

COMMUNAUTÉ DE RECHERCHI ACADÉMIQUE RhôneAlpes

Etude du système MgSO₄ / H₂O pour le stockage de l'énergie thermique par un composite à sorption

Larysa OKHRIMENKO

Loïc FAVERGEON Michèle PIJOLAT Frédéric KUZNIK Kevyn JOHANNES

INSPIRING INNOVATION

Besoin du stockage intersaisonnier

Yu N, Wang R.Z., 2013

Contexte de l'étude

décomposition endothermique => charge du système

synthèse exothermique => décharge du système

- Sélection des systèmes:
- densité énergétique élevée (1 GJ/m³)
- stabilité, réversibilité
- prix
- non-toxicité
- non-corrosivité

· Toxicity

125

45

salts

17

- · Flammability
- · Particular well-known inconvenience

Basic TGA measurements and reversibility check

- Dehydration under 105°C at a heating rate of 1 K·min⁻¹ and preferably of 10 K·min⁻¹, dry N₂
- Rehydration (partially or completely) under a water vapour pressure of about 20 mbar at 25 °C
- · Calculations based on data available in the literature and obtained hydrates after the dehydration test under dry air: volume energy storage density, thermal efficiency, etc.

Validation TGA measurements for the promising salts and potentials evaluation

- Dehydration under water vapour pressure of about 20 mbar at 25 °C (wet N2) and identification of the obtained hydrate salts
 - Suitability for application including DHW supply (discharging temperature above 60 °C): conceivable hydrates (T_{nelling} > 60 °C), hydration conditions check at 60 °C
 - · Calculations based on data available in the literature and obtained hydrates after dehydration under wet N₂: volume energy storage density, thermal efficiency, etc.

Okhrimenko Larvsa

décomposition endothermique => charge du système

 $\langle S \rangle + G \implies \langle S - G \rangle + \Delta H_r$

synthèse exothermique => décharge du système

Réaction de dissociation			Densité du stockage énergétique		Température de réaction	Référence
C ↔	A+	В	GJ.m ⁻³	kWh. m ⁻³	٥°	
SiO	Si	O ₂	37.9	10500	4065 / +HF :150	(1)
SrBr ₂ ·6H ₂ O	SrBr ₂ ·H ₂ O	H ₂ O	2.3	628	80	(2)
FeCO ₃	FeO	CO ₂	2.6	720	180	(1)
Fe(OH) ₂	FeO	H ₂ O	2.2	610	150	(1)
MgSO ₄ ·7H ₂ O	MgSO ₄	H ₂ O	2.8	780	122	(1)
CaSO ₄ ·2H ₂ O	CaSO ₄	H ₂ O	1.4	390	89	(1)
LaCl ₃ ·7H ₂ O	LaCl ₃ ·H ₂ O	H ₂ O	2.1	590	110	(2)

Okhrimenko Larysa

Problématique Réversibilité via l'agglomération des grains au cours de cycle Faible performance du système Solution pour irréversibilité du système Matrice poreuse + Sel Composite **Meilleures performances** Gel de silice@ MgSO₄ Zéolite@ MgSO₄ 30 **ZM15** 25 Sample mass : 25g Inlet air humidity : 90% RH Inlet air temperature : 25°C 20 AT (°C) **SM16** 15 10 Silica gel 5 Zeolite 0 0 2 3 5 1 S. Hongois, 2011. Time (h)

5

Problématique du composite

MgSO₄·7H₂O (2,8 GJ.m⁻³) Réaction hydratation totale

Zéolite 13X @15% MgSO₄(0,92 GJ.m⁻³) Adsorption de vapeur d'eau + réaction hydratation Zéolite 13X @15% MgSO₄(0,60 GJ.m⁻³) <u>mesurée</u> Adsorption de vapeur d'eau + réaction hydratation

Zéolite 13X (0,47 GJ.m⁻³) Adsorption de vapeur d'eau

Composite zéolite/MgSO₄:

Densité énergétique

- chaleur d'hydratation par rapport de la zéolite
- densité énergétique par rapport de la zéolite
- puissance suffisante pour alimenter un bâtiment à basse consommation
- pas de problème de cyclabilité

Meilleur compréhension du composite

MINES Saint-Étienne

Sommaire

- L'état d'art du système MgSO₄/H₂O
- Etude expérimentale de la réaction
- Modèle thermodynamique
- Conclusions
- Perspectives

Sommaire

L'état d'art du système MgSO₄/H₂O

- Etude expérimentale de la réaction
- Modèle thermodynamique
- Conclusions
- Perspectives

Système MgSO₄/H₂O: l'état d'art

Réaction d'hydratation totale de sulfate de magnésium:

 $MgSO_4 + 7H_2O \leftrightarrow MgSO_4 \cdot 7H_2O + chaleur$

$$\begin{split} \mathsf{MgSO}_4 \cdot 6\mathsf{H}_2\mathsf{O} + 1\mathsf{H}_2\mathsf{O} &\leftrightarrow \mathsf{MgSO}_4 \cdot 7\mathsf{H}_2\mathsf{O} + \varDelta H_R^o, \, \mathsf{densit\acute{e}=0,4 \, GJ.m^{-3}} \\ \mathbf{MgSO}_4 \cdot 1\mathsf{H}_2\mathsf{O} + 5\mathsf{H}_2\mathsf{O} &\leftrightarrow \mathbf{MgSO}_4 \cdot 6\mathsf{H}_2\mathsf{O} + \Delta H_R^o, \, \mathsf{densit\acute{e}=2,32 \, GJ.m^{-3}} \\ \mathsf{MgSO}_4 + \mathsf{H}_2\mathsf{O} &\leftrightarrow \mathsf{MgSO}_4 \cdot 1\mathsf{H}_2\mathsf{O} + \varDelta H_R^o, \, \mathsf{densit\acute{e}=0,08 \, GJ.m^{-3}} \end{split}$$

Van Eessen V. M., 2009.

Okhrimenko Larysa

Système MgSO₄/H₂O: l'état d'art

Caractérisation par ATG-DSC et DRX de déshydratation:

Rampe en température à P_{H2O}=13 mbar

 ✓ Formation de la phase amorphe à partir de MgSO₄·6H₂O à 80°C, et formation de phase cristalline de MgSO₄ à 300°C

Okhrimenko Larysa

Sommaire

- L'état d'art du système MgSO₄/H₂O
- Etude expérimentale de la réaction
- Modèle thermodynamique
- Conclusions
- Perspectives

Etude thermodynamique

Choix de la zone d'expérience: MgSO₄·6H₂O \implies MgSO₄·1H₂O + 5H₂O

Calcul d'après D.D. Wagman and al., 1968-1971

Okhrimenko Larysa

Caractérisation de déshydratation de MgSO₄·7H₂O par DRX

$MgSO_4 \cdot 7H_2O \rightleftharpoons MgSO_4 \cdot 1H_2O + 6H_2O$

DRX in situ de déshydratation/hydratation de MgSO₄ ·7H₂O sous flux d'air

Condition: vitesse de chauffage 1°C/s, temps de balayage 10 min

Les expériences sont réalisées par thermobalance symétrique MTB 10⁻⁸ Conditions expérimentales d'analyse:

Les expériences sont réalisées par thermobalance symétrique MTB 10⁻⁸ Conditions expérimentales d'analyse:

Interprétation des résultats de thermogravimétrie

Influence de la surface spécifique

Okhrimenko Larysa

 $MgSO_4 \cdot 6H_2O \Longrightarrow MgSO_4 \cdot (6 - \epsilon)H_2O + \epsilon H_2O$

 $\epsilon(H2O) = f(T) a P_{const} \rightarrow Equilibre divariant$ entre la vapeur d'eau et l'eau du solide

Okhrimenko Larysa

25/05/2016

Diagramme d'équilibre P(T)

JCAT 47

Sommaire

- L'état d'art du système MgSO₄/H₂O
- Etude expérimentale de la réaction

Modèle thermodynamique

- Conclusions
- Perspectives

Modèle thermodynamique

 $S \cdot (n+p)H_2O \rightleftharpoons S \cdot nH_2O + pH_2O$

limite haute du domaine

n+p de non-stœchiométrie

p limite basse du domaine de non-stœchiométrie

Type d'hydrate non-stœchiométrique:

- à molécules d'eau non-localisées
- à molécules d'eau localisées

M. Soustelle, B. Guillot, 1972.

* données de la littérature: Van Eessen V. M., 2009.

M. Soustelle, B. Guillot, 1972.

Modèle thermodynamique

 $MgSO_4 \cdot 6H_2O \implies MgSO_4 \cdot (6-\epsilon)H_2O + \epsilon H_2O$

4 60°C $x_1 = \frac{n+p-\varepsilon}{p+q}$ fraction molaire de lacunes 3,5 3 fraction molaire de molécules $x_2 = \frac{1}{p+q}$ ε /H2O 2,5 d'eau 2 Loi d'action de $\mathbf{K} = \frac{x_1 \gamma_1}{P^q} P^q$ 1,5 masse relative: $x_2 \gamma_2$ 1 0,5 0 10 20 30 40 $p^{\underline{\gamma_1}}P^q$ P(H₂O) / mbar **Isotherme:** $\epsilon = n$ -M. Soustelle, B. Guillot, 1972 JCAT 47 24 MINES 25/05/2016

Saint-Étienne

Hydrate à molécules d'eau localisées

L'équation bilan:

 $(H_2O_{H_2O})_q \leftrightarrow q H_2O_g + (V_{H_2O})_q$

Modèle thermodynamique

$$(H_2 O_{H_2 O})_q \leftrightarrow q H_2 O_g + (V_{H_2 O})_q$$

Loi d'action de masse relative:

$$\mathbf{K} = \frac{x_1}{x_2} \frac{\gamma_1}{\gamma_2} P^q$$

Solution parfaite:

$$\gamma_1 = \gamma_2 = 1$$

$$x_1 = \frac{n + p - \varepsilon}{p + q}; \quad x_2 = \frac{\varepsilon - n}{p + q}$$

$$n = 0, 1; p = 6$$

Okhrimenko Larysa

25/05/2016

Etude des modèles thermodynamiques

 $(H_2O_{H_2O})_q \leftrightarrow q H_2O_g + (V_{H_2O})_q$ $ln \frac{x_2}{2} P^q = ln K + (x_1^2 x_2^2) B$ Loi d'action de masse relative: x_1 $\mathsf{K} = \frac{x_1}{\gamma_1} P^q$ -0,5 0,00 0,10 0,20 0,30 0,40 $x_2 \gamma_2$ -0,7 -0,9 Pour la solution strictement Ln(X1/X2*P(H20)^q) régulière: -1,1 ◆35°C -1,3 $\ln \gamma_1 = x_2^2 B$ ● 40°C -1,5 **★45°C** $\ln \gamma_2 = x_1^2 B$ ×50°C -1,7 ▲ 55°C $x_1 = \frac{n+p-\varepsilon}{p+q}; \qquad x_2 = \frac{\varepsilon-n}{p+q}$ **60°C** -1,9 n = 0,1; p = 6-2,1 $(X2^2 - X1^2)$ Calcul de K et B pour chaque T

0,50

26

JCAT 47

Etude des modèles thermodynamiques

 $(H_2 O_{H_2 O})_q \leftrightarrow q H_2 O_g + (V_{H_2 O})_q$

Interprétation des résultats

Okhrimenko Larysa

Interprétation des résultats

Sommaire

- L'état d'art du système MgSO₄/H₂O
- Etude expérimentale de la réaction
- Modèle thermodynamique
- Conclusions
- Perspectives

Conclusions

- ✓ Le stockage de chaleur par sorption sur composite: une option envisageable
 - Densités de stockage élevées possibles, durée de stockage modulable
 - Puissance de restitution élevée
- ✓ <u>L'étude du système MgSO₄/H₂O</u>:
- Equilibre divariant entre la vapeur d'eau et l'eau du solide
- Les molécules d'eau sont localisées, l'équilibre eau sulfate de magnésium suit une loi de solution strictement régulière
- L'enthalpie de la réaction Δ H = 110,9 kJ.mol⁻¹

Okhrimenko Larvsa

Perspectives

- ✓ Modélisation cinétique des réactions de déshydratation/ hydratation de sulfate de magnésium
- ✓ Etude de différentes zéolites
- ✓ Caractérisations physico-chimiques du composite
- ✓ Modélisation des phénomènes couplées :
- **Cinétique (adsorption + réaction chimique)**
- Transferts de masse et de chaleur

COMMUNAUTÉS DE RECHERCHE ACADÉMIQUE RhôneAlpes

Merci de votre attention

INSPIRING INNOVATION

Perspectives

35

Modélisation cinétique de réaction de déshydratation de sulfate de magnésium

