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Abstract 

Photoplethysmographic signals obtained from a webcam are analyzed through a continuous wavelet 

transform to assess the instantaneous heart rate. The measurements are performed on human 

faces. Robust image and signal processing are introduced to overcome drawbacks induced by light 

and motion artifacts. In addition, the respiration signal is recovered using the heart rate series by 

respiratory sinus arrhythmia, the natural variation in heart rate driven by the respiration. The 

presented algorithms are implemented on a mid-range computer and the overall method works in 

real-time. The performance of the proposed heart and breathing rates assessment method was 

evaluated using approved contact probes on a set of 12 healthy subjects. Results show high degrees 

of correlation between physiological measurements even in the presence of motion. This paper 

provides a motion-tolerant method that remotely measures the instantaneous heart and breathing 

rates. These parameters are particularly used in telemedicine and affective computing, where the 

heart rate variability analysis can provide an index of the autonomic nervous system. 
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1. Introduction 

Recognizing an emotion by its physiological signature is a field of research that presents a particular 

interest on the last ten years. Understanding emotions can be useful, particularly in virtual therapies, 

where emotions are feedbacks that regulate the virtual environment level and intensity. 

Physiological parameters like Heart Rate (HR) and Heart Rate Variability (HRV) are reliable inputs to 

emotion recognition [1–3]. However, contact sensors can be limited in some scopes of application 

where a specialist must install and monitor them. When dealing with serious games, contact sensors 

can disturb the interaction and may be intrusive to the privacy. 

Non-contact measurements of physiological parameters can be achieved using thermal infrared 

imaging, a technology employed by Pavlidis et al. to collect physiological data on human faces like 

heart and respiratory rates, perspiration, supraorbital and periorbital blood flow [4–7]. Similarly, 

Doppler radars are non-contact sensors that were used to detect heartbeats [8,9] and respiration 

signals [10]. More recently, digital cameras and webcams were employed on the face to detect 

Blood Volume Pulse (BVP) [11–15] and compute HR and Breathing Rate (BR). The principle, based on 

PhotoPlethysmoGraphy (PPG) consists in observing light variations on the skin to recover the 

cardiovascular pulse wave. This optical technique is mainly implemented in contact pulse oximeters 

where infrared wavelengths are employed to detect the pulse wave. Considered in this case as 

noise, ambient light is now an illumination source used for PPG exploitation via high sensitivity 

cameras and webcams. The main drawback of this technique is that PPG signals are susceptible to 

motion-induced artifacts, particularly when dealing with webcams and ambient light. Independent 

component analysis, a blind source separation method, has been proposed by Poh et al. [13] to 

remove noise artifacts from face imaging PPG signal. Standards of measurement recommend the use 

of ECG sensors to measure HRV [16]. However, it has been shown that pulse rate variability derived 

from PPG signals can be a good surrogate of HRV at rest [17]. Sun et al. [14,15] have compared 

performances between a low-cost webcam and a high-sensitivity camera to assess HR and pulse rate 

variability. They conclude that the functional characteristics of a 30 fps webcam are comparable to 

those of a 200 fps camera when interpolating signals to improve the time domain resolution [15]. 

 

The HRV is a parameter used in affective computing and psychophysiology to give an index of the 

Autonomic Nervous System (ANS) activity in order to detect workload changes in real time [19]. Its 

spectral analysis can provide the sympathovagal balance, a ratio that reflects reciprocal changes of 

sympathetic and vagal outflows [18]. The HRV tends to be rhythmic and ordered in positive 

emotional states and follows the respiration by a phenomenon called Respiratory Sinus Arrhythmia 

(RSA). In contrast, the HRV tends to be chaotic and disordered in states of anger, anxiety or sadness. 

These rhythmic variations provide a state known as cardiac coherence [20,21]. The use of non-

contact means to detect physiological signals is particularly advantageous in affective computing, 

where the objective is to induce emotions like stress or fear for example. In these 

psychophysiological experiments, contact sensors may generate a bias by interfering with the user, 

resulting practically by an erroneous emotion classification [4]. Currently, published methods 

effectively recover HR, BR and HRV spectral components over a given time period. However, few 

attempts [15] have been made to measure the instantaneous HR (iHR) with a webcam, especially 

when considering head motion artifacts. 

 

 



The immediate objective of this study was to provide a motion-tolerant method that reliably 

recovers the instantaneous pulse and breathing rates using a low-cost webcam. The presented 

methodology was developed to overcome signal variations generated by natural head movements. 

Firstly, we describe the approach, where robust image and signal processing are introduced to 

gather exclusively skin pixels that contain PPG information. A wavelet filtering algorithm was 

elaborated to recover both the instantaneous HR and BR. Secondly, we validate the accuracy of the 

proposed approach using approved contact probes. Webcam PPG signals were remotely recorded 

from 12 healthy volunteers during a set of two experiments, specifically at rest and during motion. 

Remote measurements of the instantaneous heart and breathing rates were respectively compared 

to those acquired from BVP and chest belt sensors.  

 

2. Methods 

2.1. Experimental procedure 

Two experiments were conducted indoors to evaluate the iHR assessment method on 12 healthy 

volunteers (Table 1) of both gender and various ages. The skin type reported in Table 1 corresponds 

to a visual estimation of the participant skin color using the Fitzpatrick chromatic scale [22], defined 

between I for white skins and V for black skins. For practical purposes, categories I and II were 

regrouped in one set. All participants gave their informed consent before the beginning of a session. 

Each experiment in a session lasted 35 seconds where participants were sitting on a chair in 

approximately 1 meter from the webcam (see Fig. 1). Sunlight intensities were previously recorded 

in all sessions as the experiments were performed on different moments of the day. Source signals 

[see Fig. 2 (e)] were recorded with a C++ based software and analyzed offline with MATLAB (The 

MathWorks, Inc.). The purpose of the first experiment was to evaluate the proposed iHR assessment 

method in quiet, still and calm conditions. In the second experiment, participants had to follow a set 

of three randomly predefined head movements, particularly two horizontal and one vertical 

rotations. The purpose of this second experiment was to evaluate the method under motion 

conditions. Head rotations were recorded using the bounding box of the face, delivered by the face 

detection algorithm. The iHR and the respiration signals were respectively recorded along both 

experiments using contact sensors (see Fig. 1). 

 

2.2. Materials 

A low-cost HD webcam (Lifecam Cinema by Microsoft) was used in these experiments. The 

resolution of the device is reduced to 320x240 pixels in order to keep an acquisition frequency of 30 

frames per second. The maximum webcam resolution is 1280x800 pixels. The three RGB channels 

are encoded with 8 bits per pixel. It is important to note that auto white balance is disabled in these 

experiments. White balance locally regulates colors and generates non-desired artifacts in webcam 

PPG signals. The light intensity was measured with a light meter (model TENMA 72-6693 by TENMA) 

before each experiment. A finger BVP and a chest belt respiration sensor (BVP-Flex/Pro and Resp-

Flex/Pro by Thought Technologies Ltd.) were used to measure respectively the HR and the BR at 256 

Hz. 

 



 
Fig. 1. Experimental setup. The subject is seated in front of a screen at a distance of approximately 1 

m from the webcam. 

 

2.3. Photoplethysmography pulse extraction 

2.3.1. Overview 

The overall system is composed with both image and signal processing. Changing the native 

resolution of the webcam by working with HD frames results in an increase of pixels that contain the 

signal. Given that HD acquisition requires more computational time, Pan, Tilt and Zoom parameters 

were employed to provide a partial frame of interest from the global HD frame. Pan and tilt 

parameters are set to track the face over time while the zoom parameter is computed to adjust the 

size of the face in the input frame [Fig. 2 (a)]. The method presented in this study run on a mid-range 

computer in real time. Preprocessing operations are applied on the original frame to isolate skin 

pixels that contain true PPG information. Thus, to properly collect PPG pixels, a skin detection mask 

[Fig. 2 (b)] is applied on the input frame. A spatial averaging operation is computed on these 

segmented pixels while the others are discarded. A set of t frames gives a raw signal of t points [Fig. 

2 (e)]. A continuous wavelet transform [Fig. 3 (b)] is performed on this signal to remove trends and 

noise. Then, the maxima are detected and the interbeat intervals computed, forming the iHR signal. 

The respiration is reconstructed (see Fig. 5) using another wavelet filtering operation from the 

interpolated iHR signal. 

 

 

 
Table 1. Subjects and illumination characteristics 

 

Subject 

n° 
Gender 

Age 

(years) 

Skin 

Typea 

HR at 

rest 

Light b 

intensity (lux) 

1 M 24 IV 73 1400 / 1400 

2 M 25 IV 60 1500 / 1800 

3 M 22 I – II 47 1150 / 1150 

4 M 27 I – II 64 1250 / 1250 

5 M 23 I – II 76 100 / 100 

6 M 26 IV 62 300 / 300 

7 F 22 III 80 1800 / 120 

8 M 24 I – II 71 300 / 350 

9 M 79 I – II 50 2000 / 2000 

10 M 22 IV 76 300 / 400 

11 M 25 I – II 78 1400 / 1500 

12 F 22 III 80 250 / 200 

Mean ± 

S.D. 
 28 ± 16  68 ± 11 

979 ± 683 / 

881 ± 705 
a Using Fitzpatrick’s chromatic scale [22]. 
b At rest / During motion 
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2.3.2. Image processing 

 

The face is automatically detected using a cascade of boosted classifier on each frame. The method 

was originally proposed by Viola and Jones [23] and is employed using OpenCV 2.1 library. The 

algorithm returns the bounding box of the face and particularly the top-left point coordinates along 

with the width and height of the box. The PTZ parameters are computed using these bounding box 

coordinates. An iterative algorithm is applied where the zoom is continuously adjusted according to 

the surface of the bounding box [Fig. 2 (a)]. Pan and tilt parameters are regulated to track the face 

over time when the head of the user moves. A skin detection [Fig. 2 (b)] is performed on the face to 

detect and gather skin pixels that contain the PPG signal. The filter is established in the YCbCr color 

space [24] by setting a threshold on the 3 channels as follows: 

{
𝑌 > 80

77 < 𝐶𝑏 < 127
133 < 𝐶𝑟 < 173

 (1) 

Where Y is the luma, Cb the blue chroma and Cr the red chroma of the color space. It has already 

been used to detect skin color on pictures or videos [24]. 

 

 

 
Fig. 2. Processing algorithm overview. (a) Pan, Tilt and Zoom parameters are computed to zoom and 

track the face. (b) Pixels that contain PPG information are isolated by a skin detection. (c) The RGB 

color space is converted to the CIE L*u*v*. (d) The u* frame is combined with the skin detection 

frame by a combinational AND operation. (e) A spatial averaging step is performed to transform a 

set of frames into a single raw signal [11,12]. 
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A permutation between the native RGB and the CIE L*u*v* color spaces is performed concurrently 

to the skin detection. Oxy- and deoxyhemoglobin have a better absorption coefficient between 540 

and 577 nm, corresponding to green/yellow colors wavelength [26]. Thus, PPG fluctuations are more 

influent in the u* channel, which represents a red to green color indicator. The CIE L*u*v* is a 

perceptual color space proposed by the International Commission on Illumination—the CIE 

abbreviation comes from its French denomination: Commission Internationale de l’Eclairage. The 

color space is device-independent, perceptually uniform and is indirectly computed from the CIE XYZ 

space, a derived version of the RGB color space [25], as in Eq. (4). In Eq. (2), L* represents the 

lightness while u* and v* are the chromaticity components. The color space is non-linear but 

reversible. The distance between two points indicates how different the colors are in luminance, 

chroma and hue. The L*, u* and v* coordinates are calculated from the CIE XYZ space by the 

following formulas: 

𝐿∗ =

{
 
 

 
 
116 (

𝑌

𝑌𝑛
)

1

3

− 16        for 
𝑌

𝑌𝑛
> 0.008856

903.292 (
𝑌

𝑌𝑛
)            for 

𝑌

𝑌𝑛
≤ 0.008856

 

𝑢∗ = 13(𝐿∗)(𝑢′ − 𝑢𝑛) 

𝑣∗ = 13(𝐿∗)(𝑣′ − 𝑣𝑛) 

(2) 

 

Where the subscript n in Eq. (2) denotes the D65 [25] white point coordinates: Yn = 1.0, un = 

0.197939 and vn = 0.468311. u’ and v’ are computed with the X, Y and Z coordinates: 

u′ =
4X

X + 15Y + 3Z
 

v′ =
9Y

X + 15Y + 3Z
 

(3) 

 

The XYZ space is derived from the RGB color space by the following formula: 

[
𝑋
𝑌
𝑍
] = [

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

] . [
𝑅
𝐺
𝐵
] (4) 

 

A spatial averaging operation [Fig. 2 (d) and (e)] is then computed using u* pixel intensities that exist 

on the skin detection, forming the raw signal x(t). The reversed version of this signal is used for 

further analysis. 

 

 

 

 

 

 

 



2.3.3. Signal processing 

 

2.3.3.1. Continuous Wavelet Transform (CWT) to filter the pulse wave 

The CWT constructs a time-frequency representation of a signal and has been used to denoise or 

refine peaks [27] and significant points [28] in PPG signals. The CWT uses, like the Fourier Transform, 

inner products to measure the similarity between an analyzing function and a signal. Unlike the 

Fourier Transform and the short time Fourier Transform, the CWT can detect rapid changes in 

frequencies in time due to its variable window width. These advantages have resulted in CWT being 

increasingly used for biological signals analysis [7,29,30]. The non-stationary PPG signal is convolved 

with a child wavelet ψτ,s, representing a scaled and shifted version of a mother wavelet ψ: 

 

𝐶𝑊𝑇𝑥
𝜓(𝜏, 𝑠) = ∫ 𝑥(𝑡)𝜓𝜏,𝑠(𝑡)

∞

−∞

𝑑𝑡 

(5) 

𝜓𝜏,𝑠(𝑡) =
1

√|𝑠|
𝜓 (

𝑡 − 𝜏

𝑠
) 

 

Where ψτ,s is the child wavelet, scaled by s and dilated by τ. ψ is the referent mother wavelet. 

Analyzed frequencies are linked to the scale parameter. Increasing s and dilating the wavelet size 

results to cover a larger signal in the time domain, leading to analyze lower frequencies. A large set 

of standard mother wavelets is available in the literature, and the choice depends on the application 

requirements and on the input signal properties. The Morlet wavelet has already been used to 

analyze PPG signals [30] and was employed in this study. The original signal can be reconstructed 

from the wavelet transform via the following inverse formula: 

 

𝑥(𝑡) =
1

𝐶𝜓
∫ ∫

1

𝑠2
𝐶𝑊𝑇𝑥

𝜓
(𝜏, 𝑠)

1

√|𝑠|
𝜓 (

𝑡 − 𝜏

𝑠
)

∞

−∞

∞

0

𝑑𝜏 𝑑𝑠 

(6) 

𝐶𝜓 = ∫
|𝜓̂(𝜁)|²

|𝜁|
𝑑𝜁

∞

0

< ∞ 

 

Cψ is the admissibility condition and 𝜓̂ the Fourier transform of ψ.  

 

The DC component is removed [see Fig. 3 (a)] to reveal detailed information [7] on lower scales prior 

to performing the CWT: 

 

𝑥𝐴𝐶(𝑡) = 𝑥(𝑡) − 𝛿 (7) 

 

Where δ is the mean of the raw PPG signal x(t). The CWT is then computed within an operational 

frequency band, set to [0.65, 3] Hz corresponding to 40–180 bpm [Fig. 3 (b)]. 

 



 
Fig. 3. A fragment of the raw signal (a) of the subject 12 (female, age = 22, skin type III) and its CWT 

computed between 0.65 and 3 Hz. This spectrogram (b) is a particular plot that represents the 

percentage energy for each coefficient, where pulse wave oscillations are distinctly identifiable 

around 1.5 Hz. 

 

 

The wavelet transform coefficients are filtered using the wavelet energy curve [see Fig. 4 (a)], its 

maxima in the frequency axis corresponding to the averaged heart rate. The pulse wave presents 

stronger amplitudes than those generated by noise and trends. A weighted product is applied 

between the energy curve and the CWT coefficients [see Fig. 4 (b)]. The inverse transform is 

computed as in Eq. (6) to reconstruct a denoised and detrended version of the raw signal [see Fig. 4 

(c)]. The cascade of these two operations—weighting the CWT and reconstructing the signal by 

inverse CWT—is employed to filter the PPG signal in the operational band [0.65, 3] Hz. The filtered 

signal is interpolated with a 256 Hz cubic spline function. A custom algorithm was developed to 

detect peaks and compute the interbeat intervals (IBIs). The iHR series derived from the webcam 

PPG recordings are computed using the IBI time series [Fig. 5 (a)]. 



 
Fig. 4. The energy curve (a) is used to filter the spectrogram (b). The reconstruction gives a 

detrended and denoised version (c) of the raw signal. 

 

 

 

 

2.3.3.2. Respiration signal assessment 

A 30 Hz linear interpolation is performed on the irregularly time-sampled iHR series and a new CWT 

[Fig. 5 (b)] is performed between 0.15 and 0.4 Hz. This frequency band is widely used by HRV 

analysis communities and gives an image of the RSA [18]. The respiration is in close range with the 

HRV by RSA on rested persons and is equally recovered [Fig. 5 (c)] using the processing algorithms 

presented in section 2.3.3.1, in the operational band [0.15, 0.4] Hz. The instantaneous BR is 

computed by detecting respiratory cycles and measuring intercycles intervals on the respiration 

signal. 

 



 
Fig. 5. The iHR series (a) is resampled and a new CWT is computed between 0.15 and 0.4 Hz (b). The 

weighted reconstruction gives the respiration signal (c). 

 

 

 

 
Fig. 6. A typical example representing the iHR series computed with the webcam PPG signal (a) and 

the corresponding respiration signal (b) extracted from the iHR time trace. The iHR series recorded 

with the finger BVP sensor (c) and the respiration signal measured by the chest belt sensor (d) are in 

close agreement with readings from the webcam. 
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3. Results 

Image and signal processing detailed in the previous section were employed to compute the iHR 

series and respiration traces of all subjects. These two physiological parameters were simultaneously 

recorded by contact sensors. A typical example from subject 3 (male, age = 22 years and skin type = 

I–II) is presented in Fig. 6 where respective signals are directly comparable. Pearson’s correlation 

coefficients along with a statistical analysis and Bland-Altman plots were used to quantify the level 

of agreement between physiological measurements by the remote and contact techniques. Results 

of the analysis are summarized in Table 2, where performances between motion and non-motion 

tests are revealed. HRmean and BRmean are obtained by averaging all values on the instantaneous HR 

and BR traces respectively. Similarly, HRSD and BRSD are the sample Standard Deviation (SD) of the 

instantaneous HR and BR series respectively. 

 

 
Table 2. Results of the HR and BR statistical analysis for experiments at rest and during motion. 

 

 

HR series were strongly correlated across statistical parameters, exhibiting r = 1.00 for means and r > 

0.9 for standard deviations, independently of motion (p < 0.001 in all cases). Moreover, a beat to 

beat Bland-Altman analysis was employed to compare the two measurement techniques. The 

differences between estimates from contact and remote measurements were plotted against the 

averages of both systems for respectively HR and BR at rest [Fig. 7 (a) and (c)] and during motion 

[Fig. 7 (b) and (d)]. Means are represented by dash-dot lines and 95% limits of agreement (± 1.96 SD) 

by dashed lines on plots from the figure 7. Specifically, the mean biases were −0.03 bpm with 95% 

limits of agreement −4.22 to 4.16 bpm for the HR and −0.27 breaths/min with 95% limits of 

agreement −5.36 to 4.82 breaths/min for the BR at rest. During motion, the biases were 0.02 bpm 

and −0.01 breaths/min for respectively HR and BR. The corresponding 95% confidence intervals were 

−4.96 to 4.99 bpm and −4.6 to 4.58 breaths/min. In addition the beat to beat Root Mean Square 

Error (RMSE) and Pearson’s correlation coefficients were computed between iHR traces acquired 

from webcam [Fig. 6 (a)] and reference [Fig. 6 (c)] sensors. Results are summarized in Table 3, 

exhibiting strong correlation between measurement methods, where r > 0.85 (p < 0.001) 

independently of motion. The RMSE between both HR readings were 1.97 and 2.33 bpm for 

experiments at rest and during motion respectively. 

At rest 
contact sensors webcam Correlation 

Mean ± SD Mean ± SD  

HRmean 68.28 ± 11.38 68.26 ± 11.35 1.00 

HRSD 4.55 ± 1.96 4.38 ± 1.90 0.98 

BRmean 16.40 ± 4.14 16.21 ± 3.84 0.99 

BRSD 1.76 ± 0.98 2.34 ± 1.23 0.81 

During motion 
 

HRmean 66.53 ± 11.63 66.54 ± 11.62 1.00 

HRSD 4.31 ± 1.44 4.6 ± 1.44 0.94 

BRmean 16.71 ± 2.64 16.71 ± 2.79 0.98 

BRSD 2.21 ± 0.94 2.64 ± 0.69 0.46 

HRmean is the average over all heart rate values on the instantaneous HR 

signal and HRSD his standard deviation, both expressed in bpm. Similarly, 

BRmean and BRSD are respectively the average and the SD of the instantaneous 

BR signal. Both are expressed in breaths/min 



 
Table 3. Beat to beat RMSE and correlation results of the instantaneous HR series 

 

 

 
 

Fig. 7. Beat to beat Bland-Altman plots showing the differences in HR at rest (a) and during motion 

(b) and the differences in BR at rest (c) and during motion (d) plotted against respective averages of 

both measurement techniques. 95% limits of agreement are represented by dashed lines. 

 

4. Discussion 

The HRV is a physiological measurement used in several domains, especially in affective computing 

and personal health care. The present study demonstrates that the instantaneous HR can be 

assessed robustly using a low-cost HD webcam on human faces, even in presence of motion. 

Statistical and beat to beat analysis reveals that webcam-derived HR and BR are in close agreement 

with reference sensors. The respiration signal is recovered using the method presented in section 

2.3.3.2. The breathing rate, computed by averaging all value in BR readings, is strongly correlated 

across measurement means. Nevertheless, these results demonstrate that BR measurements are in 
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RMSE 1.97 ± 0.62 2.33 ± 0.73 

r 0.889 ± 0.046 0.853 ± 0.056 
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between the HR traces of the webcam and the reference sensor. 

 



closer agreements with the chest belt sensor during no motion tests, where the RSA phenomenon is 

generally more pronounced, facilitating the respiration assessment. 

 

The skin detection (see Fig. 8 for a typical example) is particularly effective during head rotations, 

where undesired pixels (hair, background) are going to add noise in raw signals. The eyes are only 

considered during their closed position, when skin pixels are visible. During the motion experiments, 

subjects were asked to turn their heads following a set of predefined rotation: approximately 30° 

horizontally and 20° vertically. These values were defined to avoid the OpenCV face tracker to lose 

the face. In addition, the skin filter is built to discard pixel values that are too dark or bright, 

containing probably noisy information. The skin detection is sensitive to illumination parameters and 

an adaptive model [31] should be developed in the future to increase the robustness of the system. 

The u* component of the CIE L*u*v* color space was used in the presented study to reduce inherent 

effects due to light variation or head movements. A typical example is presented in Fig. 9 where 

strong fluctuations due to head movements appear at 4, 12 and 17 seconds. These fluctuations 

impact the G [Fig. 9 (b)] channel when using the native RGB space but are non-existent on the u* 

component [Fig. 9 (c)] of the CIE L*u*v* color space. 

 

 
Fig. 8. The instantaneous HR cannot be properly assessed using the PPG signal (a) recorded without 

the skin filter. The cardiac pulse is visually identifiable when the skin detection is enabled (b). These 

signals are two green channel recordings from subject 12 (female, age = 22, skin type III). 

 

Vision-based systems are particularly sensitive to the illumination source position. Distance, skin 

color and light conditions are parameters that can degrade raw signals. For example, if the source is 

sunlight coming through a window perpendicularly to the subject, all head rotations are going to 

generate strong fluctuations in the PPG signal by impacting sub-regions of pixel values due to 

shadow and edge variations. Illumination parameters, like propagation, type—natural and/or 

artificial—location and diffusion must be considered in these optophysiological systems. 
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The auto-exposure should be enabled to deliver clear and bright input images and improves the 

robustness of the skin detection filter presented in this paper. On the contrary, white-balance that 

locally regulates pixel colors must be disabled and manually controlled to avoid additional random 

noises in signals. The number of pixels that composes the face relies on the webcam resolution over 

a given distance. Therefore, the PTZ algorithm presented in this study was implemented to acquire 

HD frames while preserving an operational frame rate of 30 fps. All these preprocessing operations 

are used to refine input signals to properly and precisely assess the iHR. 

The ANS continuously regulates the heart rate by affecting the sinoatrial node with both sympathetic 

and parasympathetic fibers. When breathing, the RSA will increase and then decrease the heart rate 

by modulating the parasympathetic nervous system [18]. Thus, the RSA gives a measure of the 

parasympathetic component and is less pronounced on seniors or people who suffer from 

cardiovascular diseases. It has been widely used to measure the cardiac vagal control in response to 

stress stimuli [32]. Our results indicate that the respiration signal assessment is more effective on 

rested and calm subjects than participants who are performing controlled motion tests. Activation of 

the sympathetic nervous system leads RSA to disappear [20]. Participants who performed the 

motion experiment were probably affected more by stress than during the static experiment. 

 
Fig. 9. The movements of the head are recorded using the x-coordinate of the face tracker (a) and 

generate fluctuations in the G component (b). These signals are from subject 6 (male, age = 26, skin 
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type IV).The noise due to movements is strongly attenuated using the u* component (c) of the CIE 

L*u*v* color space. 

 

5. Conclusion 

This study presents image and signal processing techniques to remotely assess the instantaneous 

HR. Using a skin detection filter, the proposed method selects only skin pixels that contain PPG 

information. The u* component of the CIE L*u*v* color space is used to increase robustness on 

motion and light variations. A typical example is presented in Fig 9. A wavelet-based filtering 

operation is then applied to detrend and denoise raw signals. It has been shown that trends in PPG 

signals must be removed in order to compute the power spectra density of the HRV [33]. The 

instantaneous HR trace is assessed after detecting peaks and computing IBIs. Results from both the 

static and motion experiments show that measurements acquired using the webcam are closely 

comparable to those from the reference sensors. The shape of the HR series has to be properly 

recovered to apply time domain algorithms that used the HRV outline in order to detect stress [20]. 

This study put emphasis on instantaneous HR assessment by a webcam in the time domain that is 

motion-tolerant. A spectral analysis of the HRV is conceivable to compute sympathovagal index, an 

estimate that gives the sympathetic versus parasympathetic balance [21]. 
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