sense of Definition 2.11 from (2.26) and Lemma 2.10, ∂ µ T n,k i is admissible of degree (-γ n + 2i -|µ|) from Lemma 2.12 and we compute:

R d |b (n,k) i f µ ∂ µ T n,k i | 2 dy ≤ C(L)|b (0,1) 1 | γ-γn+2i+2 B 2(2j-|µ | 1) 1 2B 1 B 1 r -2γn+4i-2|µ| 1 r d-1 dr ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+η(2j-2i-2δn -2mn) As (i, n, k) ∈ I, i ≤ L n so if j = s L one has: 2j -2i -2δ n -2m n ≥ 2 -2δ n .
Therefore we have proved the bound (we recall that δ ′ 0 = max

0≤n≤n 0 δ n ∈ (0, 1)): R d |H j (∂ s (χ B 1 )b (n,k) i T (n,k) i )| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C(L)η if m 0 + 1 ≤ j < s L , C(L)|b (0,1) 1 | 2L+2+2(1-δ 0 )+η(1-δ ′ 0 ) if j = s L . (3.41) 
From the decomposition (3.39), the bounds (3.40) and (3.41), we deduce the bound:

R d |H j (∂ s (χ B 1 )α b | 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C(L)η if 0 ≤ j < s L , C(L)|b (0,1) 1 | 2L+2+2(1-δ 0 ) (|b (0,1) 1 | 2η(1-δ ′ 0 ) + |b (0,1) 1 | g ′ -C(L)η ) if j = s L .
(3.42) Using verbatim the same arguments, one gets that for any integer 0 ≤ j ′ ≤ 2s L -2:

R d |∇ j ′ (∂ s (χ B 1 )α b | 2 dy ≤ C(L)|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(L)η . (3.43) 
which remains true for any real number j ′ with 0 ≤ j ′ ≤ 2s L -2 from interpolation.

-

The F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q)) term.
It writes:

F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q)) = ∆(χ B 1 α b ) -χ B 1 ∆α b + (Q + χ B 1 α b ) p -Q p -χ B 1 ((Q + α b ) p -Q p ).
(3.44)

We now prove the bound for the two terms that have appeared. From the identity:

∆(χ B 1 α b ) -χ B 1 ∆α b = ∆(χ B 1 )α b + 2∇χ B 1 .∇α b ,
as χ is radial and as

(∂ k r (χ B 1 ))(r) = B -k 1 ∂ k r χ( r B 1 )
, one sees that this term can be treated exactly the same we treated the previous term: ∂ s (χ B 1 )α b . This is why we claim the following estimates that can be proved using exactly the same arguments:

R d |H j (∆(χ B 1 α b ) -χ B 1 ∆α b )| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C(L)η if m 0 + 1 ≤ j < s L , C(L)|b (0,1) 1 | 2L+2+2(1-δ 0 ) (|b (0,1) 1 | 2η(1-δ ′ 0 ) + |b (0,1) 1 | g ′ -C(L)η ) if j = s L . (3.45) 
We now turn to the other term in (3.44) that can be rewritten as:

(Q + χ B 1 α b ) p -Q p -χ B 1 ((Q + α b ) p -Q p ) = p k=2 C p k Q p-k χ B 1 (χ k-1 B 1 -1)α k b .
All the terms are localized in the zone B 1 ≤ |y| ≤ 2B 1 . From the definition (3.7) of α b , (3.8), (2.1) and Lemma 2.15, for each 2 ≤ k ≤ p one has that Q p-k α k b is a finite sum of homogeneous profiles of degree (i, -γ -α -2) for i ≥ k, yielding:

R d |H j ((Q + χ B 1 α b ) p -Q p -χ B 1 ((Q + α b ) p -Q p ))| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+α-C(L)η . (3.46)
From the decomposition (3.44) and the estimates (3.45) and (3.46) one gets:

R d |H j (F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q)))| 2 dy ≤ C(L) |b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C(L)η if m 0 + 1 ≤ j < s L , |b (0,1) 1 | 2L+2+2(1-δ 0 ) (|b (0,1) 1 | 2η(1-δ ′ 0 ) + |b (0,1) 1 | α-C(L)η ) if j = s L .
(3.47) As for the study of the two previous terms the same methods yield the analogue estimate for

∇ j ′ [F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q))] for any integer 0 ≤ j ′ ≤ 2s L -2,
and by interpolation, we obtain for any real number j ′ with 0 ≤ j ′ ≤ 2s L -2:

R d |∇ j ′ (F (Q + χ B 1 α b ) -F (Q) -χ B 1 (F (Q + α b ) -F (Q)))| 2 dy ≤ C(L)|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(L)η . (3.48) 
-The b (0,1) 1

(ΛQ -χ B 1 ΛQ) term. As ∂ µ (ΛQ) ≤ C(µ)(1 + |y|) -γ-|µ|
for all µ ∈ N d from (2.7) and HΛQ = 0 one computes:

R d |H j (b (0,1) 1 (ΛQ -χ B 1 ΛQ))| 2 dy ≤ C(j)|b (0,1) 1 | 2 2B 1 B 1 r -2γ-4j r d-1 dr ≤ C(j)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+2η(j-m 0 -δ 0 ) (3.49) with for j = s L , s L -m 0 -δ 0 = L + 1 -δ 0 > 1 -δ 0 . For any integer j ′ with E[s c ] ≤ j ′ ≤ 2s L -2, similar reasonings yield the estimate: R d |∇ j ′ (b (0,1) 1 (ΛQ -χ B 1 ΛQ))| 2 dy ≤ C(j ′ )|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(j ′ )η .
By interpolation, one has for any real number

j ′ with E[s c ] ≤ j ′ ≤ 2s L -2: R d |∇ j ′ (b (0,1) 1 (ΛQ -χ B 1 ΛQ))| 2 dy ≤ C(j ′ )|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(j ′ )η . (3.50) -The b (0,1) 1 (Λ(χ B 1 α b ) -χ B 1 Λα b ) term.
First we write this term as:

b (0,1) 1 (Λ(χ B 1 α b ) -χ B 1 Λα b = b (0,1) 1 (y.∇χ B 1 )α b . Now, we notice that b (0,1) 1 (y.∇χ B 1 ) = b (0,1) 1 |y| B 1 (∂ r χ)( |y| B 1 ) is very similar to ∂ s (χ B 1 ) = (b (0,1) 1 ) -1 b (0,1) 1,s |y| B 1 (∂ r χ B 1 )( y B 1
), in the sense that it enjoys the same estimates, as |b

(0,1) 1,s | (b (0,1) 1
) 2 from (3.28). Thus, we can get exactly the same estimates for the term b (0,1) 1

(Λ(χ B 1 α b ) -χ B 1 Λα b ) that we obtained previously for the term ∂ s (χ B 1 )α b
with verbatim the same methodology, yielding:

R d |H j (b (0,1) 1 (Λ(χ B 1 α b ) -χ B 1 Λα b ))| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )-C(L)η if 0 ≤ j < s L , C(L)|b (0,1) 1 | 2L+2+2(1-δ 0 ) (|b (0,1) 1 | 2η(1-δ ′ 0 ) + |b (0,1) 1 | g ′ -C(L)η ) if j = s L , (3.51 
) and for any integer j ′ with 0 ≤ j ′ ≤ 2s L -2:

R d |∇ j ′ (b (0,1) 1 (Λ(χ B 1 α b ) -χ B 1 Λα b ))| 2 dy ≤ C(L)|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(L)η . (3.52) -The b (1,•) 1 .(∇Q -χ B 1 ∇Q) term. First we rewrite: b (1,•) 1 .(∇Q -χ B 1 ∇Q) = d i=1 b (1,i) 1 (1 -χ B 1 )∂ y i Q. (3.53)
Now let i be an integer, 1 ≤ i ≤ d. From the asymptotic (2.1) of the ground state

|∂ µ Q| ≤ C(µ)(1 + |y|) -2
p-1 -|µ| and the fact that H∂ x i Q = 0 we deduce:

R d |H j (b (1,i) 1 ((1 -χ B 1 )∂ y i Q)| 2 dy ≤ C(j)|b (0,1) 1 | γ-γ 1 +2 2B 1 B 1 r -2γ 1 -4j r d-1 dr ≤ C(j)|b (0,1) 1 | 2(j-m 0 )-2(1-δ 0 )+2η(j-m 1 -δ 1 ) . with for j = s L , s L -m 1 -δ 1 = L + m 0 -m 1 + 1 -δ 1 > 1 -δ 1 .
So we finally get, putting together the two previous equations:

R d |H j (b (1,•) 1 .(∇Q -χ B 1 ∇Q))| 2 dy ≤ C(j)|b (0,1) 1 | 2 +∞ B 1 r -2γ-4j r d-1 dr ≤ C(j)|b (0,1) 1 | 2(j-m 0 )-2(1-δ 0 )+2η(1-δ 1 ) .
(3.54) Now, for any integer j ′ with E[s c ] ≤ j ′ ≤ 2s L -2, as E[s c ] > s c -1, similar reasonings yield the estimate:

R d |∇ j ′ (b (1,•) 1 .(∇Q -χ B 1 ∇Q))| 2 dy ≤ C(j ′ )|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(j ′ )η .
By interpolation, one has for any real number

j ′ with E[s c ] ≤ j ′ ≤ 2s L -2: R d |∇ j ′ (b (1,•) 1 .(∇Q -χ B 1 ∇Q))| 2 dy ≤ C(j ′ )|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )-C(j ′ )η . (3.55) -The b (0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b ) term. We first rewrite: b (0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b ) = d i=1 b (1,i) 1 ∂ y i (χ B 1 )α b .
Let i be an integer,

1 ≤ i ≤ d. For all µ ∈ N d , ∂ µ (χ B 1 ) ≤ C(µ)B -|µ| 1 
. From (3.7) and (3.8), α b is a sum of homogeneous profiles of degree (i, -γ). Using Lemma 2.15 one computes:

R d |H j (b (1,i) 1 ∂ y i (χ B 1 )α b )| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+α-C(L)η .
With the two previous equations one has proved that:

R d |H j (b (0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b ))| 2 dy ≤ C(L)|b (0,1) 1 | 2(j-m 0 )+2(1-δ 0 )+α-C(L)η . (3.56)
Using verbatim the same arguments, one can prove that for any integer 0 ≤ j ′ ≤ 2s L -2, the analogue estimate for ∇ j ′ (b

(0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b )) holds.
By interpolation, it gives that for any real number 0 ≤ j ′ ≤ 2s L -2 there holds:

R d |∇ j ′ (b (0,1) 1 .(∇(χ B 1 α b ) -χ B 1 ∇α b ))| 2 dy ≤ C(L)|b (0,1) 1 | 2( j ′ 2 -m 0 )+2(1-δ 0 )+α-C(L)η .
(3.57) -End of the proof. For the estimate concerning the operator H (resp. the operator ∇), we have estimated all terms in the right hand side of (3.36) ≪ 1 is a very small parameter, one sees that there exists η 0 := η 0 (L) such that for 0 < η < η 0 , the bounds (3.31) and (3.33) hold (resp. the bound (3.32) holds). ) (n,k,i)∈I up to an error term ψb . Suppose that for some time, the solution that started at Qb(0) stays close to this family of approximate solutions, up to scaling and translation invariances, meaning that it can be written approximately as

τ z(t) Qb(t), 1 λ(t)
. Then Qb(s) is almost a solution of the renormalized flow (3.2) associated to the functions of time λ(t) and z(t), meaning that:

∂ s ( Qb ) - λ s λ Λ Qb - z s λ .∇ Qb -F ( Qb ) ≈ 0.
Using the identity (3.30) this means:

-b (0,1) 1 + λ s λ Λ Qb -(b 1,•) 1 + z s λ ).∇ Qb + χ B 1 Mod(s) ≈ 0.
From the very definition (3.10) of the modulation term Mod(s), projecting the previous relation onto the different modes that appeared 10 yields:

     λs λ = -b (0,1) 1 , zs λ = -b (1,•) 1 , b (n,k) i,s = -(2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 , ∀(n, k, i) ∈ I (3.58) with the convention b (n,k) Ln+1 = 0.
The understanding of a solution starting at Qb(0) then relies on the understanding of the solutions of the finite dimensional dynamical system (3.58) driving the evolution of the parameters b

(n,k) i
. First we derive some explicit solutions such that λ(t) touches 0 in finite time, signifying concentration in finite time.

Lemma 3.4 (Special solutions for the dynamical system of the parameters). We recall that the renormalized time s is defined by (3.1). Let ℓ ≤ L be an integer such that 2α < ℓ. We define the functions: 10 This will be done rigorously in the next section.

     b (0,1) i (s) = c i s i for 1 ≤ i ≤ ℓ, b (0,1) i = 0 for ℓ < i ≤ L, b (n,k) i = 0 for (n, k, i) ∈ I with n ≥ 1, (3.59)
with (c i ) 1≤i≤ℓ being ℓ constants defined by induction as follows:

c 1 = ℓ 2ℓ -α and c i+1 = - α(ℓ -i) 2ℓ -α c i for 1 ≤ i ≤ ℓ -1. (3.60) Then b = (b (n,k) i ) (n,k,i)
∈I is a solution of the last equation in (3.58). Moreover, the solutions λ(s) and z(s) of the first two equations in (3.58) starting at λ(0) = 1 and z(0) = 0, taken in original time variable t are z(t) = 0 and: ) (n,k,i)∈I , and we order the parameters as in (2.28) by

λ(t) = α (2ℓ -α)s 0 ℓ α (2ℓ -α) α s 0 -t ℓ α . ( 3 
(n,k) i = b (n,k) i + U (n,k) i s γ-γn 2 +i . ( 3 
U = (U (0,1) 1 , ..., U (0,1) L , U (1,1) 1 , ..., U (1,1) L 1 , ..., U (n 0 ,k(n 0 )) 0 , ..., U (n 0 ,k(n 0 )) Ln 0 ) (3.63)
In the following lemma we state the linear stability result for the renormalized perturbation (U (i) Linearized dynamics: the time evolution of U is given by:

(n,k) i ) (n,k,i)∈I .
∂ s U = 1 s AU + O |U | 2 s , ( 3 

.64)

where A is the bloc diagonal matrix:

A =     A ℓ (0) Ã1 ... (0) Ãn 0     .
11 One notices that this bound holds for b

(n,k) i .
The matrix A ℓ is defined by:

A ℓ =                  -(2 -α)c 1 + α ℓ-1 2ℓ-α 1 . . . -(2i -α)c i α ℓ-i 2ℓ-α 1 . . . (0) -(2ℓ -α)c ℓ 0 1 0 -α 1 2ℓ-α . . . 1 0 (0) -α i-ℓ 2ℓ-α . . . 1 0 -α (L-ℓ) 2ℓ-α                  , (3.65) The matrix Ã1 is a bloc diagonal matrix constituted of d matrices Ã′ 1 : Ã1 =   Ã′ 1 (0) . (0) Ã′ 1   , Ã′ 1 =           α ℓ-α-1 2 -1 2ℓ-α 1 (0) . . α ℓ-α-1 2 -i 2ℓ-α 1 . . . 1 (0) α ℓ-α-1 2 -L 1 2ℓ-α           , (3.66 
) and for 2 ≤ n ≤ n 0 the matrix Ãn is a bloc diagonal matrix constituted of k(n) times the matrix Ã′ n :

Ãn =   Ã′ n (0) . (0) Ã′ n   , Ã′ n =           α ℓ-γ-γn 2 2ℓ-α 1 (0) . . α ℓ-γ-γn 2 -i 2ℓ-α 1 . . . 1 (0) α ℓ-γ-γn 2 -Ln 2ℓ-α           .
(3.67) (ii) Diagonalization, stability and instability: A is diagonalizable because A ℓ and Ãn for 1

≤ n ≤ n 0 are. A ℓ is diagonalizable into the matrix diag(-1, 2α 2ℓ-α , ., iα 2ℓ-α , ., ℓα 2ℓ-α , -1 2ℓ-α , ., ℓ-L 2ℓ-α ).
We denote the eigenvector of A associated to the eigenvalue -1 by v 1 and the eigenvectors associated to the unstable modes 2α ℓ-α , ..., ℓα ℓ-α of A by v 2 , ..., v ℓ . They are a linear combination of the ℓ first components only. That is to say there exists a #I × #I matrix coding a change of variables:

P ℓ := P ′ ℓ 0 0 Id #I-ℓ , (3.68) 
with P ′ ℓ an invertible ℓ×ℓ matrix and Id #I-ℓ the (#I -ℓ)×(#I -ℓ) identity matrix such that:

P ℓ AP -1 ℓ =     A ′ ℓ (0) Ã1 ... (0) Ãn 0     (3.69) A ′ ℓ =             -1 (0) q 1 2α 2ℓ-α q 2 . ℓα 2ℓ-α q ℓ (0) -α 2ℓ-α 1 . . (0) . 1 α ℓ-L 2ℓ-α             .
(3.70)

with (q i ) 1≤i≤ℓ ∈ R ℓ being some fixed coefficients. Ã′ 1 has max(E[i 1 ], 0) non negative eigenvalues and L 1 -max(E[i 1 ], 0) strictly negative eigenvalues (i n being defined by (1.29)). For 2 ≤ n ≤ n 0 , Ã′ n has max(E[i n ] + 1, 0) non negative eigenvalues and L n + 1 -max(E[i n ] + 1, 0) strictly negative eigenvalues.

Proof of Lemma 3.5. Proof of (i). as b and b are solutions of (3.58), we compute (with the convention b (n,k)

Ln+1 = 0 and U (n,k) Ln+1 = 0): U (n,k) i,s = 1 s γ-γn 2 + i -(2i -α n )b (0,1) 1 s U (n,k) i -(2i -α n )b (n,k) i s γ-γn 2 +i U (0,1) 1 -(2k -α n )U (0,1) 1 U (n,k) i + U (n,k) i+1 .
As b

(0,1) 1 = ℓ 2ℓ-α , we obtain γ-γn 2 + i -(2i -α n )b (0,1) 1 = α ℓ-γ-γn 2 -i 2ℓ-α .
We then get (3.65) by noticing that b (0,1) i = 0 for i ≥ ℓ + 1 and because by definition γ = γ 0 . We get (3.66) and (3.67) by noticing that b

(n,k) i = 0 for i ≥ 1.
Proof of (ii). Ãn for 1 ≤ n ≤ n 0 is diagonalizable because it is upper triangular. Their eigenvalues are then the values on the diagonal, and the last statement in (ii), about the stability and instability directions comes from the very definition (1.29) of the real number i n for 1 ≤ n ≤ n 0 . It remains to prove that A ℓ is diagonalizable. We will do it by calculating its characteristic polynomial.

-Computation of the characteristic polynomial for the top left corner matrix : we let A ′ ℓ be the ℓ × ℓ matrix:

A ′ ℓ =       -(2 -α)c 1 + α ℓ-1 2ℓ-α 1 (0) . . . -(2i -α)c i α ℓ-i 2ℓ-α 1 . (0) . 1 -(2ℓ -α)c l 0       ,
We recall that as α > 2, ℓ ≥ 2 so A ′ ℓ has at least 2 rows and 2 lines. We let P ℓ (X) = det(A ′ ℓ -XId). We compute this determinant by developing with respect to the last row and iterating by doing that again for the sub-determinant appearing in the process. Eventually we obtain an expression of the form:

P ℓ = (-1) ℓ (2ℓ -α)c ℓ + (-X) (-1) ℓ+1 (2ℓ -2 -α)c ℓ-1 + ( α 2ℓ-α -X) × (-1) ℓ (2ℓ -4 -α)c ℓ-2 + ( 2α 2ℓ-α -X)[...] .
(3.71)

We define the polynomials (A i ) 1≤i≤ℓ and (B i ) 1≤i≤ℓ and (C i ) 1≤i≤ℓ-1 as:

A i := (-1) ℓ-i+1 (2ℓ + 2 -2i -α)c ℓ+1-i and B i := (i -1) α 2ℓ -α -X, (3.72) 
C i := (-1) ℓ+1-i (X(2ℓ -2i -α)c ℓ-i + 2ℓ -α i c ℓ-i+1 ). (3.73)
This way, the determinant P ℓ given by (3.71) can be rewritten as:

P ℓ = A 1 + B 1 (A 2 + B 2 [A 3 + B 3 [...]]]) . (3.74)
We notice by a direct computation from (3.72) and (3.73) that:

A 1 + B 1 A 2 = C 1 .
Moreover, this identity propagates by induction and we claim that for 1 ≤ i ≤ ℓ -2:

C i + B 1 B 2 A i+2 = B i+2 C i+1 .
Indeed, from (3.60) one has 2ℓ-α i+1 c ℓ-i = -αc ℓ-i-1 , and from (3.72) and (3.73):

B i+2 C i+1 -C i = ((i + 1) α 2ℓ-α -X)(-1) ℓ-i (X(2ℓ -2i -2 -α)c ℓ-i-1 + 2ℓ-α i+1 c ℓ-i ) -(-1) ℓ+1-i (X(2ℓ -2i -α)c ℓ-i + 2ℓ-α i c ℓ-i+1 ) = (-1) ℓ-i ((i + 1) α 2ℓ-α -X)(X(2ℓ -2i -2 -α)c ℓ-i-1 -αc ℓ-i-1 ) -X(2ℓ -2i -α)α i+1 2ℓ-α c ℓ-i-1 + α 2 i+1 2ℓ-α c ℓ-i-1 = (-1) ℓ-i c ℓ-i-1 X α i+1 2ℓ-α (2ℓ -2i -2 -α) + α -X(2ℓ -2i -2 -α) -2ℓ-2i-α 2ℓ-α α(i + 1) = (-1) ℓ-i c ℓ-i-1 X(2ℓ -2i -2 -α)( α 2ℓ-α -X) = A i+2 B 1 B i
From the above identity we can rewrite P ℓ given by (3.74) as:

P ℓ = A 1 + B 1 A 2 + B 1 B 2 A 3 + B 1 B 2 B 3 (A 4 + B 4 (...)) = C 1 + B 1 B 2 A 3 + B 1 B 2 B 3 (A 4 + B 4 (...)) = B 3 (C 2 + B 1 B 2 (A 4 + B 4 (...)) = B 3 B 4 (C 3 + B 1 B 2 (A 5 + B 5 (...)) ... = B 3 ...B ℓ (C ℓ-1 + B 1 B 2 ).
(3.75)

The last polynomial that appeared is from (3.72) and (3.73):

C ℓ-1 +B 1 B 2 = X(2-α)c 1 + 2ℓ -α ℓ -1 c 2 -X α 2ℓ -α -X = (X +1) X - αℓ 2ℓ -α
and so we end up from (3.75) with the final identity for P ℓ :

P ℓ = (X + 1) ℓ i=2 iα 2ℓ -α -X .
This means that A ′ ℓ is diagonalizable with eigenvalues (1, -2α 2ℓ-α , ..., ℓ 2ℓ-α ): there exists an invertible ℓ × ℓ matrix Pℓ such that Pℓ A ℓ P -1 ℓ = diag(-1, 2 2ℓ-α , ..., ℓ 2ℓ-α ). We denote the by P ℓ the matrix:

P ′ ℓ := Pℓ Id L-ℓ
Then, from (3.65), there exists ℓ real numbers (q i ) 1≤i≤n ∈ R ℓ such that:

P ′ ℓ A ℓ (P ′ ℓ ) -1 =             -1 (0) q 1 2α 2ℓ-α q 2 . ℓα 2ℓ-α q ℓ (0) -α 2ℓ-α 1 . . (0) . 1 α ℓ-L 2ℓ-α             .
This implies that A ℓ can be diagonalized and that its eigenvalues are of simple multiplicity given by (-1, 2α 2ℓ-α , ..., α ℓ 2ℓ-α , -α 2ℓ-α , .., -α L-ℓ 2ℓ-α ), and that the eigenvectors associated to the eigenvalues -1, and α 2 2ℓ-α , ..., α ℓ 2ℓ-α are linear combinations of the ℓ first components only. This concludes the proof of Lemma.

Main proposition and proof of Theorem 1.1

We recall that the approximate blow up profile τ z ( Qb, 1 λ ) was designed for a blow up on the whole space R d . In this section, we state in the main Proposition 4.6 of this paper the existence of solutions staying in a trapped regime (defined in Definition 4.4) close to the cut approximate blow up profile χτ z ( Qb, 1 λ ). We then end the proof of Theorem 1.1 by proving that such a solution will blow up as described in the theorem.

4.1. The trapped regime and the main proposition.

Projection of the solution on the manifold of approximate blow up profiles.

The following reasoning is made for a blow up on the whole space R d . As in this case our blow up solution should stay close to the manifold of approximate blow up profiles (τ z ( Qb,λ )) b,z,λ we want to decompose it as a sum τ z ( Qb,λ + ε λ ) for some parameters b, z, λ such that ε has "minimal" size. The tangent space of (τ z ( Qb,λ )) b,z,λ at the point Q is Span((T (n,k) i ) (n,k,i)∈I∪{(0,1,0),(1,1,0),...,(1,d,0)} . One could then think of an orthogonal projection at the linear level, i.e. T (n,k) i , ε = 0. The profiles T (n,k) i 's are however not decaying quickly enough at infinity so that this duality bracket would make sense in the functional space where ε lies. For these grounds we will approximate such orthogonality conditions by smooth profiles that are compactly supported. Definition 4.1 (Generators of orthogonality conditions). For a very large scale M ≫ 1, for n ≤ n 0 and 1 ≤ k ≤ k(n) we define: 

Φ (n,k) M = Ln i=0 c i,n,M (-H) i (χ M T (n,k) 0 ) = Ln i=0 c i,n,M (-H (n) ) i (χ M T (n) 0 )Y (n,k) , (
c 0,n,M = 1 and c i,n,M = - i-1 j=0 c j,n,M (-H) j (χ M T (n,k) 0 ), T (n,k) i χ M T (n) 0 , T (n) 0 . (4.2) Lemma 4.2 (Generation of orthogonality conditions). For n ≤ n 0 , 1 ≤ k ≤ k(n), 0 ≤ i ≤ L n , j ∈ N, n ′ ∈ N and 1 ≤ k ′ ≤ k(n ′ ) there holds for c > 0: (-H) j Φ (n,k) M , T (n ′ ,k ′ ) i = δ (n,k,i),(n ′ ,k ′ ,j) +∞ 0 χ M |T (n) 0 | 2 r d-1 ∼ cM 4mn+4δn δ (n,k,i),(n ′ ,k ′ ,j) , c > 0. (4.3) Proof of Lemma 4.2. The scalar product is zero if (n, k) = (n ′ , k ′ ) because by con- struction Φ (n,k) M (resp. H j (T (n ′ ,k ′ ) i
) lives on the spherical harmonic Y (n,k) (resp. Y n ′ ,k ′ ). We now suppose (n, k) = (n ′ , k ′ ) and compute from (4.1):

(-H) j Φ (n,k) M , T (n,k) i = Ln l=0 c l,n,M T (n) 0 χ M , (-H (n) ) l+j T (n) i . If j > i for all l, (H (n) ) l+j T (n) i = 0 and then (-H) j Φ (n,k) M , T (n,k) i = 0. If j = i then only the first term in the sum is not zero since (-H (n) ) i T (n) i = T (n,k) 0 and: Ln l=0 c l,n,M T (n) 0 χ M , (-H (n) ) l+j T (n) i = T (n) 0 χ M , T (n) 0 ∼ cM 4mn+4δn from the asymptotic behavior (2.7) of T (n) 0 . If j < i then: Ln l=0 c l,n,M T (n) 0 χ M , (-H (n) ) l+j T n i = c i-j,n,M T (n) 0 χ M , T (n) 0 + i-j-1 l=0 c l,n,M T (n) 0 χ M , (-H (n) ) l+j T (n) i = 0
from the definition (4.2) of the constant c i-j,n,M which ends the proof. of concentrated ground states, using the orthogonality conditions provided by Lemma 4.2. This provides a decomposition for any domain containing B d (1). Let 0 < κ ≪ 1 to be fixed latter on. We study the set of functions close to (τ z ( Qb,λ )) b,|z|≤ 1 8 ,0<λ< 1 8M such that the projection onto the first element in the generalized kernel dominates 12 :

∃( λ, z) ∈ 0, 1 8M ×B d 1 8 , u -Q z, 1 λ L ∞ (B d (1)) < κ λ 2 p-1
and

(τ -z u) λ -Q L ∞ (B d (3M )) < (τ -z u) λ -Q, HΦ (0,1) M (4.4) 
Lemma 4.3 (Decomposition). There exist κ, K > 0 such that for any solution u ∈ C 1 ([0, T ), ×B d (1)) of (1.1) satisfying (4.4) for all t ∈ [0, T ) there exist a unique choice of the parameters λ

: [0, T ) → (0, 1 4M ), z : [0, T ) → B d 1 4 and b : [0, T ) → R I such that b (0,1) 1 > 0 and u = ( Qb + v) z,λ on B d (1), (n,k,i)∈I |b (n,k) i |+ v L ∞ ( 1 λ (B d (0,1)-{z})) ≤ Kκ with v = (τ -z u) λ -Qb satisfying the orthogonality conditions: v, H i Φ (n,k) M = 0, for 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n), 0 ≤ i ≤ L n
Moreover, λ, b and z are C 1 functions.

Proof of Lemma 4.3. It is a direct consequence of Lemma E.2 from the appendix.

Decomposition and adapted norms for the remainder inside a bounded domain. Let u be a solution of (NLH) in C 1 ([0, T ), Ω) with Dirichlet boundary condition, such that the restriction13 of u to B d (1) satisfy the conditions of Lemma 4.3. Then from this Lemma, for all t ∈ [0, T ) we can decompose u according to:

u := χτ z Qb, 1 λ + w, (4.5) 
cutting the approximate blow-up profile in the zone 1 ≤ |x| ≤ 2, and w is a remainder term satisfying w |∂Ω = 0 as B d (7) ⊂ Ω and u |∂Ω = 0. To study w inside and outside the blow-up zone we decompose it according to:

w int := χ 3 w, w ext := (1 -χ 3 )w, ε := (τ -z(t) w int ) λ(t) (4.6) 
w int and w ext are the remainder cut in the zone 3 ≤ |x| ≤ 6, ε is the renormalized remainder at the blow up area, and is adapted to the renormalized flow. We notice that the support of w ext does not intersect the support of the approximate blow up profile χτ z Qb, 1 λ , that the supports of w int and w ext overlap, and that (w ext ) |∂Ω = 0. From Lemma 4.3 and its definition, ε is compactly supported and satisfies the orthogonality conditions (4.11). We measure ε through the following norms:

(i) High order Sobolev norm adapted to the linearized flow: We define

E 2s L := R d |H s L ε| 2 . (4.7) 
This norm controls the L 2 norms of all smaller order derivatives with appropriate weight from Lemma C.3 since ε satisfy the orthogonality conditions (4.11), and the standard Ḣ2s L Sobolev norm:

E 2s L ≥ C |µ|≤2s L R d |∂ µ ε| 2 1 + |x| 4i-2µ+ + C ε 2
Ḣ2s L (ii) Low order slightly supercritical Sobolev norm: Let σ be a slightly supercritical regularity:

0 < σ -s c ≪ 1. (4.8)
We then define the following second norm for the remainder:

E σ := ε 2 Ḣσ . (4.9)
Existence of a solution staying in a trapped regime close to the approximate blow up solution. From now on we focus on solutions that are close to an approximate blow-up profile in the sense of the following definition.

Definition 4.4 (Solutions in the trapped regime). We say that a solution u of (1.1) in C 1 ([0, T ), Ω) is trapped on [0, T ) if it satisfies all the following. First, it satisfies the condition (4.4) and then can be decomposed via Lemma 4.3 according to (4.5) and (4.6):

u := χτ z Qb, 1 λ + w, w int := χ 3 w, w ext := (1 -χ 3 )w, ε := (τ -z(t) w int ) λ(t) (4.10)
with ε satisfying the orthogonality conditions:

ε, H i Φ (n,k) M = 0, for 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n), 0 ≤ i ≤ L n (4.11)
To the scale λ given by this decomposition we associate the renormalized time s defined by (3.1) with s 0 > 0. The #I-tuple of parameters b is represented as a perturbation of the solution b of the dynamical system (3.58) given by (3.59):

b (n,k) i (s) = b (n,k) i (s) + U (n,k) i (s) s γ-γn 2 +i
(4.12)

and we let U := (U

(n,k) i ) (n,k,i)∈I .
To use the eigenvectors of the linearized dynamics, Lemma (3.5), we define:

V i := (P ℓ U ) i for 1 ≤ i ≤ ℓ (4. 13 
)
where P ℓ is defined by (3.68). All these parameters must satisfy the following estimates, where 0 < η ≪ 1, 0 < ǫ

(n,k) i ≪ 1 for (n, k, i) ∈ I with (n, k, i) / ∈ {1, .
.., ℓ} × {0} × {1}, K 1 and K 2 will be fixed later on.

-Initial conditions. At time t = 0 (or equivalently s = s 0 ): (i) Control of the unstable modes on the radial component:

|V i (0)| ≤ s -η 0 for 2 ≤ i ≤ ℓ (4.14)
(ii) Control of the unstable modes on the other spherical harmonics:

|(U (n,k) i (0))| ≤ ǫ (n,k) i for (n, k, i) ∈ I with 1 ≤ n, 0 ≤ i < i n (4.15) 
(ii) Control of the stable modes: (iii) Smallness of the remainder:

V 1 (0) ≤ 1 10s η 0 , |U (0,1) i 
(0)| ≤ ǫ (0,1) i 10s η 0 for ℓ + 1 ≤ i ≤ L, (4.16) 
|U (n,k) i (0)| ≤ ǫ (n,k) i 10s η 0 for (n, k, i) ∈ I, with 1 ≤ n and i n < i ≤ L n , (4.17 
w 2 H 2s L < 1 s 2ℓ 2ℓ-α (2s L -sc) 0 . (4.19) 
(iv) Compatibility conditions at the border14 : 

   w0 := w(0) ∈ H 1 0 (Ω), w1 := ∂ t w(0) = ∆w(0) + w(0) p ∈ H 1 0 (Ω), w2 := ∂ 2 t w(0) = ∆ 2 w(0) + ∆(w(0) p ) + pw(0) p-1 (∆w(0) + w(0) p ) ∈ H 1 0 (Ω), ... ..., ws L -1 := ∂ s L -1 t w(0) ∈ H 1 0 (Ω) (4.
|V i (s)| ≤ s -η for 1 ≤ i ≤ ℓ, |U (0,1) i (s)| ≤ ǫ (0,1) i s -η for ℓ + 1 ≤ i ≤ L (4.22)
(ii) Parameters on the other spherical harmonics: for (n, k, i) ∈ I with n ≥ 1:

|(U (n,k) i (s))| ≤ 1 if 0 ≤ i < i n , (4.23) 
|U (n,k) i (s)| ≤ ǫ (n,k) i s η , if i n < i ≤ L n and |U (n,k) i (s)| ≤ ǫ (n,k) i , if i = i n . (4.24)
(iii) Control of the remainder:

E s L (s) ≤ K 2 s 2L+2(1-δ 0 )+2(1-δ ′ 0 )η , E σ (s) ≤ K 1 s 2(σ-sc) ℓ 2ℓ-α , w ext 2 
H 2s L ≤ K 2 λ 2(2s L -sc) s 2L+2(1-δ 0 )+2(1-δ ′ 0 )η , w ext 2 
H σ ≤ K 1 . (4.25) 
(iv) Estimates on the scale and the blow-up point: 

λ ≤ 2s
|b (n,k) i | ≤ C s γ-γn 2 +i , b (0,1) 1 = ℓ 2ℓ -α 1 s + O(s -1-η ) (4.27)
for C independent independent of the other constants. The bounds (4.25) on the remainders for the solution described by Proposition (4.6), because of the the coercivity estimate (C.3) implies that

w H σ (Ω) ≤ CK 1 , w H 2s L (Ω) ≤ C(K 1 , K 2 , M ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) . (4.28) 
A trapped solution must first satisfy the condition (4.4) in order to apply the decomposition Lemma E.1, and then the variables of this decomposition must satisfy suitable bounds. However, these additional bounds in turn provide a much stronger estimate than (4.4). Indeed, one has from (4.10), (3.29), (3.7), (4.27), (D.2):

inf 

( λ,z)∈(0, 1 8M )×B d ( 1 8 ) λ 2 p-1 u -Q z, 1 λ L ∞ (B d (1)) ≤ λ 2 p-1 u -Q z, 1 λ L ∞ (B d (1)) = Qb + ε -Q L ∞ ( 1 λ (B d (0,1)-{z})) = χ B 1 α b + ε L ∞ ( 1 λ (B d (0,1)-{z})) ≤ χ B 1 α b L ∞ (R d ) + ε L ∞ (R d ) ≤ C s + C s d 4 -σ 2 ≪ κ, (τ -z )u λ -Q L ∞ (B d (3M )) ≤ α b L ∞ (B d (3M )) + ε L ∞ (B d (3M )) ≤ C s + C s 2 . Using
= (τ -z )u λ -Q, HΦ (0,1) M = α b , HΦ (0,1) M = b (0,1) 1 T (0,1) 0 , χ M T (0,1) 0 + O(s -2 ) ∼ c s = c 1 s cM d-2γ + O(s -2
) for some c > 0, which, combined with the above estimate gives:

(τ -z )u λ -Q L ∞ (B d (3M )) ≪ (τ -z )u λ -Q, HΦ (0,1) M
for M large enough as d -2γ > 0. Therefore, a solution cannot exit the trapped regime because the condition (4.4) fails: the estimates on the parameters and the remainder have to be violated first. We thus forget about this condition in the following.

The key result of this paper is the existence of solutions that are trapped on their whole lifespan.

Proposition 4.6 (Existence of fully trapped solutions:

). There exists a choice of universal constants for the analysis 15 :

L = L(ℓ, d, p) ≫ 1, 0 < η = η(d, p, L) ≪ 1, M = M (d, p, L) ≫ 1, σ = σ(L, d, p), K 1 = K 1 (d, p, L) ≫ 1, K 2 = K 2 (d, p, L) ≫ 1, 0 < ǫ (0,1) i = ǫ (0,1) i (L, d) ≪ 1 for ℓ + 1 ≤ i ≤ L, 0 < ǫ 1 = ǫ 1 (L, d) ≪ 1, 0 < ǫ (n,k) i = ǫ (n,k) i (L, d) ≪ 1 for (n, k, i) ∈ I with 1 ≤ n, i n + 1 ≤ i ≤ L n 0 < η = η(ℓ, L, d, p, η) ≪ 1 and s 0 = s 0 (ℓ, d, p, L, M, K 1 , K 2 , ǫ (n,k) i , η) ≫ 1, (4.29 
) such that the following fact holds close to χ Qb(s 0 ), 1

λ(s 0 )
where b is given by (3.59) and λ(s 0 ) satisfies (4.21). Given a perturbation along the stable directions, represented by w(s 0 ), decomposed in (4.5), satisfying (4. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]) and (4.11), and V 1 (s 0 ), U (0,1)

ℓ+1 (s 0 ), ..., U (0,1) L (s 0 ) , U (n,k) i (s 0 ) (n,k,i)∈I, n≥1, in≤i
satisfying (4.16), (4.17) and (4.18), there exists a correction along the unstable directions represented by (V 2 (s 0 ), ...V ℓ (s 0 )) and (U (n,k) i (s 0 )) (n,k,i)∈I,1≤n, i<in satisfying (4.14) and (4.15) such that the solution u(t) of (1.1) with initial datum u(0) = χ Qb(s 0 ), 1

λ(s 0 ) + w(s 0 ) with: b(s 0 ) =   b (n,k) i + U (n,k) i (s 0 ) s γ-γn 2 +i 0   (n,k,i)∈I (4.30)
is trapped until its maximal time of existence in the sense of Definition 4.4.

Proof of Proposition 4.6. The proof is relegated to Section 5.

4.2.

End of the proof of Theorem 1.1 using Proposition 4.6. In this subsection we end the proof of the main Theorem 1.1 by proving that the solutions given by Proposition 4.6 lead to a finite time blow up with the properties described in Theorem 1.1. The proof of Theorem 1.1 is a direct consequence of Proposition 4.6, Lemmas 4.8 and 4.9. Until the end of this subsection, u will denote a solution that is trapped in the sense of Definition 4.4) on its maximal interval of existence. First, we describe the time evolution equation for ε. It then allows us to compute how the time evolution law for the parameters λ and z related to the decomposition (4.5) depends on the other parameters. The bounds on the parameters and the remainder for a trapped solution then imply that λ goes to zero with explicit asymptotic in finite time, that z converges, and that the solution undergoes blow up by concentration with a control on the asymptotic behavior for Sobolev norms. 4.2.1. Time evolution for the error. Let u be a trapped solution. From the decomposition (4.5) we compute that the time evolution of the remainder is:

w t = -1 λ 2 χτ z ( M od(t) 1 λ + ψb, 1 λ ) + ∆w + p k=1 C p k (χτ z Qb, 1 λ ) p-k w k +∆χτ z Q 1 λ + 2∇χ.∇τ z Q 1 λ + χτ z Q p 1 λ (χ p-1 -1). (4.31)
with the new modulation term being defined as:

Mod(t) := χ B 1 Mod(t) - λ s λ + b 0,1) 1 Λ Qb - z s λ + b (1,•) 1 .∇ Qb , (4.32) 
From (4.31) and (4.6), as the support of w ext is outside B d (2) and as τ z ( Qb,λ ) is cut in the zone 1 ≤ |x| ≤ 2, the time evolution of w ext is:

∂ t w ext = ∆w ext + ∆χ 3 w + 2∇χ 3 .∇w + (1 -χ 3 )w p . (4.33)
The excitation of the solitary wave τ z (α b, 1 λ

) has support in the zone |x -z| ≤ 2λB 1 and from (4.26), |z| + λB 1 ≪ 1, so it does not see the cut by χ of the approximate blow up profile. From this, (4.31) and (4.6) the time evolution of w int is therefore given by:

∂ t w int + H z, 1 λ w int = - 1 λ 2 χτ z ( M od(t) 1 λ + ψb, 1 λ ) + L(w int ) + N L(w int ) + L + Ñ L + R (4.34) where H z, 1 λ
, NL(w int ), L(w int ) are the linearized operator, the non linear term and the small linear terms resulting from the interaction between w int and a non cut approximate blow up profile τ z ( Qb, 1 λ ):

H z, 1 λ := -∆ -p τ z ( Q 1 λ ) p-1 , H b,z, 1 λ := -∆ -p τ z ( Qb, 1 λ ) p-1 (4.35) NL(w int ) := F τ z ( Qb, 1 λ ) + w int -F τ z ( Qb, 1 λ ) + H b, 1 λ (w int ), L(w int ) := H z, 1 λ w int -H b,z, 1 λ w int = p λ 2 τ z (χ p-1 B 1 α p-1 b ) 1 λ . (4.36) 
The last terms in (4.34) are the corrective terms induced by the cut of the approximate blow up profile and the cut of the error term 16 :

L := -∆χ 3 w -2∇χ 3 .∇w + pτ z Q p-1 1 λ (χ p-1 -χ 3 )w, (4.37) 
Ñ L := p k=2 C p k τ z Q p-k 1 λ (χ p-k -χ k-1 3 )χ 3 w k , (4.38) 
R := ∆χτ z Q 1 λ + 2∇χ∇τ z Q 1 λ + χτ z Q p 1 λ (χ p-1 -1), (4.39) 
and one notices that their support is in the zone 1 ≤ |x| ≤ 6. Using the definition of the renormalized flow (3.2) and the decomposition (4.5) we compute from (4.31):

∂ s ε -λs λ Λε -zs λ .∇ε + Hε = -χ(λy + z)( Mod(s) + ψb ) +NL(ε) + L(ε) + λ 2 [τ -z ( L + R + Ñ L)] λ , (4.40 
) with the the purely non linear term and the small linear term in adapted renormalized variables being defined as:

NL(ε) := F ( Qb + ε) -F ( Qb ) + H b (ε), L(ε) := Hε -H b ε, (4.41) 
where

H b := -∆ -p Qp-1 b
is the linearized operator near Qb . One notices that the extra terms induced by the cut, λ 2 [τ -z ( L + R + Ñ L)] λ , have support in the zone

1 2λ ≤ |y| ≤ 7
λ (from (4.26)). 16 Again, the excitation of the solitary wave τz( αb, ) (n,k,i)∈I and the remainder ε.

Lemma 4.7 (Modulation). Let all the constants of the analysis described in Proposition 4.6 be fixed except s 0 . Then for s 0 large enough, for any solution u that is trapped on [s 0 , s ′ ) in the sense of Definition 4.4 there holds for s 0 ≤ s < s ′ :

λs λ + b (0,1) 1 + zs λ + b (1,•) 1 + (n,k,i)∈I, i =Ln |b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i + b (n,k) i+1 | ≤ C(L,M ) s L+3 + C(L,M ) s E 2s L , (4.42) 
(n,k,i)∈I, i=Ln |b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i | ≤ C(M, L) s L+3 + C(M, L) E 2s L . (4.43)
Proof of Lemma 4.7. We let: , the bounds (4.27) on the parameters, one has:

D(s) = λ s λ + b (0,1) 1 + z s λ + b (1,•) 1 + (n,k,i)∈I |b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 |.
Qb = Q + χ B 1 α b = Q + O(s -1 ), and ∂S j ∂b (n,k) i = O(s -1 ) on B d (0, 2M ).
From (3.10), (4.32) and (4.44) the modulation term can then be rewritten as:

Mod(s) = χ B 1 (n,k,i)∈I [b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 ] T (n,k) i + L+2 j=i+1+δ n≥2 ∂S j ∂b (n,k) i -λs λ + b 0,1) 1 Λ Qb -zs λ + b (1,•) 1 .∇ Qb = χ B 1 (n,k,i)∈I [b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 ]T (n,k) i -λs λ + b 0,1) 1 ΛQ -zs λ + b (1,•) 1
.∇Q + O( |D(s)| s ) 17 We do not see the extra terms L, R and Ñ L because their support is in the zone 1 2λ ≤ |y| (from (4.26)) which is very far away from the support of Φ (n,k) M , in the zone |y| ≤ 2M (s0 being chosen large enough so that this statement holds).

where the O( |D(s)| s ) is valid in the zone |y| ≤ 2M . From the orthogonality relations (4.3) we then get: Hence, from the orthogonality (4.11) for ε we obtain for 0 

Mod(s), (-H) i Φ (n,k) M + O |D(s)| s =          -C χ M ΛQ, ΛQ λs λ + b (0,1) 1 for (n, k, i) = (0, 1, 0) -C ′ χ M ∇Q, ∇Q z j,s λ + b (1,k) 1 for (n, i) = (1, 0), 1 ≤ k ≤ d χ M T (n,k) 0 , T (n,k) 0 b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 otherwise ( 4 
≤ n ≤ n 0 , 1 ≤ k ≤ k(n): Hε, H i Φ (n,k) M = 0 for i < L n ε, (-H) i+1 Φ (n,k) M = O( E 2s L ) for i = L n . ( 4 
λ s λ Λε + z s λ .∇ε, H i Φ (n,k) M ≤ C(L, M ) s E 2s L + |D(s)| s L+1-δ 0 +η(1-δ ′ 0 ) . Now, as Q p-1 -Qp-1 b = O(s -1
) on the set |y| ≤ 2M from (3.7) and (4.27), using the estimate (D.2) on ε L ∞ , from the definition (4.41) of N L(ε) and L(ε) and the coercivity (C.16) one gets for s 0 large enough:

NL(ε) + L(ε), H i Φ (n,k) M ≤ C(L, M )E 2s L + C(L, M ) E 2s L s ≤ C(L, M ) E 2s L s .
Putting together the last two estimates yields: 

λ s λ Λε + z s λ .∇ε + NL(ε) + L(ε), H i Φ (n,k) M ≤ C(L, M ) E 2s L s + C(L, M )|D(s)| s L+1-δ 0 +η(1-δ ′ 0 ) . (4.
|D(s)| ≤ C(L, M ) E s L + C(L, M ) s L+3 .
We , the modulation (4.42) and (4.25) one has:

λ s λ = - c 1 s + O(s -1-η ).
We reintegrate using (4.21) (we recall that c 1 = ℓ 2ℓ-α from (3.59)):

λ = (1 + O(s -η 0 )) s ℓ 2ℓ-α (4.51)
which is valid as long as the solution u is trapped. In addition, if the solution is trapped on its maximal interval of existence, then the function represented by the O() that admits a limit as s → +∞. In turn, from ds dt = 1 λ 2 we obtain:

s = s 0 1 - αs α 2ℓ-α 0 2ℓ-α t 0 (1 + O(s -η 0 ))dt ′ ) 2ℓ-α α
Hence there exists T > 0 with: . Now we turn to the asymptotic behavior of the point of concentration z. From (4.42), using b

s ∼ t→T C(u(0))(T -t) -2ℓ-α α . ( 4 
(1,i) 1 = O(s -α+1
2 ) from (4.23) for 1 ≤ i ≤ d, one gets:

|z i,s | = O(s -c 1 -α+1 2 ) = O(s -1-α 2 (1+ 1 2ℓ-α ) ). ( 4 

.53)

As α > 0 this implies the convergence and the estimate of z claimed in the lemma. Lemma 4.9 (Asymptotic behavior for subcritical norms). Let u be a solution that is trapped for all times s ≥ s 0 and T be its finite maximal lifespan 18 . Then (i) Behavior of subcritical norms:

limsup t→T u H m (Ω) < +∞, for 0 ≤ m < s c .
(ii) Behavior of the critical norm:

u H sc (Ω) = t→T C(d, p) √ ℓ |log(T -t)|(1 + o(1)).
(iii) Boundedness of the perturbation in slightly supercritical norms

limsup t→T u -χτ z (Q 1 λ ) H m (Ω) < +∞, for s c < m ≤ σ.
Proof of Lemma 4.9. The trapped solution u can be written as:

u = χτ z ( Qb, 1 λ ) + w = χτ z (Q 1 λ ) + τ z (α b, 1 λ ) + w
We first look at the second term τ z (α b, 1 λ

), being the excitation of the ground state. It has compact support in the zone |x| ≤ 2B 1 λ. From (1.38), (4.51), one gets

2B 1 λ ≪ 1 as s 0 ≫ 1, so that τ z (α b, 1 λ ) has compact support inside B d (1). This implies that τ z (α b, 1 λ ) H σ (Ω) ≤ C τ z (α b, 1 λ ) Ḣσ (R d )
, this later norm being easier to compute. Indeed by renormalizing one has: ), we get that (iii) holds for all 0 ≤ m ≤ σ. This, together with the asymptotic of the ground state (2.1) then gives (i) and (ii).

τ z (α b, 1 λ ) Ḣσ (R d ) = 1 λ σ-sc αb Ḣσ (R d ) . As αb = χ B 1 (n,k,i)∈I b (n,k) i T (n,k) i + L+2 i=2 S i from (3.

Proof of Proposition 4.6

This section is devoted to the proof of this latter proposition, which will then end the proof of the main theorem. For all trapped solution u in the sense of Definition 4.4 we let s * = s * (u(0)) be the exit time from the trapped regime: Combined with the modulation equations of Lemma 4.7, this allows us to show that in the trapped regime, all the components of the solution along the stable directions of perturbation are under control, see Lemma 5.9. Moreover, from (4.51), (4.26) is always fulfilled as long as the other bounds hold. As a consequence, the exit time of the trapped regime is in fact characterized by the following condition: just after s * , one of the bounds in (4.22) and (4.23) regarding the unstable parameters is violated. Proposition 4.6 is then proven by contradiction. Suppose that given a stable perturbation of χ Qb(s 0 ), 1 λ(s 0 ) as described in Proposition 4.6, for all initial corrections (V 2 (s 0 ), ...V ℓ (s 0 )) and (U (n,k) i (s 0 )) (n,k,i)∈I,1≤n, i<in along the unstable directions, the solution starting from χ Qb(s 0 ), 1 λ(s 0 ) + w(s 0 ) leaves the trapped regime in finite time. This means from the previous paragraph that the trajectory of (V 2 (s), ...V ℓ (s), (U

s * = sup {s ≥ s 0 such that (4.
(n,k) i (s)) (n,k,i)∈I,1≤n, i<in ) leaves the set 19 B ℓ-1 ∞ (s -η ) × B K ∞ (1 
) in finite time. But at the leading order, the dynamics of this trajectory is a linear repulsive one. In Lemma 5.10 we show how the fact that all the trajectories leave this ball is a contradiction to Brouwer's fixed point theorem. Ln , (4.43). When looking at the proof of Lemma 4.7, we see that this is a consequence of the fact that the projection of the linearized dynamics onto the profile generating the orthogonality conditions, Hε, H i Φ (n,k) M cancels only for i < L n . However, as we explained in the introduction of Lemma 4.2, H i Φ (n,k) M has to be thought as an approximation of T (n,k) i , and in that case the previous term would cancel also for i = L n . It is therefore natural to look for a better modulation estimate for b Ln ). Suppose all the constants in Proposition 4.6 are fixed except s 0 . Then for s 0 large enough, for any solution that is trapped on [s 0 , s ′ ), for 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n) there holds for s ∈ [s 0 , s ′ ):

b (n,k) Ln,s + (2L n -α n )b (0,1) 1 b (n,k) Ln -d ds   H Ln (ε-L+2 2 S i ),χ B 0 T (n,k) 0 χ B 0 T (n,k) 0 ,T n,k 0   ≤ C(L,M ) √ E 2s L s δn + C(L,M ) s L+ g ′ 2 +δn-δ 0 +1 . (5.2)
Remark 5.2. From (5. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]), we see that the denominator is not zero. From (5. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]) and (5.20) one has the following bound for the new quantity that appeared when comparing this new modulation estimate to the former one (4.43):

H Ln (ε-L+2 2 S i ),χ B 0 T (n,k) 0 χ B 0 T (n,k) 0 ,T n,k 0 ≤ C(L, M )s -L-g ′ 2 +δ 0 -δn + C(L, M, K 2 )s -L+δ 0 -δn+η(1-δ ′ 0 ) . (5.3)
This is a better bound compared to the required bound (4.24) on b

(n,k) Ln in the trapped regime that is: |b

(n,k) Ln | ≤ Cs -γ-γn 2 -Ln = Cs -L-δn+δ 0 .
19 here K is the number of directions of instabilities on the spherical harmonics of degree greater than 0, (5.4) step 1 Computation of a first identity. We claim the following identity:

K = d(E[i1] -δ i 1 ∈N ) + 2≤n≤n 0 k(n)(E[in] + 1 -δ in∈N ), B a ∞ (
d ds H Ln ε, χ B 0 T (n,k) 0 = (b (n,k) Ln,s + (2L n -α n )b (0,1) 1 b (n,k) Ln ) T (n,k) 0 , χ B 0 T (n,k) 0 + d ds L+2 j=2 S j , H Ln (χ B 0 T (n,k) 0 ) +O( E 2s L B 4mn+2δn 0 ) + O C(L) s L+1+ g ′ 2 -δ 0 -δn-2mn
(5.5) what we are going to prove now. From the evolution equation (4.40) and the fact that H is self adjoint we obtain:

d ds H Ln ε, χ B 0 T (n,k) 0 = ε, H Ln (∂ s χ B 0 T (n,k) 0 ) + -Mod(s) -ψb + λs λ Λε + zs λ .∇ε -Hε + NL(ε) + L(ε), H Ln (χ B 0 T (n,k) 0
) .

(5.6) The terms created by the cut of the solitary wave λ 2 τ -z [( L + R + Ñ L) λ ] do not appear because they have their support in the zone 1 2λ ≤ |y| which is far away from the zone |y| ≤ 2B 0 as B 0 ≪ 1 λ in the trapped regime from (4.51). We now look at all the terms in the above equation. 

ε, H Ln (∂ s χ B 0 T (n,k) 0 ) ≤ C(L) E 2s L s 2mn+δn . ( 5 
ψb , H Ln (χ B 0 T (n,k) 0 ) ≤ C(L)B d-γn-2Ln-γ-g ′ -2 0 ≤ C(L) s L+1+ g ′ 2 -δ 0 -δn-2mn . ( 5 
λ s λ Λε + z s λ .∇ε -Hε, H Ln (χ B 0 T (n,k) 0 ) ≤ C(L) E 2s L s 2mn+δn .
(5.9)

The small linear term writes L(ε) = (pQ p-1 -p Qp-1 b ), hence from the form of Qb , see (3.29), one has

|(pQ p-1 -p Qp-1 b )| ≤ C(L)s -1-α 2 .
It's contribution is then of smaller order using (5.4):

L(ε), H Ln (χ B 0 T (n,k) 0 ) ≤ C(L) E 2s L s 2mn+δn-α 2 .
(5.10)

The nonlinear term writes: NL

(ε) = p k=2 C p k ε k Qp-k b .
From the coercivity estimate (C.3) we get:

B 0 ≤|y|≤2B 0 ε 2 |y| γn+2Ln dy ≤ C(L, M )E 2s L s 2s L -γn 2 -Ln .
One computes using the bootstrap bounds (4.25) and (4.27):

E 2s L s 2s L -γn 2 -Ln ≤ K 2 s δn+2mn-( γ-2 4 + η(1-δ ′ 0 ) 2 ) ≤ B δn+2mn 0 for s 0 large enough (because γ > 2). For 2 ≤ k ≤ p, |ε k-2 Qp-k b | ≤ C is bounded from (D.
2), so one gets using the two previous equations and (5.4):

NL(ε), H Ln (χ B 0 T (n,k) 0 ) ≤ E 2s L s 2mn+δn
(5.11)

for s 0 large enough. Gathering (5.9), (5.10) and (5.11) we have found the following upper bound for the remainder's contribution:

λs λ Λε + zs λ .∇ε -Hε + NL(ε) + L(ε), H Ln (χ B 0 T (n,k) 0 ) ≤ C(L, M ) E 2s L s 2mn+δn .
(5.12)

-The modulation term. For (n ′ , k ′ , i) ∈ I, one has

T (n,k) i , H Ln (χ B 0 T (n,k) 0 ) = H Ln T (n,k) i , χ B 0 T (n,k) 0 = 0 if (n ′ , k ′ , i) = (n, k, L n ). Indeed, if (n ′ , k ′ ) = (n, k)
then the two functions are located on different spherical harmonics and their scalar product is 0.

If i = L n then i < L n and H Ln T (n,k) i
= 0. This implies the identity from (4.32) since B 1 ≫ B 0 :

Mod(s), H Ln (χ B 0 T (n,k) 0 ) = (b (n,k) Ln,s + (2L n -α n )b (0,1) 1 b (n,k) Ln ) T (n,k) 0 , χ B 0 T (n,k) 0 + L+2 j=2 (n ′ ,k ′ ,i)∈I} (b (n ′ ,k ′ ) i,s + (2i -α n ′ )b (0,1) 1 b (n ′ ,k ′ ) i ) ∂S j ∂b (n ′ ,k ′ ) i , H Ln (χ B 0 T (n,k) 0 ) -( λs λ + b (1,0) 1 ) Λ Qb , H Ln (χ B 0 T (n,k) 0 ) -( zs λ + b (1,•) 1 ).∇ Qb , H Ln (χ B 0 T (n,k) 0 ) (5.13)
For 2 ≤ j ≤ L + 2, and (n ′ , k ′ , i) ∈ I there holds, as S i is homogeneous of degree (i, -γ -g ′ ), using (4.27) and (5.4):

(2i -α n ′ )b (0,1) 1 b (n ′ ,k ′ ) i ) ∂S j ∂b (n ′ ,k ′ ) i , H Ln (χ B 0 T (n,k) 0 ) ≤ C(L, M ) s L-δ 0 -δn+2mn+1+ g ′ 2 .
(5.14) Using the modulation bound (4.42), the asymptotics (2.1) and (2.7) of Q and ΛQ, (4.27) and (5.4) we find that:

( λs λ + b (1,0) 1 ) Λ Qb , H Ln (χ B 0 T (n,k) 0 ) -( zs λ + b (1,•) 1 ).∇ Qb , H Ln (χ B 0 T (n,k) 0 ) ≤ C(L,M ) s 2L+ 3-α 2 -2mn -δn
(5.15) is very small as L ≫ 1. Moreover for 2 ≤ j ≤ L + 2 one has:

(n ′ ,k ′ ,i)∈I b (n ′ ,k ′ ) i,s ∂S j ∂b (n ′ ,k ′ ) i , H Ln (χ B 0 T (n,k) 0 ) = d ds S j , H Ln (χ B 0 T (n,k) 0 ) -S j , H Ln (∂ s χ B 0 T (n,k) 0
) .

From similar arguments we used to derive (5.14) one has the similar bound for the last term, yielding:

(n ′ ,k ′ ,i)∈I b (n ′ ,k ′ ) i,s ∂S j ∂b (n ′ ,k ′ ) i , H Ln (χ B 0 T (n,k) 0 ) = d ds S j , H Ln (χ B 0 T (n,k) 0 ) +O(s -L+δ 0 +δn+2mn-1-g ′ 2 ).
(5.16) Coming back to the decomposition (5.13), and injecting (5.14) and (5.16) gives:

Mod(s), H Ln (χ B 0 T (n,k) 0 ) = (b (n,k) Ln,s + (2L n -α n )b (0,1) 1 b (n,k) Ln ) T (n,k) 0 , χ B 0 T (n,k) 0 + d ds L+2 j=2 S j , H Ln (χ B 0 T (n,k) 0 ) +O(s -L+δ 0 +δn+2mn-1-g ′ 2 )
(5.17) In the decomposition (5.6) we examined each term in (5.7), (5.8), (5.12) and (5.17), yielding the identity (5.5) we claimed in this first step.

step 2 End of the proof. From (5.5) one obtains:

d ds H Ln (ε-L+2 2 S i ),χ B 0 T (n,k) 0 χ B 0 T (n,k) 0 ,T (n,k) 0 = b (n,k) Ln,s + (2L n -α n )b (0,1) 1 b (n,k) Ln + O( √ E 2s L B 4mn +2δn 0 )+O C(L) s L+1+ g ′ 2 -δ 0 -δn-2mn χ B 0 T (n,k) 0 ,T (n,k) 0 + H Ln (ε -L+2 2 S i ), χ B 0 T (n,k) 0 d ds 1 χ B 0 T (n,k) 0 ,T (n,k) 0 .
(5.18) The size of the denominator is, from the asymptotic (2.7) of T (n,k) 0 and (4.27):

χ B 0 T (n,k) 0 , T (n,k) 0 ∼ cs 2mn+2δn (5.19)
for some constant c > 0. As the denominator just depends on b (0,1) 1

, using the bound |b (0,1) 1,s | ≤ Cs -2 and the asymptotics (2.7) of T (n,k) 0 we obtain:

d ds 1 χ B 0 T (n,k) 0 , T (n,k) 0 ≤ C(L, M ) s 2mn+2δn+1 .
Also, using again the coercivity estimate (C.3), (5.4) and the fact that for 2 ≤ j ≤ L + 2, S j is homogeneous of degree (j, -γ -g ′ ) we obtain:

H Ln (ε - L+2 2 S i ), χ B 0 T (n,k) 0 ≤ C(L, M )( E 2s L s 2mn+δn + s -L-g ′ 2 +δ 0 +δn+2mn ).
(5.20) Hence, plugging the three previous identities in (5.18) gives the identity (5.3) claimed in the Lemma.

Lyapunov monotonicity for low regularity norms of the remainder.

The key estimate concerning the remainder w is the bound on the high regularity adapted Sobolev norm at the blow up area: E 2s L . However, the nonlinearity can transfer energy from low to high frequencies, and consequently to control E 2s L we need to control the low frequencies. This is the purpose of the following two propositions 5.3 and 5.5 where we find an upper bound for the time evolution of w int Ḣσ (R d ) and w ext H σ (Ω) .

Proposition 5.3 (Lyapunov monotonicity for the low Sobolev norm of the remainder in the blow up zone). Suppose all the constants involved in Proposition 4.6 are fixed except s 0 and η. Then for s 0 large enough and η small enough, for any solution u that is trapped on [s 0 , s ′ ) there holds for 0 ≤ t < t(s ′ ):

d dt E σ λ 2(σ-sc) ≤ √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 1 s α 4L 1 + p k=2 √ E σ s -σ-sc 2 k-1 (5.21)
where the norm E σ is defined in (4.9). Proof of Proposition 5.3. To show this result, we compute the left hand side of (5.21) and we upper bound it using all the bounds that hold in the trapped regime. The time evolution w int given by (4.34) yields:

d dt Eσ λ 2(σ-sc) = d dt |∇ σ w int | 2 = ∇ σ w int .∇ σ (-H z, 1 λ w int -1 λ 2 χτ z ( Mod(t) 1 λ + ψb 1 λ ) +NL(w int ) + L(w int ) + L + Ñ L + R).
(5.22)

We now give an upper bound for each term in (5.22). As all the terms involve functions that are compactly supported in Ω since w int is, all integrations by parts are legitimate and all computations and integrations are performed in R d (e.g. L 2 denotes L 2 (R d )). step 1 Inside the blow-up zone (all terms except the three last ones in (5.22)).

-The linear term: We first compute from (4.35) using dissipation:

∇ σ w int .∇ σ (-H z, 1 λ w int ) = ∇ σ w int .∇ σ (∆w int + p(τ z (Q 1 λ )) p-1 w int ) ≤ ∇ σ w int .∇ σ (p(τ z (Q 1 λ )) p-1 w int )
which becomes after an integration by parts and using Cauchy-Schwarz inequality:

∇ σ w int .∇ σ (p(τ z (Q 1 λ )) p-1 w int ) ≤ ∇ σ+2 w int L 2 ∇ σ-2 (p(τ z (Q 1 λ )) p-1 w int ) L 2
Using interpolation, the coercivity estimate (C.16) and the bounds of the trapped regime (4.25) on ε, one has for the first term (performing a change of variables to go back to renormalized variables):

∇ σ+2 w int L 2 = 1 λ σ+2-sc ∇ σ+2 ε L 2 ≤ C λ σ+2-sc ∇ σ ε 1-2 2s L -σ L 2 ε 2 2s L -σ Ḣ2s L ≤ C(L,M ) λ σ+2-sc √ E σ 1-2 2s L -σ E 2s L 2 2s L -σ ≤ C(L,M,K 1 ,K 2 ) λ σ+2-sc s (σ-sc)ℓ 2ℓ-α + 2 2s L -σ (L+1-δ 0 +η(1-δ ′ 0 )- (σ-sc)ℓ 2ℓ-α ) = C(L,M,K 1 ,K 2 ) λ σ+2-sc s (σ-sc)ℓ 2ℓ-α +1+ α 2L +O ( η+σ-sc L ) As Q p-1 = O((1 + |y|) -2 ) from (2.
2), using the Hardy inequality (B.7) we get for the second term after a change of variables:

∇ σ-2 (p(τ z (Q 1 λ )) p-1 w) L 2 = p λ σ-sc ∇ σ-2 (Q p-1 ε) L 2 ≤ C λ σ-sc ∇ σ ε L 2 = C λ σ-sc √ E σ .
Combining the four above identities we obtain:

∇ σ w int .∇ σ (-H z, 1 λ w int ) ≤ C(L, M, K 1 , K 2 ) √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1+ α 2L +O( η+σ-sc L ) .
(5.23)

-The modulation term: To treat the error induced by the cut separately, we decompose as follows, going back to renormalized variables using Cauchy-Schwarz:

∇ σ w.∇ σ ( 1 λ 2 χτ z ( Mod(t) 1 λ )) ≤ ∇ σ w.∇ σ ( 1 λ 2 (1 + (χ -1)))τ z ( Mod(t) 1 λ )) ≤ 1 λ 2(σ-sc)+2 √ E σ ∇ σ Mod(s) L 2 + ∇ σ ( 1 λ 2 (χ -1)τ z ( M od(t) 1 λ )) L 2 .
(5.24) For the first term in the above equation, using (4.32) and the modulation estimates (4.42) and (4.43) we get:

∇ σ Mod(s) L 2 ≤ (n,k,i)∈I |b (n,k) i,s + (2i -α n )b (0,1) 1 b (n,k) i -b (n,k) i+1 | ∇ σ (χ B 1 (T (n,k) i + L+2 2 ∂S j ∂b (n,k) i )) L 2 +| λs λ + b (0,1) 1 | ∇ σ (Λ Qb ) L 2 +| zs λ + b (1,•) 1 | ∇ σ+1 ( Qb ) L 2 ≤ C(L, M )( E 2s L + s -L-3 ) ∇ σ (Λ Qb ) L 2 + ∇ σ+1 ( Qb ) L 2 + (n,k,i)∈I ∇ σ (χ B 1 T (n,k i ) L 2 + L+2 2 ∇ σ (χ B 1 ∂S j ∂b (n,k) i ) L 2 .
Under the trapped regime bound (4.25) one has E 2s L +s -L-3 ≤ s -L-1+δ 0 -η(1-δ ′ 0 ) . Moreover, from the asymptotic of Q, ΛQ, T (n,k) i and S j ((2.1), (2.7), Lemma 2.10 and (3.8)), and the bounds on the parameters (4.27) one has:

∇ σ (Λ Qb ) L 2 ≤ C, ∇ σ+1 ( Qb ) L 2 ≤ C, (n,k,i)∈I ∇ σ (χ B 1 T (n,k i ) L 2 + L+2 2 ∇ σ (χ B 1 ∂S j ∂b (n,k) i ) L 2 ≤ C(L) ≤ C(L)s L+ sup 0≤n≤n 0 δn-δ 0 -α 2 -(σ-sc) 2 +C(L)η + C(L)s L+ sup 0≤n≤n 0 δn-δ 0 -α 2 -(σ-sc) 2 +C(L)η-g ′ 2
All these bounds then imply that for the modulation term that is located at the blow up zone in (5.24) there holds:

1 λ 2(σ-sc )+2 √ E σ ∇ σ Mod(s) L 2 ≤ C(L,M ) √ Eσs L+ sup 0≤n≤n 0 δn-δ 0 -α 2 - (σ-sc) 2 +C(L)η λ 2(σ-s L )+2 s L+1-δ 0 +(1-δ ′ 0 )η ≤ C(L,M ) √ Eσ λ 2(σ-sc)+2 s 1+   α 2 -sup 0≤n≤n 0 δn   + σ-sc 2 -C(L)η
We now turn to the second term in (5.24). The blow up point z is arbitrarily close to 0 from (4.50) and from the expression of the modulation term (4.32), all the terms except τ z ([ λs λ + b

(0,1) 1 ]ΛQ + [b (1,• 1 + zs λ ].∇Q) 1 λ have support in the zone {|x-z| ≤ 2B 1 λ} ⊂ B(0, 1 2 ) because B 1 λ ≪ 1.
This means that from the modulation estimates (4.42):

∇ σ ( 1 λ 2 (χ -1)τ z ( M od(t) 1 λ )) L 2 = ∇ σ ( 1 λ 2 (χ -1)τ z ([ λs λ + b (0,1) 1 ]ΛQ + [b (1,• 1 + zs λ ].∇Q) 1 λ )) L 2 ≤ C[| λs λ +b (0,1) 1 |+| zs λ +b (1,•) 1 |] λ 2 ≤ C λ 2 s L+1
We inject the two previous equations in the expression (5.24), yielding: ΛQ+b

∇ σ w int .∇ σ ( 1 λ 2 χτ z ( Mod(t) 1 λ )) ≤ C(L,M ) √ Eσ λ 2(σ-sc)+2 s 1+   α 2 -sup 0≤n≤n 0 δn   + σ-sc 2 -C(L)η
(1,•) 1 .∇Q) 1 λ have support in the zone {|x -z| ≤ 2B 1 λ} ⊂ B(0, 1 2 
). Therefore, one computes, making the following decomposition and coming back to renormalized variables, using the estimates(3.32) and (4.42): 

∇ σ w int .∇ σ ( 1 λ 2 χτ z ( ψb 1 λ )) ≤ ∇ σ ε L 2 λ σ-sc+2 ( ∇ σ ψb L 2 λ 2(σ-sc)+2 + ∇ σ ((χ -1)τ z ( ψb 1 λ )) L 2 ) ≤ C(L) √ Eσ λ 2(σ-sc )+2 s 1+ α 2 + σ-sc 2 -C(L)η + ∇ σ ε L 2 λ σ-sc+2 ∇ σ (χ -1)(τ z (b (0,1) 1 ΛQ + b (1,• 1 .∇Q) 1 λ ) L 2 ≤ C(L) √ Eσ λ 2(σ-sc)+2 s 1+ α 2 + σ-sc 2 -C(L)η + C ∇ σ ε L 2 λ 2(σ-sc)+2 (|b (0,1) 1 |λ α+σ-sc + |b (1,•) 1 |λ 1+σ-sc ) ≤ C(L) √ Eσ λ 2(σ-sc)+2 s 1+ α 2 + σ-sc 2 
∇ σ w int .∇ σ (NL(w int )) ≤ C p k=2 ∇ σ+2-(k-1)(σ-sc) ε L 2 ∇ σ-2+(k-1)(σ-sc) ( Qp-k b ε k ) L 2 λ 2(σ-sc)+2
(5.27) We fix k, 2 ≤ k ≤ p and focus on the k-th term in the sum. The first term is estimated using interpolation, the coercivity estimate (C.16) and the bound (4.25): 

∇ σ+2-(k-1)(σ-sc) ε L 2 ≤ C ∇ σ ε 1- 2-(k-1)(σ-sc ) 2s L -σ L 2 ∇ 2s L ε 2-(k-1)(σ-sc ) 2s L -σ L 2 ≤ C(L, M ) √ E σ 1- 2-(k-1)(σ-sc ) 2s L -σ E 2s L 2-(k-1)(σ-sc) 2s L -σ ≤ C(L,M,K 1 ,K 2 ) s (σ-sc)ℓ 2ℓ-α +1- (k-1)(σ-sc) 2 + α 2L +O |σ-sc|+|η| L . ( 5 
∇ σ-2+(k-1)(σ-sc) ( Qp-k b ε k ) L 2 ≤ C ∇ σ-2+(k-1)(σ-sc)+ 2(p-k) p-1 (ε k ) L 2 . (5.29) We write σ -2 + (k -1)(σ -s c ) + 2(p -k) p -1 = σ(n, k) + δ(n, k) where σ(n, k) := E[σ -2 + (k -1)(σ -s c ) + 2(p-k) p-1 ] ∈ N and 0 ≤ δ(n, k) < 1.
Developing the entire part of the derivative yields:

∇ σ-2+(k-1)(σ-sc)+ 2(p-k) p-1 (ε k ) L 2 ≤ (µ i ) 1≤i≤k ∈N kd , i |µ i |=σ(n,k) ∇ δ(σ,k) ( k 1 ∂ µ i ε) L 2 .
(5.30)

Fix (µ i ) 1≤i≤k ∈ N kd satisfying k i=1 |µ i | = σ(n, k)
in the above sum. We define the following family of Lebesgue exponents (that are well-defined since σ < d 2 ):

1 p i := 1 2 - σ -|µ i | 1 d , 1 p ′ i := 1 2 - σ -|µ i | -δ(σ, k) d for 1 ≤ i ≤ k.
One has p i > 2 and a direct computation shows that

1 p ′ j + i =j 1 p i = 1 2 .
We now recall the commutator estimate:

∇ δσ (uv) L q ≤ C ∇ δσ u L p 1 v L p 2 +C ∇ δσ v L p ′ 1 u L p ′ 2 , for 1 p 1 + 1 p 2 = 1 p ′ 1 + 1 p ′ 2 = 1 q , provided 1 < q, p 1 , p ′ 1 < +∞ and 1 ≤ p 2 , p ′ 2 ≤ +∞.
This estimate, combined with the Hölder inequality allows us to compute by iteration:

∇ δ(σ,k) ( k i=1 ∂ µ i ε) L 2 ≤ C ∂ µ 1 +δ(σ,k) ε L p ′ 1 k 2 ∂ µ i ε L ( k 2 1 p i ) -1 +C ∂ µ 1 ε L p 1 ∇ δ(σ,k) ( k 2 ∂ µ i ε) L ( 1 2 -1 p 1 ) -1 ≤ C ∂ µ 1 +δ(σ,k) ε L p ′ 1 k 2 ∂ µ i ε L p i +C ∂ µ 1 ε L p 1 ∂ µ 2 +δ(σ,k) ε L p ′ 2 k 3 ∂ µ i ε L ( k 3 1 p i ) -1 +C ∂ µ 1 ε L p 1 ∂ µ 2 ε L p 2 ∇ δ(σ,k) ( k 3 ∂ µ i ε) L ( 1 2 -1 p 1 -1 p 2 ) -1 ≤ C ∂ µ 1 +δ(σ,k) ε L p ′ 1 k 2 ∂ µ i ε L p i +C ∂ µ 2 +δ(σ,k) ε L p ′ 2 i =2 ∂ µ i ε L p i +C ∂ µ 1 ε L p 1 ∂ µ 2 ε L p 2 ∇ δ(σ,k) ( k 3 ∂ µ i ε) L ( 1 2 -1 p 1 -1 p 2 ) -1 ≤ ... ≤ C k i=1 ∂ µ i +δ(σ,k) ε L p ′ i k j=1, j =i ∂ µ i ε L p j .
From Sobolev embedding, one has on the other hand that:

∂ µ i +δ(σ,k) ε L p ′ i + ∂ µ i ε L p i ≤ C ∇ σ ε L 2 = C E σ .
Therefore (the strategy was designed to obtain this):

∇ δ(σ,k) ( k i=1 ∂ µ i ε) L 2 ≤ E σ k .
Plugging this estimate in (5.29) using (5.30) gives:

∇ σ-2+(k-1)(σ-sc) ( Qp-k b ε k ) L 2 ≤ C E σ k .
Injecting this bound and the bound (5.28) in the decomposition (5.27) yields:

∇ σ w int .∇ σ (NL(w int )) ≤ C(L,M,K 1 ,K 2 ) √ Eσ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1+ α 2L +O |η|+|σ-sc| L p k=2 √ Eσ s -σ-sc 2 k-1
.

(5.31)

-The small linear term: One has: L(ε) = -p(Q p-1 -Qp-1 )ε. The potential here admits the asymptotic Q p-1 -Qp-1 |y| -2-α at infinity which is better than the asymptotic of the potential appearing in the linear term Q p-1 ∼ |y| -2 we used previously to estimate it. Hence using verbatim the same techniques one can prove the same estimate: 

∇ σ w int .∇ σ (L(w int )) ≤ C(L, M, K 1 , K 2 ) √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1+ α 2L +O |η|+|σ-sc| L . ( 5 
| ∇ σ w int .∇ σ (-H z, 1 λ w int -1 λ 2 χτ z ( Mod(t) 1 λ + ψb 1 λ ) + NL(w int ) + L(w int ))| ≤ √ Eσ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 C(L,M,K 1 ,K 2 ) s α 2L +O ( η+σ-sc L ) + C(L,M,K 2 ) s - (σ-sc)α 2ℓ-α +( α 2 -sup 0≤n≤n 0 δn)-C(L)η + C(L) s - (σ-sc)α 2ℓ-α + α 2 -C(L)η + C(L,M,K 1 ,K 2 ) s α 2L +O ( η+σ-sc L ) p k=2 √ Eσ s -σ-sc 2 k-1
.

(5.33) step 2 The last three terms outside the blow up zone in (5.22). By a change of variables we see that the extra error term (4.39) is bounded:

∇ σ R L 2 (R d ) ≤ C.
Then, the extra linear term in (5.22) is estimated directly via interpolation using the bound (4.28):

∇ σ (-∆χ B(0,3) w -2∇χ B(0,3) .∇w + pτ z Q p-1 1 λ (χ p-1 B(0,1) -χ B(0,3) )w) L 2 (R d ) ≤ w H σ+1 ≤ w 1-1 2s L -σ H σ w 1 2s L -σ H 2s L ≤ C(K 1 , K 2 ) 1 λ 2s L -σ s L+1-δ 0 +η(1-δ ′ 0 ) 1 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2s L -σ s L+1-δ 0 +η(1-δ ′ 0 ) 2 2s L -σ = C(K 1 ,K 2 ) λ 2 s 1+ α 2L +O ( σ-sc+η L ) because 1 λ 2s L -σ s L+1-δ 0 +η(1-δ ′ 0
) ≫ 1 in the trapped regime. For the last non linear in (5.22) one has using (D.4) and (4.28):

Ñ L H σ ≤ C w H σ w p-1 H d 2 +σ-sc ≤ C(K 1 ) w (p-1) d 2 +σ-sc-σ 2s L -σ H 2s L ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 2 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2 s 1+ α 2L +O ( σ-sc+η L ) .
The three previous estimates imply that for the terms created by the cut in (5.22) there holds the estimate (we recall that λ σ-sc

s ℓ(σ-sc) 2ℓ-α = 1 + O(s -η 0 ) from (4.51)): ∇ σ w int .∇ σ ( L + R + Ñ L) ≤ √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 C(L, M, K 1 , K 2 ) s α 2L +O( η+σ-sc L )
. (5.34) step 3 Conclusion. We now come back to the first identity we derived (5.22) and inject the bounds (5.33) and (5.34), yielding:

d dt Eσ λ 2(σ-sc) ≤ √ Eσ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 C(L,M,K 1 ,K 2 ) s α 2L +O ( η+σ-sc L ) + C(L,M,K 2 ) s - (σ-sc)α 2ℓ-α +( α 2 -sup 0≤n≤n 0 δn)-C(L)η + C(L) s - (σ-sc)α 2ℓ-α + α 2 -C(L)η + C(L,M,K 1 ,K 2 ) s α 2L +O ( η+σ-sc L ) p k=2 √ Eσ s -σ-sc 2 k-1
.

As the constants never depends on s 0 or on η, as L ≫ 1 is an arbitrary large integer, 0 < σ -s c ≪ 1, α 2 -sup 0≤n≤n 0

δ n > 0, we see that for s 0 sufficiently large and η sufficiently small, the terms in the right hand side of the previous equation can be as small as we want, and (5.21) is obtained.

Proposition 5.5 (Lyapunov monotonicity for the low Sobolev norm of the remainder outside the blow up area). Suppose all the constants involved in Proposition 4.6 are fixed except s 0 and η. Then for s 0 large enough and η small enough, for any solution u that is trapped on [s 0 , s ′ ) there holds for t ∈ [0, t(s ′ )):

d dt w ext 2 H σ ≤ C(K 1 , K 2 ) s 1+ α 2L +O( η+σ-sc L ) λ 2 w ext H σ . (5.35)
Proof. From the evolution equation of w ext (4.33) we deduce:

d dt w ext 2 H σ (Ω) ≤ C w ext H σ (Ω) ∆w ext +∆χ 3 w+2∇χ 3 .∇w+(1-χ 3 )w p H σ (Ω) .
(5.36) For the linear terms, using interpolation and the bounds (4.25) and (4.28) one finds:

∆w ext + ∆χ 3 w + 2∇χ 3 .∇w H σ (Ω) ≤ C w ext H σ+2 (Ω) +C w H σ+1 (Ω) ≤ C w ext 1-2 2s L -σ H σ (Ω) w ext 2 2s L -σ H 2s L (Ω) +C w 1-1 2s L -σ H σ (Ω) w 1 2s L -σ H 2s L (Ω) ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 1 2s L -σ + 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 2 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 2 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2 s 1+ α 2L +O ( η+σ-sc L ) because 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0
) ≫ 1 in the trapped regime from (4.51). For the nonlinear term, using, using (D.4), interpolation and then the bootstrap bound (4.28):

(1 -χ 3 )w p H σ ≤ C w p H σ (Ω) ≤ C w H σ (Ω) w p-1 H d 2 +σ-sc (Ω) ≤ C(K 1 ) w (p-1) d 2 +σ-sc-σ 2s L -σ H 2s L (Ω) ≤ C(K 1 ) w 2 2s L -σ H 2s L (Ω) ≤ C(K 1 ,K 2 ) s 1+ α 2L +O ( η+σ-sc L ) λ 2
Injecting the two above estimates in (5.36) yields the desired identity (5.35).

Lyapunov monotonicity for high regularity norms of the remainder.

We derive Lyapunov type monotonicity formulas for the high regularity norms of the remainder inside and outside the blow-up zone, E 2s L and w ext H 2s L , in Propositions 5.6 and 5.8. In our general strategy, we have to find a way to say that w is of smaller order compared to the excitation χτ z (α b, 1 λ

) and does not affect the blow up dynamics induced by this latter. This is why we study the quantity E 2s L : it controls the usual Sobolev norm H 2s L and any local norm of lower order derivative which is useful for estimates, and is adapted to the linear dynamics as it undergoes dissipation. Finally, for this norm one sees that the error ψb is of smaller order compared to the main dynamics of χτ z ( Qb, 1 λ ) (this is the η(1 -δ ′ 0 ) gain in (3.33)).

Proposition 5.6 (Lyapunov monotonicity for the high regularity adapted Sobolev norm of the remainder inside the blow up area). Suppose all the constants of Proposition 4.6 are fixed, except s 0 and η. Then there exists a constant δ > 0, such that for any constant N ≫ 1, for s 0 large enough and η small enough, for any solution u that is trapped on [s 0 , s ′ ) there holds for 0 ≤ t < t(s ′ ):

d dt E 2s L λ 2(2s-L-sc ) + O (L,M ) 1 λ 2(2s L -sc) s L+1-δ 0 +η(1-δ ′ 0 ) ( E 2s L + 1 s L+1-δ 0 +η(1-δ ′ 0 ) ) ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ ′ 0 ) + C(L,M ) N 2δ E 2s L +E 2s L p 2 √ Eσ 1+O ( 1 L ) s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O ( η+σ-sc L ) + C(L,M,K 1 ,K 2 ) √ E 2s L s L+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( σ-sc+η L ) , (5.37 
) where O L,M (f ) denotes a function depending on time such that |O L,M (f )(t)| ≤ C(L, M )f for a constant C(L, M ) > 0,
and where E σ and E 2s L are defined in (4.9) and (4.7).

Remark 5.7. (5.37) has to be understood the following way. The O() in the time derivative is a corrective term coming from the refinement of the last modulation equations, see (4.43) and (5.2), it is of smaller order for our purpose so one can "forget" it. In the right hand side of (5.37), the first two terms come from the error ψb made in the approximate dynamics. The third one results from the competition of the dissipative linear dynamics and the lower order linear terms that are of smaller order (the motion of the potential in the operator H z, 1 λ involved in E 2s L , and the difference between the potentials τ z ( Qb,

1 λ ) p-1 and τ z (Q 1 λ ) p-1
). The penultimate represents the effect of the main nonlinear term, and shows that one needs E σ smaller than s sc-σ to control the energy transfer from low to high frequencies. The last one results from the cut of w at the border of the blow up zone.

Proof of Proposition 5.6. From (4.40) one has the identity:

d dt E 2s L λ 2(2s L -sc ) = d dt |H s L z, 1 λ w int | 2 = -2 H s L z, 1 λ w int H s L +1 z, 1 λ w int + H s L z, 1 λ w int H s L z, 1 λ ( 1 λ 2 χτ z (-Mod(t) 1 λ )) +2 H s L z, 1 λ w int H s L z, 1 λ [ 1 λ 2 χτ z (-ψb 1 λ ) + NL(w int ) + L(w int )] + d dt (H s L z, 1 λ )w int +2 H s L z, 1 λ w int H z, 1 λ ( L + Ñ L + R).
(5.38) The proof is organized as follows. For the terms appearing in this identity: for some (those on the second line) we find direct upper bounds (step 1), then we integrate by part in time some modulation terms that are problematic to treat the second term in the right hand side (step 2), and eventually we prove that the terms created by the cut of the solitary wave (the last line) are harmless and use some dissipation property at the linear level (produced by the first term in the right hand side) to improve the result (step 3). Throughout the proof, the estimates are performed on R d as w int has compact support inside Ω, and we omit it in the notations. step 1 Brute force upper bounds. We claim that the non linear term, the error term, the small linear term and the term involving the time derivative of the linearized operator in (5.38) can be directly upper bounded, yielding:

H s L z, 1 λ [NL(w int ) -1 λ 2 χτ z ( ψb, 1 λ ) + L(w int )] + d dt (H s L z, 1 λ )w int L 2 ≤ 1 λ (2s L -sc)+2 s E 2s L p 2 √ Eσ s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O η+σ-sc+L -1 L + C(L) s L+1-δ 0 +η(1-δ 0 ) ′ +C(L, M ) |H s L ε| 2 1+|y| 2δ 1 2
(5.39) for some constant δ > 0. We now analyse these four terms separately.

-The error term. We decompose between the main terms and the terms created by the cut. The cut induced by χ := χ(λy + z) only sees the terms b (0,1) 1

ΛQ + b

(1,•) [START_REF] Adams | Sobolev spaces[END_REF] .∇Q because all the other terms in the expression (3.36) of ψb have support inside B d (2B 1 ), and that |z| ≪ 1 (4.50) and B 1 ≪ 1 λ from (4.51). For the main term we use the estimate (3.33) and for the second the bound on the parameters (4.27) and the asymptotics (2.7) and (2.1) of ΛQ and ∂Q:

H s L z, 1 λ ( 1 λ 2 χτ z ψb, 1 λ ) L 2 ≤ C H s L z, 1 λ ( 1 λ 2 τ z ψb, 1 λ ) L 2 +C H s L z, 1 λ ( 1 λ 2 (1 -χ)τ z ψb, 1 λ ) L 2 . ≤ H s L ψb L 2 λ 2s L -sc + 1 λ 2(2s L -sc)+4 |H s L [(1 -χ)(b (0,1) 1 ΛQ + b (1,•) 1 .∇Q]| 2 ≤ C(L) λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 ) + Cλ 2(α-1) s + C s α+1 2 ≤ C(L) λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 ) (5.40) since α > 1, hence λ 2(α-1) s + 1 s α+1 2
≪ 1, and since

1 λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 ) ≫ 1 in the trapped regime from (4.51).
-The non linear term: We begin by coming back to renormalized variables:

H s L z, 1 λ (NL(w int )) L 2 ≤ H s L (NL(ε)) L 2 λ (2s L -sc)+2 ≤ C p k=2 H s L ( Qp-k b ε k ) L 2 λ (2s L -sc)+2 (5.41) because NL(ε) = p k=2 C p k Qp-k b ε k .
We fix k with 2 ≤ k ≤ p and study the corresponding term in the above sul. One has H = -∆ -pQ p-1 , and Q is a smooth profile satisfying the estimate

Q = O((1 + |y|) -2
p-1 ) which propagates to its derivatives from (2.1). Similarly, from (4.27) and (3.29) one has:

Qb = O((1 + |y|) -2 p-1
) and it propagates for the derivatives. The Leibniz rule for derivation then yields:

H s L ( Qp-k b ε k ) 2 L 2 ≤ C(L) µ∈N d , 0≤|µ|≤2s L |∂ µ (ε k )| 2 1+|y| 4(p-k) p-1 +4s L -2|µ| ≤ C(L) (µ i ) 1≤i≤k ∈N kd , k i |µ i |≤2s L k 1 |∂ µ i ε| 2 1+|y| 4(p-k) p-1 +4s L -2 k 1 |µ i | .
(5.42) We fix µ i ∈ N kd with |µ i | 1 ≤ 2s L and focus on the corresponding term in the above equation. Without loss of generality we order by increasing length:

|µ 1 | ≤ ... ≤ |µ k |. We now distinguish between two cases. Case 1: if |µ k | + 2(p-k) p-1 + 2s L -k 1 |µ i | ≤ 2s L . As one has |µ k | 1 + (p-k) p-1 + 2s L - k 1 |µ i | 1 ≥ σ because the |µ i | 1 's are increasing and |µ i | 1 ≤ 2s L , using (D.1): |∂ µ k ε| 2 1 + |y| 4(p-k) p-1 +4s L -2 k 1 |µ i | 1 ≤ C(M )E |µ i |-|µ k | 1 - 2(p-k) p-1 2s L -σ σ E 2s L -σ-|µ i |+|µ k | 1 + 2(p-k) p-1 2s L -σ 2s L .
As the coefficients are in increasing order and L is arbitrarily very large, for 1 ≤ j < k there holds |µ i | + d 2 ≤ 2s L . We then recall the L ∞ estimate (D.3):

∂ µ i ε L ∞ ≤ E σ 2s L -|µ i | 1 -d 2 2s L -σ +O 1 L 2 E 2s L |µ i | 1 + d 2 -σ 2s L -σ +O 1 L 2 .
The two previous estimates imply that:

k 1 |∂ µ i ε| 2 1+|y| 4(p-k) p-1 +4s L -2 k 1 |µ i | 1 ≤ |∂ µ k ε| 2 1+|y| 4(p-k) p-1 +4s L -2 k 1 |µ i | 1 k-1 1 ∂ µ i ε 2 L ∞ ≤ E 2(k-1)s L -(k-1) d 2 -2 p-k p-1 2s L -σ +O 1 L 2 σ E (k-1) d 2 -kσ+2s L +2 p-k p-1 2s L -σ +O 1 L 2 2s L ≤ E k-1+ -2+(k-1)(σ-sc) 2s L -σ +O 1 L 2 σ E 1+ 2-(k-1)(σ-sc ) 2s L -σ +O 1 L 2 2s L ≤ E 2s L E 1+O ( 1 L ) σ s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s 1+ α L +O η+σ-sc+L -1 L . (5.43) Case 2: if |µ k | + 2(p-k) p-1 + 2s L -k 1 |µ i | > 2s L . This means 2(p-k) p-1 -k-1 1 |µ i | > 0.
Hence, there are two subcases: the subcase

|µ i | = 0 for 1 ≤ i ≤ k -1 and the subcase |µ k-1 | = 1 (because the µ i 's are ordered by increasing size |µ i |). If |µ i | = 0 for 1 ≤ i ≤ k -1,
then, using the weighted L ∞ estimate (D.2), the coercivity estimate (C.16) and the bound (4.25) we obtain:

k 1 |∂ µ i ε| 2 1+|y| 4(p-k) p-1 +4s L -2 k 1 |µ i | = |ε| 2(k-1) 1+|y| 4(p-k) p-1 +4s L -2|µ k | ≤ ε 1+|y| 2(p-k) p-1 2 
L ∞ ε 2(k-2) L ∞ E s L ≤ E 1+O ( 1 L ) σ s -(σ-sc) (k-1) C(L,M,K 1 ,K 2 )Es L s 1+ α L +O η+σ-sc+L -1 L
.

If |µ k-1 | = 1, then, using the weighted L ∞ estimate (D.2) for ∇ε, the coercivity estimate (C.16) and the bound (4.25) we obtain:

k 1 |∂ µ i ε| 2 1+|y| 4(p-k) p-1 +4s L -2 k 1 |µ i | = |∂ µ k-1 ε| 2 |ε| 2(k-2) 1+|y| 4(p-k) p-1 +4s L -2|µ k | -2 ≤ ∂ µ k-1 ε 1+|y| 2(p-k) p-1 -1 2 L ∞ ε 2(k-2) L ∞ E s L ≤ E 1+O ( 1 L ) σ s -(σ-sc) (k-1) C(L,M,K 1 ,K 2 )Es L s 1+ α L +O η+σ-sc+L -1 L .
In both subcases there holds:

k 1 |∂ µ i ε| 2 1 + |y| 4(p-k) p-1 +4s L -2 k 1 |µ i | ≤   E 1+O( 1 L ) σ s -(σ-sc)   (k-1) C(L, M, K 1 , K 2 )E s L s 1+ α L +O η+σ-sc+L -1 L . (5.44) 
Now we come back to (5.41), which we reformulated in (5.42) where we estimated the terms appearing in the sum in (5.43) and (5.44), obtaining the following bound for the nonlinear term's contribution in (5.38):

H s L z, 1 λ (NL(w int )) L 2 ≤ E 2s L λ (2s L -sc)+2 p k=2   √ E σ 1+O( 1 L ) s -σ-sc 2   k-1 C(L, M, K 1 , K 2 ) s 1+ α L +O η+σ-sc+L -1 L .
(5.45) -The small linear term and the term involving the time derivative of the linearized operator: we claim that there exists a constant δ := δ(d, L, p) > 0 such that:

H s L z, 1 λ (L(w int )) + d dt (H s L z, 1 λ )w int L 2 ≤ C(L, M ) λ 2s L -sc+2 s |H s L ε| 2 1 + |y| 2δ 1 2 
.

(5.46)

We now prove this estimate. The small linear term is in renormalized variables from (4.36):

|H s L z, 1 λ (L(w int ))| 2 = p 2 λ 2(2s L -sc)+4 (H s L ((Q p-1 -Qp-1 b )ε)) 2 .
For µ ∈ N s , one has the following asymptotic behavior for the potential that appeared, from the bounds on the parameters (4.27) and the expression of Qb (3.29):

|∂ µ (Q p-1 -Qp-1 b )| ≤ 1 s C(µ) 1 + |y| α-C(L)η+|µ| ≤ 1 s C(µ) 1 + |y| δ+|µ|
for η small enough, because α > 2, and for some constant δ that can be chosen small enough so that:

0 < δ ≪ 1, with δ < sup 0≤n≤n 0 δ n and δ < d 4 - γ n 0 +1 2 -s L (5.47) 
(this technical condition is useful to apply a coercivity estimate for the next equation, all the terms appearing are indeed strictly positive from (1.25)). We recall that

H = -∆ -pQ p-1 where Q is a smooth potential satisfying |∂ µ Q| ≤ C(µ) 1+|y| 2 
p-1 +|µ| . Using the Leibniz rule this implies:

(H s L ((Q p-1 -Qp-1 b )ε)) 2 ≤ C(L) s 2 µ i ∈N d , |µ i |≤2s L , i=1,2 |∂ µ 1 ε||∂ µ 2 ε| 1+|y| 4s L +2δ-2|µ 1 |-2|µ 2 | ≤ C(L) s 2 |H s L ε| 2 1+|y| 2δ
(5.48) where we used for the last line the weighted coercivity estimate (C. [START_REF] Jendrej | Construction of two-bubble solutions for energy-critical wave equations[END_REF]), which we could apply because δ satisfies the technical condition (5.47). We now turn to the term involving the time derivative of the linearized operator in (5.38). Going back to renormalized variables it can be written as:

| d dt H s L z, 1 λ w int | 2 = p 2 (p -1) 2 λ 2(2s L -sc)+4 s L i=1 (H i-1 [(Q p-2 z s λ .∇Q + λ s λ Q p-2 ΛQ)H s L -i ε]) 2 .
For µ ∈ N d , one has the following asymptotic behavior for the two potentials that appeared (from the asymptotic (2.1) and (2.7) of Q and ΛQ):

|∂ µ (Q p-2 ∂ y i Q)| ≤ C(µ) 1 + |y| 2+1+|µ| for 1 ≤ i ≤ d, and |∂ µ (Q p-2 ΛQ)| ≤ C(µ) 1 + |y| 2+α . Therefore, as H = -∆ -pQ p-1 where Q is a smooth potential satisfying |∂ µ Q| ≤ C(µ) 1+|y| 2 p-1 +|µ| 1
, using the Leibniz rule and the two above identities:

H s L z, 1 λ w int d dt (H s L z, 1 λ )w int ≤ C(L)(| λs λ | 2 +| zs λ | 2 ) λ 2(2s L -sc )+4 µ i ∈N d , |µ i | 1 ≤2s L , i=1,2 |∂ µ 1 ε||∂ µ 2 ε| 1+|y| 4s L +2-2|µ 1 |-2|µ 2 | . ≤ C(L) λ 2(2s L -sc)+4 s 2 µ i ∈N d , |µ i | 1 ≤2s L , i=1,2 |H s L ε| 2 1+|y| 2δ
(5.49) for δ < α, 1 being defined by (5.47), where we used the weighted coercivity estimate (C.16) and the fact that

| λs λ | ∼ s -1 and | zs λ | ∼ s -1-α-1
2 from (4.42) and (4.27). We now combine the estimates we have proved, (5.48) and (5.49), to obtain the estimate (5.46) we claimed.

-End of the proof of Step 1: we now gather the brute force upper bounds we have found for the terms we had to treat in (5.40), (5.45) and (5.46), yielding the bound (5.39) we claimed in this first step. step 2 Integration by part in time to treat the modulation term. We now focus on the modulation term in (5.38) which requires a careful treatment. Indeed, the brute force upper bounds on the modulation (4.42) are not sufficient and we need to make an integration by part in time to treat the problematic term b (n,k) Ln,s . We do this in two times. First we define a radiation term. Next we use it to prove a modified energy estimate.

-Definition of the radiation. We recall that

α b = (n,k,i)∈I b (n,k) i T (n,k) i + L+2 2 S i , where T (n,k) i
is defined by (2.26) and S i is homogeneous of degree (i, -γ -g ′ ) in the sense of Definition 2.14, see (3.8). We want to split α b in two parts to distinguish the problematic terms involving the parameters b

(n,k)
Ln . For i = 2, ..., L + 2, as S i is homogeneous of degree (i, -γ -g ′ ) it is a finite sum:

S i = J∈J (i) b J f J , with b J = (n,k,i)∈I (b (n,k) i ) J (n,k) i (5.50)
where J (i) is a finite subset of N #I and for all J ∈ J (i), |J| 3 = i and f J is admissible of degree (2|J| 2 -γ -g ′ ) in the sense of Definition 2.11. We then define the following partition of J (i):

J 1 (i) := {J ∈ J (i), J (n,k) Ln = 0 for all 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n)}, J 2 (i) := {J ∈ J (i), |J| = 2 and ∃(n, k, L n ) ∈ I, J (n,k) Ln ≥ 1}, J 3 (i) := J (i)\[J 1 (i) ∪ J 2 (i)], S i := J∈J 2 (i) b J f J , S ′ i := J∈J 3 (i) b J f J ,
(5.51) and the following radiation term:

ξ := H s L χ B 1 0≤n≤n 0 , 1≤k≤k(n) b (n,k) Ln T (n,k) Ln + L+2 i=2 S ′ i + L+2 i=2 H s L χ B 1 S i -χ B 1 H s L S i .
(5.52) From (5.51), for all J ∈ J 3 (i) there exists n with 0 ≤ n ≤ n 0 such that J

(n,k) Ln ≥ 1 and |J| ≥ 3. As δ n ′ > 0 this implies: ∀J ∈ J 3 (i), |J| 2 > L + 2 -δ 0 .
(5.53)

Using this fact, (2.7), the fact that H s L T (n,k) Ln = 0 since s L > L n for all 0 ≤ n ≤ n 0 , (5.51) and (4.27) the radiation satisfies:

ξ L 2 ≤ C(L, M ) s L+1-δ 0 +η(1-δ ′ 0 ) , Hξ L 2 ≤ C(L, M ) s L+2-δ 0 +η(2-δ ′ 0 ) , (5.54) 
∇ξ L 2 ≤ C(L, M ) s L+ 3 2 -δ 0 +η( 3 2 -δ ′ 0 ) , Λξ L 2 ≤ C(L, M ) s L+1-δ 0 +η(1-δ ′ 0 ) .
(5.55)

We eventually introduce the following remainders:

R 1 := H s L χ B 1 (n,k,i)∈I, i =Ln (b (n,k) i,s + (2i -α n )b (n,k) i b (0,1) 1 -b (n,k) i+1 ) (T (n,k) i + L+2 2 ∂S j ∂b (n,k) i ) -( λs λ + b (0,1) 1 )H s L Λ Qb -( zs λ + b (1,•) 1 ).H s L ∇ Qb +H s L χ B 1 (n,k,Ln)∈I (2L n -α n )b (n,k) Ln b (0,1) 1 (T (n,k) Ln + L+2 2 ∂S ′ j ∂b (n,k) Ln )) + (n,k,Ln)∈I (2L n -α n )b (n,k) Ln b (0,1) 1 L+2 j=2 H s L (χ B 1 ∂S j ∂b (n,k) Ln ) -χ B 1 H s L ∂S j ∂b (n,k) Ln R 2 := (n,k,Ln)∈I (b (n,k) Ln,s + (2L n -α n )b (n,k) Ln b (0,1) 1 ) L+2 2 χ B 1 H s L ∂S j ∂b (n,k) Ln , R 3 := (n,k,i)∈I, i =Ln b (n,k) i,s ∂ ∂ b (n,k) i ξ,
so that they produce from (5.52) and (4.32) the identity:

H s L ( Mod(s)) = ∂ s ξ + R 1 + R 2 + R 3 .
(

The remainder R 1 enjoys the following bounds from (4.42), (

:

R 1 L 2 ≤ C(L, M ) s L+2-δ 0 +(1-δ ′ 0 )η + C(L, M )E 2s L s 2 .
(5.57)

From the definition (5.51) of S j and the construction (3.25) of S j one has: 

L+2 j=2 HS j = -(n,k,Ln)∈I b (0,1) 1 b (n,k) Ln ΛT (n,k) Ln -(2L n -α n )T (n,k) Ln -(n,k,Ln)∈I b (n,k) Ln b (1,•) 1 .∇ΛT (n,k) Ln +p(p -1)Q p-2 (n,k,Ln)∈I b (n,k) Ln T (n,k) Ln (n ′ ,k ′ ,i)∈I b (n ′ ,k ′ ) i T (n ′ ,k ′ ) i . As H s L T (n,k) Ln = 0 since s L > L n for all 0 ≤ n ≤ n 0 ,
(1 + |y| 4+2δ )   χ B 1 H s L +1 L+2 j=2 ∂S j ∂ b (n,k) Ln   2 ≤ C(L) s
where δ is defined by (5.47) from what we deduce using (4.43):

(1 + |y|) 2+δ HR 2 L 2 ≤ C(L, M ) s L+4 + C(L, M ) E 2s L s . (5.58) 
Finally for the last remainder one has the estimate from (5.52), (4.42), (4.27), (4.25), (2.22) and (5.51) for s 0 large enough:

R 3 L 2 ≤ C(L, M ) s L+2-δ 0 +η(1-δ ′ 0 )
(5.59) -Modified energy estimate: we claim that the following modified energy estimate (compared to (5.38)) holds: ) is disjoint from the one of L, R, and Ñ L one gets the following expression for the left hand side of the previous equation (5.60):

d dt (H s L z, 1 λ w int + 1 λ 2s L τ z (ξ 1 λ )) 2 ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ-0 ′ ) + C(L, M ) E 2s L |H s L ε| 2 1+|y| 2δ 1 2 +E 2s L p k=2 √ Eσ 1+O ( 1 L ) s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O ( η+σ-sc L ) -2 H s L z, 1 λ w int H s L +1 z, 1 λ w int +2 H s L z, 1 λ w int H s L z, 1 λ ( L + R + Ñ L), (5.60 
d dt (H s L z, 1 λ w int + 1 λ 2s L τ z (ξ 1 λ )) 2 = -2 H s L z, 1 λ w int H s L +1 z, 1 λ w int -2 λ 2s L +2 H s L z, 1 λ w int τ z (R 2, 1 λ ) -2 λ 2s L τ z (ξ 1 λ )H s L +1 z, 1 λ w int + 2 H s L z, 1 λ w int + 1 λ 2s L τ z (ξ 1 λ ) × H s L z, 1 λ (NL(w int ) -1 λ 2 τ z ( ψb, 1 λ + (χ -1) M od(t) 1 λ ) + L(w int )) + d dt (H s L z, 1 λ )w int -1 λ 2+2s L τ z ((R 1 + R 3 + λs λ Λξ + 2s L λs λ ξ -zs λ .∇ξ) 1 λ ) -2 λ 4s L +2 τ z (ξ 1 λ )τ z (R 2, 1 λ ) + 2 H s L z, 1 λ w int H s L z, 1 λ ( L + Ñ L + R). (5.61) 
We now analyse all the terms in this identity except the first one and the last one that we will study in the next step. Using the estimate (5.58) on the remainder R 2 , going back in renormalized variables and using the coercivity (C.16) one gets for the second term in (5.61):

2 λ 2s L +2 H s L z, 1 λ w int τ z (R 2, 1 λ ) ≤ C |H s L -1 ε| 1+|y| 2+δ (1 + |y| 2+δ )|HR 2 | ≤ C(L,M ) √ E 2s L λ 2(2s L -sc)+2 s |H s L ε| 2 1+|y| 2δ 1 2 + 1 s L+3 .
Going back to renormalized variables, integrating by parts and using the estimate (5.54) on Hξ gives for the third term in (5.61):

2 λ 2s L τ z (ξ 1 λ )H s L +1 z, 1 λ w int ≤ C(L, M ) λ 2(2s L -sc)+2 E 2s L s L+2-δ 0 +η(2-δ ′ 0 ) .
To upper bound the fourth and the fifth terms in (5.61), we go back to renormalized variables and use the bound (5.39) on the error, the nonlinear term, the small linear term and the term involving the time derivative of the linearized operator we derived in Step 1, together with the bounds (5.54) and (5.55) on ξ, Λξ, ∇ξ and the fact that

| λs λ | ≤ Cs -1 and | zs λ | ≤ Cs -1-α-1 2
in the trapped regime, and the bound (5.57) and

(5.59) on the remainders R 1 and R 3 , yielding:

H s L z, 1 λ w int + 1 λ 2s L τ z (ξ 1 λ ) H s L z, 1 λ (NL(w int ) -1 λ 2 τ z ( ψb, 1 λ + (χ -1) M od(t) 1 λ ) +L(w int )) + d dt (H s L z, 1 λ )w -1 λ 2+2s L τ z ((R 1 + R 3 + λs λ Λξ + 2s L λs λ ξ -zs λ .∇ξ) 1 λ ) -2 λ 4s L +2 τ z (ξ 1 λ )τ z (R 1, 1 λ ) ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ-0 ′ ) + C(L, M ) E 2s L |H s L ε| 2 1+|x| 2δ 1 2 +E 2s L p k=2 √ Eσ 1+O ( 1 L ) s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O ( η+σ-sc L ) .
We finish the proof of the bound (5.60) by injecting in the identity (5.61) the three previous bounds we proved on the second, third, fourth and fifth terms.

step 3 Use of dissipation. We put an upper bound for the last terms in (5.60) and improve the energy estimate using the coercivity of the quantity -H s L +1 εH s L ε.

-The dissipation estimate: we recall that H = -∆ -pQ p-1 , the potential -pQ p-1 being below the Hardy potential, pQ p-1 < (d-2) 2 -4δ(p)

4|y| 2
for some constant δ(p) > 0 from (2.5). Hence, using the standard Hardy inequality one gets for the linear term:

-H s L z, 1 λ w int H z, 1 λ H s L z, 1 λ w int = - 1 λ 2(2s-L-sc )+2 H s L εHH s L ε = 1 λ 2(2s-L-sc )+2 -|∇H s L ε| 2 + pQ p-1 |H s L ε| 2 = 1 λ 2(2s-L-sc )+2 (d-2) 2 -δ(p) 2 (d-2) 2 + δ(p) 2(d-2) 2 |∇H s L ε| 2 + pQ p-1 |H s L ε| 2 ≤ 1 λ 2(2s-L-sc )+2 - (d-2) 2 - δ(p) 2 4 |H s L ε| 2 |y| 2 -δ(p) 2(d-2) 2 |∇H s L ε| 2 + (d-2) 2 -δ(p) 4 |H s L ε| 2 |y| 2 = - δ(p) 8λ 2(2s-L-sc )+2 |H s L ε| 2 |y| 2 - δ(p) 2(d-2) 2 λ 2(2s-L-sc )+2 |∇H s L ε| 2 .
(5.62) -Bounds for the terms created by the cut. We study the last terms in (5.60). From its definition (4.39), and as λ + |z| ≪ 1 from (4.51) and (4.50), the remainder R is bounded by a constant independent of the others:

H s L z, 1 λ R L 2 ≤ C.
(5.63)

For the non linear term, for any very small κ > 0, from (D.4), (4.38) and (4.28):

H s L z, 1 λ Ñ L L 2 ≤ C p k=2 w k H 2s L ≤ C w H 2s L p k=2 w k-1 H d 2 +κ ≤ C w H 2s L p k=2 w (k-1)(1- d 2 +κ-σ 2s L -σ ) H σ w (k-1)( d 2 +κ-σ 2s L -σ ) H 2s L ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )
1+(p-1)

d 2 +κ-σ 2s L -σ = C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 1+(p-1) 2 p-1 -σ-sc+κ 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 1+ 2 2s L -σ = C(K 1 ,K 2 ) λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( σ-sc+η L
) .

(5.64) because 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) ≫ 1 from (4.51), if κ has been chosen small enough. For the extra linear term in (5.60), performing an integration by parts, using Young's inequality for any ǫ > 0, (4.25) and (4.28):

H s L z, 1 λ w int H s L z, 1 λ L = H s L z, 1 λ w int H s L z, 1 λ [-∆χ 3 w -2∇χ 3 .∇w + pτ z Q p-1 1 λ (χ p-1 1 -χ 3 )w] ≤ C H s L z, 1 λ w int L 2 w H 2s L +Cǫ ∇H s L z, 1 λ w int 2 L 2 + C ǫ w int 2 H 2s L ≤ Cǫ ∇H s L z, 1 λ w int 2 L 2 + C(K 1 ,K 2 ,ǫ) λ 2(2s L -sc) s L+1-δ 0 +η(1-δ ′ 0 ) ≤ Cǫ λ 2(2s-L-sc )+2 |∇H s L ε| 2 + C(K 1 ,K 2 ,ǫ) λ 2(2s L -sc )+2 s L+2-δ 0 +η(1-δ ′ 0 )+ α 2ℓ-α
(5.65) because in the trapped regime λ 2 s ∼ s -α 2ℓ-α from (4.51). -Conclusion we inject in the modified energy estimate (5.60) the bounds (5.62), (5.63), (5.64) and (5.65), yielding:

d dt (H s L z, 1 λ w int + 1 λ 2s L τ z (ξ 1 λ )) 2 ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ-0 ′ ) + C(L, M ) E 2s L |H s L ε| 2 1+|y| 2δ 1 2 +E 2s L p 2 √ Eσ s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O ( η+σ-sc L ) -sδ(p) 8 |H s L ε| 2 |y| 2 -sδ(p) 2(d-2) 2 |∇H s L ε| 2 +Cǫs |∇H s L ε| 2 + C(K 1 ,K 2 ,M,L) √ E 2s L s L+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( σ-sc+η L
) .

(5.66) For any N ≫ 1, using Young's inequality and splitting the weighted integrals in the zone |y| ≤ N 2 and |y| ≥ N 2 gives for ǫ small enough and s 0 large enough:

C(L, M ) E 2s L |H s L ε| 2 1+|y| 2δ 1 2 -sδ(p)-sCǫ 8 |H s L |y| 2 ≤ C(L,M )E 2s L N 2δ + C(L, M )N 2δ |y|≤N 2 |H s L ε| 2 1+|y| 2δ -sδ(p) 16 |H s L ε| 2 |y| 2 ≤ C(L,M )E 2s L N 2δ
Finally, from the bound (5.54) on the size of ξ one has:

d dt (H s L z, 1 λ w + 1 λ 2s L τ z (ξ 1 λ )) 2 = d dt E 2s L λ 2(2s-L-sc ) + d dt 2 λ 2s L H s L z, 1 λ wτ z (ξ 1 λ ) + 1 λ 4s L (τ z (ξ 1 λ )) 2 = d dt E 2s L λ 2(2s-L-sc ) + d dt O (L,M ) 1 λ 2(2s L -sc) s L+1-δ 0 +η(1-δ ′ 0 ) ( E 2s L + 1 s L+1-δ 0 +η(1-δ ′ 0 ) )
where denotes O L,M (•) the usual O(•) for a constant in the upper bound that depends only on L and M only. Plugging the two previous identities in the modified energy estimate (5.66) yields the bound (5.37) we claimed in this proposition.

Proposition 5.8 (Lyapunov monotonicity for the high regularity Sobolev norm of the remainder outside the blow up zone). Suppose all the constants of Proposition 4.6 are fixed except s 0 . Then for s 0 large enough, for any solution u that is trapped on [s 0 , s ′ ) there holds for 0 ≤ t < t(s ′ ):

w ext 2 H 2s L ≤ ∂ s L t w ext (0) 2 L 2 + t 0 C(K 1 ,K 2 ) λ 2(2s L -sc )+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α dt ′ + t 0 C(K 1 ,K 2 ) ∂ s L t wext(t ′ ) L 2 λ 2s L -sc+2 s L+2+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( η+σ-sc L ) dt ′ + C(K 1 ,K 2 ) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 )+ α(p-1)(σ-sc) 2(2ℓ-α) +O ( σ-sc+η L
) .

(5.67)

Proof. From the time evolution (4.33) of w ext we get that :

∂ k+1 t w ext = ∆∂ k t w ext + (1 -χ 3 )∂ k t (w p ) + ∆χ 3 ∂ k t w + 2∇χ 3 .∇∂ k t w.
(5.68)

We make an energy estimate for ∂ s L t w ext and propagate this bound via elliptic regularity by iterations, what is a standard in the study of parabolic problems. All computations, unless mentioned, are performed on Ω, and we forget about this in the notations to ease writing. step 1 Estimate on the force terms. We first prove some estimates on the force terms in the right hand side of (5.68). From the decomposition (4.10) and the evolution (4.31) of w, in the exterior zone Ω\B d (2), ∂ k t w can be written as:

∂ k t w = k j=0 µ=(µ i ) 1≤i≤1+j(p-1) ∈N dk(p-1) , 1+j(p-1) i=1 |µ i | 1 =2(k-j) C(µ) 1+j(p-1) i=1 ∂ µ i w.
(5.69) for some constants C(µ). 

µ i < 2s L -d 2 for 2 ≤ i ≤ 1 + j(p - 1 
)), interpolation and (4.28), for κ > 0 small enough:

1+j(p-1) i=1 ∂ µ i w L 2 ≤ ∂ µ 1 w L 2 1+j(p-1) i=2 ∂ µ i w L ∞ ≤ w H |µ 1 | 1+j(p-1) i=2 w H d 2 +κ+|µ i | ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) |µ 1 |-σ+ 1+j(p-1) i=2 |µ i |+ d 2 +κ-σ 2s L -σ = C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )
1-

(j(p-1)-1)(σ-sc -κ) 2s L -σ ≤ C(K 1 ,K 2 ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )
(5.70) as

1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) ≫ 1 from (4.51). Subcase 2: if |µ 1 | < σ. Then µ i < σ for all 1 ≤ i ≤ j(p -1) and ∂ µ i w ∈ L p i with p i given by 1 p i = 1 2 -σ-|µ i | d
from Sobolev embedding. We define i 0 as the integer

2 ≤ i 0 ≤ 1 + j(p -1) such that i 0 -1 i=1 1 p i < 1 2 and i 0 i=1 1 p i ≥ 1 2 . i 0 exists since 1 p 1 < 1 2 and 1+j(p-1) i=1 1 
p i ≫ 1 2 . We define pi 0 > 2 by 1 pi 0 = 1 2 -i 0 -1 i=1 1 
p i and s ≥ σ as the regularity giving the Sobolev embedding H s-|µ i 0 | → L pi 0 :

s = i 0 i=1 |µ i | + (i 0 -1) d 2 -σ .
This implies that i 0 i=1 ∂ µ i w ∈ L 2 with the estimate (from Hölder inequality):

i 0 i=1 ∂ µ i w L 2 ≤ C ∂ µ i 0 w L pi 0 i 0 -1 i=1 ∂ µ i w L p i ≤ w H s i 0 -1 i=1 w H σ ≤ C(K 1 ) w s-σ 2s L -σ H 2s L
where we used interpolation and (4.25). Therefore, for κ > 0 small enough, using Sobolev embedding, the above estimate, interpolation and (4.25):

1+j(p-1) i=1 ∂ µ i w L 2 ≤ i 0 i=1 ∂ µ i w L 2 1+j(p-1) i=i 0 +1 w H d 2 +κ+|µ i | ≤ C(K 1 ) w s-σ 2s L -σ H 2s L 1+j(p-1) i=i 0 +1 w 1- d 2 +κ+|µ i |-σ 2s L -σ H σ w d 2 +κ+|µ i |-σ 2s L -σ H 2s L ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) 2s L -σ-j(p-1)(σ-sc)+(j(p-1)-i 0 +1)κ 2s L -σ ≤ C(K 1 , K 2 ) 1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )
(5.71) as

1 λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) ≫ 1 from (4.51).
End of substep 1: injecting (5.70) and (5.71) in the identity we obtain:

∂ s L t w L 2 (Ω\B d (2)) ≤ C(K 1 , K 2 ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 ) .
(5.72)

Estimate for the nonlinear term in (5.68). With the very same arguments used in the first substep one obtains the following bound:

∂ s L t w p L 2 (Ω\B d (2)) ≤ C(K 1 , K 2 ) λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 )+ α 2L +O( σ-sc+η L ) . (5.73) 
-The case k < s L . Again, the verbatim same methods yields for 0 ≤ k < s L :

∂ k t w H 2(s L -1-k) (Ω\B d (2)) ≤ C(K 1 , K 2 ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )+ α 2ℓ-α +O( 1 L )
.

(5.74)

∇∂ k t w H 2(s L -1-k) (Ω\B d (2)) ≤ C(K 1 , K 2 ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )+ α 2(2ℓ-α) +O( 1 L )
.

(5.75)

∂ k t w p H 2(s L -1-k) (Ω\B d (2)) ≤ C(K 1 , K 2 ) λ 2s L -sc s L+1-δ 0 +η(1-δ ′ 0 )+ α(p-1)(σ-sc) 2(2ℓ-α) +O( σ-sc+η L
) .

(5.76) step 2 Energy estimate for ∂ s L t w ext . We claim that for 0 ≤ t < t ′ :

∂ s L t w ext 2 L 2 ≤ ∂ s L t w ext (0) 2 L 2 + t 0 C(K 1 ,K 2 ) λ 2(2s L -sc)+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α dt ′ + t 0 C(K 1 ,K 2 ) ∂ s L t wext(t ′ ) L 2 λ 2s L -sc+2 s L+2+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( η+σ-sc L ) dt ′
(5.77) and we now prove this estimate. From (5.68) one has the identity:

∂ t ( ∂ s L t w ext 2 L 2 ) = -2 |∇∂ s L t w ext | 2 + 4 ∂ s L t w ext ∇χ 3 .∇∂ s L t w +2 ∂ s L t w ext ∂ s L t ((1 -χ 3 )w p + ∆χ 3 w) (5.78)
and we are now going to study the right hand side of this equation.

-Use of dissipation. We study all the terms except the nonlinear one in (5.78). After an integration by parts, using Cauchy-Schwarz, Young's and Poincare's inequalities:

∂ s L t w ext ∇χ 3 .∇∂ s L t w + ∂ s L t w ext ∂ s L t (∆χ 3 w) = -∆χ 3 ∂ s L t w∂ s L t w ext -∇χ 3 .∇∂ s L t w ext ∂ s L t w + ∂ s L t w ext ∂ s L t (∆χ 3 w) ≤ C[ (1 -χ 2 )∂ s L t w L 2 ∂ s L t w ext L 2 + (1 -χ 2 )∂ s L t w L 2 ∇∂ s L t w ext L 2 ] ≤ C(ǫ) (1 -χ 2 )∂ s L t w L 2 +ǫ ∇∂ s L t w 2 H 1 ,
for any ǫ > 0. Adding the dissipation term in (5.78), taking ǫ small enough and using the bound (5.72) on the force term ∂ s L t w gives:

-|∇∂ s L t w ext | 2 + 4 ∇χ 3 .∇∂ s L t w∂ s L t w ext + ∂ s L t w ext ∂ s L t (∆χ B(0,3) w) ≤ C (1 -χ 2 )∂ s L t w 2 L 2 ≤ C ∂ s L t w 2 L 2 ≤ C(K 1 ,K 2 ) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) ≤ C(K 1 ,K 2 ) λ 2(2s L -sc)+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α
(5.79) because in the trapped regime, λ 2 s ∼ s -α 2ℓ-α . -Estimate for the non linear term. We now turn to the non linear term in (5.78), and use the estimate (5.73) for ∂ s L t w p we found in the first step, yielding: step 3 Iteration of elliptic regularity. We claim that for i = 0...s L :

∂ s L t w ext ∂ s L t ((1 -χ 3 )w p ≤ C(K 1 , K 2 ) ∂ s L t w ext L 2 λ 2s L -sc+2 s L+2+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O( η+σ-sc L ) . (5 
∂ i t w ext 2 H 2(s L -i) ≤ ∂ s L t w ext (0) 2 L 2 + t 0 C(K 1 ,K 2 ) λ 2(2s L -sc)+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α dt ′ + t 0 C(K 1 ,K 2 ) ∂ s L t wext(t ′ ) L 2 λ 2s L -sc+2 s L+2+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( η+σ-sc L ) dt ′ + C(K 1 ,K 2 ) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 )+ α(p-1)(σ-sc) 2(2ℓ-α) +O ( σ-sc+η L
) .

(5.81) We are going to show this estimate by induction. This is true for i = s L from the result (5.77) of the last step, and because of the compatibility conditions (4.20) at the border. Now suppose it is true for i, with 1 ≤ i ≤ s L . Then as ∂ i-1 t w ext solves (5.68), from elliptic regularity one gets (again because of the compatibility conditions (4.20) at the border), from the induction hypothesis and the bounds (5.76), (5.76) and (5.76) on the force terms:

∂ i-1 t w ext 2 H 2(s L -i)+2 ≤ (1 -χ B(0,4) )∂ i-1 t (w p ) + ∆χ B(0,4) ∂ i-1 t w + 2∇χ B(0,4) .∇∂ i-1 t w 2 H 2(s L -i) + ∂ i t w ext 2 H 2(s L -i) ≤ ∂ s L t w ext (0) 2 L 2 + t 0 C(K 1 ,K 2 ) λ 2(2s L -sc)+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α dt ′ + t 0 C(K 1 ,K 2 ) ∂ s L t wext(t ′ ) L 2 λ 2s L -sc+2 s L+2+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( η+σ-sc L ) dt ′ + C(K 1 ,K 2 ) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 )+ α(p-1)(σ-sc) 2(2ℓ-α) +O ( σ-sc+η L )
This shows that the inequality (5.81) is true for i -1. Hence, by iterations, the inequality (5.81) is true for i = 0, what gives the estimate (5.67) we had to prove.

5.4.

End of the proof of Proposition 4.6. Proposition 4.6 states that, once the constants of involved in the analysis that are listed at its beginning are well chosen, given an initial data of (1.1) that is a perturbation of the approximate blow up profile along the stable directions of perturbation, there is a way to perturb it along the instable directions of perturbation to produce a solution that stays trapped for all time in the sense of Definition 4.4. The strategy of the proof is the following. We argue by contradiction and suppose that for all perturbations along the instable directions the corresponding solution will eventually escape from the trapped regime.

First, we characterize the exit of the trapped regime through a condition on the size of the instable parameters, and then we show that arguing by contradiction would amount to go against Brouwer's fixed point theorem.

We fix λ(s 0 ) satisfying (4.21), w(s 0 ) decomposed in (4.5) Lemma 5.9 (Characterization of the exit of the trapped regime). For L and M large enough and σ close enough to s c , there exists a choice of the other constants in (4.29), except s 0 and η, such that for any s 0 large enough and η small enough, if s * < +∞, at least one of the following two scenarios hold:

(i) Exit via instabilities on the first spherical harmonics:

V i (s * ) = (s * ) -η for some 1 ≤ i ≤ ℓ.
(ii) Exit via instabilities on the other spherical harmonics: U (n,k) i (s * ) = 1 for some (n, k, i) ∈ I, with 1 ≤ n and i < i n .

Proof of Lemma 5.9. A solution u is trapped if the parameters and the error involved in its decomposition (4.10) satisfy the bounds (4.22), (4.23), (4.24), (4.25) and (4.51). At time s * , the bound (4.51) is strict at from (4.50) and (4.51), and we are going to prove that (4.25) is strict in step 1 and that (4.24) is strict in step 2. Thus, (4.22) or (4.23) must be violated at the time s * and the Lemma is proved. step 1 Improved bounds for the remainder w. We claim that:

E σ (s * ) ≤ K 1 2(s * ) 2(σ-sc )ℓ 2ℓ-α †, E 2s L (s * ) ≤ K 2 2(s * ) 2L+2-2δ 0 +2η(1-δ ′ 0 ) , w ext (s * ) 2 H σ ≤ K 1 2 and w ext (s * ) 2 H 2s L ≤ K 2 2λ 2(2s L -sc)s 2L+2(1-δ 0 )+2η(1-δ ′ 0 )
(5.83) and we now prove these estimates.

-Bound on E σ : Let K 1 and K 2 be any strictly positive real numbers. Then from Proposition 5.3 there holds for s 0 and η large enough:

d dt E σ λ 2(σ-sc) ≤ √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 1 s α 4L 1 + p k=2 √ E σ s -σ-sc 2 k-1 .
On [s 0 , s * ] one has

√ Eσ s -σ-sc 2 ≤ K 1 s -α(σ-sc) 4ℓ-2α
from (4.25), hence for s 0 large enough:

d dt E σ λ 2(σ-sc) ≤ √ E σ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1 1 s α 8L . One has λ = s 0 s ℓ 2ℓ-α (1 + O(s -η 0 )
) from (4.51) and we assume that |O(s -η 0 )| ≤ 1 2 . We reintegrate the above equation using (4.25) and (4. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]):

E σ (s * ) ≤ 1 (s * ) 2ℓ(σ-sc) 2ℓ-σ 3 2 2σ-sc + s 2ℓ(σ-sc) 2ℓ-α 0 2 2(σ-sc)+3 L αs α 8L 0 K 1 .
Therefore, once L is fixed we choose σ close enough to s c so that α 8L > 2ℓ(σ-sc) 2ℓ-α and then for s 0 large enough one has s

2ℓ(σ-sc) 2ℓ-α 0 2 2(σ-sc)+3 L αs α 8L 0 ≤ 1.
For any choice of the constants K 1 > 10 there then holds:

E σ (s * ) ≤ 1 (s * ) 2ℓ(σ-sc) 2ℓ-σ 3 2 2σ-sc + K 1 ≤ K 1 2(s * ) 2ℓ(σ-sc) 2ℓ-σ
.

(5.84) -Bound on E 2s L : Let K 1 and K 2 be any strictly positive real numbers. From Proposition 5.6, for any N ≫ 1 there holds for s 0 and η large enough:

d dt E 2s L λ 2(2s-L-sc ) + O (L,M ) 1 λ 2(2s L -sc) s L+1-δ 0 +η(1-δ ′ 0 ) ( E 2s L + 1 s L+1-δ 0 +η(1-δ ′ 0 ) ) ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ ′ 0 ) + C(L,M ) N 2δ E 2s L +E 2s L p 2 √ Eσ 1+O ( 1 L ) s -σ-sc 2 k-1 C(L,M,K 1 ,K 2 ) s α L +O ( η+σ-sc L ) + C(L,M,K 1 ,K 2 ) √ E 2s L s L+1-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( σ-sc+η L ) ,
In the trapped regime, from (4.25) one has:

√ Eσ s -σ-sc 2 ≤ K 1 s -α(σ-sc) 4ℓ-2α
. Consequently, for N and s 0 large enough the previous identity becomes:

d dt E 2s L λ 2(2s-L-sc ) + O (L,M ) 1 λ 2(2s L -sc) s L+1-δ 0 +η(1-δ ′ 0 ) ( E 2s L + 1 s L+1-δ 0 +η(1-δ ′ 0 ) ) ≤ 1 λ 2(2s L -sc)+2 s C(L,M ) s 2L+2-2δ 0 +2(1-δ ′ 0 ) + C(L,M ) √ E 2s L s L+1-δ 0 +η(1-δ-0 ′ ) + 1 N 2δ E 2s L .
As from (4.51), λ = s 0 s ℓ 2ℓ-α (1 + O(s -η 0 )) one gets, when reintegrating in time the previous equation using the trapped regime bounds (4.25) and (4. [START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]):

E 2s L (s * ) ≤ λ(s * ) 2(2s L -sc) O (L,M ) 1 λ(s * ) 2(2s L -sc) (s * ) 2L+2-2δ 0 +2η(1-δ ′ 0 ) ( √ K 1 + 1) +E 2s L (s 0 ) + O L,M 1 s L+1-δ 0 +η(1-δ ′ 0 ) 0 ( E 2s L (s 0 ) + 1 s L+1-δ 0 +η(1-δ ′ 0 ) 0 ) + s * s 0 1 λ 2(2s L -sc) s 2L+3-2δ 0 +η(1-δ ′ 0 ) C(L, M ) √ K 2 + C(L, M ) + K 2 N 2δ ≤ 1 (s * ) 2L+2-2δ 0 +2η(1-δ ′ 0 ) [C(L, M )(1 + √ K 2 ) + C(L) K 2 N 2δ ] ≤ 1 K 2 (s * ) 2L+2-2δ 0 +2η(1-δ ′ 0 )
(5.85) if N and K 1 have been chosen large enough.

-Bound on w ext H σ . We recall the estimate (5.35):

d dt w ext 2 H σ ≤ C(K 1 , K 2 ) s 1+ α 2L +O( η+σ-sc L ) λ 2 w ext H σ .
For any choice of the constants of the analysis in Proposition 4.6 such that all the previous propositions and lemmas hold, then for s 0 large enough:

d dt w ext 2 H σ ≤ 1 s α 4L λ 2 w ext H σ .
We reintegrate this equation in the bootstrap regime, by injecting the bounds (4.25) and (4.19) on w ext H σ (using the relation ds dt = 1 λ 2 ):

w ext (s * ) H σ ≤ K 2 C(L) s α 4L 0 + C s 2ℓ 2ℓ-α (2s L -sc) 0 ≤ K 2 2 
(5.86)

For K 2 chosen large enough.

-Bound on w ext H 2s L . We recall the estimate (5.67):

w ext 2 H 2s L ≤ ∂ s L t w ext (0) 2 L 2 + t 0 C(K 1 ,K 2 ) λ 2(2s L -sc )+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 )+ α 2ℓ-α dt ′ + t 0 C(K 1 ,K 2 ) ∂ s L t wext(t ′ ) L 2 λ 2s L -sc+2 s L+2-δ 0 +η(1-δ ′ 0 )+ α 2L +O ( η+σ-sc L ) dt ′ + C(K 1 ,K 2 ) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 )+ α(p-1)(σ-sc) 2(2ℓ-α) +O ( σ-sc+η L
) .

One has

w ext = (1 -χ 3 )w, so ∂ s L t w ext = (1 -χ 3 )∂ s L t w.
We recall that we proved the bound (5.72) in the trapped regime for ∂ s L t w(t) outside the blow up zone in the proof of Proposition 5.8. The same proof gives for s 0 large enough, taking in account the bound (4.19) on w at initial time:

∂ s L t w ext (0) L 2 ≤ 1.
Injecting this estimate and (5.72) in the previous identity gives for s 0 large enough:

w ext 2 H 2s L ≤ 1 + t 0 dt ′ λ 2(2s L -sc)+2 s 2L+3-2δ 0 +2η(1-δ ′ 0 ) + 1 λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) ≤ 2 λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) + t 0 Cdt ′ s - ℓ[2(2s L -sc)+2] 2ℓ-α s 2L+3-2δ 0 +2η(1-δ ′ 0 ) ≤ 2 λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) + C(L) s - ℓ2(2s L -sc) 2ℓ-α s 2L+2-2δ 0 +2η(1-δ ′ 0 ) ≤ 2 λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) + C(L) λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 ) ≤ K 2 2λ 2(2s L -sc) s 2L+2-2δ 0 +2η(1-δ ′ 0 )
(5.87) where we used the equivalence λ ∼ s -ℓ 2ℓ-α from (4.51), and where the last lines hold for K 2 large enough.

-End of step 1: we have proven (5.84), (5.85), (5.86) and (5.87), yielding the estimate we claimed (5.83).

step 2 Improved bounds for the stable parameters. We claim that once L, M , η, K 1 and K 2 have been chosen so that the result of step 1 hold, there exist η > 0 and strictly positive constants (ǫ

(0,1) i ) ℓ+1≤i≤L , (ǫ (n,k) i ) (n,k,i)∈I, 1≤n, in≤i such that: |V 1 (s * )| ≤ 1 2(s * ) -η , |U (0,1) i (s * )| ≤ ǫ (0,1) i 2(s * ) η for ℓ + 1 ≤ i ≤ L, (5.88) for (n, k, i) ∈ I, n ≥ 1, |U (n,k) i (s * )| ≤ ǫ (n,k) i 2(s * ) η if i n < i, |U (n,k) i (s * )| ≤ ǫ (n,k) i 2 if i n = i.
(5.89) We now prove all these improved bounds: first we prove the one for b (n,k)

Ln , then the one for the U (n,k) i , i = L n , and finally the one for V 1 . For technical reasons, we introduce for (n, k, i) ∈ I the function g (n,k) i solution of the ODE:

d ds g (n,k) i g (n,k) i = (2i -α n )b (0,1) 1 , g(s 0 ) = s ℓ(2i-αn) 2ℓ-α 0 . (5.90) As b (0,1) 1 = ℓ s(2ℓ-α) + O(s -1-η
), for η small enough and s 0 large enough one has: Ln : first we notice that since L is chosen after ℓ one can assume that for all 0 ≤ n ≤ n 0 , i n < L. We rewrite the improved modulation equation (5.2) for b (n,k) Ln , using the estimate (5.3) for the extra term in the time derivative and the function g (n,k) Ln (satisfying (5.90) and (5.91)), yielding:

g (n,k) i (s) = s ℓ(2i-αn) 2ℓ-α (1 + O(s -η 0 )) with |O(s -η 0 )| ≤ 1 2 . ( 5 
d ds g (n,k) Ln b (n,k) Ln + O L,M,K 2 (s -L-η(1-δ ′ 0 )+δ 0 -δn+ ℓ(2Ln-αn) 2ℓ-α ) ≤ C(L, M, K 2 )s -1-L-η(1-δ ′ 0 )+δ 0 -δn+ ℓ(2Ln-αn) 2ℓ-α as η(1 -δ ′ 0 ) < g ′ 2 for η small enough (g ′ being fixed). The notation O L,M,K 2 () is the usual O() notation with a constant depending on L, M and K 2 . One has 2L n -α n = 2L -d 2 -2δ n + 2m 0 + 2 p-1 . Hence for L large enough, the quantity -L -η(1 -δ ′ 0 ) + δ 0 -δ n + ℓ(2Ln-αn) 2ℓ-α
is strictly positive for all 0 ≤ n ≤ n 0 . Therefore, reintegrating in time the previous identity yields using (4.16) and (4.17): 

|b (n,k) Ln (s * )| ≤ C(L,M,K 2 ) (s * ) L+η(1-δ ′ 0 )+δ 0 -δn + 1 s L+δ 0 -δn+ η s ℓ(2Ln-αn) 2ℓ-α -L-δ 0 +δn-η 0 (s * ) ℓ(2Ln -αn) 2ℓ-α -L-δ 0 +δn-η 3 2 s L+δ 0 -δn+η 0 |b (n,k) Ln (s 0 )| ≤ C(L,M,K 2 ) (s * ) L+η(1-δ ′ 0 )+δ 0 -δn + 3ǫ (n,k) Ln 20 1 (s * ) L+δ 0 -δn+ η Therefore, if η < η(1 -δ ′ 0 ),
| d ds (g (n,k) i b (n,k) i )| ≤ 3ǫ (n,k) i+1 s ℓ 2ℓ-α (2i-αn)- γ-γn 2 -i-η-1 2 +C(L, M, K 1 )s -L-1+δ 0 -η(1-δ ′ 0 )+ ℓ 2ℓ-α (2i-αn) . The condition i n < i ensures that ℓ 2ℓ-α (2i -α n ) -γ-γn 2 -i > 0.
For η small enough, we can then integrate in time the previous equation, the first term in the right hand side giving then a divergent integral, and inject the bound (5.91) on g (n,k) i and the initial bound (4.17) on b (n,k) i one obtains:

|b (n,k) i (s * )| ≤ 1 (s * ) γ-γn 2 +i+ η 3ǫ (n,k) i 20 + C(L)ǫ (n,k) i+1 + C(L,M ) (s * ) ℓ(2i-αn) 2ℓ-α - γ-γn 2 -i-η s * s 0 s -L-1+δ 0 -η(1-δ ′ 0 )+ ℓ(2i-α) 2ℓ-α ds ≤ ǫ (n,k) i 2(s * ) γ-γn 2 +i
(5.93) if s 0 is large enough and ǫ

(n,k) i+1 is small enough, because L -δ 0 > γ-γn 2 + i. -Improved bound for b (n,k) i if i n = i and 1 ≤ n: in that case, ℓ(2i-αn) 2ℓ-α = γ-γn 2 + i, hence one has 1 2 ≤ g (n,k) i s γ-γn 2 +i ≤ 3 2 .
Integrating the modulation equation and making the same manipulations we made for i n < i then yields:

|b (n,k) i (s * )| ≤ 1 (s * ) γ-γn 2 +i   3ǫ (n,k) i 20 + C(L)ǫ (n,k) i+1 + C(L, M ) s L-δ 0 -γ-γn 2 -i 0   ≤ ǫ (n,k) i 2(s * ) γ-γn 2 + i (5.94) if ǫ (n,k)
i+1 is small enough and s 0 is large enough.

-Improved bound for V 1 : we recall that from (4.13), V 1 denotes the stable direction of perturbation for the dynamical system (3.58) contained in Span((U

(0,1) i ) 1≤i≤ℓ ).
From the quasi diagonalization (3.69) of the linearized matrix A ℓ its time evolution is given by, under the bootstrap bounds (4.22), (4.23), (4.24) and (4.25):

V 1,s = -V 1 s + O |(V i ) 1≤i≤ℓ | 2 s + O(C(L, M, K 2 )s -L-ℓ ) + q 1 s U (0,1) i+1 = -V 1 s + O 1 s 1+2η + s -L-ℓ + ǫ (0,1) ℓ+1 s 1+ η which when reintegrated in time gives, if ǫ (0,1)
ℓ+1 is small enough, s 0 is large enough and using (4.16):

|V 1 (s * )| ≤ s 0 V 1 (s 0 ) s * + C(L, M, K 1 ) (s * ) 2η + C(L)ǫ (0,1) ℓ+1 (s * ) η ≤ 1 2s η (5.95) 
-End of Step 2: We choose the constants of smallness in the following order so that all the improved bounds we proved, (5.92), (5.93), (5.94), (5.95), hold together. For any choice of K 1 , K 2 , L, M , η in their range, there exists η > 0 such that η < η(1 -δ ′ 0 ) and γ-γn

2 + i + η < ℓ(2i-αn) 2ℓ-α
for all (n, k, i) ∈ I such that i n < i.

Then, we first choose the constant ǫ (0,1)

ℓ+1 small enough so that the improved bounds (5.95) for V 1 holds for s 0 large enough. Next we choose ǫ (0,1) ℓ+2 such that the improved bound (5.93) for U (0,1) ℓ+1 holds for s 0 large enough. By iteration we then choose ǫ (0,1) ℓ+3 , ..., ǫ (0,1) L to make all the bounds (5.93) hold till the one for U (0,1) L-1 . The last one, (5.92), for U (0,1) L , holds for s 0 large enough without any conditions on ǫ (0,1) i for ℓ + 1 ≤ i ≤ L -1. The same reasoning applies for the stable parameters on the spherical harmonics of higher degree (1 ≤ n ≤ n 0 ). We have proved (5.88).

We fix all the constants of the analysis so that Lemma 5.9 holds, and we will just possibly increase the initial renormalized time s 0 , which does not change its validity. The number of instability directions is:

m = ℓ -1 + d(E[i 1 ] -δ i 1 ∈N ) + 2≤n≤n 0 k(n)(E[i n ] + 1 -δ in∈N ).
To prove Proposition 4.6, we have to prove that there exists an additional perturbation along the instable directions of perturbations such that the solution stays forever trapped. We prove it via a topological argument, by looking at all the solutions associated to the possible perturbations along the instable directions of perturbation. For this purpose we introduce the following set:

B := { (V 2 (s 0 ), ..., V ℓ (s 0 ), (U (n,k) (s 0 ) i ) (n,k,i)∈I, 1≤n, i<in ) ∈ R m , |V i (s 0 )| ≤ s -η 0 for 2 ≤ i ≤ ℓ, |U (n,k) (s 0 ) i | ≤ ǫ (n,k) i for (n, k, i) ∈ I, 1 ≤ n, i < i n }
which represents all the possible values of the instable parameters so that the solution to (1.1) with initial data given by (4.5) and (4.30) starts in the trapped regime.

We then define the following application f : D(f ) ⊂ B → ∂B that gives the last value taken by the instable parameters before the solution leaves the trapped regime (when it does):

f V 2 (s 0 ), ..., V ℓ (s 0 ), (U (n,k) i ) (n,k,i)∈I, 1≤n, i<in = (s * ) η s η 0 V 2 (s * ), ..., (s * ) η (s 0 ) η V ℓ (s * ), (U (n,k) i (s * )) (n,k,i)∈I, 1≤n, i<in .
(5.96)

The domain D(f ) of the application f is the set of the m-tuples of real numbers (V 2 (s 0 ), ..., V ℓ (s 0 ), (U

(n,k) i ) (n,k,i)∈I, 1≤n, i<in
) in B such that the solution starting initially with a decomposition given by (4.5) and (4.30) leaves the trapped regime in finite time s * . The following lemma describes the topological properties of f . Lemma 5.10 (Topological properties of the exit application). There exists a choice of smallness constants (ǫ (n,k) i ) (n,k,i)∈I, 1≤n, i<in+1 such that the following properties hold for s 0 large enough:

(i) D(f ) is non empty and open, and there holds the inclusion ∂B ⊂ D(f ).

(ii) f is continuous and is the identity on the boundary ∂B.

Proof of Lemma 5.10. step 1 The outgoing flux property. We prove in this step that one can choose the smallness constants (ǫ

(n,k) i
) (n,k,i)∈I, 1≤n, i<in+1 such that for any (V 2 (s 0 ), ..., V ℓ (s 0 ), (U (n,k) i

) (n,k,i)∈I, 1≤n, i<in ) in B such that the solution starting initially with the decomposition given by (4.5) and (4.30) is in the trapped regime on [s 0 , s] and satisfies at time s:

(s) η s η 0 V 2 (s), ..., (s) η 
(s 0 ) η V ℓ (s), (U (n,k) i (s)) (n,k,i)∈I, 1≤n, i<in ∈ ∂B,
then the exit time from the trapped regime is s. To prove this we compute the time derivative of the instable parameters when they are on ∂B, and show that it points toward the exterior. Indeed from the modulation equation (4.42) and (3.69) (where we injected the bounds of the trapped regime (4.22), (4.23), (4.24) and (4.25)):

V i,s = iα 2ℓ-α V i s + O( |(V 1 (s),...,V ℓ (s))| 2 s ) + q i U (0,1) ℓ+1 s + O(s -L+ℓ ) = iα 2ℓ-α V i s + O(s -1-2η + ǫ (0,1) ℓ+1 s 1+ η ), U (n,k) i,s = α ℓ-γ-γn 2 -i (2ℓ-α)s U (n,k) i + U (n,k) i+1 s + O(s -1-η ) = α in-i (2ℓ-α)s U (n,k) i + O( ǫ (n,k) i+1
s + s -1-η ). Therefore, as i < i n , by iterations (ie by choosing first ǫ

(n,k) 0 , then ǫ (n,k) 1
, and so on till choosing ǫ (n,k) ℓ+1 ) we can choose all the smallness constants and s 0 large enough so that:

iα 2ℓ -α (-1) j s 1+η + O(s -1-2η + ǫ (0,1) ℓ+1 s 1+η ) > 0 (resp. < 0) if j = 0 (resp. j = 1), α i n -i (2ℓ -α)s (-1) j ǫ (n,k) i + O( ǫ (n,k) i+1 s + s -L+ℓ ) > 0 (resp. < 0) if j = 0 (resp. j = 1).
Consequently, any solution that is trapped until s such that at time s,

(s) η s η 0 V 2 (s), ..., (s) η 
(s 0 ) η V ℓ (s), (U (n,k) i (s)) (n,k,i)∈I, 1≤n, i<in ∈ ∂B,
leaves the trapped regime after s.

step 2 End of the proof of the lemma.

Step 1 directly implies that D(f ) contains ∂B, and that f is the identity on ∂B. If a solution u leaves at time s * , it also implies that it never hit the boundary before s * . Consequently, as the trapped regime is characterized by non strict inequalities, and because everything in the dynamics of (1.1) is continuous with respect to variation on these instable parameters, we get that D(f ) is open, and that the exit time s * and f are continuous on D(f ).

harmonics of degree n is (for f radial):

∆(f Y n,k ) = (∂ rr + d -1 r ∂ r - n(d + n -2) r 2 )f Y n,k
meanings from the asymptotics (2.7) that for any j ∈ N, ∆ j (T n 0 (|x|)Y n,k ( x |x| )) is a continuous function near the origin. Therefore, T n 0 Y n,k is smooth close to the origin from elliptic regularity. It is also smooth outside as a product of smooth functions, and thus smooth everywhere, ending the proof Lemma 2.3.

Taking ǫ = δ, one gets +∞ 1 u 2 y 2q+2-d dy ≤ u 2 (1) δ + 1 δ 2 +∞ 1 |∂yu| 2
y 2q+3-d dy which is precisely the identity (B.1) we had to prove. If q < d 2 -1 -δ then one obtains:

+∞ 1 u 2 y 2q+2-d dy ≤ - u 2 (1) 2( d 2 -1 -q) + ǫ 2δ +∞ 1 u 2 y 2q+3-d dy + 1 2δǫ +∞ 1 |∂ y u| 2 y 2q+3-d dy.
Taking ǫ = δ, one gets 

(d -4)d 4 2 R d u 2 |x| 4 dx ≤ R d |∆u| 2 dx, d 2 4 R d |∇u| 2 |x| 2 dx ≤ R d |∆u| 2 dx. (B.3)
If q ≥ 0 and u : R d → R is a smooth function satisfying

R d |∆u| 2 1 + |x| 2q + |∇u| 2 1 + |x| 2q+2 + u 2 1 + |x| 2q+4 dx < +∞.
then there holds:

C(d, q) 1≤|µ|≤2 R d |∂ µ u| 2 1 + |x| 2q+4-2µ dx -C ′ (d, q) R d u 2 1 + |x| 2q+4 dx ≤ R d |∆u| 2 1 + |x| 2q dx. (B.4) Proof of Lemma B.2. (B.
3) is a standard inequality and we omit its proof. To prove We prove (B.4) we reason with smooth and compactly supported functions, and then conclude by a density argument.

step 1 Control of the first derivatives. Making integration by parts we compute

R d u∆u 1 + |x| 2q+2 dx = - R d |∇u| 2 1 + |x| 2q+2 dx + 1 2 R d u 2 ∆ 1 1 + |x| 2q+2 dx
We then use Cauchy-Schwarz and Young's inequalities to obtain:

C R d |∇u| 2 1+|x| 2q+2 dx -C ′ R d u 2 ∆ 1 1+|x| 2q+2 - 1 (1+|x| 2q+2 )(1+|x|) 2 dx ≤ R d |∆u| 2 (1+|x| 2q+2 )(1+|x|) -2 dx It leads to the following estimate by noticing that (1+|x| 2q+2 )(1+|x|) -1 ∼ (1+|x| 2q ) and that ∆ 1 1+|x| 2q+2 - 1 (1+|x| 2q+2 )(1+|x|) 2 ≤ C 1+|x| 2q+4 : C(d, p) R d |∇u| 2 1 + |x| 2q+2 dx -C ′ (d, q) R d u 2 1 + |x| 2q+4 dx ≤ R d |∆u| 2 1 + |x| 2q dx (B.5)
step 2 Control of the second order derivatives. Making again integrations by parts one finds:

R d |∆u| 2 1 + |x| 2q = R d |∇ 2 u| 2 1 + |x| 2q + n 1 ∂ x i u∇∂ x i u.∇ 1 1 + |x| 2q -∆u∇u.∇ 1 1 + |x| 2q
in which by using Cauchy-Schwarz and Young's inequalities for any ǫ > 0 we can control the last two terms by:

R d n 1 ∂ x i u∇∂ x i u.∇ 1 1+|x| 2q -∆u∇u.∇ 1 1+|x| 2q ≤ Cǫ R d |∇ 2 u| 2 1+|x| 2q dx + C ǫ R d |∇u| 2 1+|x| 2q+2 dx.
Therefore for ǫ small enough the two above identities yield:

R d |∇ 2 u| 2 1 + |x| 2q dx ≤ C R d |∆u| 2 1 + |x| 2q + |∇u| 2 1 + |x| 2q+2 + u 2 1 + |x| 2q+4 dx
Combining this identity and (B.5) one obtains the desired identity (B.4).

Lemma B.3 (Weighted and fractional Hardy inequality). Let:

0 < ν < 1, k ∈ N and 0 < µ satisfying µ + ν + k < d 2 ,
and let f be a smooth function satisfying the decay estimates:

|∂ κ f (x)| ≤ C(f ) 1 + |x| µ+i , for κ ∈ N d , |κ| 1 = i, i = 0, 1, ..., k + 1, (B.6)
then for ε ∈ Ḣµ+k+ν , there holds εf ∈ Ḣν+k with:

∇ ν+k (εf ) L 2 ≤ C(C(f ), ν, k, µ, d) ∇ µ+k+ν ε L 2 . (B.7)
If f is smooth and radial then (B.6) is equivalent to:

|∂ i r f (r)| ≤ C(f ) 1 + r µ+i , i = 0, 1, ..., k + 1. (B.8)
Proof of Lemma B.3. step 1 The case k = 0. A proof of the case k = 0 can be found in [START_REF] Merle | Type II blow up for the energy super critical NLS, to appear in Cambridge Math. Jour[END_REF] for example.

step 2 The case k ≥ 1. Let f , ε, µ, ν and k satisfying the conditions of the lemma, with k ≥ 1. Using Liebnitz rule for the entire part of the derivation:

∇ ν+k (εf ) 2 L 2 ≤ C (κ,κ)∈N 2d , |κ| 1 +|κ| 1 =k ∇ ν (∂ κ ε∂ κf 2 L 2 (B.9)
We can now apply the result obtained for k = 0 to the norms ∇ ν (∂ κ k ε∂ κk f 2 L 2 in (B.9). We have indeed that ∂ κ ε ∈ Ḣµ+k 2 +ν , and that ∂ κf satisfies the appropriate decay condition from (B.6). It implies that for all (κ, κ) ∈ N 2d with |κ| 1 + |κ| 1 = k:

∇ ν (∂ κ k ε∂ κk f 2 L 2 ≤ C ∇ ν+µ+k ε 2 L 2 which implies the result: ∇ ν+k (εf ) 2 L 2 ≤ C(C(f ), ν, d, k, α) ∇ ν+µ+k ε 2 L 2 .
step 3 Equivalence between the decay properties. We want to show that (B.6) and (B.8) are equivalents for radial smooth functions. Suppose that f is smooth, radial, and satisfies (B.6). Then one has:

∂ i y f (y) = ∂f ∂ i x 1 (|y|e 1 )
where e 1 stands for the unit vector (1, ..., 0) of R d . From this formula, we see that the condition (B.6) on ∂f ∂ i

x 1

(|y|e 1 ) implies the radial condition (B.8). We now suppose that f is a smooth radial function satisfying the radial condition (B.8). Then there exists a smooth radial function φ such that:

f (y) = φ(y 2 ).
With a proof by induction that can be left to the reader one has that the decay property (B.8) for f implies the following decay property for φ:

|∂ i y φ(y)| ≤ C(f ) 1 + y µ 2 +i , i = 0, 1, ..., k + 1, Proof of Lemma C.2.
In what follows, C(δ) and C ′ (δ) denote strictly positive constants that may vary but only depends on δ, d and p. step 1 We claim the following subcoercivity estimate for H

:= -∆ -pc p-1 ∞ |x| 2 : R d \B d (1) | Hu| 2 |x| 2q dx ≥ C(δ) R d \B d (1) u 2 |x| 2q+4 dx -C ′ (δ) u |S d-1 (1) 2 
L 2 + (∇u) |S d-1 (1) 2 L 2 (C.9)
where f |S d-1 (1) denotes the restriction of f to the sphere. We now prove this inequality. We start by decomposing u

(x) = n,1≤k≤k(n) u (n,k) (|x|)Y (n,k) x |x| .
We recall the link between u and its decomposition ( H(n) being defined by (C.3)):

R d \B d (1) | Hu| 2 |x| 2q dx = n,1≤k≤k(n) +∞ 1 | H(n) u (n,k) | 2 y 2q y d-1 dy, (C.10) R d \B d (1) u 2 |x| 2q+4 dx = n,1≤k≤k(n) +∞ 1 |u (n,k) | 2 y 2q+4 y d-1 dy. (C.11) As H(n) = Ã(n) * Ã(n) and |q -( d 2 -2 -γ n )| > δ
for all n ∈ N, we apply (C.5) and (C.6) to obtain for each n ∈ N:

+∞ 1 | H(n) u (n,k) | 2 y 2q y d-1 dy ≥ C(δ) +∞ 1 |u (n,k) | 2 y 2q+4 y d-1 dy -C ′ (δ) (u (n,k) ) 2 (1) + Ã(n) (u (n,k) ) 2 (1) .
(C.12)

We now sum on n and k this identity. The second term in the right hand side is:

n,1≤k≤k(n) (u (n,k) ) 2 (1) = S d-1   n,1≤k≤k(n) u (n,k) (1)Y (n,k) (x)   2 dx = S d-1 u 2 (x)dx because (Y (n,k)
) n,1≤k≤n is an orthonormal basis of L 2 (S d-1 ). From (C.1), and as γ n ∼ -n as n → +∞ from (1.18), the last term in the right hand side of (C.12) is

n,1≤k≤n | Ã(n) u (n,k) | 2 (1) ≤ C n,1≤k≤k(n) (1 + n 2 )|u (n,k) | 2 (1) + |∂ y u (n,k) | 2 ≤ C( u |S d-1 (1) 
2

H 1 + ∇u |S d-1 (1) . n 2 L 2 ) ≤ C u |S d-1 2 L 2 + ∇u |S d-1 (1) 2 L 2
We inject the two above equations in (C.12) and obtain:

n,1≤k≤n +∞ 1 | H(n) u (n,k) | 2 y 2q y d-1 dy ≥ C(δ) n,1≤k≤n +∞ 1 |u (n,k) | 2 y 2q+4 y d-1 dy -C ′ (δ) u |S d-1 2 L 2 + ∇u |S d-1 (1) 2 L 2 .
In turn, we inject this identity in (C.10) using (C.11) to obtain the desired estimate (C.9). step 2 Subcoercivity for H. We claim the following estimate: Combining the two previous estimates we obtain the intermediate identity: Up to a subsequence, we can suppose that u n → u ∞ ∈ H 2 loc (R d ), the local convergence in L 2 being strong for (u n ) n∈N and (∇u n ) n∈N , and weak for (∇ 2 u n ) n∈N . (C.14) then implies:

R d |Hu| 2 1+|x| 2q dx ≥ C(δ) R d |∆u| 2 1+|x| 2q dx + R d
u n 2 H 1 (B d-1 (1)) + R d |u n | 2 1 + |x| 2q+4+α → u ∞ 2 H 1 (B d-1 (1)) + R d |u ∞ | 2 1 + |x| 2q+4+α .
u n converges strongly to u ∞ in H s (B d (0, 1)) for any 0 ≤ s < 2. The trace theorem for Sobolev spaces ensures that:

(u n ) |S d-1 (1)
Then there exists a constant δ > 0 such that for all 0 ≤ δ ′ ≤ δ there holds:

C(δ, i) |µ|≤2i R d |∂ µ u| 2 1 + |x| 4i-2µ+2δ ′ dx ≤ R d |H i u| 2 1 + |x| 2δ ′ dx (C.16)
which in particular implies that:

u Ḣ2i ≤ C(δ, i) R |H i u| 2 dx 1 2
(C.17)

Proof of Lemma C.3. step 1 Equivalence of weighted norms. We claim that for all integer j there holds:

H j u = (-∆) j u + |µ|≤2j-2 f j,µ ∂ µ u (C.18)
for some smooth functions f µ having the decay

|∂ µ ′ f j,µ | ≤ C(1 + |x| 2j-|µ|+|µ ′ | ) -1 .
This identity is true for j = 1 because Hu = -∆u + V u with the potential V being smooth and having the required decay from (2.2). If the aforementioned identity holds true for j ≥ 1 then:

H j+1 u = (-∆ + V ) (-∆) j u + |µ|≤2j-2 f j,µ ∂ µ u = (-∆) j+1 u + V (-∆) j u + |µ|≤2j-2 (-∆ + V )(f j,µ ∂ µ u)
and hence it is true for j + 1 since V is smooth and satisfies the decay (2.2). By induction it is true for all j ∈ N and (C.18) is proven. (C.18) then implies that:

R d |H i u| 2 1 + |x| 2δ dx ≤ C |µ|≤2i R d |∂ µ u| 2 1 + |x| 4i-2|µ|+2δ ′ dx (C.19)
step 2 Weighted integrability in Ḣ2i ∩ Ḣσ . We claim that for all functions u ∈ Ḣ2i ∩ Ḣσ (R d ) and δ ′ > 0 there holds: ) if δ n 0 +1 = 0 and δ = min(δ 0 , ..., δ n 0 , 1 2 ) if δ n 0 +1 = 0. The conditions on the δ n of the lemma implies δ > 0. We now claim that for all integer 1 ≤ l ≤ i there holds:

C(δ) R d |H l-1 u| 2 1 + |x| 4i-4(l-1)+2δ ′ + C(δ) R d |∇H l-1 u| 2 1 + |x| 4i-4l+2+2δ ′ ≤ R d |H l u| 2 1 + |x| 4i-4l+2δ ′ . (C.22)
We now prove this estimate. We want to apply Lemma C.2 to the function H l-1 u with weight q = δ ′ + 2(i -l). To use it, we have to check the orthogonality and integrability conditions that are required, and the conditions on the weight. Integrability condition. It is true because of (C.21).

Condition on the weight. For the case n ≥ n 0 + 1 one computes from (1.23):

|δ ′ + 2(i -l) -( d 2 -γ n -2)| = |δ ′ -2δ n 0 +1 -2(m n 0 +1 -i) -2(l -1) -2(m n + δ n -m n 0 +1 -δ n 0 +1 )|.
(C.23) One has 2(l -1) ≥ 0 as l ≥ 1 and 2(m n + δ n -m n 0 +1 -δ n 0 +1 ) ≥ 0 because (m n +δ n ) n is an increasing sequence from (1.22) and (1.18). For the subcase δ n 0 +1 = 0, then as m n 0 +1 > i and m n 0 +1 is an integer, 2(m n 0 +1 -i) > 2. Therefore -2(m n 0 +1 -i) -2(l -1) -2(m n + δ n -m n 0 +1 -δ n 0 +1 ) = -a for a ≥ 2, and injecting it in the above identity as 0 < δ ′ < 1 gives:

|δ ′ + 2(i -l) -( d 2 -γ n -2)| = |δ ′ -a| ≥ δ ′ ≥ δ.
For the subcase δ n 0 +1 = 0, then δ ′ -2δ n 0 +1 ≤ δ -2δ n 0 +1 ≤ -δ n 0 +1 ≤ -δ. Moreover, m n 0 +1 ≥ i and -2(m n 0 +1 -i) -2(l -1) -2(m n + δ n -m n 0 +1 -δ n 0 +1 ) ≤ 0, implying:

δ ′ -2δ n 0 +1 -2(m n 0 +1 -i)-2(l -1)-2(m n + δ n -m n 0 +1 -δ n 0 +1 ) ≤ δ ′ -2δ n 0 +1 ≤ -δ
and therefore from (C.23) this yields in that case:

|δ ′ + 2(i -l) -( d 2 -γ n -2)| ≥ δ.
In both subcases one has:

|δ ′ + 2(i -l) -( d 2 -γ n -2)| ≥ δ.
For the case n ≤ n 0 :

|δ ′ + 2(i -l) -( d 2 -γ n -2)| = |δ ′ -2δ n + 2(i -l + 1 -m n )|.
In the above identity, 2(i -l + 1 -m n ) is an even integer, and δ ′ -2δ n is a number satisfying δ ′ -2δ n ≤ δ -2δ n ≤ -δ and we recall that δ < 1, and δ ′ -2δ n ≥ -2δ n ≥ -1. Therefore |δ ′ -2δ n + 2(i -l + 1 -m n )| ≥ δ, yielding: We have then proved that for all 0 ≤ n ≤ n ′ 0 , 1 ≤ k ≤ k(n) there holds:

|δ ′ + 2(i -l) -( d 2 -γ n -2)| ≥ δ.
H l-1 u, Φ (n,)k M = 0
which are the required orthogonality conditions. Conclusion. One can apply Lemma C.2 to H l-1 u with weight q = 2i-2l + δ ′ , giving the desired coercivity estimate (C.22).

Lemma D.1 (Specific bounds for the error in the trapped regime). Let ε be a function satisfying (4.25) and (4.11). We recall that E σ and E 2s L are defined by (4.9) and (4.7). Then the following bounds hold: (i) Interpolated Hardy type inequality: For µ ∈ N d and q > 0 satisfying σ ≤ |µ| + q ≤ 2s L there holds: 

∂ µ ǫ 1 + |y| a L ∞ ≤ C(K 1 , K 2 , M ) E σ 1+O 1 L 2 1 s a+|µ| 1 +( d 2 -σ)+ ( 2 p-1 +a+|µ| 1 )α L +O( σ-sc L )
.

(D.2) (iii) L ∞ bound for high order derivative: for µ ∈ N d with |µ| ≤ s L there holds:

∂ µ ε 2 L ∞ ≤ C(M )E 2s L -|µ| 1 -d 2 2s L -σ +O 1 L 2 σ E |µ| 1 + d 2 -σ 2s L -σ +O 1 L 2 2s L . (D.3)
Proof of Lemma D.1. Proof of (i) We first recall that from the coercivity estimate (C.16) one has:

∇ σ ε 2 L 2 = E σ , ∇ 2s L ε 2 L 2 ≤ C(M ) H s L ε 2 L 2 = C(M )E 2s L .
If the weight satisfies q < d 2 , then the inequality (D.1) claimed in the lemma is a consequence of the standard Hardy inequality, followed by an interpolation: 

∂ µ ε 1+|x| q 2 L 2 ≤ C ∇ |µ| 1 +q ε 2 L 2 ≤ C ∇ σ ε
∂ µ ε 1 + |x| q 2 L 2 ≤ C(M )E 2s L .
For a weight that is in between, ie d 2 ≤ q < 2s L -|µ| 1 , the inequality (D.1) is then obtained by interpolating the two previous ones, as:

|ε| 2 1 + |x| 2b ∼ |ε| 2 1 + |x| 2a c-b c-a |ε| 2 1 + |x| 2c b-a c-a .
Proof of (ii). As the dimension is d ≥ 11 and L ≫ 1 is big, one has ∂ µ ε 1+|x| a ∈ L ∞ with the following bound (using the bound (i) we just derived): for z > 0 small enough. We then let z 1 be so close to 0 (of order L -1 ) that its impact when using the bootstrap bounds (4.25) is of order s -1 L 2 (the constant C(M, z 1 )

∂ µ ε 1+|x| a L ∞ ≤ C(z)( ∇ d 2 -z ( ∂ µ ε 1+|x| a ) L 2 + ∇ d 2 +z ( ∂ µ ε 1+|x| a ) L 2 ) ≤ C(z)( ∇ d 2 -z+a+|µ| 1 ε L 2 + ∇
for 1 p 1 + 1 p 2 = 1 p ′ 1 + 1 p ′ 2 = 1 2
, provided 2 ≤ p 1 , p 2 < +∞ and 2 ≤ q 1 , q 2 ≤ +∞. We now chose appropriate exponents p 1 and p 2 in several cases.

-Case 1 If |µ 2 | = 0. Then |µ 1 | + δ a = a and using Sobolev embedding (as b > d

2 ):

∇ |µ 1 |+δa u L 2 (R d ) ∂ µ 2 v L ∞ (R d ) ≤ C u H a (R d ) v H b (R d ) .
(D. 

∇ |µ 1 |+δa u L 2 (R d ) ∂ µ 2 v L ∞ (R d ) ≤ C u H b (R d ) v H a (R d ) .
(D.12) 

-
∇ |µ 1 |+δa u L 2 (R d ) ∂ µ 2 v L ∞ (R d ) ≤ C u H |µ 1 |+δa (R d ) v H |µ 2 |+ d 2 +x (R d ) ≤ C u a-|µ 1 |-δa a-b H b (R d ) u |µ 1 |+δa-b a-b H a (R d ) v a-|µ 2 |-d 2 -x a-b H b (R d ) v |µ 2 |+ d 2 +x-b a-b H a (R d ) ≤ C u H a (R d ) v H b (R d ) + u H b (R d ) v H a (R d ) .
(D.13) -Case 4 If a -d 2 ≤ |µ 2 | < a. Let x := 1 2 min(a -|µ| 2 , δ b ) > 0. We define p 1 , q 1 and s by 1 q 1 := 1 2 -a-x-|µ 2 | d , 1 p 1 = 1 2 -1 q 1 and s = d q 1 . One has |µ 1 | + δ a + s = d 2 + x < b, and, using Sobolev embedding: 2 ):

∇ |µ 1 |+δa u L p 1 ∂ µ 2 v L q 1 ≤ C u H |µ 1 |+δa+s v H a-x ≤ C u H b v H a (D.
∇ |µ 1 |+δa u L ∞ (R d ) ∂ µ 2 v L 2 (R d ) ≤ C u H b (R d ) v H a (R d ) .
(D.15)

-Conclusion In all possible cases, from (D.11), (D.12), (D.13), (D.14) and (D.15) there always exist p 1 , q 1 , p 2 , q 2 ∈ [2, +∞) with p 1 , p 2 = +∞, 1 p 1 + 1 q 1 = 1 2 and:

∇ |µ 1 |+δa u L p 1 (R d ) ∂ µ 2 v L q 1 (R d ) + ∇ |µ 1 | u L q 2 v ∇ |µ 2 |+δa v L p 2 (R d ) ≤ C u H b (R d ) v H a (R d ) +C u H a (R d ) v H b (R d ) .
where the estimate for the second term in the left hand side of the above equation comes from a symmetric reasoning. We now come back to (D.9), apply (D.10) and the above identity to obtain:

∇ a (uv) L 2 (R d ) ≤ C u H b (R d ) v H a (R d ) +C u H a (R d ) v H b (R d ) .
The above estimate and (D.8) imply the desired estimate (D.7) by interpolation. step 4 Proof in the case of a smooth bounded domain Ω. There exists C > 0 such that for any f ∈ H max(a,b) (Ω) there exists an extension f ∈ H max(a,b) (R d ) with compact support, satisfying f = f on Ω and:

1 C f H c (R d ) ≤ f H c (Ω) ≤ C f H c (R d ) , c = a, b,
see [START_REF] Adams | Sobolev spaces[END_REF]. Let u, v ∈ H max(a,b) (Ω) and denote by ũ and ṽ their respective extensions. Using (D.7) and the above estimate then yields:

uv H a (Ω) ≤ ũṽ H a (R d ) ≤ C ũ H a (R d ) ṽ H b (R d ) + ũ H b (R d ) ṽ H a (R d ) ≤ C C2 u H a (Ω) v H b (Ω) + u H b (Ω) v H a (Ω)
and (D.4) is obtained.

Appendix E. Geometrical decomposition

This section is devoted to the proof of Lemma 4.3 .

Lemma E.1. Let X denote the functional space which exists from (4.4). We define w := (τ -z u) λ. It is defined on the set 1 λ (B(1) -z) which contains B d (7M ) as 0 < λ < 1 8M and |z| ≤ 1 8 . From this fact and the above estimates w satisfies: > 0, and from (E.10) and the above estimate:

X := u ∈ L ∞ (B d (0, 4M )), u -Q, HΦ ( 
w -Q L ∞ (B(7M )) < κ, w -Q L ∞ (B d (3M )) < w -Q, HΦ ( 
(n,k,i)∈I |b (n,k) i | ≤ Kκ, |z| ≤ 1 4 , 0 < λ < 1 4M
for κ small enough. From the definition of w, v ′ and v one has the identity:

u = (v + Qb ) z, 1 λ
, with v satisfying (E.8). -Proof of (E.14). From the assumptions on b, λ and ẑ, the definition of Qb (3.29) and (E.9) there holds for κ small enough:

u -Q ẑ, 1 λ L ∞ (B d (1)) ≤ C Kκ λ 2 p-1 .
From (E.10) one has also:

u -Q z, 1 λ L ∞ (B d (1)) ≤ κ λ 2 p-1 .
From the two above estimates one deduces that:

Q ẑ, 1 λ -Q z, 1 λ L ∞ (B d (1)) ≤ κ λ 2 p-1 + C Kκ λ 2 p-1
.

(E.15)

Assume that λ ≤ λ. Then, since Q is radially symmetric and attains its maximum at the origin, and ẑ ∈ B d (0, 1) because |ẑ| ≤ 1 4 , the above inequality at x = ẑ implies:

Q(0) 1 λ 2 p-1 -1 λ 2 p-1 = Q ẑ, 1 λ (ẑ) -Q z, 1 λ (z) ≤ Q ẑ, 1 λ (ẑ) -Q z, 1 λ (ẑ) = |Q ẑ, 1 λ (ẑ) -Q z, 1 λ (ẑ)| ≤ C Kκ 1 λ 2 p-1 + 1 λ 2 p-1 which gives 1 λ 2 p-1 -1 λ 2 p-1 ≤ C Kκ 1 λ 2 p-1 + 1 λ 2 p-1
. The symmetric reasoning works in the case λ ≥ λ and one obtains that in both cases:

1 λ 2 p-1 - 1 λ 2 p-1 ≤ C Kκ 1 λ 2 p-1 + 1 λ 2 p-1 .
Basic computations show that for κ small enough the above identity implies:

1 - λ λ ≤ C Kκ or λ = λ(1 + O(κ)).
obtaining the first bound in (E.14) for κ small enough. We inject the above estimate in (E.15), yielding:

Q ẑ, 1 λ -Q z, 1 λ L ∞ (B d (1)) ≤ Q ẑ, 1 λ -Q ẑ, 1 λ L ∞ (B d (1)) + Q ẑ, 1 λ -Q ẑ, 1 λ L ∞ (B d (1)) ≤ C Kκ λ 2 p-1

1 p- 1 < 1 p- 1

 1111 blows up with type I if : lim sup t→T u(t) L ∞ (T -t) +∞, u blows up with type II if : lim sup t→T u(t) L ∞ (T -t) = +∞.

  yielding in renormalized time an estimate of the form 3 :

.

  Such non-linear terms are admissible functions multiplied by monomials of the coefficients b (n,k) i

Proposition 3 . 1 (

 31 First approximate blow up profile). Let L ∈ N, L ≫ 1, and let b = (b (n,k) i ) (n,k,i)∈I denote a #I-tuple of real numbers with b (0,1) 1

2

  +i , and the size of the error is measured via b

  and one has |J| 2 = 2 and |J| 3 = 2. Therefore, (b

. 36 )

 36 Local bounds. In the previous identity, one clearly sees that all the terms, except χ B 1 ψ b , have their support in B 1 ≤ |y|. Thus, for B ≤ B 1 , the bound (3.35) is a direct consequence of the local bound (3.6) for ψ b .

  in (3.37), (3.42), (3.47), (3.49), (3.51), (3.54) and (3.56) (resp. the right hand side of (3.36) in (3.38), (3.43), (3.48), (3.50), (3.52), (3.55) and (3.57)). Adding all these estimates, as 0 < b (0,1) 1

3. 2 .

 2 Study of the approximate dynamics for the parameters. In Proposition 3.3 we have stated the existence of a profile Qb such that the force term F ( Qb ) generated by (NLH) has an almost explicit formulation in terms of the parameters b = (b (n,k) i

  .61) Proof of Lemma 3.4. It is a direct computation that can safely be left to the reader. As s 0 > 0 and 2ℓ > α, (3.61) can be interpreted as: there exists T > 0 with λ(t) ≈ (T -t) ℓ α as t → T . Now, given α 2 < ℓ ≤ L, we want to know the exact number of instabilities of the particular solution b. In addition, in Propositions 3.1 and 3.3, we needed the a priori bounds |b (n,k) i | |b (0,1) 1 | γ-γn 2 +i to show sufficient estimates for the errors ψ b and ψb . Around the solution b defined by (3.59), b (0,1) 1 is of order s -1 , and so the a priori bounds we need become 11 b (n,k) i s γn-γ 2 -i . Therefore, by "stability" of b we mean stability with respect to this size and introduce the following renormalization for a solution of (3.58) close to b: b

  .62) It defines a #I-tuple of real numbers U = (U (n,k) i

Lemma 3 . 5 .

 35 (Linear stability of special solutions) Suppose b is a solution of the last equation in (3.58). Define U = (U (n,k) i ) (n,k,i)∈I by (3.62) and order it as in (3.63).

4 . 1 )

 41 (L n and T (n,k) 0 being defined by (1.28) and (2.26)) where:

4. 1 . 2 . 1 8 ,0<λ< 1 8M

 1211 Geometrical decomposition. First we describe here how we decompose a solution of (1.1) on the unit ball B d (1) onto the set (τ z ( Qb,λ )) b,|z|≤

  , k, i) ∈ I, with 1 ≤ n and i = i n .(4.18) 

-

  20) (v) Initial scale and initial blow-up point: Pointwise in time estimates. The following bounds hold on (0, T ): (i) Parameters on the first spherical harmonics:

  (4.10), (4.11), (3.29), (3.7), (4.27), (4.3) and (2.7) one gets

Ln+1 = 0 .

 0 Taking the scalar product of (4.40) with (-H) i Φ (n,k) M , using (4.3), gives17 :Mod(s), (-H) i Φ (n,k) M = -Hε, (-H) i Φ (n,k) M -ψb , (-H) i Φ (n,k) M + λs λ Λε + zs λ .∇ε + NL(ε) + L(ε), (-H) i Φ (n,k) M . (4.45) Now we look closely at each one of the terms of this identity. -The modulation term. From the expression (3.29) of Qb , the bound (3.11) on ∂S j ∂b (n,k) i

  .46) where C and C ′ are two positive renormalization constants. -The main linear term. The coercivity estimate (C.16) and Hölder inequality imply: |y|≤2M |ε|dy C(M ) E 2s L .

  49) -Final bound on |D(s)|. Summing the previous estimates we performed on each term of (4.45) in (4.46), (4.47), (4.48) and (4.49) yields:

( i )

 i Concentration speed: λ ∼ t→T C(u(0))(T -t) ℓ α , C(u(0))>0. (ii) Behavior of the blow up point: there exists z 0 such that lim t→T z(t) = z 0 and for all times s ≥ s 0 : |z(s)| = O(s -η 0 ) (4.50) Proof of Lemma 4.8 . From the Cauchy theory in L ∞ , (3.1) and (4.26), if T ∈ (0, +∞] denotes the maximal time of existence of u, one necessarily have lim s→T s(t) = +∞. From the estimate (4.27) on b (0,1) 1

  .52) Injecting this identity in (4.51) then gives λ ∼ t→T C(u(0))(T -t) ℓ α

4. 2 . 4 .

 24 Behavior of Sobolev norms near blow up time. From Lemma 4.8, the L ∞ bound on the error (D.2) and the bounds on the parameters (4.27), any solution that is trapped on its maximal interval of existence indeed blows up at the time T given by Lemma 4.8 because lim t→T u L ∞ = +∞. The behavior of the Sobolev norms is the following.

1 λ)→ 0

 10 29) and (3.7), the bounds (4.27) on the parameters b (n,k) i , together with the asymptotic at infinity of the profiles T (n,k) i and S i described in Lemma 2.10 and Proposition 3.3 imply that αb Ḣσ ≤ C s . Hence τ z (α b, as t → T as σ -s c ≪ 1. Now, following the second paragraph of Remark 4.5, we get that w H σ ≤ CK 1 is uniformly bounded till the blow up time. Combined with what was just said about the boundedness of τ z (α b, 1 λ

  22), (4.23), (4.24), (4.25) and (4.26) hold on[s 0 , s)} (5.1) If s * < +∞, after s * , one of the bounds (4.22), (4.23), (4.24), (4.25) or (4.26) must then be violated. The result of the first part of this section is a refinement of this exit condition. In Lemma 5.1, Propositions 5.3, 5.5, 5.6 and 5.8 we quantify accurately the time evolution of the parameters and the remainder in the trapped regime.

5. 1 .

 1 Improved modulation for the last parameters b (n,k) Ln . In Lemma 4.7, the modulation estimates (4.42) for the first parameters are better than the ones for the last parameters b (n,k)

  (n,k)Ln . In the next Lemma we find a better bound by, roughly speaking, integrating by part in time the projection of ε onto T (n,k) Ln in the self similar zone. Lemma 5.1 (Improved modulation equation for b (n,k)

  r) is the ball of radius r of R a for the usual | • |∞ norm. Proof of Lemma 5.1. First, from the fact that HT (n,k) 0 = 0, the asymptotic (2.7) of T (n,k) 0 and (4.27) we obtain: supp[H Ln (χ B 0 T (n,k) 0 )] ⊂ {B 0 ≤ |y| ≤ 2B 0 }, and |H Ln (χ B 0 T

-= 0

 0 The ∂ s (χ B 0 ) term. From the modulation equation (4.42) and the bound (4.25) one has |b (0,1) 1,s | ≤ Cs -2 . Hence, using the asymptotic (2.7) of T and (4.27) we get that H Ln (∂ s χ B 0 T (n,k) 0 ) has support in B 0 ≤ |y| ≤ 2B 0 and satisfies the bound |H Ln (∂ s χ B 0 T (n,k) 0 )| ≤ C(L) s γn 2 +Ln+1 . Using the coercivity estimate (C.16) we obtain:

. 7 )-

 7 The error term. For |y| ≤ 2B 0 one has ψb = ψ b from (3.34). As ψ b is a finite sum of homogeneous profiles of degree (i, -γ -2-g ′ ) for some i ∈ N (what was proved in Step 4 of the proof of Proposition 3.1), the bounds on the parameters (4.27) imply that |ψ b (y)| ≤ C(L)s -γ+2+g 2 for B 0 ≤ |y| ≤ 2B 0 . Combined with (5.4) this yield:

. 8 )-α+1 2 (

 82 The remainder's contribution. Using (5.4), the bounds | λs λ | ≤ Cs -1 and | zs λ | ≤ Cs -which are consequences of the modulation estimate (4.42) and (4.25)) and the coercivity estimate (C.3) one gets:

Remark 5 . 4 .

 54 (5.21) should be interpreted as follows. The term√ Eσ λ 2(σ-sc)+2 s (σ-sc)ℓ 2ℓ-α +1is from (4.25) and (4.51) of order 1 s ds dt (as ds dt = λ -2 ). The 1 s α 4L then represents a gain: it gives that the right hand side of (5.21) is of order 1 s 1+ α 4L ds dt , which when reintegrated in time is convergent and arbitrarily small for s 0 large enough. The third term shows that one needs to have √ E σ s -σ-sc 2 to control the non linear terms, which holds because of the bootstrap bound (4.25).

(5. 25 )-

 25 The error term: as |z| ≪ 1 from (4.50) and B 1 λ ≪ 1 from (4.27) and (4.51), from the expression of the error term (3.36), all the terms except τ z (b (0,1) 1

  -C(L)η (5.26) -The non linear term: First, coming back to renormalized variables, as NL(ε) = p k=2 C p k Qp-k b ε k , and performing an integration by parts we write:

. 28 )

 28 For the second term in (5.27), as Qb = O((1 + |y|) -2 ) from (3.29) and (4.27) we first use the Hardy inequality (B.7):

. 32 )-

 32 End of Step 1:We come back to the first identity we derived(5.22) and inject the bounds we found for each term in (5.23), (5.25), (5.26), (5.31) and (5.32) to obtain:

  ) what we are going to prove now. From the time evolution (5.56), (4.31) of ξ and w and because the support of τ z (ξ 1 λ

  Fix k ≤ s L , an integer j, with 0 ≤ j ≤ k and a sequence of d-tuples (µ i ) 1≤i≤1+k(p-1) ∈ N dk(p-1) satisfying 1+j(p-1) i=1 |µ i | = 2(k -j). One can assume that the d-tuples µ i are order by decreasing length: |µ 1 | ≥ |µ 2 | ≥ .... -The case k = s L . We want to estimate the above term in the zone Ω\B d (2). Subcase 1: if |µ 1 | ≥ σ. Using Hölder, Sobolev embedding (since in that case

-

  .80) End of Step 2 : we collect the estimates (5.79) and (5.80) found in the previous substeps, what gives the desired bound (5.77) we claimed in this Step.

(s 0

 0 )) (n,k,i)∈I,1≤n, i<in satisfying (4.14) and (4.15), let u denote the solution of (1.1) with initial datum u(0) = χ Qb(s 0 ), 1 λ(s 0 ) + w(s 0 ) with b(s 0 ) given by (4.30). We define the renormalizedexit time s * = s * ((V 2 (s 0 ), ...V ℓ (s 0 )), (U (n,k) i (s 0 )) (n,k,i)∈I,1≤n, i<in ):s * := sup{s ≥ s 0 , u is trapped in the sense of Definition 4.4 on [s 0 , s)} (5.82) From a continuity argument, one always have s * > s 0 .

  for any 0 < ǫ (n,k) Ln < 1, for s 0 large enough there holds: |b (n,k) Ln (s * )| ≤ ǫ (n,k) Ln 2(s * ) L+δ 0 -δn+η . (5.92) -Improved bound for b (n,k) i , i n < i < L n : using the same methodology we used to study the parameter b (n,k) Ln , we take the modulation equation (4.42), we integrate it in time injecting the bounds (4.22), (4.23), (4.24) and (4.25), yielding:

2 y

 2 2q+3-d dy which is precisely the second identity (B.2) we had to prove. Lemma B.2 (Rellich type inequalities). For any u ∈ H 2 (R d ) there holds

|∇u| 2 |x| 2 ( 2 |x| 4 ( 2 L 2 + 2 + R d u 2 1+|x| 2 1+|x| 2 + 2 L 2 + 2 |x| 4 dx - 1 Cu H 1 (

 222422222222211 1+|x| 2q ) dx + R d u 1+|x| 2q ) dx -C ′ (δ) u |S d-1 (1) (∇u) |S d-1 (1) 2 L 2q+4+α + u 2 H 1 (B d-1 (1)) , (C.13)which we now prove. Away from the origin, Cauchy-Schwarz and Young's inequalities, the boundV + pc p-1 ∞ |x| -2 = O(|x| -2-α ) from (2.2) and (C.9) give (for C > 0):R d \B d (1) |Hu| 2 |x| 2q dx = R d \B d (1) | Hu+(V +pc p-1 ∞ |x| -2 )u| 2 |x| 2q dx ≥ C R d \B d (1) | Hu| 2 |x| 2q dx -C ′ R d \B d (1) |u| 2 |x| 2q+4+2α dx ≥ C(δ) R d \B d (1) u 2q+4 -C ′ (δ) u |S d-1 (1) 2 L (∇u) |S d-1 (1) R d \B d (1) |u| 2 1+|x| 2q+4+2αClose to the origin, using Rellich's inequality (B.3):B d (1) |Hu| 2 dx ≥ C B d (1) |∆u| 2 dx -1 C B d (1) |u| 2 dx ≥ C B d (1) |u| B d-1 (1)) .

R d |Hu| 2 1+|x| 2 |x| 4 ( 2 + 2 L 2 + R d u 2 1+|x| 2q+4+2α dx+ u 2 H 1 (d |Hu| 2 1+|x| 2 1+|x| 2p dx|Hu| 2 dx + ǫ R d |Hu| 2 2 |x| 4 ( 2 L 2 + 2 + R d u 2 1+|x|R d |∆u| 2 1+|x| 2 |x| 4 ( 2 L 2 + 2 + R d u 2 1+|x| 2 |x| 4 ( 2 + 2 L 2 + R d u 2 1+|x| 3

 22422222122224222222422222422223 2q dx ≥ C(δ) R d u 1+|x| 2q ) dx -C ′ (δ) u |S d-1 (1) 2 L (∇u) |S d-1 (1) B d-1 (1)) . Now, as H = -∆ + V with V = O((1 + |x|) -2), using Young's inequality, the above identity and (B.4), for ǫ > 0 small enough (depending on δ) one has:R 2p dx = (1 -ǫ) R d |Hu| 1+|x| 2p dx ≥ (1 -ǫ)C(δ) R d u 1+|x| 2q ) dx -C ′ (δ) u |S d-1 (1) (∇u) |S d-1 (1) 2 L 2q+4+2α dx+ u H 1 (B d-1 (1)) + ǫ 2 2q dx -ǫ R d |V u| 2 1+|x| 2q dx ≥ (1 -ǫ)C(δ) R d u 1+|x| 2q ) dx -C ′ (δ) u |S d-1 (1) (∇u) |S d-1 (1) 2 L 2q+4+2α dx+ u H 1 (B d-1 (1)) + C(q) ǫ 2 1≤|µ|≤2 R d |∂ µ u| 2 1+|x| 2q+4-2µ dx -ǫC ′ (q) R d u 2 1+|x| 2q+4 dx ≥ C(δ) R d u 1+|x| 2q ) + C(q)ǫ 2 1≤|µ|≤2 R d |∂ µ u| 2 1+|x| 2q+4-2µ -C ′ (δ) u |S d-1 (1) 2 L (∇u) |S d-1 (1) 2q+4+2α dx+ u H 1 (B d-1(1)) which is the identity (C.13) we claimed.step Coercivity for H. We now argue by contradiction. Suppose that (C.8) does not hold. Up to a renormalization, this means that there exists a sequence of functions (u n ) n∈N such that:R |Hu n | 2 1 + |x| 2q → 0, R d |∆u n | 2 1 + |x| 2q + |∇u n | 2 |x| 2 (1 + |x| 2q ) + |u n | 2 |x| 4 (1 + |x| 2q ) = 1 ∀n. (C.14)

|µ|≤2i R d |∂ µ u| 2 1 +|∂ µ u| 2 1 +step 3

 113 |x| 4i-2|µ|+2δ ′ dx < +∞. (C.20) Indeed, let µ be a |µ|-tuple with |µ| ≤ 2i. We split in two cases. First if |µ| ≤ σ, as σ < d 2 and 2i > σ the Hardy inequality (B.3) yields:R d |∂ µ u| 2 1 + |x| 4i-2|µ|+2δ ′ dx ≤ R d |∂ µ u| 2 1 + |x| 2(σ-|µ|) dx ≤ C u 2Ḣσ < +∞ and we are done. If σ < µ ≤ 2i then by interpolation u ∈ Ḣ|µ| (R d ) and then:R d |x| 4i-2|µ|+2δ ′ dx ≤ |∂ µ u| 2 dx < +∞.Thus (C.20) holds, which together with (C.[START_REF] Krieger | Center-Stable manifold of the ground state in the energy space for the critical wave equation[END_REF]) implies for all δ ′ ≥ 0:i j=0 R d |H j u| 2 1 + |x| 4i-4j+2δ ′ dx + |∇H j-1 u| 2 1 + |x| 4i-4j+2+2δ ′ dx < +∞ (C.21) Intermediate coercivity. Let δ = min(δ 0 , ..., δ n 0 +1 , 1 2

  Therefore, for each n ∈ N, |δ ′ + 2(i -l) -( d 2 -γ n -2)| ≥ δ. Orthogonality conditions. Let n ′ 0 = n ′ 0 (l) ∈ N ∪ {-1} be the lowest number such that 2(i -l + 1) + δ ′ -2(m n ′ 0 +1 + δ n ′ 0 +1 ) < 0. By construction one has n ′ 0 ≤ n 0 . If n ′ 0 = -1 then we are done because no orthogonality condition is required. If n ′ 0 = -1, let n be an integer, 0 ≤ n ≤ n ′ 0 . By definition of n ′ 0 it means: 2(i -l + 1) + δ ′ -2(m n + δ n ) > 0 which implies 0 ≤ l -1 ≤ i -m n -1 as δ ′ -2δ n ≤ δ -2δ n ≤ -δ n ≤ 0.The orthogonality conditions (C.15) then gives for any 1 ≤ k ≤ k(n): u, H l-1 Φ

|∂ µ ε| 2 1 +

 1 |y| 2q dy ≤ C(M )E 2s L -(|µ|+q) 2s L -σ Weighted L ∞ bound for low order derivative: for 0 ≤ a ≤ 2 and µ ∈ N d with |µ| ≤ 1 there holds

2 2sL 2 ∇ 2s L ε 2 |µ| 1 .

 2221 -(|µ| 1 +q) 2s L -σ L If the potential satisfies q = 2s L -|µ|, then the inequality (D.1) claimed in the lemma is a consequence of the coercivity estimate (C.16):

d 2 +a+|µ| 1 +z ε L 2 )

 2 2s L -(a+|µ| 1 + d 2 +z) 2s L -σ σ E a+|µ| 1 + d 2 +z-σ 2s L -σ 2s L .

11 )- 2

 112 Case If 1 ≤ |µ 2 | < a -d 2 and |µ 1 | + δ a < b. Then b < |µ 2 | + d2 < a from (D.5) and one computes using Sobolev embedding:

Case 3

 3 If 1 ≤ |µ 2 | < a -d 2 and b ≤ |µ 1 | + δ a . Then b < |µ 2 | + d 2 < a from (D.5) and b ≤ |µ 1 |+δ a ≤ a. We let x := min( δ b 2 , a-|µ 2 |-d 2 ) > 0. One computes using Sobolev embedding, interpolation and (D.6) (since b > d 2 + x and |µ 1 | + |µ 2 | + δ a = a):

14 ) and 1 p 1 + 1 q 1 = 1 2

 142 , p 1 = +∞. -Case 5 If |µ 2 | = a. Then |µ 1 | + δ a = 0 and using Sobolev embedding (as b > d

step 3

 3 Proof in the case Ω = R d and a ≤ b. The proof is similar and simpler and we do not write it here. Therefore, (D.7) holds for all a ≥ 0 and b > d 2 .

3 ). 4 )

 34 0,1) M > u -Q L ∞ (B d (0,3M )) .(E.1)There exists κ, K > 0 such that for all u ∈ X ∩ { u -Q L ∞ (B d (0,4M ))) < κ}, there exists a unique choice of parameters b ∈ R I with b(0,1) 1 > 0, λ > 0 and z ∈ R d such that the function v := (τ -z u) λ -Qb satisfies: v, H i Φ (n,k) M = 0, for 0 ≤ n ≤ n 0 , 1 ≤ k ≤ k(n), 0 ≤ i ≤ L n (E.2)and such that:|λ -1| + |z| +Moreover, b, λ and z are Fréchet differentiable23 and satisfy:|λ -1| + |z| + (n,k,i)∈I |b (n,k) i | ≤ K u -Q L ∞ (B d (0,3M ))).(EProof of Lemma E.1. We define first the application ξ as:ξ : L ∞ (B d (0, 3M )) × (0, +∞) × R d+#I → R 1+d+#I (u, λ, z, b) → ( (τ z u) 1 λ -Q -α b, H i Φ (n,k) M ) 0≤n≤n 0 ,0≤i≤Ln 1≤k≤k(n) (E.5)ξ is C ∞ . From the definition (3.7) of α b , and the orthogonality conditions (4.3), the differential of ξ with respect to the second variable at the point (Q, 1, 0, ..., 0) is the diagonal matrix:D (2) ξ(Q, 1, 0, ..., 0) = -Ln is the L n × L n identity matrix. D(2) ξ(Q, 1, 0, ..., 0) is invertible for M large from (4.3). Consequently, from the implicit functions theorem, there exist κ, K > 0, such that for all u ∈ X ∩ { u -Q L ∞ (B d (0,3M ))) < κ}, there exists a choice of the parameters λ = λ(u), z = z(u) and b = b(u) such that:ξ(u, λ, z, b) = 0, | λ -1| + |z| + (n,k,i)∈I | b(n,k) i | ≤ K u -Q L ∞ (B d (3M ))) (E.7)23 For the ambient Banach space L ∞ (B d (0, 3M )).

11 ) 1 > 0 .

 1110 Thus for κ small enough one can apply Lemma E.1: there exist a choice of the parameters z ′ , b ′ and λ ′ such that v ′ = (τ -z ′ w) λ ′ -Qb ′ satisfies (E.8) and b ′ (0,1) This choice is unique in the range|λ ′ -1| + |z ′ | + (n,k,i)∈I |b ′ (n,k) i | ≤ K.(E.12)Moreover, there holds the estimate|λ ′ -1| + |z ′ | + (n,k,i)∈I |b ′ (n,k) i | ≤ K w -Q L ∞ (B d (0,3M ))) ≤ Kκ. Now we define b = b ′ , z = z + λz ′ , λ = λλ ′ (E.13)and v = v ′ . One has then b (0,1) 1

From ( 3 . 7 )- 1 uu 1 λ) 1 >

 37111 ,(3.29) and the above estimate:v L ∞ ( 1 λ (B d (1)-z)) = λ 2 p-τ z ( Qb, 1 λ ) L ∞ (B d (1)) -τ z (Q 1 λ ) L ∞ (B d (1)) +λ 2 p-1 τ z(Q 1 λ ) -τ z ( Qb, L ∞ (B d (1)) ≤ CKκfor some constant C > 1 independent of the others. Therefore, one takes K = CK, and the choice of parameters λ, z and b that we just found provide the decomposition claimed by the Lemma and the existence is proven. step 2 Differentiability. We claim that the parameters λ, b and z found in step 1 are unique, this will be proven in the next step. Therefore, from their construction using the auxiliary variables λ and z in step 1, and since the parameters λ ′ , z ′ and b ′ provided by Lemma E.1 are Fréchet differentiable, λ, b and z are Fréchet differentiable. step 3 Unicity. Let b, λ, ẑ be another choice of parameters with b(0,1) 0, 0 < λ < 1 4M and |z| ≤ 1 4 such that (E.8) and (E.9) hold for v = (τ -ẑ u) λ -Qb . The function (τ -z u) λ, where λ and z were defined in (E.10) in the first step, then satisfy the bound:(τ -z u) λ -Q L ∞ (B(3M )) < κ 0for κ small enough from (E.11), and admits two decompositions:(τ -z u) λ = ( Qb ′ + v ′ ) z ′ , 1 λ ′ = ( Qb + v) ẑ-z λ , λλ , such that v and v ′ satisfy (E.8). The first parameters satisfy from (E.12):|λ ′ -1| + |z ′ | + (n,k,i)∈I |b ′ (n,k) i | ≤ Kκ 0 .We claim that the second parameters satisfy: proven hereafter. Then, as such parameters are unique under the above bound from Lemma E.1, one obtains: z ′ , b = b ′ , implying that λ = λ, ẑ = z and b = b where λ, z and b are the choice of the parameters given by the first step defined by (E.13). The unicity is obtained.

  The semilinear heat equation. We study solutions of
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  Lemma 2.1 (Asymptotics of the ground state, [21] Lemma 4.3 and [18] Lemma 5.4). Let p > p JL (defined in (1.6)

  Remark 4.5. For a trapped solution one has the above estimates on the parameters from (3.59), (4.12), (4.13), (4.22), (4.23) and (4.24):

	-ℓ 2ℓ-α	and |z| ≤	1 10	.	(4.26)

  Modulation equations. We now quantify how the evolution of one parameter b

	(n,k) i	(n,k) , λ or z depends on all the parameters (b i
		1

λ

) is not present here as its support is in the zone |x| ≪ 1, see (4.26) 4.2.2.

  Finite time blow up. We now reintegrate in time the time evolution of λ and z we found in Lemma 4.7 to obtain their behavior and show the blow up. Lemma 4.8 (Concentration and asymptotic of the blow up point). Let u be a solution that is trapped on its maximal interval of existence. Then it blows up in finite time T > 0 with s(t) → +∞ as t → T and:

now come back to (4.45), inject again (4.46) with the above bound on |D|, (4.47), (4.48) and (4.49), yielding the desired bounds (4.42) and (4.43) of the lemma.

4.2.3.

E[x] stands for the entire part:x -1 < E[x] ≤ x.

This notation seems unnatural but matches the standard notation in the literature.

Note that (τ-zu)λ is defined on 1 λ (B d (1) -z) which contains B d (7M ) as |z| < 1 8 and 0 < | λ| < 1 8M , thus the second estimate makes sense.

We recall that Ω contains B d[START_REF] Evans | Partial differential equations[END_REF] 

We make an abuse of notations here. The identities given for the time derivatives of w are only true close to the border of Ω, but which is enough as the required conditions are trace type conditions, see[START_REF] Evans | Partial differential equations[END_REF].

The interdependence of the constants is written here so that the reader knows, for example, that s0 is chosen after all the other constants.

T is finite from Lemma 4.8.

We can now end the proof of Proposition 4.6.

Proof of Proposition 4.6. We argue by contradiction. If for any choice of initial perturbation along the instable directions of perturbation, the solution leaves the trapped regime, then it means that the domain of the exit application f defined by (5.96) is D(f ) = B. But then from Lemma 5.10, f would be a continuous application from B towards its boundary, being the identity on the boundary, which is impossible thanks to Brouwer's theorem, and the contradiction is obtained.

Appendix A. Properties of the zeros of H

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. The proof relies solely on ODE techniques (in the same spirit as [START_REF] Gui | On the stability and instability of positive steady states of a semilinear heat equation in R n[END_REF][START_REF] Li | Asymptotic Behavior of Positive Solutions of Equation ∆u + K(x)u p = 0 in R n[END_REF]) and is as follows. First, we describe the asymptotics of the equation H (n) f = 0 at the origin and at infinity in Lemma A.1. Then we construct the special zeroes T (n) 0 and Γ (n) in these asymptotic regimes using a perturbative argument and obtain their asymptotic behavior in Lemma A.2. Finally we show that they are not equal via global invariance properties of the ODE in the phase space (f, ∂ r f ) in Lemma A.3, yielding that they form indeed a basis of the set of solutions.

Let f : (0, +∞) be smooth such that H (n) f = 0. First we make the change of variables f (r) = w(t) with t = ln(r) ∈ (-∞, +∞). w then solves:

where V is defined by (1.31) and satisfies e 2t V (e t ) = O(e 2t ) → 0 as t → -∞, and e 2t V (e t ) = -pc p-1 ∞ + O(e -tα ) as t → +∞, from (2.2). Hence (A.1) is similar to the following ODEs as t → ±∞:

The first step in the proof of Lemma 2.3 is to describe their solutions.

Lemma A.1. The set of solutions of (A.2) (resp. (A.3)) is Span(e -γnt , e -γ ′ n t ) (resp. Span(e nt , e (-n-d+2)t )), where γ n is defined in (1.18) and

△ n > 0 being defined in (1.18). These numbers satisfy:

where γ is defined in (1.9).

Proof. From the standard theory of second order differential equations with constant coefficients, the set of solutions of (A.2) (resp. (A.3)) is Span(e -γnt , e -γ ′ n t ) (resp. Span(e nt , e (-n-d+2)t )), where γ n and γ ′ n are defined by (1.18) and (A.4). For any n ∈ N, one computes from its definition in (1.18) that the number △ n used in the definitions (1.18) and (A.4) of γ n and γ ′ n is strictly positive: △ n > 0. Indeed, △ n ≥ △ 0 from (1.18), and △ 0 > 0 if and only if p > p JL where p JL is defined in (1.6), and the present paper is concerned with the case p > p JL .

From the formula (1.18) one computes that γ 0 = γ and γ 1 = 2 p-1 + 1 where γ is defined in (1.9). For all n ∈ N, from the definition (A.4) of γ ′ n and since △ n > 0, one gets that γ ′ n > d-2 2 . Eventually we compute from (1.18) that

which implies in particular that

This, from (1.18), implies:

This implies that γ n < 2 p-1 for all n ≥ 2 because the sequence (γ n ) n∈N is decreasing from its definition (1.18).

Lemma A.2. There exist w

and w (n) 4 solving (A.1) such that:

with constants c 1 , c1 , c2 , c3 = 0. Moreover the asymptotics hold for the derivatives.

Proof of Lemma A.2. step 1 Existence of w (n)

1 . For n = 0, we take the explicit solution w (0) 1 = ΛQ(e t ), which satisfies indeed (A.6) from (2.1). Let now n ≥ 1. Using the Duhamel formula for solutions of (A.1), the fundamental set of solutions for the constant coefficient ODE (A.3) being provided by Lemma A.1, a solution of (A.1) satisfying the condition on the left in (A.6) with c 0 = 1 can be written as:

We now use a standard contraction argument. For t 0 ∈ R we endow the space

|u(t)|e -t < +∞ with the norm:

For u ∈ X we define the function Φu : (-∞, t 0 ] → R by:

(A.10) Φ maps X into itself. Indeed as the potential V is bounded from (2.2) a brute force bound on the above equation yields that:

and therefore Φu X ≤ C V L ∞ (e t 0 + u X e 2t 0 ). The same brute force bound for the difference of two images under Φ of two elements gives:

and Φ is a contraction for t 0 ≪ 0 small enough. Therefore, Φ admits a fixed point in X, denoted by u 1 . From the Duhamel formula (A.8) and the definition (A.10) of Φ, w

1 := e nt + u 1 (t) is then a solution of (A.1) on (-∞, t 0 ] which satisfies from the definition (A.9) of X:

We extend it to a solution of (A.1) on R ((A.1) being linear with smooth coefficients), still naming it w

step 2 Asymptotics of w (n)

1 . At present, we will refine the asymptotics (A.11). We reason by induction. We claim that if for k ∈ N and (c i ) 0≤i≤k ∈ R k+1 one has:

then there exists c k+1 ∈ R such that:

We now prove this fact. Fix k ≥ 1 and assume that w

satisfies (A.12). As V is a smooth radial profile, one has that ∂ 2q+1 r V (0) = 0 for any q ∈ N, implying that there exists

We inject this and (A.12) in (A.8) and integrate to find:

This asymptotics has to be coherent with the assumption (A.12), hence for all

2n+d-2 = c i+1 . The above identity is then the formula (A.13) one has to prove. Thus, one has proven that the asymptotics in the left of (A.6) holds for w (n) 1 . It remains to show that it also holds for the derivatives. Differentiating (A.8) gives:

We make the same reasoning we did for w (n) 1 : we inject the asymptotics (A.12) at any order for w

we just showed and (A.14) in the above formula, integrate in time and match the coefficients we find with (A.12), yielding that:

for any k ∈ N. Therefore, one has proven that the asymptotics in the left of (A.6) holds for w

solves (A.1) its second derivatives is given by: (w

and therefore from (A.14) the expansion also holds for (w (n) 1 ) ′′ . Differentiating the above equation, using again (A.14) and the expansions for w 2 . Let t 0 ∈ R. We use the Duhamel formula for (A.1), the solutions of the underlying constant coefficient ODE (A.3) being provided by Lemma A.1. For t ≤ t 0 the solution of (A.1) starting from w

can be written as:

(A.15) We claim that for t 0 ≪ 0 small enough, there holds

for all t ≤ t 0 . To show that, let T be the set of times t ≤ t 0 such that this inequality holds. T is closed via a continuity argument, and is non empty as it contains t 0 .

For t ∈ T we compute by brute force on the above identity:

Hence, for t 0 ≪ 0 small enough, |w [START_REF] Jendrej | Construction of two-bubble solutions for energy-critical wave equations[END_REF]) for all t ≤ t 0 . We inject (A.16) in (A.15) to refine the asymptotics (the constant in the O() depends on V L ∞ ):

with c1 = 0 if t 0 ≪ 0 is chosen small enough. We just showed the asymptotic on the right of (A.6).

step 4 Existence and asymptotics of w 

with c2 , c3 = 0, as perturbations of the solutions e -γnt and e -γ ′ n t of the asymptotic ODE (A.2) at +∞. We leave safely the proof of this fact to the reader. We now show why the second term in the asymptotic of w

is O(e (-γn-g)t ) where g is defined in (1.21). Using Duhamel's formula for (A.1), with the set of fundamental solutions of the asymptotic equation (A.2) described in Lemma A.1, w

can be written as

for a 1 and b 1 two coefficients. We use the bounds V (e t ′ ) + pc p-1 ∞ e -2t ′ = O(e -αt ′ ) from (2.2) and (A.17) to find:

After few computations we obtain two new coefficients ã1 and ã2 such that:

The asymptotic (A.17), as -γ ′ n < -γ n from (1.18) implies ã1 = c2 = 0. From the definition (1.21) of g, this parameter is tailor made to produce -γ 0 -g > -γ ′ 0 (from (1.9) and (1.18)). From (1.18) one then has:

As g satisfies also g < α, the above identity then yields:

Using exactly the same methods we use to propagate the asymptotic of w given by Lemma A.2 are not collinear. Moreover, w Proof of Lemma A.3. We see (ODE n ) as a planar dynamical system:

with w 1 = w and w 2 = w ′ . From their asymptotics from Lemma A.1:

and we may take c 1 , c3 > 0 without loss of generality. Therefore, close to -∞, w 2 x) x≥0 . To see that we compute the scalar product between the vector field and a vector that is orthogonal to this ray and that points toward north at any time t ∈ R: 2 4

, the potential -V being below the Hardy potential (see (2.5)). Hence w

> 0 for all times, which proves the positivity of w We now end the proof of Lemma 2.3. The fundamental set of solutions of (A.1) is provided by Lemma A.2. As w

4 , there exists a 1 = 0 and a 2 such that w

From the asymptotics (A.7) and the positivity of w

shown in Lemma A.3 one then has:

We call T n 0 the profile associated to w

in the original space variable r:

= 0. The above identity means T n 0 = a 1 r -γn + O(r (-γn-g ) as r → +∞, and (A.6) implies T n 0 (r) = r→0 q i=0 b n i r n+2l + O(r n+2+2q ) as r → 0, for some coefficients (b i ) i∈N ∈ R N , for any q ∈ N. These asymptotics propagate for the derivatives. This is the identity (2.7) we had to prove. Now let us denote by w another solution of (A.1) that is not collinear to w (n) 1 and w (n) 4 . (A.6) and (A.7) imply that w ∼ ce (2-n-d)t as t → -∞ and w = de -γnt + O(e (-γn-g)t ) as t → +∞ with c, d = 0. These asymptotics propagate for higher derivatives. The solution of H (n) Γ (n) = 0 given by Γ (n) (r) = w(ln(r)) then satisfies the desired asymptotics (2.7) we had to prove. Eventually, the laplacian on spherical

Appendix B. Hardy and Rellich type inequalities

We recall in this section the Hardy and Rellich estimates to make this paper self contained. They are used throughout the paper, and especially to derive a fundamental coercivity property of the adapted high Sobolev norm in Appendix C. We now state a useful and very general Hardy inequality with possibly fractional weights and derivatives. A proof can be found in [START_REF] Merle | Type II blow up for the energy super critical NLS, to appear in Cambridge Math. Jour[END_REF], Lemma B.2.

Lemma B.1 (Hardy type inequalities). Let δ > 0, q ≥ 0 satisfy q -( d 2 -1) ≥ δ and u : [1, +∞) → R be smooth and satisfy

2 -1 + δ, then there holds:

1 -δ, then there holds:

Proof of Lemma B.1. Let R > 1, the fundamental theorem of calculus gives:

→ 0 along a sequence of radiuses R n → +∞. Passing to the limit through this sequence we get:

We apply Cauchy-Schwarz and Young inequalities to find:

for any ǫ > 0. If q > d 2 -1 + δ, then the two above identities give:

Now the standard derivatives of f are easier to compute with φ. We claim that for all κ ∈ N d there exists a finite number of polynomials P i (x) := C i x i 1 1 ...x i d d , for 1 ≤ i ≤ l(κ), such that:

with for all i, 2q(i) -d j=1 i j = |κ| 1 . The proof by induction of this fact can also be left to the reader. The decay property for φ then implies:

which in turn implies the property (B.6).

Appendix C. Coercivity of the adapted norms

Here we prove coercivity estimates for the operator H under suitable orthogonality conditions, following the techniques of [START_REF] Raphaël | Stable blow up dynamics for the critical corotational wave maps and equivariant Yang Mills problems[END_REF]. We recall that the profiles used as orthogonality directions, Φ (n,k) M , are defined by (4.1). To perform an analysis on each spherical harmonics and to be able to track the constants, we will not study directly A (n) and A (n) * , but the following asymptotically equivalent operators:

where:

From the definition (1.18) of γ n they factorize the following operator:

The strategy is the following. First we derive subcoercivity estimates for Ã(n) * , Ã(n) and H (n) . A summation yields subcoercivity for -∆ -pc p-1 ∞ |x| 2 , and hence for H as they are asymptotically equivalent. Roughly, this subcoercivity implies that minimizing sequences of the functional I(u) = uH s u are "almost compact" on the unit ball of Ḣs ∩ Span(Φ

In particular if the infimum of I on this set were 0 it would be attained, which is impossible from the orthogonality conditions, yielding the coercivity uH s u u 2 Ḣs via homogeneity.

Lemma C.1. Let n be an integer, q ≥ 0 and u : [1, +∞) → R be smooth satisfying: (C.4) (i) There exist two constants c, c ′ > 0 independent of n and q such that:

Then there exist two constants c(δ), c ′ (δ) > 0 depending only on δ such that:

Proof of Lemma C.1. Coercivity for Ã(n) * . We first compute:

We make the change of variable u = vy γn+1-d . From (C.4),

y 2q-2γn +d+1 and

) and (1.18), we can apply apply (B.2) to the above identity and obtain (C.5) via:

Coercivity for Ã(n) . This time the integral we have to estimate is:

We make the change of variable u = vy -γn . From (C.4), 

which is precisely the identity (C.6).

Lemma C.2 (Coercivity of H under suitable orthogonality conditions). Let δ > 0 and q ≥ 0 such that 20 |q -

Then there exists a constant c(δ) > 0 such that for all u ∈ H 2 loc (R d ) satisfying the integrability condition: 

one has the inequality:

(C.8) 20 We recall that γn → -∞, hence for δ small enough many qs satisfy this condition. 21 With the convention that there is no orthogonality conditions required if n0 = -1.

We inject the three previous identities in the subcoercivity estimate (C.13) yielding:

which means that u ∞ = 0. On the other hand the lower semicontinuity of norms for the weak topology and (C.14) imply:

Hence u ∞ is a non trivial function in the kernel of H, hence smooth from elliptic regularity. It satisfies the integrability condition (still from lower semicontinuity):

We now decompose u ∞ in spherical harmonics:

∞ Y (n,k) and will show that for each n, k one must have u (n,k) ∞ = 0 which will give a contradiction. For each n, k the nullity

for a and b two real numbers. The previous equation implies the following integrability for u

From (2.7), as Γ (n) ∼ y -d-n+2 does not satisfy this integrability at the origin whereas

. From the assumption on n 0 and (1.18), one has:

1+y 2q+4 y d-1 is not integrable on [0, +∞), hence a = 0. If n ≤ n 0 then the orthogonality condition (C.7) goes to the limit as Φ (n,k) M is compactly supported and implies:

= 0 which, in spherical harmonics, can be rewritten as:

However, from (4.3) this in turn implies a = 0. We have proven that for all n, k u

(n,k) ∞ = 0, hence u ∞ = 0 which is the desired contradiction as we proved earlier that u ∞ is non trivial. The coercivity (C.8) must then be true.

If one adds analogous orthogonality conditions for the derivatives of u and uses a bit more the structure of the Laplacian, one gets that the weighted norm

all derivatives of lower order with corresponding weights.

Lemma C.3 (Coercivity of the iterates of H).

Let i be an integer with 2i > σ, such that for all n ∈ N satisfying m n + δ n ≤ i one has δ n = 0. Let n 0 be the lowest integer such that

C.COLLOT step 4 Iterations of coercivity estimates. We show the following bound by induction on l = 0, ..., i:

This property is naturally true for l = 0. We now suppose it is true for l -1 with 0 ≤ l -1 ≤ i -1. From the formula (C.18) relating ∆ l to H l we see that (using Cauchy-Schwarz and Young's inequalities):

where we used the induction hypothesis (C.24) for l -1 for the second line. We now use (C.24) and (B.4) to recover a control over all derivatives:

Injecting this last equation in the previous one we obtain:

This, together with (C.22), gives that (C.24) is true for l. Hence by induction it is true for i, which is precisely the estimate (C.16) we had to show and end the proof of the lemma.

Appendix D. Specific bounds for the analysis

This section is dedicated to the statement and the proof of several estimates used in the analysis. exploding as z 1 approches 0 we cannot take z 1 = 0 but z 1 very close to d 2 is enough for our purpose). Injecting the bootstrap bounds (4.25) then yields the desired result (D.2).

Proof of (iii). It can be proved verbatim the same way we did for (ii). Let Ω ⊂ R d be a smooth bounded domain. There exists a constant C > 0 such that for any u, v ∈ H max(a,b) (Ω) there holds 22 : ) and using the fact that f

for any f ∈ H b (Ω) gives that (D.4) holds for the couple of parameters (a, b ′ ).

step 1 A scalar inequality. We claim that for all (ν 1 , ν 2 ) ∈ [0, 1] 2 with ν 1 + ν 2 ≥ 1 and for all (λ 1 , λ 2 , λ 3 , λ 4 ) ∈ [0, +∞) satisfying λ 1 ≤ λ 2 and λ 3 ≤ λ 4 there holds:

We now prove this estimate. Since 1 -ν 1 -ν 2 ≤ 0 and 0 ≤ 1 -ν 2 ≤ 1 one has:

Let (λ 1 , λ 2 , λ 3 , λ 4 ) ∈ [0, +∞) satisfying 0 < λ 1 ≤ λ 2 and 0 < λ 3 ≤ λ 4 . We apply the above estimate to x = λ 2 λ 1 ≥ 1 and z = λ 1 λ 4 λ 2 λ 3 , and multiply both sides by λ 2 λ 3 , yielding the desired estimate (D.6) after simplifications. If λ 1 = 0 or λ 3 = 0, (D.6) always hold. Consequently, (D.6) holds for all (λ 1 , λ 2 , λ 3 , λ 4 ) ∈ [0, +∞) satisfying 0 < λ 1 ≤ λ 2 and 0 < λ 3 ≤ λ 4 . step 2 Proof in the case Ω = R d and a ≥ b. We claim that for u, v ∈ H a (R d ):

We now show the above estimate. Let u, v ∈ H s 2 (R d ). First, one obtain a L 2 bound using Hölder and Sobolev embedding (as b >

Secondly, one decomposes a = A + δ a where A := E[a] ∈ N is the entire part of a and 0 ≤ δ a < 1. Using Leibniz rule one has the identity:

(D.9)

We fix (µ 1 , µ 2 ) ∈ N 2d with |µ 1 | + |µ 2 | = A in the sum and aim at estimating the corresponding term. We recall the commutator estimate:

D.10) 22 The product uv indeed belongs to H a (Ω) as

and it is the unique solution of ξ(u, λ, z, b) = 0 in the range

Moreover, they are Fréchet differentiable, again from the implicit function theorem. Now, defining λ = 1 λ , b = b and z = -z, this means from (E.5) that the function w := (τ -z u) λ -Q -α b satisfies:

Finally, still from the implicit function theorem, from the identity for the differential (E.6), the definition (E.1) of X and (4. = -[D (2) ξ(Q, 1, 0, ..., 0)] -1 (ξ(u, 1, 0, ..., 0)

where the o() is as κ → 0, and the strict positivity is then for κ small enough. Consequently, in that case Qb = Q + χ ) -1+η 2 ≫ 2M for κ small enough. Thus, for v := (τ -z u) λ -Qb there holds:

because the support of v -ṽ is outside B d (0, 2M ). One has found a choice of the parameters λ, b and z such that b (0,1) 1 > 0 and (E.2) and (E.3) hold. This choice is unique in the range (E.3) and the parameters are Fréchet differentiable since under (E.3), they are equal to the parameters given by the above inversion of ξ. , 24 The following assertions make sense as v is defined on 1 λ (B d (0, 1)-{z}) which indeed contains B d (0, 2M ) since 0 < λ <