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Abstract

We prove that if the group generated by a Mealy automaton acts level-

transitively on a regular rooted tree, then the semigroup generated by the

dual automaton has exponential growth, hence giving a decision procedure

of exponential growth for a restricted family of automaton semigroups.

The purpose of this note is to link up two classes of groups and semigroups
highly studied for themselves: level-transitive (semi)groups and (semi)groups of
exponential growth, through automaton (semi)groups.
On the one hand, level-transitive groups (or equivalently spherically transitive
groups, depending on the authors) —i.e. groups acting transitively on any level
of a regular rooted tree— have received special focus these last years because of
branch groups, which form a particular class of level-transitive groups, one of the
three classes into which the class of just infinite groups is naturally decomposed
[7, 3].
On the other hand, the study on how (semi)groups grow has been highlighted
since Milnor’s question on the existence of groups of intermediate growth in
1968 [12] and the very first example of such a group given by Grigorchuk [5].
In this note, we prove that no semigroup of polynomial or intermediate growth
can be generated by a reversible Mealy automaton whose dual generates a level-
transitive group. Even if the problem of deciding the level-transitivity of an
automaton group is still open, there exist some families of Mealy automata
for which the level-transitivity of an element in the generated semigroup is
decidable [14].

1 Basic notions

1.1 Semigroups and groups generated by Mealy automata

We first recall the formal definition of an automaton. A (finite, deterministic,
and complete) automaton is a triple

(

Q,Σ, δ = (δi : Q → Q)i∈Σ

)

, where the
stateset Q and the alphabet Σ are non-empty finite sets, and the δi are functions.
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A Mealy automaton is a quadruple (Q,Σ, δ, ρ), such that (Q,Σ, δ) and (Σ, Q, ρ)
are both automata. In other terms, a Mealy automaton is a complete, deter-
ministic, letter-to-letter transducer with the same input and output alphabet.
Its size is the cardinal of its stateset.
The graphical representation of a Mealy automaton is standard, see Figure 1.
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Figure 1: An example of a Mealy automaton which does not generate a free
semigroup on its stateset but whose dual generates a level-transitive group.

Let A = (Q,Σ, δ, ρ) be a Mealy automaton. Each state x ∈ Q defines a mapping
from Σ∗ into itself recursively defined by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρx(is) = ρx(i)ρδi(x)(s) .

The image of the empty word is itself. The mapping ρx for each x ∈ Q is
length-preserving and prefix-preserving. We say that ρx is the function induced
by x. For x = x1 · · ·xn ∈ Qn with n > 0, set ρx : Σ

∗ → Σ∗, ρx = ρxn
◦ · · · ◦ ρx1

.
The semigroup of mappings from Σ∗ to Σ∗ generated by {ρx, x ∈ Q} is called
the semigroup generated by A and is denoted by 〈A〉+.

A Mealy automaton A = (Q,Σ, δ, ρ) is invertible if the functions ρx are permu-
tations of Σ. In this case, the functions induced by the states are permutations
on words of the same length and thus we may consider the group of mappings
from Σ∗ to Σ∗ generated by {ρx, x ∈ Q}: it is called the group generated by A
and is denoted by 〈A〉.

In a Mealy automaton A = (Q,Σ, δ, ρ), the sets Q and Σ play dual roles. So we
may consider the dual (Mealy) automaton defined by d(A) = (Σ, Q, ρ, δ). We
extend to δ the former notations on ρ, in a natural way. Hence δi : Q

∗ → Q∗, i ∈
Σ, are the functions induced by the states of d(A), and for s = s1 · · · sn ∈ Σn

with n > 0, we set δs : Q
∗ → Q∗, δs = δsn ◦ · · · ◦ δs1 .

A Mealy automaton (Q,Σ, δ, ρ) is reversible if its dual is invertible, that is if
the functions δi are permutations of Q.

An automaton group or semigroup can be seen as acting on a regular root tree
representing the language of all words on its alphabet.

1.2 Growth of a semigroup or of a group

Let H be a semigroup generated by a finite set S. The length of an element g
of the semigroup, denoted by |g|, is the length of its shortest decomposition:

|g| = min{n | ∃s1, . . . , sn ∈ S, g = s1 · · · sn} .
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The growth function γS
H of the semigroupH with respect to the generating set S

enumerates the elements of H with respect to their length:

γS
H(n) = #{g ∈ H ; |g| ≤ n} .

The growth functions of a group are defined similarly by taking symmetrical
generating sets.

The growth functions corresponding to two generating sets are equivalent [11],
so we may define the growth of a group or a semigroup as the equivalence class
of its growth functions. Hence, for example, a finite (semi)group has a bounded
growth, while an infinite abelian (semi)group has a polynomial growth, and a
non-abelian free (semi)group has an exponential growth.

It is quite easy to obtain groups of polynomial or exponential growth. Answer-
ing a question of Milnor [12], Grigorchuk gave an example of an automaton
group of intermediate growth [5]: more than any polynomial, less than any ex-
ponential, opening thus a new classification criterium for groups, that has been
deeply studied since this seminal article (see [6] and references therein). Besides,
intermediate growth and automaton groups seem to have a very strong link, as
the only known examples of intermediate growth groups are automaton groups.

1.3 Level-Transitivity

The action of a (semi)group generated by an invertible Mealy automaton A =
(Q,Σ, δ, ρ) is level-transitive if its restriction to Σn has a unique orbit, for any n
(this notion is equivalently called spherically transitive [8]). From a dual point
of view it means that the powers of the dual d(A) are connected, the n-th power
of the automaton d(A) being the Mealy automaton

d(A)n =
(

Σn, Q, (ρx : Σ
n → Σn)x∈Q, (δs : Q → Q)s∈Σn

)

.

Note that all the powers of a reversible Mealy automaton are reversible.
The next theorem is proved in [9]:

Theorem 1. Let A be a reversible automaton with a prime number of states.
If the action of d(A) is level-transitive, then the semigroup 〈A〉+ is free on the
automaton stateset.

In [9] the hypothesis of the prime number of states was erroneously conjectured
to be not mandatory. In fact, the Mealy automaton of Figure 1 given by Laurent
Bartholdi (personal communication) does not generate a free semigroup on its
stateset, even though its dual generates a level-transitive group.
Although deciding the level transitivity of an automaton group or of an element
of an automaton group are open problems [8, Problems 7.2.1(e+f)], this former
problem has received a solution in some cases [14] and it is even implemented
in the GAP packages FR and automgrp [4, 2, 13].

1.4 Minimization and Nerode classes

Let A = (Q,Σ, δ, ρ) be a Mealy automaton.
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The Nerode equivalence ≡ on Q is the limit of the sequence of increasingly finer
equivalences (≡k) recursively defined by:

∀x, y ∈ Q, x ≡0 y ⇐⇒ ρx = ρy ,

∀k > 0, x ≡k+1 y ⇐⇒
(

x ≡k y ∧ ∀i ∈ Σ, δi(x) ≡k δi(y)
)

.

Since the setQ is finite, this sequence is ultimately constant. For every element x
in Q, we denote by [x] the class of x w.r.t. the Nerode equivalence, called the
Nerode class of x. Extending to the n-th power of A, we denote by [x] the
Nerode class in Qn of x ∈ Qn.
Two states of a Mealy automaton belong to the same Nerode class if and only
if they represent the same element in the generated semigroup, i.e. if and only
if they induce the same action on Σ∗.

The minimization of A is the Mealy automaton m(A) = (Q/≡,Σ, δ̃, ρ̃), where
for every (x, i) in Q × Σ, δ̃i([x]) = [δi(x)] and ρ̃[x] = ρx. This definition is
consistent with the standard minimization of “deterministic finite automata”
where instead of considering the mappings (ρx : Σ → Σ)x, the computation is
initiated by the separation between terminal and non-terminal states.

The following remarks will be useful for the rest of the paper:

Remark 2. If two words of Q∗ are equivalent, so are their images under the
action of any element of 〈d(A)〉+.

Remark 3. The Nerode classes of a connected reversible Mealy automaton have
the same cardinal.

Remark 4. It is known from [10] that a reversible automaton generates a finite
semigroup if and only if the connected components of its powers are bounded.
It is straightforward to adapt the proof to show that a reversible automaton
generates a finite semigroup if and only if the minimizations of the connected
components of its powers are bounded.

Remark 5. Let A and B be two reversible Mealy automata on the same alphabet
Σ, x some state of A, and y some state of B. If x and y have the same action
on Σ∗, then m(A) and m(B) are isomorphic; in particular they have the same
size.

2 Main result

In this section we prove the following generalization of Theorem 1:

Theorem 6. Let A be a reversible Mealy automaton. If the action of d(A) is
level-transitive, then the semigroup 〈A〉+ has exponential growth.

Let us first look at the structure of the Nerode classes of two consecutive powers
of the stateset, in the case of a reversible Mealy automaton whose dual generates
a level-transitive group.

Lemma 7. Let A = (Q,Σ, δ, ρ) be a reversible automaton whose dual generates
a level-transitive group.
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Let (Ci)1≤i≤k be the Nerode classes of Qn for some n, and D be a Nerode class
of Qn+1. We have

D =
⋃

q∈QD

Ciq,D q and D =
⋃

q∈Q′

D

qCi′
q,D

,

where QD ⊆ Q and Q′
D ⊆ Q have the same cardinal, and the (iq,D)q∈QD

on the
one hand and the (i′q,D)q∈QD

on the other are pairewise distinct.

The automata m(An) and m(An+1) have the same size if and only if QD =
Q′

D = Q.

Proof. We prove the first decomposition.
Let u ∈ Qn and C be the Nerode class of u. If v ∈ C, then uq and vq are in
the same Nerode class of Qn+1. So uq ∈ D implies Cq ⊆ D.
Let Ci and Cj be two different Nerode classes of Qn, then it is impossible that
Ciq ⊆ D and Cjq ⊆ D.
As a consequence, the ratio between the cardinal of a Nerode class of Qn+1 and
the cardinal of a Nerode class of Qn (which does not depend on these classes by
Remark 3) is the integer #QD = #Q′

D which is less than or equal to #Q. It is
equal to #Q if and only if m(An) and m(An+1) have the same size.

Proposition 8. Let A be a reversible Mealy automaton whose dual generates
a level-transitive group, and n be an integer.
If #m(An+1) = #m(An), then #m(An+2) = #m(An+1).

Proof. Let us denote by Q the stateset of A, by C1, . . . , Ck the Nerode classes
of Qn, and by D1, . . . , Dk the Nerode classes of Qn+1 (by hypothesis Qn has as
many Nerode classes as Qn+1).
Let r ∈ Q: rD1 is included in some Nerode class of Qn+2. But by Lemma 7 we
have

rD1 = r
⋃

q∈Q

Ciqq =
⋃

q∈Q

rCiq q ,

where Ciq is written for Ciq,D1
. Now, for a fixed q ∈ Q, rCiq is included in some

Nerode class of Qn+1, say Djq . Hence

⋃

q∈Q

Djqq

is included in a Nerode class of Qn+2 and by Lemma 7 we obtain the result.

We can now prove Theorem 6.

Proof. If d(A) is level-transitive, then 〈d(A)〉 is infinite and so is 〈A〉+ (see for
example [1, 10]). But if there exists n such that m(An) and m(An+1) have the
same size, then for any m ≥ n, m(Am) has this same size, and the generated
semigroup should be finite by Remark 4.
So for any n, the ratio of the size of m(An+1) and the size of m(An), which is
known to be an integer by Lemma 7, is at least 2. So the sequence (#m(An))n
increases and is componentwise greater than or equal to (2n)n. By Remark 5,
this implies that, for any integer n, the actions induced by the states of An

cannot be induced by previous powers of A and hence 〈A〉+ has an exponential
growth.
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Open problems For this result to be fully applicable, it remains of course to
find a procedure to decide if an invertible Mealy automaton is level-transitive.
Another interesting question would be: can a reversible Mealy automaton gen-
erate a semigroup of polynomial or of intermediate growth?
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