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Abstract—We present and investigate, in the first part of this 

paper, a set of published works that may be employed to 

remotely quantify mental stress based on physiological signals by 

non-contact means. Several techniques can be used to this 

purpose, thermal imaging being currently the most advanced in 

our knowledge. Webcams correspond to a ubiquitous and to the 

most accessible techniques in the particular purpose of mental 

stress detection. After all these theoretical reminders, we present 

a pilot study based on a new framework that was developed to 

detect mental workload changes using video frames obtained 

from a low-cost webcam. To induce stress, we have employed a 

computerized Stroop color word test on twelve subjects. The 

results offer further support for the applicability of mental 

workload detection by remote and low-cost means, providing an 

alternative to conventional contact techniques. 
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I.  INTRODUCTION 

Stress has repeatedly been associated with an increased risk 
for cardiovascular disease by primarily impacting blood 
pressure [1]. Stressful life events may result in acute and 
chronic depressive episodes where other physicals symptoms 
may appear: fatigue, weight loss, headaches and even digestive 
problems. Also, depression corresponds to a risk factor for 
coronary heart disease [2]. To reduce harmful effects caused by 
stress to the physical condition, biofeedback using relaxation 
and meditation exercises [3] [4] can be proposed to the patient. 
A proper food hygiene, sleep and a regular physical activity are 
factors that naturally decrease the impact of stress on the 
organism. 

The association between affective states and computers has 
been popularized by R. Picard [5] who herein created the 
affective computing scientific domain. In these kinds of 
human-machine interactions, the computer is able to quantify 
affective states, stress and emotions [6] by using behavioral 
information and physiological parameters of the subject. 
Herein, stress detection and particularly mental workload 
changes are used to regulate the user-interface or the virtual 
environment to facilitate interactions [7]. Stress also impairs 
working memory and general cognitive function [4–5]. 

Quantifying stress by its physiological signature is a field 
of research that presents a particular and increasing interest, 
where physiological parameters like the heart rate and the 
electrodermal activity are reliable inputs to quantify different 
forms of stress [8–10]. However, contact sensors can be limited 
in some scopes of application where a specialist must install 
and monitor them [11]. In psychophysiological experiments, 
contact sensors may generate a negative bias by interfering 
with the user, resulting practically by an erroneous estimation 
[12]. 

The immediate objective of this paper is to review 
published works that may be included to the particular domain 
of stress detection based on physiological signals, sensed by 
non-contact means. Additionally, we present in the fifth section 
of this paper a pilot study to demonstrate that a simple and low-
cost webcam can be employed to measure the instantaneous 
heart rate and quantify mental stress. 

II. STRESS DETECTION BY PHYSIOLOGICAL SIGNALS 

Physiological manifestations are orchestrated by the 
autonomic nervous system. The latter is split into two sub-
branches: the parasympathetic nervous system, which slows 
down the heart and reduces the size of the pupil (miosis) and 
the sympathetic nervous system, which in contrast accelerates 
the heart, dilates the pupil (mydriasis) and is responsible in 
sweating by the sweat (sudoriferous) glands. Stressors 
generally stimulate the sympathetic nervous system and inhibit 
the influence of the parasympathetic nervous system, these two 
components operating reciprocally. 

A. Standard physiological signals used for stress detection 

J.A. Healey and R. Picard [5] proposed to collect several 
physiological signals in order to determine relative stress level 
of drivers. Electrocardiogram, electromyogram, electrodermal 
activity and respiration were recorded during different driving 
conditions with contact sensors. A set of features were then 
extracted from raw signals to classify three levels of stress. 
They found that electrodermal activity and heart rate 
measurements were closely correlated with stress. 
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Additionally, Zhai and Barreto [6] have employed contact 
skin temperature sensor and pupil diameter to separate stress 
states from calm states during computer work. To induce 
stress, they have used an interactive version of the Stroop color 
word test, a particular interference test. Shi and his colleagues 
[13] introduced in their work a method that considers the 
physiological signature of the user being observed. In fact, it is 
particularly difficult to propose a user-independent system 
because of the natural variations of physiology between each 
person. Electroencephalograms were employed to gather beta 
waves concurrently with other physiological signals [14]. 
Nevertheless, experiments are hard to conduct because of the 
invasiveness of such a system. 

Only the cardiac activity can be used to detect stress [15] 
[4], specifically when computing the Heart Rate Variability 
(HRV), a factor that it is closely correlated to the autonomic 
nervous system. Time analysis of the HRV can be computed to 
observe the regularity of this series. Frequency analysis is 
performed to extract the power in particular frequency bands 
[16] using the Fast Fourier Transform to estimate the power 
spectral density. The acquisition is conventionally realized 
using contact ECG sensors but the cardiovascular pulse wave, 
assessed by photoplethysmography [17] can provide important 
information that are correlated with stress, especially the 
amplitudes of the pulse signal that reflects peripheral 
vasoconstriction or vasodilatation effects. 

B. Machine learning algorithm to quantify stress 

Different machine learning methods can be employed to 
quantify stress. k-nearest neighbors algorithm, Bayesian 
networks [6] support vector machines [13] natural neural 
networks or even linear discriminant analysis [9]. All the 
models need to be trained offline before being used in real-
time. 

III. CONVENTIONAL VS NON-CONTACT TECHNIQUES 

In intensive care units, the monitoring of vital signs like the 
heart rate and the saturation of peripheral oxygen (SpO2) are 
performed using contact pulse oximetry devices. These sensors 
are frequently plagued by motion artefacts [18] leading to 
frequent interventions of the medical staff due to false alerts 
[19]. When employing contact electrocardiographic (ECG) 
sensors, the presence of training personnel is required to place 
the electrodes onto the body of the patient. These precautions 
are necessary to avoid corrupted and noisy acquisitions. Non-
contact technologies that are used to measure physiological 
signals are also sensitive to motion artifacts, except that 
movements are recordable when imaging devices are 
employed. 

In some particular cases, like patients with burns, wounds 
or infections for example, conventional contact sensors may be 
inappropriate and even unusable. Concurrently, non-contact 
devices may be employed when allergic reactions to 
conductive gels are encountered. Some accessories and even 
some sensors must be replaced after each use for hygienic 
measures. Herein, non-contact devices are employed to reduce 
risks of infection and instrumentation coasts [19].  

 

 

Fig. 1.  Illustration of a Doppler effect on the chest. The frequency and the 

phase of the reflected signal are slightly different from those of the source 

signal. Figure extracted from [11]. 

The use of non-contact means to detect physiological 
signals is particularly advantageous in affective computing and 
psychophysiology, where stress or emotions are measured. In 
these psychophysiological experiments, contact sensors may 
generate a bias by interfering with the user, resulting 
practically by erroneous stress quantization or emotion 
misclassification [12]. Herein, non-contact technologies are 
non-invasive but not necessarily non-intrusive. 

IV. MEASUREMENT USING NON-CONTACT TECHNOLOGIES 

Remote measurements of physiological signals are often 
accomplished using imagining devices. Thus, we will split 
methods based on digital cameras and webcams (visible 
spectrum) to the methods based on thermal imaging (infrared 
spectra). Concurrently, Doppler radars were used to extract 
heart and respiratory rates [11]. Recent works demonstrate that 
even speech contains hidden biological information [20] that 
can be assessed using microphones. 

A. Doppler 

Volumetric changes are orchestrated by the heart muscle 
(myocardium) contractions, which are partially transmitted to 
the chest. Radars based on the Doppler effect were proposed by 
E.F. Geneker [21] for sensing the heartbeat and the respiration 
remotely. These two physiological parameters are combined 
when observing chest movements, thus the challenge consists 
in efficiently separating them [22]. Lasers can be employed to 
measure the small displacements of the chest that cause 
frequency and phase changes (see Fig. 1) in the reflected signal 
[11].  

Digital signal processing and adaptive filtering techniques 
are employed to properly extract and separate the cardiac signal 
from the respiration [22]. 

B. Thermal imaging 

1) Sensing of physiological signals 
The heart ejects a quantity of blood that synchronously 

travels through the arterial network before returning to the 
heart by the venous network. The propagation of the cardiac 
pulse generates modulations in the temperature of tissues, 
which are produced by convection and conduction.  



 

Fig. 2. The carotid (a) the temporal artery (b) and even the radial artery (c) 
are useful locations that can be employed to sense the pulse. Figure extracted 

from [23]. 

The skin temperature waveform reflects the cardiac pulse 
waveform, the pulse rate being perceptible using particular 
thermal cameras [23].  The effect is even more perceptible in 
superficial blood vessels, like the carotid for example (see Fig. 
2). 

The technology is completely passive (emits no energy) and 
one of the most challenging aspects when using thermal 
cameras is to automatically track the vessels and recover the 
pulse from composite signals using particular processing 
techniques [12]. Mid-wavelength infrared cameras [23] and 
long-wavelength infrared cameras [24] can be employed to 
recover the cardiovascular pulse wave and the respiration, by 
tracking temperature fluctuations around the nostrils area [25].  

2) Stress markers using thermal areas of interest 
Perspiration [26] can be detected by tracking changes in 

temperature on the maxillary area (Fig. 3). These fluctuations 
are modulated by the sympathetic nervous system and produce 
a response similar to the electrodermal activity, measured 
typically on the palm or fingers. Previous works of these 
authors [27] demonstrated that an increase of temperature in 
the supraorbital and periorbital areas, generated by an increased 
blood flow, corresponds to a ubiquitous manifestation of stress. 

C. Digital cameras and webcams 

Digital cameras and webcams were employed to detect and 
compute heart and breathing rates [28–30]. The principle, 
based on PhotoPlethysmoGraphy (PPG) consists in observing 
light variations on the skin to recover the cardiovascular pulse 
wave. 

 

Fig. 3. The supraorbital, periorbital and maxillary areas present temperature 

changes that are correlated with stress. Figure extracted from [26]. 

This optical technique is mainly implemented in contact 
pulse oximetry sensors where infrared wavelengths are 
employed to detect the pulse wave. Considered in this case as 
noise, ambient light is now an illumination source used for 
PPG exploitation via high sensitivity cameras and webcams. 
The main drawback of this technique is that PPG signals are 
susceptible to motion-induced artifacts, particularly when 
dealing with webcams and ambient light.  

Independent component analysis, a blind source separation 
method, has been proposed by Poh et al. [28] to remove noise 
artifacts from face imaging PPG signal. Sun et al. [29] have 
compared performances between a low-cost webcam and a 
high-sensitivity camera to assess HR and pulse rate variability. 
They conclude that the functional characteristics of a 30 fps 
webcam are comparable to those of a 200 fps camera when 
interpolating signals to improve the time domain resolution. 
We have recently developed [30] a robust method to compute 
the HRV using the u* channel of the CIE L*u*v* color space 
combined to a skin detection, an essential step that improves 
signal to noise ratio (Fig. 4). 

D. Microphones (speech) 

People communicate basic linguistic information when they 
speak. The formants, the observation of relevant frequencies in 
the sound spectrum, indicate the phonetic quality of a vowel. It 
appears that the voice also contains important biological 
information. The cardiac activity causes short increments in the 
vowel speech formants [20]. This way, standard microphones 
can be employed to remotely detect and compute the 
instantaneous heart rate. Herein, noise artefacts are removed 
from the time-frequency representation of the raw signal. The 
main limitation of this method is that patients need to speak 
and keep a constant tone. Thus, patients with insufficient 
respiratory lung volume were not able to properly use the 
system [20]. 

E. Capacitively coupled ECG 

Just like traditional ECG measurements, electric potentials 
are sensed using a couple of polarized electrodes. A conducting 
electrolyte gel is often used to ensure a proper resistive contact 
between the skin and the electrodes.  

 

 

Fig. 4. Algorithm overview. The face is automatically detected on each 

frame (a). Pixels that contain PPG information are isolated by a skin detection 
(b). The RGB color space is converted to the CIE L*u*v* color space (c). The 

u* frame is merged with the skin detection mask by a combinational AND 

operation (d). A spatial averaging step is performed to transform a set of 

frames into a single raw signal (e). 



 

 

Fig. 5. Capacitive sensors can be attached to a strap (a). The belt can be 

placed around the chest and enables ECG monitoring without being in direct 

contact with skin (b). Figure extracted from [31]. 

Capacitive electrodes were developed to avoid this 
constraint and risks of skin irritation when monitoring ECG 
signals for long-term periods [31]. The system is able remotely 
sense these bioelectric signals but needs to operate in close 
proximity to the skin. These sensors [Fig. 5 (a)] need to be 
relatively sensitive to detect ECG signals and also robust to 
environment interferences. The system is not in direct contact 
with skin and can be placed over clothing [Fig. 5 (b)]. Recent 
work from Prance and his colleagues [32] demonstrates that 
electric-potential sensors can be used to measure the electric 
field at distances of up to 40 cm from the subject body. 

V. PILOT STUDY 

We have proposed [33] a new filtering technique that was 
developed to remotely and robustly recover the instantaneous 
heart rate signal concurrently to photoplethysmographic 
amplitudes fluctuations from video frames acquired by a low-
cost webcam. Thus, a continuous wavelet transform filtering 
method was developed to precisely recover cardiac parameters 
of all participants. 

Orchestrated by the autonomic nervous system, a peripheral 
vasoconstriction appears under stressful situations and leads 
PPG amplitudes to decrease [34]. We have employed these 
parameters to form a curve that represents mental workload 
changes for each of the 12 participants that were performing a 
computerized and interactive version of the Stroop [8] color 
word test (see Fig. 6). 

 

  

Fig. 6. Screenshots of the interactive application: during the Stroop color 

word test (left picture) and the first relaxation video (right picture) that starts 

right after the training session. 

0 50 100 150 200 250 300 350 400

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

0 50 100 150 200 250 300 350 400

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 A

m
p
lit

u
d
e

Time (s)

(a)

(b)

 

Fig. 7. Results of the mental workload detection for the participant #11 (a) 

and #12 (b). The dashed-line plot corresponds to the webcam-derived 

workload signal and the solid-line plot to the electrodermal trace. 

Briefly, the participant has 3 seconds to click on the colored 
box that corresponds to the word printed in the center of the 
monitor (Fig. 6). Some words are printed in a color not denoted 
by the name (incongruent, e.g. the word “green” printed in a 
blue ink) while the others are printed on the right color 
(congruent, e.g. the word “yellow” written in yellow).The 
participants performed three sessions of the color word test, i.e. 
a one minute training session to familiarize the user with the 
virtual interface and two stress sessions. Each session are 
separated by a one minute relaxation session. A stressful music 
is played during both stress sessions and an alarm siren is 
launched the 10 last seconds. 

Also, the electrodermal activity was recorded using a 
contact skin conductance sensor. This particular signal reflects 
sympathetic arousal and was compared to the mental workload 
curves assessed by the webcam (Fig. 7). Generally, a 
significant increase on mean and derivative values is 
perceptible between relaxation and stress sessions, 
independently of the measurement techniques. The boxplot of 
means printed in Fig. 8 gives an estimation of the mental 
workload curves computed with the webcam measurements. 
As for the electrodermal activity, these curves tend to decrease 
during relaxation sessions and, in contrast, tend to increase 
during stress sessions. 
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Fig. 8. Boxplots representing global average measurements of the webcam 

(a) and the electrodermal activity (b) for the three relax sessions and the two 

stress sessions. 



VI. CONCLUSION 

The results presented in this study [33] demonstrate the 
feasibility of using the cardiac response derived from a low-
cost webcam to assess mental workload changes. The 
processing methods are motion-tolerant and robust to light 
deficiency [30]. The instantaneous heart rate can be properly 
assessed even in presence of strong motion artifacts. 

Herein, we have demonstrated that webcams correspond to 
relevant non-contact sensors that can be employed to quantify 
the mental workload changes of a participant by computing a 
set of basic parameters extracted from the cardiac activity. 
Another challenging aspect is to integrate different modalities 
to recognize specific emotions. For example, body postures, 
facial expressions and gaze tracking can be extracted from 
input webcams frames. Even prosodic information can be 
sensed using built-in microphones. Other technologies, like 
thermal imaging are very promising in psychophysiology 
because they can sense particular temperature changes 
orchestrated by sympathetic arousal. 
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